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Abstract.

Focusing on the headwaters of the California’s Feather River, we investigated how multi-year droughts affect the water

balance of Mediterranean mixed rain-snow catchments. Droughts in these catchments saw a lower fraction of precipitation

allocated to runoff compared to non-drought years. This shift in precipitation-runoff relationship was larger in a surface-runoff-

dominated than in a subsurface-flow-dominated catchment — 39% and 18% less runoff, respectively, for a representative pre-5

cipitation amount. The performance of the PRMS hydrologic model in these catchments decreased during droughts, particularly

those causing larger shifts in the annual precipitation-runoff relationship. Evapotranspiration (ET ) was the only water-balance

component for which predictive accuracy during drought vs. non-drought years was consistently different. Besides a systematic

bias during all years, the model tended to relatively overestimate droughtET and to underestimate non-droughtET . Modeling

errors for ET during droughts were somewhat correlated with maximum and minimum annual temperature as well as changes10

in sub-surface storage (r = -0.45, -0.57, and 0.23, respectively). These correlations point to the interannual response of ET

to climate, or climate elasticity of ET , as the likely driver of the observed shifts in precipitation-runoff relationship during

droughts in Mediterranean mixed rain-snow regions; underestimation of this response caused increased modeling inaccuracy

during droughts. Improved predictions of interannual variability of ET are necessary to support water-supply management in

a warming climate and could be achieved by explicitly parametrizing feedback mechanisms across atmospheric demand for15

moisture, ET , and multi-year carryover of subsurface storage

1 Introduction

Droughts have a profound impact on ecosystems and societies (Kuil et al., 2019), especially because they can be more persistent

than other water risks (He et al., 2017; Rungee et al., 2018). Some examples include the Dust Bowl drought in the 1930s,20
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which triggered long-lasting changes in the economy and population distribution of the United States (Cook et al., 2014),

the Millennium Drought in south-eastern Australia (1997-2009, see Chiew et al., 2014; Saft et al., 2015), the persistently

dry conditions across the U.S. southwest in the early 2000s (Cayan et al., 2010), the large-scale European drought in the

1920s (Hanel et al., 2018), and the 2016 El-Niño drought in South Africa (Baudoin et al., 2017). Since aridity will increase

in frequency and extent under a warming climate (Cayan et al., 2010; Woodhouse et al., 2010), understanding the impact of5

droughts on the hydrologic budget is relevant to water supply, ecosystem services, and water security (Bales et al., 2018).

Precipitation deficit has frequently been assumed as the primary proxy to explain changes in water supply during droughts

(Bales et al., 2018). While low-precipitation periods generally lead to a decrease in runoff, other factors can exacerbate or

alleviate this response. Some of these factors include concurrent air temperature (Griffin and Anchukaitis, 2014; He et al.,

2017), pre-drought aridity (Saft et al., 2016b), tree mortality and evapotranspiration (Bales et al., 2018), sub-surface storage10

(Saft et al., 2016b; Klos et al., 2018; Rungee et al., 2018), and geology (e.g., granitic vs. volcanic bedrock, see Jefferson et al.,

2008; Tague et al., 2008; Tague and Grant, 2009). Current drought indices do consider a broad spectrum of climatic variables

(Shukla and Wood, 2008; Hanel et al., 2018), but catchment properties can still challenge drought-impact assessments (Bales

et al., 2018). In the African Sahel, for example, a multi-decadal drought has led to a poorly understood increase in runoff

(Sahelian paradox, see Gal et al., 2017).15

An inconsistent response of runoff to droughts may be evidence that these periods lead to changes in catchment functioning,

similarly to other catchment-climate coevolution processes (Troch et al., 2015; Saft et al., 2016b). Such changes in runoff

response during droughts have been observed in Australia (Saft et al., 2016b), California (Bales et al., 2018), and China (Tian

et al., 2018) and have usually been quantified as statistical shifts in the precipitation-runoff relationship, i.e., an empirical

regression between annual precipitation and annual runoff (Chiew et al., 2014; Saft et al., 2015; Tian et al., 2018). While these20

lumped interpretations allow one to predict the occurrence of shifts based on catchment and drought characteristics (Saft et al.,

2016b), the internal catchment mechanism behind them has not yet been fully clarified. Runoff is ultimately the output of a

water balance, that is, Q= P −ET −∆S, where Q is runoff, P is precipitation, ET is evapotranspiration, and ∆S is the

change in sub-surface storage. In a water balance, shifts thus correspond to a different allocation of P across ET,∆S, and Q

between drought and non-drought periods. Unraveling the interplay across water-balance components is a key to clarify the25

mechanisms behind shifts in precipitation-runoff relationship during droughts (Bales et al., 2018).

A water-balance perspective of droughts is essential in a Mediterranean climate, where precipitation is concentrated in

winter and summers are dry (Bales et al., 2018). In these regions, water stored in the form of snow or in the regolith can

support evapotranspiration during multi-year droughts and offset precipitation deficit at the expenses of runoff (Fellows and

Goulden, 2017; Bales et al., 2018; Klos et al., 2018; Rungee et al., 2018), a mechanism that is further exacerbated by increasing30

temperatures and thus increased aridity (Cayan et al., 2010). California, a region with a markedly Mediterranean climate, has

seen four officially designated droughts since the 1970s (water years 1976-77, 1987-92, 2007-09, and 2012-15, see He et al.,

2017). Because most of precipitation in the state falls in the north and during winter, water supply is mostly generated in

mixed rain-snow, geologically and topographically complex headwaters, while water is mainly consumed in lowland regions.

Rising temperatures are threatening this equilibrium (Harpold et al., 2017; Hatchett and McEvoy, 2018), but the impact of35
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droughts on Mediterranean, mixed rain-snow catchments has rarely been studied from a water-balance perspective, meaning

both hydrologic-model predictive accuracy and drought-management solutions are still uncertain (Bales et al., 2018).

The four Californian droughts between the 1970s and 2010s offer an opportunity to clarify the mechanisms behind shifts in

precipitation-runoff relationships in a Mediterranean, mixed-rain snow climate, as well as the adequacy of hydrologic models

to simulate them. To achieve this goal, we used detailed water-balance indices and hydrologic modeling (PRMS, see Koczot5

et al., 2004; Markstrom et al., 2016) to address three research questions: First, what shifts do droughts cause in the precipitation-

runoff relationship of rain-snow catchments in a Mediterranean climate? Second, do these shifts affect water-balance predictive

skill in basins with different predominant geology? Third, what is the catchment mechanism causing shifts during droughts as

opposed to wet periods?

2 Methods10

We focused on the Feather River upstream of Oroville Lake in the Sierra Nevada of California (∼9300 km2, see Figure 1)

and on three of its sub-basins with contrasting geology (see Section 2.1 for details). Water from the Feather is both exploited

locally for hydropower production by Pacific Gas & Electric (PG&E, see Freeman, 2011) and impounded by Oroville Dam to

support water supply across the state through the State Water Project (Huang et al., 2012).

Our research followed three main steps (Sections 2.3.1 to 2.3.3). First, we quantified shifts during droughts in the observed15

precipitation-runoff relationship of the three (sub-)basins with serially complete full-natural-flow data (see Section 2.2 for

details about full-natural-flow data). Second, we assessed the performance of the PRMS hydrologic model in predicting full-

natural flow in all (sub-)basins and in particular during droughts in order to gain insight into the potential impact of these

periods on predictive accuracy. Third, we identified the driver of predictive accuracy during droughts and its potential relation-

ship with shifts in precipitation-runoff relationship by comparing observed and simulated basin-wide mass-balance indexes20

(P,ET,∆S,Q) in the (sub-)basins with serially complete full-natural-flow data.

We focused on water years 1970 to 2015 due to both data availability and data quality. The water year is defined as October

1st to September 30th and it is indicated with the calendar year in which it ends (e.g., water year 2015 went from October 1st,

2014 to September 30, 2015). We defined drought water years following the official declarations of the State of California:

1976-77, 1987-92, 2007-09, and 2012-15 (see https://water.ca.gov/Water-Basics/Drought, visited July 19, 2019).25

2.1 Study area

The climate of the Feather is Mediterranean, with dry summers and wet winters. Elevation ranges from∼250 m above sea level

(ASL) at Oroville Dam (the outlet of the basin) to ∼2900 m ASL at Mt. Lassen, but most of the catchment lies below 2000

m ASL (Koczot et al., 2004). Mixed rain-snow and rain-on-snow events are frequent across the basin (Koczot et al., 2004).

The water balance of the Feather has experienced recent warming-related changes, including declining runoff and peak snow30

accumulation (Freeman, 2011, 2012), forest growth (Freeman, 2011), and a rise in the rain-snow transition line (Hatchett et al.,

2017).
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The Feather is the most northern of the thirteen basins draining from the Sierra Nevada into the Sacramento-San Joaquin

valley (see Harrison and Bales, 2016). Contrary to most of these catchments (Freeman, 2012; Harrison and Bales, 2016), some

headwaters of the Feather lie in the eastern, rain-shadowed side of the Sierra divide (Figure 1): mean annual precipitation thus

ranges from ∼2800 mm in the western side of the basin to less than 800 mm in the eastern side. Because low precipitation has

been suggested as a key predictor of shifts during droughts (Saft et al., 2015), this basin is an ideal case study to answer our5

questions.

Our study considered two spatial scales (Figure 1): the Feather at Oroville Dam and three of its headwater sub-basins:

Almanor (∼1100 km2, 1400-2900 m ASL, rain-shadowed), East Branch (∼2600 km2, 725-2550 m ASL, rain-shadowed), and

Middle Fork (∼2700 km2, 480-2660 m ASL, partially rain-shadowed). Hydrologic studies on the Feather River at Oroville

are abundant (see for example Tang and Lettenmaier, 2010; Rosenberg et al., 2011; Huang et al., 2012; Anghileri et al., 2016,10

and references therein), whereas headwater sub-basins have rarely been studied as stand-alone catchments (see examples in

Freeman, 2011; Wayand et al., 2015; Sun et al., 2019).

The Almanor sub-basin lies at the intersection between the granitic Sierra Nevada and the volcanic Cascade and is thus

dominated by a porous, volcanic bedrock (see Figure 1). This sub-basin is mostly fed by subsurface flow (Freeman, 2008) and

has exhibited a 30% decline in water-year inflow to Almanor Lake (located at the outlet of this sub-basin) since the 1960s. This15

drop is attributed to missed groundwater-recharge opportunities due to decreasing snow accumulation (Freeman, 2010). The

geology of the East Branch and the Middle Fork includes impervious granitic outcrops similar to the rest of the Sierra Nevada.

Water supply in these two sub-basins is dominated by surface runoff (Freeman, 2008), but the East Branch is significantly drier

than the Middle Fork because it is fully rain shadowed.

2.2 Data20

Data include daily full-natural flow at the outlet of the four (sub-)basins under study; in-situ precipitation, air temperature,

and snow water equivalent (SWE) at various temporal resolutions; and annual spatially distributed water-balance indices of

precipitation, evapotranspiration, and variation in sub-surface storage.

Full-natural (or unimpaired) flow is a mass-balance reconstruction of water supply as if no dam or other man-made infras-

tructure affected it (He et al., 2017). For the Almanor and East-Branch sub-basins, these data were provided by Pacific Gas &25

Electric (PG&E) at daily resolution for water years 1970 through 2017. For the Middle Fork sub-basin and for the Feather River

at Oroville, data were obtained from the California Department of Water Resources (DWR) at daily and monthly resolution,

respectively (water years 1987 to 2018 and 1985 to 2018, respectively).

In-situ daily precipitation from ten stations and daily maximum and minimum air temperature from three stations across

the Feather river basin were obtained from PG&E, which routinely uses them as input for the PRMS hydrologic-forecasting30

model (see details in Koczot et al., 2004). These data were quality checked and serially gap-filled by the company (water years

1970 to 2017). Additional data of monthly in-situ precipitation and manual snow water equivalent were downloaded from the

California Data Exchange Center (https://cdec.water.ca.gov/, visited July 19, 2019) to study drought characteristics across the

Feather (see Table S1-S2 in the Supporting Information).
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Spatially distributed annual precipitation (P ) was from the Parameter-elevation Relationships on Independent Slopes Model

(PRISM, see Daly et al., 2008). Spatially distributed ET was estimated using a generalized additive model (GAM) between

single-term power-function transformations of Landsat-based annual-averaged NDVI (Normalized Difference Vegetation In-

dex, 30 m) and the average of the current and previous year’s precipitation (Rungee et al., sub). The single-term power trans-

formations were developed by individually regressing the NDVI and PRISM data with flux-tower measurements of evapotran-5

spiration (Rungee et al., sub). Variation in basin-wide subsurface storage was estimated as the residuals of P −ET −Q, where

P is basin-wide mean-annual PRISM-based precipitation, ET is basin-wide mean-annual GAM-estimated evapotranspiration,

and Q is annual full-natural flow. Landsat-based data were available for water years 1985-2016; PRISM maps were processed

for the same period. PRISM data have a pixel size of 800 m, which we downscaled to 30 m using a nearest-neighbor approach

to match that of Landsat.10

2.3 Analyses

2.3.1 Shift in precipitation - runoff relationship

We detected shifts in the precipitation-runoff relationship by fitting a multivariate regression across annual cumulative full-

natural flow (target variable), basin-wide annual precipitation, and a categorical variable denoting drought and non-drought

years (Saft et al., 2016a; Tian et al., 2018):15

QBC = b0 + b1I + b2P + ε, (1)

where I is a categorical drought variable (1 for drought years and 0 for non-drought years), b0, b1, b2 are regression coefficients,

ε is noise, and QBC is annual full-natural flow transformed according to a Box-Cox transformation following the arguments in

Saft et al. (2016a, b); Tian et al. (2018):

QBC =
Qλ− 1
λ

. (2)20

While λ should in principle be estimated from data to ensure linearity and heteroscedasticity (Sarkar, 1985), we assumed

λ= 0.25 as suggested by Santos et al. (2018) and references therein.

If different from zero, parameter b1 indicated a shift of the precipitation-runoff relationship during droughts. This parameter

is usually negative, as shifts during droughts tend to decrease runoff compared to precipitation deficit alone (Saft et al., 2016a,

b). We assessed the statistical significance of coefficient b1 and concluded that the shift during droughts was statistically25

significant if the sign of the confidence bounds agreed (Kottegoda and Rosso, 2008). We performed this analysis for the

Feather River at Oroville (1985-2015) and the Almanor and East-Branch sub-basins (1970-2015), for which we had serially

complete time-series of annual full-natural flow.

Rather than directly using PRISM maps to estimate basin-wide precipitation, we tilted their monthly mean surfaces using

precipitation data at the ten in-situ stations available to this study (see again Section 2.2). This operational procedure (called30
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DRAPER) is routinely used by PG&E forecasters on the river to force PRMS and is believed to provide more representative

precipitation patterns for this basin than simply using PRISM surfaces (see Koczot et al., 2004; Donovan and Koczot, 2019,

for details about the DRAPER algorithm).

We estimated the relative magnitude of the shift in precipitation vs. runoff (MQ) for each (sub-)basin with serially complete

time-series of annual full-natural flow by using the approach suggested by Saft et al. (2016b):5

MQ =
Qdry,PI −Qdry,P

Qdry,P
, (3)

where Qdry,PI is the (predicted annual) full-natural flow for a representative (annual) precipitation during dry periods ac-

cording to the shifted precipitation-runoff relationship (Equation 1, I = 1), while Qdry,P is the full-natural flow for the same

precipitation according to the non-shifted relationship (Equation 1, I = 0). We assumed as representative annual precipitation

the mean between average and minimum annual precipitation across the entire period of record (see more details, including a10

schematic, in Saft et al., 2016b). Here again, we used DRAPER to estimate this representative precipitation, while full-natural

flow in Equation 3 was not transformed.

Saft et al. (2016b) originally proposed MQ to quantify the impact of the decade-long Millennium drought in south-eastern

Australia (∼1997-2009). The four Californian droughts under study were significantly shorter, so we applied Equation 3 by

aggregating all drought years in one sample. We also quantified shifts for single droughts (mQ) by assuming Qdry,PI to be15

the observed, average annual full-natural flow across each drought, and Qdry,P to be the expected annual full-natural flow

according to the non-shifted precipitation-runoff relationship (Equation 1, I = 0) and a reference annual precipitation equal to

the average across each drought.

2.3.2 PRMS performance during droughts: flow

PRMS is a semi-distributed hydrologic model that solves mass and energy conservation across a given basin by discretizing20

it into Hydrologic Response Units (HRUs), regions of the basin that are assumed homogeneous (Markstrom et al., 2015).

The model requires, as a minimum, inputs of daily precipitation and maximum-minimum temperature at one location, from

which these data can be distributed to the grid of HRU centroids (Markstrom et al., 2015). In the Feather River PRMS model, air

temperature from three stations are distributed using monthly lapse rates. Precipitation is distributed using the DRAPER method

as outlined in Section 2.3.1 (Koczot et al., 2004; Donovan and Koczot, 2019). Processes simulated include precipitation-phase25

partitioning, precipitation interception and storage by canopy, evapotranspiration, radiation distribution, snow accumulation

and melt, infiltration and surface runoff, interflow, groundwater storage, and baseflow.

PRMS was calibrated and evaluated over the Feather River in the early 2000s by mostly focusing on full-natural-flow data

between 1971 and 1997 (see Koczot et al., 2004, for more details, including specific modules used by the model). While PRMS

has been updated since then (the current version is 5 – June 2019), the model is currently set up for this river in version 2. The30

main differences between more recent versions and version 2 are the sub-surface components: version 2 separates sub-surface

storage into superficial soil (including the recharge zone), a deeper sub-surface reservoir, and groundwater (Koczot et al.,

6

https://doi.org/10.5194/hess-2019-377
Preprint. Discussion started: 26 August 2019
c© Author(s) 2019. CC BY 4.0 License.



2004); more recent versions of PRMS consider a process-based separation into capillary, preferential, and gravity storage in

addition to groundwater (Markstrom et al., 2015). For this study, the representation of sub-surface processes in PRMS version

2 was assumed to be sufficiently representative of many conceptual models: for example, this version was implemented in

inter-comparison tools like the Framework for Understanding Modeling Errors (FUSE, see Clark et al., 2008).

PRMS performance for full-natural flow was quantified using three different metrics: water-year Nash-Sutcliffe Efficiency5

(NSE), annual relative bias (relative to observations), and observed vs. simulated climate elasticity of streamflow. Because

full-natural flow is prone to large errors, we smoothed the data and simulations using a five-day window before computing

performance metrics.

NSE benchmarks the squared errors of simulations of a target variable (in our case, daily full-natural flow for each water year)

against those obtained by using a long-term mean (Nash and Sutcliffe, 1970). The choice of this “long-term mean” can yield10

very sensitive results (Schaefli et al., 2007). In the Feather River basin, full-natural flow shows a large inter- and intra-annual

variability (see some examples in Koczot et al., 2004), implying that a mean across all water years would be a particularly poor

benchmark (resulting in overoptimistic NSE values). On the other hand, a water-year mean would be an excellent predictor

during dry years and a very poor predictor during wet years. In order to limit these spurious results, we benchmarked PRMS

using a mean across all years from the same type according to the classification used by PG&E (henceforth, NSEyrt; see15

Georgakakos et al., 2012, for some context on year types in California). We also computed the Nash-Sutcliffe Efficiency using

log-transformed values (LogNSEyrt) as this metric is more sensitive to low flow (Santos et al., 2018).

Climate elasticity measures the sensitivity of annual streamflow (in this case, full-natural flow) to changes in a relevant cli-

mate variable, usually precipitation and potential evapotranspiration (Andréassian et al., 2016; Cooper et al., 2018). Compared

to NSE and bias, contrasting observed and simulated elasticity quantifies the performance of a hydrologic model in simulating20

inter-annual variability in streamflow and its relation to external forcings. Here, we considered absolute elasticity (nondimen-

sional): eQ/P and eQ/PET are absolute elasticity to precipitation and potential evapotranspiration, respectively. Elasticity for

both simulated and observed full-natural flow was computed in a bivariate linear framework using the approach proposed by

Andréassian et al. (2016). As an independent benchmark, we also computed theoretical elasticity based on the Turc-Mezentsez

formula (see again Andréassian et al., 2016). Similarly to shifts in precipitation-runoff relationships (see Section 2.3.1), we25

computed elasticity for the (sub-)basins with serially complete time-series of annual full-natural flow, that is, the Feather

River at Oroville (1985-2015) and the Almanor and East-Branch sub-basins (1970-2015). We again used DRAPER to estimate

basin-wide precipitation; potential evapotranspiration was estimated using the Jensen-Haise approach in PRMS (Koczot et al.,

2004).

2.3.3 PRMS performance during droughts: water balance30

We quantified the performance of PRMS for the four components of the annual water balance by adapting Equation 1 to fit

a regression between observed and simulated water-balance components during drought and non-drought years (period 1985-

2015, see Section 2.2 for data availability of Landsat data products):
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Pobs = b0,P + b1,P I + b2,PPsim + εP (4a)

ETobs = b0,ET + b1,ET I + b2,ETETsim + εET (4b)

∆Sobs = b0,∆S + b1,∆SI + b2,∆S∆Ssim + ε∆S (4c)

Qobs = b0,Q + b1,QI + b2,QQsim + εQ, (4d)

where, for example, Pobs and Psim are observed and simulated basin-wide annual precipitation, while b0,P , b1,P , and b2,P are5

regression coefficients, respectively. If b1,P was statistically different from zero, then PRMS performance for precipitation

during droughts was statistically different from that during non-drought years. Similar definitions apply to the other water-

balance components in Equation 4. This analysis was carried out for the (sub-)basins with serially complete time-series of

annual full-natural flow (see Section 2.3.1).

Observed precipitation was assumed equal to the original PRISM maps in absence of other independent, distributed sources.10

ObservedET was derived from the GAM-estimated maps introduced in Section 2.2, while observed ∆S was estimated closing

the water balance with observed full-natural flow (see again Section 2.2).

In addition to the standard four balance terms in Equation 4, PRMS includes a groundwater sink. This term is used to account

for (often unknown) water losses in the sub-surface portion of the water balance. Because this sink together withET represents

the only internal water loss in the model, it was summed to ETsim to fit a regression with observed evapotranpiration (note that15

this groundwater sink was set to zero in the original calibration of the Almanor sub-basin).

3 Results

3.1 Drought hydro-climatic summary

Average minimum daily air temperature at the three index stations of Canyon Dam (1390 m ASL), Quincy (1066 m ASL),

and Bucks Creek Powerhouse (536 m ASL) showed a statistically significant increasing trend between water years 1970 and20

2015 (Kendall τ = 0.5, p-value < 0.01, α = 0.05, Sen’s slope = 0.0448 ± 0.0134◦C yr−1, that is, ∼2◦C in 45 years, Figure

2). Neither average maximum daily air temperature nor annual precipitation presented a statistically significant trend (p-value

= 0.57 and 0.99, respectively – statistics for precipitation refer to median values across all stations, see Figure 2). April-1st

SWE also had no significant trend for α = 0.05, but its p-value was significantly smaller (0.09, statistics again refer to median

values across all stations, see Figure 2). The ratio between median April 1st SWE and median annual precipitation showed a25

statistically significant, yet slight, shift from snow to rain (Kendall τ = -0.22, p-value = 0.0279, α = 0.05, Sen’s slope = -0.0055

yr−1).

The four droughts under study had very different hydro-climatic characteristics (Figure 2 and Table 1). The 1976-77 drought

was both the coolest and driest in our record (∼56% of average annual precipitation compared to 2012-15), and as a result 1976

and 1977 were the fourth and first driest water years in the State’s historical record at that time (DWR, 1978). Gauged flow30
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from the Feather at Oroville was 43% and 24% of (contemporary) average for 1976 and 1977, respectively, the latter being a

new record. Storage of Oroville Lake on October 1, 1977 was ∼37% of the norm (DWR, 1978).

At the other end of the spectrum, the 2012-15 drought was the warmest and (together with the short 2007-09 drought) the

wettest during our study period (Figure 2 and Table 1). As a result, average April-1st SWE/P significantly declined during this

drought compared to the other three (0.26 as opposed to ∼ 0.50). A condition of comparatively high precipitation but lacking5

snow storage has been recently defined a warm snow drought (Harpold et al., 2017). In between, the 1987-92 drought was

the longest one (6 years), with five years classified as critically dry and one (1989) as dry (DWR, 1993). Average minimum

temperature during this drought was ∼0.89 ◦C higher than the 1976-77 drought.

While all droughts decreased annual water supply (see Sections 3.2), runoff seasonality was generally preserved between

drought and non-drought years (Figure 3), with peak flow occurring during winter and spring due to precipitation and snowmelt,10

and low flow occurring during the dry summer-fall season. While the volcanic, subsurface-flow-fed Almanor sub-basin and

the surface-runoff-dominated East-Branch sub-basin displayed comparable peaks in full-natural flow during winter, the latter

had a significantly lower flow during summer than the former. This higher summer flow in the volcanic Almanor sub-basin

compared to the granitic East Branch was consistent between drought and non-drought years.

3.2 Shift in precipitation vs. runoff15

The four droughts under study caused a shift in the precipitation-runoff relationship for both the two headwater sub-basins

with complete annual data (Almanor and the East Branch) and the Feather River at Oroville (Figure 4). This shift means that

the decrease in runoff observed during droughts in these (sub-)basins was larger than what could be explained by precipitation

deficit alone (see Section 2.3.1 for details about the definition of shift). The 95% confidence bounds for b1 were -1.51 and

-0.34; -2.29 and -1.00; and -1.45 and -0.29, respectively (see Equation 1 for a definition of b1), implying that this shift was20

statistically significant for all (sub-)basins. The magnitude of the shift (calculated using Equation 3) was -18%, -39%, and

-18% compared to precipitation allocation to runoff during non-drought years, respectively. Runoff from the volcanic Almanor

sub-basin was thus more resilient to shifts during droughts than that from the East Branch, even if shifts were significant in all

the (sub-)basins investigated.

The magnitude of these shifts varied from drought to drought and across (sub-)basins (Table 2). In the volcanic Almanor sub-25

basin, the largest shift corresponded to the 1987-92 drought (-25%), the longest in our record. For the surface-runoff-dominated

East Branch, the largest shift was caused by the 1976-77 drought (-51%), the shortest, driest, and coolest in our record (see

again Table 1); in general, this sub-basin consistently showed the largest shift during all droughts across all (sub-)basins. For

the Feather River at Oroville, the largest shift corresponded to the recent 2012-15 drought (-22%), the warmest in our record

(note that no data was available for this basin during the 1976-77 drought). The 2007-09 drought showed the smallest shift in30

all basins under study.
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3.3 PRMS performance for flow

Both NSEyrt and LogNSEyrt significantly decreased during droughts (Figure 5). The difference between average NSEyrt and

LogNSEyrt during drought vs. non-drought years and the four (sub-)basins was -0.6 and -0.4 (Almanor); -1 and -0.4 (East

Branch); -0.9 and -0.2 (Middle Fork); and -0.4 and -0.1 (Feather at Oroville). The performance during isolated dry years was

better than during droughts (e.g., see water years 1994 or 2001 in Figure 5). This decline in PRMS performance was comparable5

between droughts that were part of the calibration period (1970-1997) and those that occurred after 1997.

For the 1976-77 drought, LogNSEyrt < NSEyrt in both the volcanic Almanor sub-basin and the East Branch. NSEyrt is

very sensitive to high flows, while LogNSEyrt puts more weight on low flows (Santos et al., 2018): low flows were thus the

driver of performance drops during the 1976-77 drought. In the East Branch, NSEyrt during that drought was even comparable

to non-drought years. For the 1987-92 and the 2012-15 droughts, NSEyrt < LogNSEyrt in both the Almanor sub-basin and10

the East Branch: high-flow peaks such as those during winter precipitation events or spring snowmelt were thus the main

performance driver during these wetter droughts. The performance during the 2007-09 drought was only slightly below non-

drought-year standards. The response time of NSEyrt to droughts in the Almanor sub-basin was somewhat slower than in the

other (sub-)basins, a good example being the decadal drop during the 1980s - early 1990s.

Observed annual full-natural flow was generally overestimated during all droughts but the 1976-77 one, for which PRMS15

severely underestimated water supply for both the Almanor and the East Branch sub-basins (relative biases of -0.44 and -0.86,

respectively, Figure 6). Inter-annual variability in relative bias was larger in the surface-runoff-dominated East Branch and

Middle Fork than in the volcanic Almanor sub-basin. The 2007-09 drought returned relative biases in the East Branch and

Middle Fork that were in line with non-drought years.

PRMS overestimated the absolute value of climate elasticity of streamflow to both annual precipitation and potential evap-20

otranspiration (Table 3 and Figure S1 in the Supporting Information). In particular, both observations and simulations showed

a statistically significant positive elasticity to precipitation, but observations were closer to the theoretical elasticity according

to the Turc-Mezentsev formula. With regard to annual potential evapotranspiration, observations did not show any statistically

significant elasticity, whereas PRMS-based elasticity was statistically significant for both the Almanor and the East Branch

sub-basins. The largest overestimation of elasticity corresponded to the volcanic Almanor sub-basin. We interpret the fact that25

modeled eQ/PET was unexpectedly positive as likely spurious and related to the large scatter and weaker correlations between

potential evapotranspiration and modeled full-natural flow compared to precipitation vs. modeled full-natural flow (Figure S1,

univariate correlation coefficient for precipitation and potential evapotranspiration vs. modeled full-natural flow being ∼ 0.95

and ∼0.43, respectively).

3.4 The observed vs. modeled water balance30

PRMS-modeled and PRISM-based basin-wide precipitation were visually in very good agreement, both in terms of annual

values and in terms of inter-annual variability (Figure 7 and S2 - S3 in the Supporting Information). This was expected, as

PRMS uses PRISM as a starting point to distribute precipitation across the watershed (DRAPER method, see Section 2.3.2),
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which does not significantly affect annual precipitation totals. On the other hand, the model significantly underestimated annual

estimated evapotranspiration, even if this underestimation was partially compensated for by the groundwater sink (Figure 7 and

S2 - S3). Also, the model systematically underestimated both the absolute value and the interannual variability of changes in

sub-surface storage, in particular for the Almanor sub-basin (Figure S3) and for the Feather River at Oroville (Figure 7); PRMS

failed to reproduce the multi-decadal decline in storage observed in all (sub-)basins as a result. While the observed changes5

in sub-surface storage used in this paper to evaluate PRMS may suffer from unquantifiable uncertainty across precipitation,

full-natural flow, and GAM-estimated evapotranspiration, this decline was confirmed by other soft data collected on the river

(Freeman, 2011) and agrees with a general trend of declining summer low flows in the Maritime Western U.S. (Cooper et al.,

2018).

Among the three water-balance components determining full-natural flow, ET was the only one for which the performance10

of PRMS during drought and during non-drought years were statistically different in all (sub-)basins (see Figure 8 and Table

4). Conversely, the performance for precipitation and for changes in sub-surface storage were statistically different in only one

sub-basin each: the East Branch for P and Almanor for ∆S, respectively. As expected (see Section 3.3), differences in PRMS

performance for full-natural flow during drought vs. non-drought years were statistically significant in all basins. Thus, ET

was the only water-balance component (besided Q) that was systematically misrepresented during droughts.15

The statistically different performance of PRMS for ET during droughts was confirmed even when comparing simulated

and observed average ET (including groundwater sink) over temporal windows of two, three, and four years (see Figure S4 in

the Supporting Information), which may be more appropriate time scales for this evaluation because of the possible temporal

lag between vegetation greenness and ET (Goulden et al., 2012). Results in Figure 8 and Table 4 were also confirmed when

only considering ET rather than the sum of ET and the groundwater sink (see Figure S5 in the Supporting Information and20

Section 2.3.3 for details about the groundwater sink).

4 Discussion

Previous studies about drought-driven shifts in precipitation vs. runoff have mostly focused on rainfall-dominated regions

like Australia (see Saft et al., 2015, and references therein) or China (Tian et al., 2018), but we showed here that such shifts

may also occur in mixed rain-snow catchments in a Mediterranean climate, regardless of predominant geology (volcanic,25

subsurface-flow-dominated or transitional-to-granitic, surface-runoff-dominated). In agreement with previous findings by Saft

et al. (2016a), we also found that only droughts corresponding to significant shifts in precipitation-runoff relationships trans-

lated into poorer performances for a semi-distributed hydrologic model (PRMS), meaning that understanding this drop in

accuracy may shed light on the mechanism behind the observed shifts. Because ET is the only water-balance component

(besides Q) yielding statistically different performances during droughts vs. non-drought years, ET -drought feedback mech-30

anisms are the most likely driver of shifts in water supply in a Mediterranean, mixed rain-snow climate, and failure to fully

account for these mechanisms results in the predictive inaccuracy of the model.
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Shifts in precipitation vs. runoff have attracted increasing interest since at least the recent Millennium drought in south-

eastern Australia, where Saft et al. (2016b) estimated maximum shifts in precipitation vs. runoff in the order of 80-100%. If and

where these shifts occur, runoff will decrease more than what would be predicted based on a precipitation-runoff relationship

trained using non-drought years (Saft et al., 2016b). With hydrologic models that are often biased toward better reproducing

high flows (Staudinger et al., 2011) and climate-change scenarios that predict increasing aridity in several regions of the world5

(Cayan et al., 2010), understanding the mechanisms behind these shifts and the adequacy (Gupta et al., 2012) of models in

such conditions has profound implications for water resources management and water security.

In this Section, we elaborate on three of these implications: first, why is ET consistently misrepresented during droughts?

Second, are shifts in precipitation vs. runoff common across all basins of the Sierra Nevada? Third, what are the lessons learned

to improve water-supply simulations in drought-prone regions?10

4.1 Why ET is misrepresented during droughts: climate elasticity of evapotranspiration

Annual errors for basin-wide ET were due to (1) a systematic bias (∼160 mm less simulated ET than observed) and (2) an

annually variable component (Figure 9, results refer to the Feather at Oroville). The systematic bias could be explained by an

underestimation of plant-accessible water storage, a recurring source of uncertainty in the Sierra Nevada (Klos et al., 2018).

Like any hydrologic model that is calibrated on streamflow, however, the annual performance of PRMS for Q is relatively15

insensitive to systematic biases in internal fluxes like ET as these can be offset by other fluxes during calibration (a good

example being the groundwater sink, see Figure 7). This means that the drop in modeling accuracy during droughts and its

relationship with shifts in precipitation-runoff relationships is related to the annually variable component. This component

of the error was indeed qualitatively correlated with drought vs. non-drought years: PRMS tended to relatively overestimate

ET during droughts and to underestimate it during non-drought years (see again Figure 9). We did not find any qualitative20

correlation between errors for ∆S and drought years (Figure S6), implying again that ET is the driver of predictive inaccuracy

for this model during droughts.

Bales et al. (2018) suggested three sources of conceptual uncertainty with regard to how models simulate the drought water

balance. The first is the already mentioned oversimplification of regolith storage and rooting depth and thus misrepresentation

of plant-accessible water storage (see also Rungee et al., 2018). The second is a lack of proper parametrization of the feedback25

between evaporative demand and stomatal closure. The third is the representation of vegetation as a static layer with no

dynamic response to stresses. From this perspective, Figure 10 shows that relative differences between observed and simulated

ET during droughts across the Feather at Oroville (relative to the systematic bias) were somewhat correlated with maximum

and minimum annual temperature (r = -0.45 and -0.57, respectively) and with observed relative changes in storage (r = 0.23

– also relative to the corresponding systematic bias, see Figure S6). The correlation with annual precipitation during droughts30

was much smaller (r = 0.1). Correlations during non-drought years were visually similar to those during droughts (Figure 10),

and differences compared to drought years should be interpreted with caution given the small number of available data points.

While none of these correlations is strong enough alone to explain modeling errors, they collectively point to interactions

across atmospheric demand for moisture, ET , and sub-surface storage as the source of conceptual uncertainty behind the
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misrepresentation of ET during droughts. The overall picture is that PRMS relatively overestimates ET during years char-

acterized by comparatively cold conditions and a relative replenishment of sub-surface storage (both conditions that would in

fact decrease ET ), and underestimates ET during comparatively warm years characterized by a relative drawdown of storage

(both conditions that would in fact increase ET ). In other words, the model underestimates the multi-year response of ET to

climate variability, a property that we hereby define as climate elasticity of evapotranspiration and that emerges as a driver of5

water supply in a Mediterranean climate (Bales et al., 2018). While tree mortality may also be a good explanatory variable for

errors in ET , available data on this river only date back to the early 2000s and were thus too short to compute correlations.

4.2 Are shifts in precipitation vs. runoff common across the Sierra Nevada?

Our results show that shifts in precipitation-runoff relationship may take place both in volcanic, subsurface-flow-dominated and

in transitional-to-granitic, surface-runoff-dominated basins. This may seem counterintuitive as the volcanic Almanor sub-basin10

has a relatively small inter-annual variability in low flows that agrees with other studies in similar contexts (Jefferson et al.,

2008; Tague et al., 2008; Cooper et al., 2018), and this variability is an important driver of shifts in Australian basins (Saft

et al., 2016b). However, while the surface-runoff-dominated East Branch does return larger shifts both overall (MQ) and for

individual droughts (mQ, see Section 3.2), both this sub-basin and the Almanor are rain-shadowed (aridity index of ∼1.5 and

1.1, respectively). According to Saft et al. (2016b), pre-drought aridity is the most important predictor of shifts. This highlights15

that a higher summer flow does not necessarily provide resiliency to shifts in precipitation vs. runoff during droughts. That said,

the volcanic sub-basin was still more sensitive to longer droughts than the surface-runoff-dominated sub-basin. This behavior

may be related to the comparatively long time needed by groundwater-flow-dominated, slow-draining catchments to respond

to a superficial precipitation deficit, which has also been shown to decrease elasticity of summer low flows to superficial inputs

(Cooper et al., 2018)20

The magnitude of shifts in our case study were comparable to previous findings: Tian et al. (2018) reported an average

shift of -24% in 18 rivers in China; Saft et al. (2016b) found a mode between -40% and -20% in Australia. By upscaling the

analysis in the present study to the twelve other major rivers draining the western side of the Sierra Nevada to the California

Central Valley, we found that eight of these twelve basins showed statistically significant shifts, on the order of -19% to -12%

(Figure 11 and Table S3, water years 1985-2018, data from PRISM and https://cdec.water.ca.gov/, visited July 19, 2019). The25

basins that did not show a statistically significant shift were the relatively small, low-elevation Cosumnes and Tule basins plus

two other southern basins, the Kaweah and the Kern (see a map and a summary of hydrologic characteristics of each basin in

Harrison and Bales, 2016). While the Kaweah and the Kern have high-elevation, snow-dominated headwaters, they also have

significant rain-modulated low-elevation areas. Likewise, the low-elevation Cosumnes and Tule are mostly rain dominated. This

suggests that mixed rain-snow, Mediterranean basins in which rain plays a more prominent role in the annual water budget are30

less prone to shifts in the precipitation-runoff relationship. We interpret this as being because, in the snow-dominated basins

where a significant shift is observed, snow-melt replenishes sub-surface storage later into the dry season and thus limits the

dependence of evapotranspiration from deep sub-surface storage (Rungee et al., 2018), a key mechanism that also reduces

low-flow elasticity to climate variability (Cooper et al., 2018) but that is greatly reduced during droughts.
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The significance of these shifts was, however, sensitive to a number of methodological choices that are worth discussing

given the relatively small amount of literature on statistically quantifying shifts in precipitation-runoff relationships. First, if

the period 2016-2018 had been removed from computations in Figure 11 as was done for the Feather in Figure 4, only the

Feather, the Tuolomne, and the San Joaquin would have returned a statistically significant shift. The magnitude of the shift was

more robust, with average differences between the estimates with or without the period 2016-18 on the order of 3%. Second,5

annual precipitation in Figure 11 was directly estimated from PRISM surfaces rather than by tilting them with index in-situ

stations as done on the Feather (see Section 3.3). This choice was made for consistency reasons due to the lack of a comparable

tool to DRAPER in the other basins of the Sierra. While results for the Feather River at Oroville using both approaches were

visually in good agreement (not shown), the absolute magnitude of the shift for this river is smaller with original (-12%) than

with tilted PRISM data (-18%). It is challenging to assess which of the two indexes is closer to actual precipitation, but this10

comparison helps quantify the contribution of P on the overall uncertainty in MQ. Third, results were sensitive to the choice

of using the Box-Cox transformation (Equation 2): by focusing on the Feather river (sub-)basins, only the East Branch and the

Feather at Oroville would have returned a statistically significant shift using non-transformed full-natural flow data.

Overall, this discussion demonstrated that precipitation vs. runoff shifts are a common feature of mixed rain-snow catchments

in the Sierra Nevada of California. At the same time, results underscored the importance of explicitly including an uncertainty-15

sensitivity analysis when quantifying these shifts, especially because they are the result of differences across large numbers (P

and Q) that are particularly uncertain in mountain contexts (Avanzi et al., 2014).

4.3 How to achieve more robust runoff predictions during droughts?

While we considered only one model, PRMS, the conceptual-uncertainty source outlined in Figure 10 is a common feature

among hydrologic models that traces back to fundamental knowledge gaps in Critical Zone science such as the actual depth20

to which roots can access water in regolith (Klos et al., 2018). While it has been hypothesized that more observations could

improve the performance of models during droughts (Chiew et al., 2014), the accuracy of PRMS for droughts during the

calibration period was similar to that for droughts outside it. This version of PRMS was calibrated by mixing visual inspection

and multiple objective functions such as root mean square error, bias, and relative error (Koczot et al., 2004), which may have

skewed model fitting toward high flows compared to multi-objective criteria like the Kling-Gupta Efficiency (Gupta et al.,25

2009) or low-flow-oriented metrics like LogNSE. More measurements of evapotranspiration in mountain regions could help

better parametrize climate elasticity of evapotranspiration and thus support improved calibration by unraveling the role that

this property plays in buffering the impact of precipitation deficit on runoff during droughts.

Shifts in the precipitation-runoff relationship of snow-dominated regions are particularly critical because in these contexts

snow plays a key role in both water supply and its seasonal predictability. In the western United States, water-supply forecasts30

are based on statistical regressions across full-natural flow, precipitation, and snowpack accumulation (Pagano et al., 2004;

Rosenberg et al., 2011; Harrison and Bales, 2016). These forecasts play a key role in water-resources allocation across industrial

and agricultural uses as well as freshwater supply (Harrison and Bales, 2016). While using runoff-to-date as a predictor and

fitting different regression coefficients for different year types may partially correct for runoff deficit, these regressions do not
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explicitly account for shifts in precipitation-runoff relationships during droughts (Harrison and Bales, 2016). Since shifts in

precipitation-runoff relationships are common across the Sierra Nevada (Figure 11), we suggest embedding a shift predictor

into these regressions as done in Equation 1 as a potential future step of this work.

The underestimation of runoff during the 1976-77 drought disagrees with the general consensus that these models tend to

overestimate water supply in regions where droughts shift the precipitation-runoff relationship (Saft et al., 2016a; Tian et al.,5

2018). Water year 1977 was still the driest among the 114 years on record for California in 2015 (DWR, 2015), and it was

the last of three years of consecutively decreasing precipitation (Figure 2). Long dry periods may lead to a disconnection

between soil and groundwater storage, which in turn may prevent recharge and favor direct surface runoff and interflow (see

Saft et al., 2016b, and references therein). This condition of temporary hydrophobicity of soils and the subsequent slower-than-

expected recovery of soil-water storage (Sowerby et al., 2008) are not captured by PRMS. Neglecting this process may lead to10

erroneously allocating precipitation to the recharge zone (where it becomes available for evapotranspiration) or to groundwater;

in either case, runoff would be underestimated. Here again, surface-to-subsurface mass and energy fluxes emerge as the most

relevant knowledge gap in this field that would benefit from more targeted research.

5 Conclusions

Droughts cause a shift in the precipitation-runoff relationship of Mediterranean mixed rain-snow mountain basins of the Sierra15

Nevada of California. The magnitude of this shift is comparable to previous findings in rainfall-dominated semi-arid areas with

year-around or summer-monsoon-dominated precipitation, which points to common feedbacks impacting the process across

precipitation regimes. By comparing observed water-balance components during drought vs. non-drought years with those

simulated by a hydrologic model, we identified some of these common feedbacks as being driven by the multi-year response

of evapotranspiration to climate and in particular to atmospheric demand for moisture (temperature) and to subsurface water20

storage. Surface-runoff-dominated catchments are prone to larger shifts in precipitation-runoff relationships than catchments

dominated by subsurface flow because of the modulating effect of groundwater on the annual water balance of the latter. Snow-

dominated basins are also more susceptible to shifts than rainfall-dominated basins because snow melt during the dry season

limits evapotranspiration dependence on deep sub-surface storage – a mechanism that is greatly reduced during droughts. The

complex response of evapotranspiration to climate in mixed rain-snow Mediterranean catchments caused significant drops in25

performance for a semi-distributed hydrologic model (PRMS). Improved parametrizations of climate elasticity of evapotran-

spiration are thus highly needed to make models and water resources management more robust to droughts, especially in a

warming and more variable climate.
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Table 1. Average precipitation (P ), Snow Water Equivalent (SWE), and maximum-minimum daily temperature (Tmax and Tmin, respec-

tively) across the four California droughts under study. Annual statistics are reported in Figure 2.

Drought P (m) SWE (m) SWE/P (-) Tmax (degC) Tmin (degC)a

1976-77 0.49 0.23 0.46 19.56 2.66

1987-92 0.79 0.39 0.51 20.08 3.55

2007-09 0.90 0.46 0.51 19.30 4.02

2012-15 0.84 0.22 0.26 20.04 4.58

a P is average water-year precipitation during each drought across 13 stations on the Feather River (see Table S1 in the Supporting Information). SWE is

average April 1st SWE during each drought across 25 stations on the Feather River (see Table S2 in the Supporting Information). Tmax and Tmin are average

annual maximum and minimum daily temperature during the drought at the three index stations used by the PRMS model for air-temperature input: Canyon

Dam (1390 m), Quincy (1066 m), and Bucks Creek Powerhouse (536 m). Data sources: California Data Exchange Center (CDEC, https://cdec.water.ca.gov/,

visited July 19, 2019) and Pacific Gas & Electric.
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Table 2. Estimated shift in the precipitation-runoff relationship for single droughts on the Feather River (see Section 2.3.1).

Drought mQ Almanor (%) mQ East Branch (%) mQ Oroville (%)

1976-77 -11 -51 –

1987-92 -25 -36 -21

2007-09 -9 -20 -6

2012-15 -18 -47 -22
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Table 3. Modeled, observed, and theoretical climate elasticity of streamflow to annual precipitation (eQ/P ) and potential evapotranspiration

(eQ/PET ) for the three (sub-)basins under study with complete annual full-natural flow data. Theoretical elasticity was computed according

to the Turc-Mezentsev formula (Andréassian et al., 2016). The asterisk (*) denotes statistically significant elasticity values (that is, the sign

of the confidence bounds agrees, 95% confidence level).

(Sub-)basin eQ/P (-) eQ/PET (-)

Modeled Observed Theoretical Modeled Observed Theoretical

Almanor 0.80∗ 0.59∗ 0.55 0.44∗ -0.08 -0.31

East Branch 0.68∗ 0.56∗ 0.33 0.21∗ -0.08 -0.14

Oroville 0.73∗ 0.69∗ 0.47 0.26 -0.07 -0.25
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Table 4. Regression between observed and simulated water-balance components: confidence bounds of the regression parameter ruling shifts

in performance during droughts (see Equation 4). ET is the sum of ET and the groundwater sink (see Section 2.3.3). The asterisk (*) denotes

statistically significant elasticity values (that is, the sign of the confidence bounds agrees, 95% confidence level).

(Sub-)basin b1,P (mm) b1,ET (mm) b1,∆S (mm) b1,Q (mm)

Almanor -136 to +42 -125 to -33∗ +13 to +119∗ -154 to -1∗

East Branch -187 to -14∗ -81 to -17∗ -57 to +41 -129 to -17∗

Oroville -125 to +4 -76 to -14∗ -5 to +76 -117 to -4∗
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Figure 1. The Feather River at Oroville and its three headwater sub-basins under study (Almanor, East Branch, and Middle Fork): orography

and hydrography (a), PRISM 1981-2010 average annual precipitation (b), predominant geology according to the USGS National Atlas (c).
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Figure 2. Hydroclimatic summary of the four most recent Californian droughts compared to non-drought years. Maximum and minimum

daily temperature is an annual average of the three index stations used by the PRMS model for air-temperature inputs: Canyon Dam (1390

m), Quincy (1066 m), and Bucks Creek Powerhouse (536 m). Annual precipitation and April-1st SWE were computed using 13 and 25

stations across the Feather River, respectively (see Table S1 and S2 in the Supporting Information). The ratio between April-1st SWE and

annual precipitation was computed with reference to spatial medians. Q2 is the spatial median, Q1 and Q3 are the two quartiles, respectively.

Sources: California Data Exchange Center (CDEC, https://cdec.water.ca.gov/, visited July 19, 2019) and Pacific Gas & Electric.
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Figure 3. Daily median (Q2) and quartiles (Q1 and Q3) of observed full-natural flow during drought and non-drought years at the outlet of

two headwater basins of the Feather River with contrasting geology. The Almanor subbasin is a predominantly volcanic, subsurface-flow-fed

subbasin; the East Branch is transitional to granitic and surface-runoff-dominated. The y axis in in log-scale.
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Figure 4. Precipitation-runoff relationship for drought (red) vs. non-drought (black) years and the three basins under study with complete

annual runoff data (Almanor, East Branch, and Feather River at Oroville). The red and grey bands represent 95% confidence intervals for the

regressions. The Box-Cox transformation for annual full-natural flow is introduced in Section 2.3.1, Equation 2.
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Figure 5. Water-year Nash-Sutcliffe Efficiency (NSEyrt) and Log-Nash-Sutcliffe Efficiency (LogNSEyrt) for PRMS-modeled daily full-

natural flow. The blue bars represent observed annual full-natural flow at the outlet of each (sub-)basin.
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Figure 6. Annual relative bias for full-natural flow at the outlet of all (sub-)basins under study.
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Figure 7. Simulated vs. observed annual basin-wide water-balance components (P , ET , ∆S, and Q) for the Feather River at Oroville.
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Figure 8. Scatter plot of simulated vs. observed annual basin-wide water-balance components (P , ET , ∆S, and Q) separated between

drought (red) and non-drought (black) years. Simulated annual ET includes the groundwater-sink mass-flux component (see Section 2.3.3).

The red and grey bands represent 95% confidence intervals for the regressions.
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Figure 9. Top panel: simulated and observed annual basin-wide evapotranspiration for the Feather River at Oroville (lines) and observed

annual precipitation according to PRISM (bar chart). The absolute value of the systematic bias between simulated and observed basin-

wide evapotranspiration (∼ 160 mm, see Figure 7) was subtracted from observed values for readability. Bottom panel: annual differences

between simulated and observed basin-wide evapotranspiration. Simulated annual evapotranspiration includes the groundwater-sink mass-

flux component (see Section 2.3.3).
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Figure 10. Correlation across differences between simulated and observed annual evapotranspiration (relative to the systematic bias, see

Figure 7) and four potential predictors (from the top to the bottom): annual PRISM precipitation, annual maximum temperature, annual

minimum temperature, and observed annual relative change in storage (also relative to the corresponding systematic bias – Figure S6).

Regressions were calculated by separating drought and non-drought years (red and black in left column, respectively). The red and grey

bands (left column) represent 95% confidence intervals for the regressions. Maximum and minimum temperature were estimated based on

data in Figure 2. Simulated annual evapotranspiration includes the groundwater-sink mass-flux component (see Section 2.3.3).
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Figure 11. Precipitation-runoff relationship for drought (red) vs. non-drought (black) years and the twelve (main) basins draining the western

side of the Sierra Nevada to the California Central Valley in addition to the Feather River. The red and grey bands represent 95% confidence

intervals for the regressions.
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