
Climate elasticity of evapotranspiration shifts the water balance of
Mediterranean climates during multi-year droughts
Francesco Avanzi1, 2, Joseph Rungee3, Tessa Maurer1, Roger Bales3, 1, Qin Ma3, 4, Steven Glaser1, and
Martha Conklin3

1Department of Civil and Environmental Engineering, University of California, Berkeley, 94720, Berkeley, California, USA
2CIMA Research Foundation, via Armando Magliotto 2, 17100, Savona, Italy
3Sierra Nevada Research Institute, University of California, Merced, 95343, Merced, California, USA
4Department of Forestry, Mississipi State University, 39762, Mississippi State, Mississipi, USA

Correspondence: Francesco Avanzi (francesco.avanzi@cimafoundation.org)

Abstract.

Multi-year droughts in Mediterranean climates may shift the water balance, that is, the partitioning rule of precipitation

across runoff, evapotranspiration, and sub-surface storage. Mechanisms causing these shifts remain largely unknown and are

not well represented in hydrologic models. Focusing on measurements from the headwaters of the California’s Feather River,

we found that also in these mixed rain-snow Mediterranean basins a lower fraction of precipitation was partitioned to runoff5

during multi-year droughts compared to non-drought years. This shift in the precipitation-runoff relationship was larger in the

surface-runoff-dominated than in the subsurface-flow-dominated headwaters (-39% vs. -18% decline of runoff, respectively,

for a representative precipitation amount). The predictive skill of the PRMS hydrologic model in these basins decreased during

droughts, with evapotranspiration (ET ) being the only water-balance component besides runoff for which the drop in predictive

skill during drought vs. non-drought years was statistically significant. In particular, the model underestimated the response10

time required by ET to adjust to interannual climate variability, which we define as climate elasticity of ET . Differences

between simulated and data-driven estimates of ET were well correlated with accompanying data-driven estimates of changes

in sub-surface storage (∆S, r = 0.78). This correlation points to shifts in precipitation-runoff relationships being evidence of

a hysteretic response of the water budget to climate elasticity of ET during and after multi-year droughts. This hysteresis is

caused by carryover storage offsetting precipitation deficit during the initial drought period, followed by vegetation mortality15

when storage is depleted and subsequent post-drought vegetation expansion. Our results point to a general improvement in

hydrologic predictions across drought and recovery cycles by including the climate elasticity of ET , and better accounting for

actual subsurface water storage in not only soil, but deeper regolith that also stores water accessible to roots. This can be done

by explicitly parametrizing carryover storage and feedback mechanisms capturing vegetation response to atmospheric demand

for moisture.20
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1 Introduction

Regions with a Mediterranean climate receive the bulk of precipitation during winter, while summers are dry (Klos et al., 2018).

This seasonal imbalance in precipitation distribution, coupled with asynchronicity between precipitation input and potential-

evapotranspiration demand (Fellows and Goulden, 2017; Rungee et al., 2018; Feng et al., 2019), complicates understanding

and management of multi-year droughts and their impact on water supply (He et al., 2017). Water supply is the output of a water5

balance, that is, Q= P −ET −∆S, where Q is runoff, P is precipitation, ET is evapotranspiration, and ∆S is the change

in storage (in this paper, it is assumed that ∆S is predominantly dictated by sub-surface storage). Major droughts reduce P ,

which directly reducesQ, but quantifying this non-linear impact is complicated by the additional, and often-overlooked, effects

of drought on ET and ∆S. Understanding the impact of droughts on the water balance of Mediterranean climates is relevant

to ecosystem services and water security (Bales et al., 2018), especially because droughts are likely to be more persistent than10

other water risks (He et al., 2017; Rungee et al., 2018) and increase in frequency and geographic extent under a warming

climate (Cayan et al., 2010; Woodhouse et al., 2010).

Five possible mechanisms may alter ET and ∆S during and after droughts and thus intensify or alleviate the impact of

changing P on Q in Mediterranean climates (Bales et al., 2018). These mechanisms are seldom measured and remain incom-

pletely understood, and are thus not well represented in hydrologic modeling (Bales et al., 2018). First, ET may not increase15

or reduce in proportion to P , thus shifting the fraction of local P partitioned to Q during dry periods. Direct measurements

of evapotranspiration during non-drought years show a relatively muted response of ET to P (Rungee et al., 2018). Second

is priority partitioning of P to ET , facilitated in some Mediterranean climates by slow-draining soils and thus ample water

for sustaining dry-season ET (Bales et al., 2011; Oroza et al., 2018). For example, the importance of water stored in deeply

weathered granitic rock in the Sierra Nevada to the productivity and survival of forest trees during the summer dry season is20

well established (Arkley, 1981; Jones and Graham, 1993). A set of coastal Californian basins with mixed-coniferous-broadleaf

evergreen forests or deciduous oak savanna showed limited interannual variability in ET , despite variable interannual precip-

itation and low water storage (Hahm et al., 2019). This is in contrast to similar precipitation-limited sites with deeper regolith

storage in the Sierra Nevada that showed significant response to interannual precipitation amounts (Bales et al., 2018). Third,

pre-drought aridity (Saft et al., 2016b), or the amount of storage and carry-over from previous years (Saft et al., 2016b; Klos25

et al., 2018; Rungee et al., 2018), can affect the amount of stored water available for dry-season evapotranspiration, and thus

the relation between P and Q. The depletion of this multi-year storage was the major driver for the moisture stress that led

to widespread tree mortality in the Sierra Nevada in 2015, during the multi-year drought (Goulden and Bales, 2019). Fourth,

changes in either meteorology and evaporative demand (Griffin and Anchukaitis, 2014; He et al., 2017) or vegetation structure

and transpiration can alter ET and either increase or decrease Q. Evaporative demand in the Sierra Nevada, indicated by mois-30

ture stress, during the 2012-16 drought was higher than in the 1987-92 drought, owing to the 1-2◦C warmer temperature (Su

et al., 2017). Variations in vegetation structure associated with drought-induced mortality and wildfire changed transpiration in

the southern Sierra during the 2012-16 drought, and thus the P −Q relation (Bales et al., 2018). Fifth, the spatial heterogeneity

and the covariance between P , ET , and ∆S shift the location and relative importance of source regions for Q across a basin
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(Bales et al., 2018). That is, interannual differences in spatial patterns of P , ET , and available subsurface water storage elicit

a non-linear response in Q. For example, higher elevations of the Sierra Nevada have P > ET even in dry years, whereas

lower elevations can switch from having P > ET in wet years to P < ET in dry years. These differences can be driven by

local regolith lithology (see e.g. Jefferson et al., 2008; Tague et al., 2008; Tague and Grant, 2009) as well as climate and the

interaction of the two over long time periods (Klos et al., 2018).5

Changes in runoff response during droughts have been observed in Australia (Saft et al., 2016b), California (Bales et al.,

2018), and China (Tian et al., 2018) and have often been quantified as statistical shifts in the precipitation-runoff relationship,

i.e., an empirical regression between annual precipitation and annual runoff (Chiew et al., 2014; Saft et al., 2015; Tian et al.,

2018). These lumped approaches allow one to predict the occurrence of shifts based on basin and drought characteristics (Saft

et al., 2016b), but they do not shed light on how the five internal basin mechanisms outlined above interact to cause them. Since10

performance of conceptual hydrologic models appear to degrade when these shifts occur (Chiew et al., 2014; Saft et al., 2016a),

this knowledge gap limits improvements in hydrologic-model predictive accuracy and challenges the identification of drought-

management solutions (Bales et al., 2018). Moreover, shifts in the precipitation-runoff relationship have been quantitatively

characterized only in snow-free regions (Saft et al., 2016b; Tian et al., 2018): given the mitigating and delaying effect of

snowmelt recharge on soil-water drawdown (Rungee et al., 2018), it is currently unclear whether shifts in the water balance15

could occur even in Mediterranean basins that are seasonally covered by snow (Bales et al., 2018). Unraveling interactions

across water-balance components (P , ET,∆S, and Q) is key to clarifying the mechanisms behind shifts in the precipitation-

runoff relationship, reach a better understanding of the water balance during droughts, and ultimately inform better water-

management decisions.

California, a mixed rain-snow region with a Mediterranean climate, has seen four droughts since the 1970s (water years20

1976-77, 1987-92, 2007-09, and 2012-16, see He et al., 2017). Because most precipitation in the state falls in the north and

during winter, water supply is mostly generated in lithologically and topographically complex headwaters, while water is

mainly consumed in lowland regions further south. Rising temperatures are threatening this equilibrium (Harpold et al., 2017;

Hatchett and McEvoy, 2018), meaning the four Californian droughts between the 1970s and 2010s offer a decision-relevant

opportunity to clarify the mechanisms behind shifts in precipitation-runoff relationships in a Mediterranean, mixed-rain snow25

climate as well as the adequacy of hydrologic models to simulate them. To achieve this goal, we used detailed water-balance

indices and hydrologic modeling (PRMS, see Koczot et al., 2004; Markstrom et al., 2016; Avanzi et al., 2020) to address

three research questions. First, do droughts cause shifts in the precipitation-runoff relationship of mixed rain-snow basins in a

Mediterranean climate, similar to shifts in rainfall-dominated regions? If so, how is the occurrence of these shifts influenced by

predominant basin lithology and so predominance of near-surface runoff versus deeper groundwater baseflow? Second, does30

the occurrence of these shifts affect the predictive accuracy of PRMS, a spatially semi-distributed, physics-based hydrologic

model that is widely used for water-supply forecasting? Third, what basin mechanisms are causing shifts during drought versus

wet periods in Mediterranean regions?
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2 Methods

We focused on the Feather River upstream of Lake Oroville in the Sierra Nevada of California (∼9300 km2, see Figure 1)

and on three of its sub-basins with contrasting lithology (see Section 2.1 for details). Water from the Feather is both exploited

locally for hydropower production by Pacific Gas & Electric (PG&E, see Freeman, 2011) and impounded by Oroville Dam to

support water supply across the state through the State Water Project (Huang et al., 2012).5

Our research followed three main steps (Sections 2.3.1 to 2.3.3). First, we quantified shifts during droughts in the observed

precipitation-runoff relationship of the three (sub-)basins with serially complete full-natural-flow data (see Section 2.2 for

details about full-natural-flow data). Second, we assessed the performance of the PRMS hydrologic model in predicting full-

natural flow in all (sub-)basins, in particular during droughts, in order to gain insight into the potential impact of these periods

on predictive accuracy. Third, we identified the driver of PRMS predictive accuracy during droughts and how this driver is10

related to shifts in the precipitation-runoff relationship by comparing independently estimated and PRMS-simulated basin-

wide mass-balance indices (P,ET,∆S,Q) in the (sub-)basins with serially complete full-natural-flow data.

We focused on water years 1970 to 2016 in order to cover the complete timespan of the most recent four multi-year droughts

in California, as identified by general consensus in the State of California (He et al., 2017): 1976-77, 1987-92, 2007-09,

and 2012-16. In the current analysis, as is done in operational hydrology in California, we thus use a hydrologic definition15

of drought, rather than a legal definition linked to socioeconomic assistance by a governmental agency. Still, the designa-

tion of drought years in California focuses on impacts to water users, and so these water years correspond to a hydrologic

and socioeconomic rather than a meteorological or agricultural drought (see definitions in Van Loon, 2015). In practice, this

designation is based on a broad array of real-time indeces collected throughout the State, including precipitation anomalies,

snowpack accumulation, forecasted water supply for the dry season, and drought levels according to the U.S. Drought Monitor20

at https://droughtmonitor.unl.edu/ (visited June 13, 2020). The water year is defined as October 1st to September 30th and is

indicated with the calendar year in which it ends (e.g., water year 2015 went from October 1st, 2014 to September 30, 2015).

2.1 Study area

The climate of the Feather is Mediterranean, with dry, hot summers and wet, mild winters. Elevation ranges from ∼250 m

above sea level (ASL) at Oroville Dam (the outlet of the basin) to ∼2900 m ASL at Mt. Lassen, but approximately 90% of25

the basin lies below 2000 m ASL (see Figure 1(c)). Therefore, mixed rain-snow and rain-on-snow events are frequent across

the basin (Koczot et al., 2004; White et al., 2019). The water balance of the Feather has experienced recent warming-related

changes, including declining runoff and peak snow accumulation (Freeman, 2011, 2012), forest growth (Freeman, 2011), and

a rise in the rain-snow transition elevation (Hatchett et al., 2017).

The Feather is the most northern of the thirteen basins draining from the Sierra Nevada into the Sacramento-San Joaquin30

valley (see Harrison and Bales, 2016). Contrary to most of these basins (Freeman, 2012; Harrison and Bales, 2016), some head-

waters of the Feather lie in the eastern, rain-shadowed side of the Sierra divide (Figure 1(b) and (d)): mean annual precipitation

thus ranges from ∼2800 mm in the western side of the basin to less than 800 mm in the eastern side. Because anomalously
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low precipitation has been suggested as a key predictor of shifts during droughts (Saft et al., 2015), this basin is an ideal case

study to answer our questions.

Our study considered two spatial scales (Figure 1): the Feather at Oroville Dam and three of its headwater sub-basins:

Almanor (∼1100 km2, 1400-2900 m ASL, rain-shadowed), East Branch (∼2600 km2, 725-2550 m ASL, rain-shadowed), and

Middle Fork (∼2700 km2, 480-2660 m ASL, partially rain-shadowed). Hydrologic studies on the Feather River at Oroville are5

abundant (see for example Tang and Lettenmaier, 2010; Rosenberg et al., 2011; Huang et al., 2012; Anghileri et al., 2016, and

references therein), whereas headwater sub-basins have rarely been studied as stand-alone basins (see examples in Freeman,

2011; Wayand et al., 2015; Sun et al., 2019; Avanzi et al., 2020).

The Almanor sub-basin lies at the intersection between the granitic Sierra Nevada and the volcanic Cascade Range and is

thus dominated by a porous, volcanic bedrock, with soil texture being predominantly composed by silt (see a geologic and10

soil map in Koczot et al., 2004, , page 12) This sub-basin is largely fed by subsurface flow (Freeman, 2008) and has exhibited

a 30% decline in water-year inflow to Lake Almanor (located at the outlet of this sub-basin) since the 1960s. This drop is

attributed to missed groundwater-recharge opportunities due to decreasing snow accumulation (Freeman, 2010). The lithology

of the East Branch and the Middle Fork includes impervious granitic outcrops similar to the rest of the Sierra Nevada and an

alternation between sand and silt. Water supply in these two sub-basins is dominated by surface runoff (Freeman, 2008), but15

the East Branch is significantly drier than the Middle Fork because it is fully rain shadowed.

2.2 Data

Data include daily full-natural flow at the outlet of the four (sub-)basins under study; in-situ precipitation, air temperature,

and snow water equivalent (SWE) at various temporal resolutions; and estimated annual spatially distributed water-balance

indices of precipitation, evapotranspiration, and variation in sub-surface storage. Table S1 in the Supporting Information further20

describes all data used, their spatial and temporal resolution, whether they were measured/estimated in situ or remotely, and

their use in the paper.

Full-natural flow – sometimes also referred to as unimpaired flow or reconstructed streamflow – is a mass-balance recon-

struction of runoff as if no dam or other man-made infrastructure affected it (a rare condition in California, see He et al., 2017).

This reconstruction is achieved using published gauged streamflow and reservoir gauge data, as well as estimates of unmea-25

sured inflows and/or outflows. Thus, computing full-natural flow requires extensive knowledge of water infrastructures and

reservoir operations. For the Almanor and East-Branch sub-basins, full-natural flow data were thus provided directly by Pacific

Gas & Electric (PG&E) at a daily resolution for water years 1970 through 2017. For the Middle Fork sub-basin and for the

Feather River at Oroville, data were obtained from the California Department of Water Resources (DWR) at daily resolution

(water years 1987 to 2018 and 1985 to 2018, respectively).30

In-situ daily precipitation from ten stations and daily maximum and minimum air temperature from three stations across

the Feather river basin were obtained from PG&E, which routinely uses them as input for the PRMS hydrologic-forecasting

model (see location of these stations in Figure 1 and Koczot et al., 2004, for further details). These data were quality checked

and serially gap filled by the company (water years 1970 to 2017). Additional data of monthly in-situ precipitation and manual
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snow water equivalent were downloaded from the California Data Exchange Center (https://cdec.water.ca.gov/, visited July 19,

2019) to study drought characteristics across the Feather (see a complete list and their location in Table S2-S3 and in Figures

S1 and S2, respectively).

Precipitation gauges used in the Feather river basin are managed by various operators, with the California Department of

Water Resources collecting and archiving the data (Table S2). The design of these sensors resembles the one in use by the5

SNOTEL network throughout the western US (https://www.wcc.nrcs.usda.gov/about/mon_automate.html, visited February 1,

2020). Most gauges are unheated and some are manual; most are located in small clearings where wind speed is low, which

suggests that wind-driven undercatch is locally low, especially below the seasonal rain-snow line (Zhang et al., 2017). Because

precipitation gauges considered in this study are predominantly located in forested valleys below 2000 m ASL (see Figures 1

and S1) and many of them were not colocated with wind-speed measurements, we did not correct for undercatch (Koczot et al.,10

2004). Undercatch and plugging increase in snow-dominated areas (Rasmussen et al., 2012; Avanzi et al., 2014).

Spatially distributed, estimated annual precipitation (P ) was obtained by accumulating daily 800-m maps from the Parameter-

elevation Relationships on Independent Slopes Model (PRISM, see Daly et al., 2008). Spatially distributed annual ET was

estimated by extending the Landsat calibration approach by Goulden et al. (2012) and Goulden and Bales (2019) to include

the average of the current and previous year’s precipitation as predictor in addition to Landsat-based annual-averaged NDVI15

(Normalized Difference Vegetation Index, 30 m). Both predictors were used as single-term power-function transformations that

were developed by individually regressing the NDVI and PRISM data with 13 flux-tower measurements of evapotranspiration

in California (see a list and a map in Rungee et al., 2018). Performance of this approach was evaluated by removing an individ-

ual water year for model building and then evaluating on the water year removed. Results showed an improved fit to calibration

data for wet sites compared to only using NDVI. Developing this ET product was the scope of earlier research and we refer20

to Roche et al. (2020) for further details. Estimated variations in annual basin-wide subsurface storage was estimated as the

residuals of P −ET −Q, where P is basin-wide mean-annual PRISM-based precipitation, ET is basin-wide mean-annual

estimated evapotranspiration, and Q is annual full-natural flow. Landsat-based data were available for water years 1985-2016;

PRISM maps were processed for the same period. PRISM data have a pixel size of 800 m, which we downscaled to 30 m using

a nearest-neighbor approach to match that of Landsat.25

2.3 Analyses

2.3.1 Shift in precipitation - runoff relationship

We detected shifts in the precipitation-runoff relationship by fitting a multivariate regression across annual cumulative full-

natural flow (target variable), basin-wide annual precipitation, and a categorical variable denoting drought and non-drought

years (Saft et al., 2016a; Tian et al., 2018):30

QBC = b0 + b1I + b2P + ε, (1)
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where I is a categorical drought variable (1 for drought years and 0 for non-drought years), b0, b1, b2 are regression coefficients,

ε is noise, and QBC is annual full-natural flow transformed according to a Box-Cox transformation following the arguments in

Saft et al. (2016a, b); Tian et al. (2018):

QBC =
Qλ− 1

λ
. (2)

While λ should in principle be estimated from data to ensure linearity and heteroscedasticity (Sarkar, 1985), we assumed5

λ= 0.25 as suggested by Santos et al. (2018) and references therein.

If different from zero, parameter b1 indicated a shift of the precipitation-runoff relationship during droughts. This parameter

is usually negative, as shifts during droughts tend to decrease runoff compared to precipitation deficit alone (Saft et al., 2016a,

b). We assessed the statistical significance of coefficient b1 and concluded that the shift during droughts was statistically

significant if the sign of the confidence bounds agreed (significance level α= 5%, see Kottegoda and Rosso, 2008). We10

performed this analysis for the Feather River at Oroville (1985-2016) and the Almanor and East-Branch sub-basins (1970-

2016), for which we had serially complete time-series of annual full-natural flow.

Rather than directly using PRISM maps to estimate basin-wide precipitation, we tilted their monthly mean surfaces using

precipitation data at the ten in-situ stations available to this study (see again Section 2.2). This operational procedure (called

DRAPER) is routinely used by PG&E forecasters on the river to force PRMS and is believed to provide more representative15

precipitation patterns for this basin than simply using PRISM surfaces (see Koczot et al., 2004; Donovan and Koczot, 2019,

for details about the DRAPER algorithm).

We estimated the relative magnitude of the shift in precipitation vs. runoff (MQ) for each (sub-)basin with serially complete

time-series of annual full-natural flow by using the approach suggested by Saft et al. (2016b):

MQ =
Qdry,PI

−Qdry,P

Qdry,P
, (3)20

where Qdry,PI
is the (predicted annual) full-natural flow for a representative (annual) precipitation during dry periods ac-

cording to the shifted precipitation-runoff relationship (Equation 1, I = 1), while Qdry,P is the full-natural flow for the same

precipitation according to the non-shifted relationship (Equation 1, I = 0). We assumed as representative annual precipitation

the mean between average and minimum annual precipitation across the entire period of record (see more details, including a

schematic, in Saft et al., 2016b). Here again, we used DRAPER to estimate this representative precipitation, while full-natural25

flow in Equation 3 was not transformed.

Saft et al. (2016b) originally proposed MQ to quantify the impact of the decade-long Millennium drought in south-eastern

Australia (∼1997-2009). The four Californian droughts under study were significantly shorter, so we applied Equation 3 by

aggregating all drought years in one sample. We also quantified shifts for single droughts (mQ) by assuming Qdry,PI
to be

the observed, average annual full-natural flow across each drought, and Qdry,P to be the expected annual full-natural flow30

according to the non-shifted precipitation-runoff relationship (Equation 1, I = 0) and a reference annual precipitation equal to

the average across each drought.
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This shift-detection approach requires time series of annual precipitation and runoff. These time series are comparatively

short in California, where for example water-supply forecasts started in the 1930s (Harrison and Bales, 2016). Paleoclimatic

datasets suggest prolonged, multi-decadal droughts in this region (megadroughts, see Griffin and Anchukaitis, 2014), but

investigating such scenarios would involve developing data sets that would have less certainty in assessing model response

than the ground-based measurements used in this study. In addition, drought vs. non-drought conditions in California have a5

strong interannual character because of the quasiperiodicity of El Niño–Southern Oscillation (Griffin and Anchukaitis, 2014),

meaning that the time scale considered in this study is appropriate to answer our research questions.

2.3.2 PRMS performance during droughts: streamflow

PRMS is a hydrologic model that solves mass and energy conservation across a given basin by discretizing it into Hydrologic

Response Units (HRUs), regions of the basin that are assumed homogeneous (Markstrom et al., 2015). The model requires,10

as a minimum, inputs of daily precipitation and maximum-minimum temperature at one location, from which these data can

be distributed to the grid of HRU centroids (Markstrom et al., 2015). In the Feather River PRMS model, air-temperature

data from three stations are distributed using monthly lapse rates. Precipitation is distributed using the DRAPER method as

outlined in Section 2.3.1 (Koczot et al., 2004; Donovan and Koczot, 2019). Processes simulated include precipitation-phase

partitioning, precipitation interception and storage by canopy, evapotranspiration, radiation distribution, snow accumulation15

and melt, infiltration and surface runoff, interflow, groundwater storage, and baseflow.

PRMS was calibrated and evaluated over the Feather River in the early 2000s by mostly focusing on full-natural-flow data

between 1971 and 1997 (see Koczot et al., 2004, for more details, including specific modules used by the model). While PRMS

has been updated since then (the current version is 5 – June 2019), the model is currently set up for this river in version 2.

The main differences between more recent versions and version 2 are the sub-surface components: version 2 separates sub-20

surface storage into superficial soil (including the recharge zone), a deeper sub-surface reservoir, and groundwater (Koczot

et al., 2004); more recent versions of PRMS consider instead a process-based separation into capillary, preferential, and gravity

storage in addition to groundwater (Markstrom et al., 2015). Also, PRMS has been recently coupled with a full groundwater

model (GSFLOW, see Markstrom et al., 2008). Lacking the data needed to describe groundwater flow in the basin with a higher

level of rigor, we assessed that the simplified simulation of groundwater processes in PRMS 2 is appropriate to meet the aims25

of this study, especially since it is representative of many conceptual models. For example, this version was implemented in

inter-comparison tools like the Framework for Understanding Modeling Errors (FUSE, see Clark et al., 2008).

PRMS performance for full-natural flow was quantified using three different metrics: water-year Nash-Sutcliffe Efficiency

(NSE), annual relative bias (relative to observations), and observed vs. simulated climate elasticity of streamflow. Because

full-natural flow is prone to large errors, we smoothed the data and simulations using a five-day window before computing30

performance metrics.

NSE benchmarks the squared errors of simulations of a target variable (in our case, daily full-natural flow for each water year)

against those obtained by using a long-term mean (Nash and Sutcliffe, 1970). The choice of this “long-term mean” can yield

very sensitive results (Schaefli et al., 2007). In the Feather River basin, full-natural flow shows a large inter- and intra-annual
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variability (see some examples in Koczot et al., 2004), implying that a mean across all water years would be a particularly poor

benchmark (resulting in overoptimistic NSE values). On the other hand, a water-year mean would be an excellent predictor

during dry years and a very poor predictor during wet years. In order to limit these spurious results, we benchmarked PRMS

using a mean across all years from the same type according to the classification used by PG&E (henceforth, NSEyrt; see

Georgakakos et al., 2012, for some context on year types in California). We also computed the Nash-Sutcliffe Efficiency using5

log-transformed values (LogNSEyrt) as this metric is more sensitive to low flow (Santos et al., 2018).

Climate elasticity measures the sensitivity of annual streamflow (in this case, full-natural flow) to changes in a relevant cli-

mate variable, usually precipitation and potential evapotranspiration (Andréassian et al., 2016; Cooper et al., 2018). Compared

to NSE and bias, contrasting observed and simulated elasticity quantifies the performance of a hydrologic model in simulating

inter-annual variability in streamflow and its relation to external forcings. Here, we considered absolute elasticity (nondimen-10

sional): eQ/P and eQ/PET are absolute elasticity to precipitation and potential evapotranspiration, respectively. Elasticity for

both simulated and observed full-natural flow was computed in a bivariate linear framework using the approach proposed by

Andréassian et al. (2016). As an independent benchmark, we also computed theoretical elasticity based on the Turc-Mezentsez

formula (see again Andréassian et al., 2016). Similarly to shifts in precipitation-runoff relationships (see Section 2.3.1), we

computed elasticity for the (sub-)basins with serially complete time series of annual full-natural flow, that is, the Feather15

River at Oroville (1985-2016) and the Almanor and East-Branch sub-basins (1970-2016). We again used DRAPER to estimate

basin-wide precipitation; potential evapotranspiration was estimated using the Jensen-Haise approach in PRMS (Koczot et al.,

2004).

2.3.3 PRMS performance during droughts: water balance

We quantified the performance of PRMS for the four components of the annual water balance by adapting Equation 1 to fit20

a regression between observed and simulated water-balance components during drought and non-drought years (period 1985-

2016, see Section 2.2 for data availability of Landsat data products):

Pobs = b0,P + b1,P I + b2,PPsim + εP (4a)

ETobs = b0,ET + b1,ET I + b2,ETETsim + εET (4b)

∆Sobs = b0,∆S + b1,∆SI + b2,∆S∆Ssim + ε∆S (4c)25

Qobs = b0,Q + b1,QI + b2,QQsim + εQ, (4d)

where, for example, Pobs and Psim are observed and simulated basin-wide annual precipitation, while b0,P , b1,P , and b2,P are

regression coefficients, respectively. If b1,P was statistically different from zero, then PRMS performance for precipitation

during droughts was statistically different from that during non-drought years (α= 5%). Similar definitions apply to the other

water-balance components in Equation 4. This analysis was carried out for the (sub-)basins with serially complete time-series30

of annual full-natural flow (see Section 2.3.1).
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Observed precipitation was assumed equal to the original PRISM maps in absence of other independent, distributed sources.

Observed ET was estimated through the product introduced in Section 2.2, while observed ∆S was estimated closing the

water balance with observed full-natural flow (see again Section 2.2). Note that the word observed is used here in a statistical

framework and in contrast to PRMS simulations to highlight that PRISM, the ET product, and full-natural flow are derived

from measurements; however, we stress that none of them were measured directly, but are estimates of statistical models.5

In addition to the standard four balance terms in Equation 4, PRMS includes a groundwater sink. This term is used to account

for (often unknown) water losses in the sub-surface portion of the water balance. Because this sink together withET represents

the only internal water loss in the model, it was summed to ETsim to fit a regression with observed evapotranpiration (note that

this groundwater sink was set to zero in the original calibration of the Almanor sub-basin).

3 Results10

3.1 Drought hydro-climatic summary

Average minimum daily air temperature at the three index stations of Canyon Dam (1390 m ASL), Quincy (1066 m ASL), and

Bucks Creek Powerhouse (536 m ASL) showed a statistically significant increasing trend between water years 1970 and 2016

(Kendall τ = 0.54, p-value < 0.01, α = 0.05, Sen’s slope = 0.0477◦C yr−1, that is, ∼2.1◦C in 45 years, Figure 2). Neither

average maximum daily air temperature nor annual precipitation presented a statistically significant trend (p-value = 0.67 and15

0.82, respectively – statistics for precipitation refer to median values across all stations, see Figure 2). April-1st SWE had no

significant trend for α = 0.05, but its p-value was significantly smaller (0.05, statistics again refer to median values across all

stations, see Figure 2).

The four droughts under study had very different hydro-climatic characteristics (Figure 2 and Table 1). The 1976-77 drought

was both the coolest (in terms of minimum temperature) and driest in our record (∼51% of average annual precipitation20

compared to 2012-16), and as a result 1976 and 1977 were the fourth and first driest water years in the State’s historical record

at that time (DWR, 1978). Full-natural flow at Oroville was 43% and 24% of (contemporary) average for 1976 and 1977,

respectively, the latter being a new record.

At the other end of the spectrum, the 2012-16 drought was the warmest (in terms of minimum temperature) and the wettest

during our study period (together with the 2007-09 drought, Figure 2 and Table 1). As a result, average April-1st SWE signifi-25

cantly declined during this drought compared to the similarly wet 2007-09 drought. In between, the 1987-92 drought was the

longest one (6 years), with five years classified as critically dry and one (1989) as dry (DWR, 1993). Average minimum tem-

perature during the 1987-92, 2007-09, and 2012-16 was ∼0.89 ◦C, ∼1.36 ◦C, and ∼1.98 ◦C higher than the 1976-77 drought,

respectively.

Runoff timing from all (sub-)basins under study was highly seasonal, with peak flow occurring during winter and spring30

due to precipitation and snowmelt, and low flow occurring during the dry summer-fall season (Figure 3). The surface-runoff-

dominated East-Branch sub-basin had a significantly lower flow during summer than the volcanic, subsurface-flow-fed Al-
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manor sub-basin. This higher summer flow in the volcanic Almanor sub-basin compared to the granitic East Branch was

consistent between drought and non-drought years.

3.2 Shift in precipitation vs. runoff

The four droughts under study caused a shift in the precipitation-runoff relationship for both of the two headwater sub-basins

with complete annual data (Almanor and the East Branch) and the Feather River at Oroville (Figure 4). This shift means that5

the decrease in runoff observed during droughts in these (sub-)basins was larger than what could be explained by precipitation

deficit alone (see Section 2.3.1 for details about the definition of shift). The 95% confidence bounds for b1 were -1.49 and -0.38;

-2.25 and -1.04; and -1.43 and -0.34, respectively (see Equation 1 for a definition of b1), implying that this shift was statistically

significant for all (sub-)basins. The magnitude of the shift (calculated using Equation 3) was -18%, -38%, and -18% compared

to precipitation partitioning to runoff during non-drought years, respectively. Runoff from the volcanic Almanor sub-basin was10

thus more resilient to shifts during droughts than that from the East Branch, even if shifts were significant in all the (sub-)basins

investigated.

The magnitude of these shifts varied from drought to drought and across (sub-)basins (Table 2). In the volcanic Almanor sub-

basin, the largest shift corresponded to the 1987-92 drought (-25%), the longest in our record. For the surface-runoff-dominated

East Branch, the largest shift was caused by the 1976-77 drought (-51%), the shortest, driest, and coolest in our record (see15

again Table 1); in general, this sub-basin consistently showed the largest shift during all droughts across all (sub-)basins. For

the Feather River at Oroville, the largest shifts corresponded to the recent 2012-16 drought and the 1987-92 one (-21% and

-22%, respectively, note that no data was available for this basin during the 1976-77 drought). The 2007-09 drought showed

the smallest shift in all basins under study.

3.3 PRMS performance for streamflow20

Both NSEyrt and LogNSEyrt significantly decreased during droughts (Figure 5). The difference between average NSEyrt and

LogNSEyrt during drought vs. non-drought years and the four (sub-)basins was -0.55 and -0.35 (Almanor); -0.99 and -0.39

(East Branch); -0.88 and -0.21 (Middle Fork); and -0.35 and -0.11 (Feather at Oroville). The performance during isolated dry

years was better than during droughts (e.g., see water years 1994 or 2001 in Figure 5). This decline in PRMS performance was

comparable between droughts that were part of the calibration period (1970-1997) and those that occurred after 1997.25

For the 1976-77 drought, LogNSEyrt < NSEyrt in both the volcanic Almanor sub-basin and the East Branch. NSEyrt is

very sensitive to high flows, while LogNSEyrt puts more weight on low flows (Santos et al., 2018): low flows were thus the

driver of performance drops during the 1976-77 drought. In the East Branch, NSEyrt during that drought was even comparable

to non-drought years. For the 1987-92 and the 2012-16 droughts, NSEyrt < LogNSEyrt in both the Almanor sub-basin and

the East Branch: high-flow peaks such as those during intense, winter rain-on-snow events (frequent in these (sub-)basins, see30

Wayand et al., 2015) or spring snowmelt were thus the main performance driver during these wetter droughts. The performance

during the 2007-09 drought was only slightly below non-drought-year standards. The response time of NSEyrt to droughts in
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the Almanor sub-basin was somewhat slower than in the other (sub-)basins, a good example being the decadal drop during the

1980s to early 1990s.

Observed annual full-natural flow was generally overestimated during all droughts but the 1976-77 one, for which PRMS

severely underestimated water supply for both the Almanor and the East Branch sub-basins (relative biases of -0.44 and -0.86,

respectively, Figure 6). Inter-annual variability in relative bias was larger in the surface-runoff-dominated East Branch and5

Middle Fork than in the volcanic Almanor sub-basin. The 2007-09 drought returned relative biases in the East Branch and

Middle Fork that were in line with non-drought years.

PRMS overestimated the absolute value of climate elasticity of streamflow to both annual precipitation and potential evap-

otranspiration (Table 3 and Figure S3 in the Supporting Information). In particular, both observations and simulations showed

a statistically significant positive elasticity to precipitation, but observations were closer to the theoretical elasticity according10

to the Turc-Mezentsev formula. With regard to annual potential evapotranspiration, observations did not show any statistically

significant elasticity, whereas PRMS-based elasticity was statistically significant for both the Almanor and the East Branch

sub-basins. We interpret the fact that modeled eQ/PET was unexpectedly positive as likely spurious and related to the large

scatter and weaker correlations between potential evapotranspiration and modeled full-natural flow compared to precipitation

vs. modeled full-natural flow (Figure S3, univariate correlation coefficient for precipitation and potential evapotranspiration vs.15

modeled full-natural flow being ∼ 0.94 and ∼-0.43, respectively).

3.4 Observed vs. modeled water balance

PRMS-modeled and PRISM-based basin-wide precipitation were visually in very good agreement, both in terms of annual

values and in terms of inter-annual variability (Figure 7 and S4 - S5 in the Supporting Information). This outcome was expected,

as PRMS uses PRISM as a starting point to distribute precipitation across the watershed (DRAPER method, see Section 2.3.2),20

which does not significantly affect annual precipitation totals. On the other hand, the model significantly underestimated annual

estimated evapotranspiration, even if this underestimation was partially compensated for by the groundwater sink (Figure 7

and S4 - S5). Also, the model systematically underestimated the interannual variability in sub-surface storage. In the Almanor

sub-basin and the Feather at Oroville, PRMS also failed to reproduce the estimated multi-decadal decline in storage. While

estimated changes in sub-surface storage may suffer from unquantifiable uncertainty across precipitation, full-natural flow, and25

evapotranspiration, this decline was confirmed by other pieces of evidence collected on the river (such as a decline in spring

outflow, see Freeman, 2011), and agrees with a general trend of declining summer low flows in the Maritime Western U.S.

(Cooper et al., 2018).

Among the three water-balance components determining full-natural flow, ET was the only one for which the performance

of PRMS during drought and during non-drought years were statistically different in all (sub-)basins (see Figure 8 and Table30

4). Conversely, the performance for precipitation and for changes in sub-surface storage were statistically different in only one

sub-basin each: the East Branch for P and Almanor for ∆S, respectively. As expected (see Section 3.3), differences in PRMS

performance for full-natural flow during drought vs. non-drought years were statistically significant in all basins. Thus, ET

was the only water-balance component (besided Q) that was systematically misrepresented during droughts.
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The statistically different performance of PRMS for ET during droughts was confirmed even when comparing simulated

and observed average ET (including groundwater sink) over temporal windows of two, three, and four years (see Figure S6 in

the Supporting Information), which may be more appropriate time scales for this evaluation because of the possible temporal

lag between vegetation greenness and ET (Goulden et al., 2012). Results in Figure 8 and Table 4 were also confirmed when

only considering ET rather than the sum of ET and the groundwater sink (see Figure S7 in the Supporting Information and5

Section 2.3.3 for details about the groundwater sink).

4 Discussion

Multi-year droughts can trigger shifts in the precipitation-runoff relationship, which is the fundamental partitioning rule of a

basin’s water budget (Saft et al., 2015, 2016a, b; Tian et al., 2018). By showing that ET is the only water-balance component

yielding statistically different performances during drought vs. non-drought years for a hydrologic model (PRMS), we quan-10

titatively demonstrated that ET -drought feedback mechanisms are the likely driver of these shifts in water supply. Failure to

fully account for these non-linear mechanisms results in the predictive inaccuracy of the model during droughts. We focused

on mixed rain-snow basins with asynchronous precipitation and growing seasons, thus extending the climatic range of previ-

ous drought studies that identified shifts in precipitation-runoff relationships of comparable magnitude in rainfall-dominated

semi-arid areas (Saft et al., 2015; Tian et al., 2018, and references therein).15

If and where shifts in the precipitation-runoff relationship occur, runoff will decrease more than what would be predicted

based on a precipitation-runoff relationship trained using non-drought years (Saft et al., 2016b). With hydrologic models that

are often biased toward better reproducing high flows (Staudinger et al., 2011) and climate-change scenarios that predict

increasing aridity in several regions of the world (Cayan et al., 2010), understanding the mechanisms behind these shifts and

the predictive skill of models under such conditions has profound implications for water resources management and water20

security. In this section, we elaborate on three of these implications: first, are shifts in precipitation vs. runoff common across

all basins of the Sierra Nevada? Second, how do ET -drought feedback mechanisms cause shifts in the water balance? Third,

what are the lessons learned to improve water-supply simulations in drought-prone regions?

4.1 Are shifts in precipitation vs. runoff common across the Sierra Nevada?

Sierra Nevada lithology transitions from crystalline igneous intrusive rocks (granitic) in the southern and central Sierra Nevada25

to more porous igneous extrusive rock in the northern Sierra Nevada. In the Feather River, northern Sierra Nevada, the Almanor

sub-basin is comprised of extrusive igneous bedrock and is subsurface-flow dominated, whereas the East Branch sub-basin

is transitional to granitic rock and is surface-runoff dominated. Shifts in the precipitation-runoff relationship in response to

droughts occur in both sub-basins. This may seem counterintuitive as the Almanor sub-basin has a relatively small inter-annual

variability in low flows (Figure 3), similar to other subsurface-flow dominated basins (Jefferson et al., 2008; Tague et al.,30

2008; Cooper et al., 2018). Both the Almanor and the East Branch sub-basins, however, are rain-shadowed (aridity index of

∼1.5 and 1.1, respectively). Pre-drought aridity is the most important predictor of shifts according to Saft et al. (2016b). This

13



highlights that a higher summer flow does not necessarily provide resiliency to shifts in precipitation vs. runoff during droughts.

Still, the Almanor sub-basin has been more sensitive to longer droughts than the East Branch sub-basin. This behavior may be

related to the comparatively long time needed by groundwater-flow-dominated, slow-draining basins to respond to a superficial

precipitation deficit (Cooper et al., 2018).

To test the sensitivity of western slope Sierra Nevada rivers to shifts in precipitation-runoff relationships in response to5

droughts, we extended our analysis to the 12 other major rivers. We found that nine of these twelve basins showed statisti-

cally significant shifts, on the order of -20% to -10% (Figure 9 and Table S4, water years 1985-2018, data from PRISM and

https://cdec.water.ca.gov/, visited July 19, 2019). The magnitude of these shifts are comparable to previous studies, -24% on

average in 18 rivers in China (Tian et al., 2018) and a mode between -40% and -20% in Australia (Saft et al., 2016b). The

basins that did not show a statistically significant shift were the relatively small, low-elevation Tule basin and two other south-10

ern basins, the Kaweah and the Kern (see a map and a summary of hydrologic characteristics of each basin in Harrison and

Bales, 2016). While the Kaweah and the Kern have high-elevation, snow-dominated headwaters, they also have significant rain-

modulated low-elevation areas. This suggests that some mixed rain-snow, Mediterranean basins in which rain plays a prominent

role in the annual water budget are less prone to shifts in the precipitation-runoff relationship. In the snow-dominated basins

where a significant shift is observed, snow-melt replenishes sub-surface storage later into the dry season and thus limits the15

dependence of evapotranspiration from deep sub-surface storage (Rungee et al., 2018), a key mechanism that reduces low-flow

elasticity to climate variability (Cooper et al., 2018) and that is greatly reduced during longer droughts.

4.2 Climate elasticity of ET and hysteresis of the precipitation-runoff relationship

Annual PRMS errors for basin-wide ET were manifest in both a systematic bias (∼110 mm less simulated ET than observed)

and an annually variable component (Figure 7, results refer to the Feather at Oroville). The systematic bias could be explained20

by an underestimation of plant-accessible water storage, a recurring source of uncertainty in the Sierra Nevada (Klos et al.,

2018). Like any hydrologic model that is calibrated on streamflow, the annual performance of PRMS for Q is relatively

insensitive to systematic biases in internal fluxes like ET , as these can be offset by other fluxes during calibration (a good

example being the groundwater sink). This means that the drop in modeling accuracy during droughts and its relationship with

shifts in the precipitation-runoff relationship is related to the second component of the error (the annually variable one). This25

second component of the error was visually well correlated with annual precipitation and, in particular, with wetting-drying

cycles (Figure 10, top panel). The model generally overestimatedET during wetting cycles and underestimated it during drying

cycles, which suggests that the model did not realistically represent the buffered response of ET to precipitation variability,

a property that we refer to as the climate elasticity of evapotranspiration and that emerges as a driver of water supply in a

Mediterranean climate (Bales et al., 2018).30

Bales et al. (2018) identified three sources of conceptual uncertainty about how models simulate evapotranspiration, which

link back to the five mechanisms altering ET and ∆S during and after droughts outlined in the Introduction. The first is

the oversimplification of regolith storage and rooting depth and thus misrepresentation of plant-accessible water storage (see

also Rungee et al., 2018). The second is a lack of proper parametrization of the feedback between evaporative demand and
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stomatal closure. The third is the representation of vegetation as a static layer with no dynamic response to stresses. Across

the Feather at Oroville, differences between estimated and simulated ET were well explained by estimated changes in storage

(r = 0.78, see the bottom panel in Figure 10). The modeling missing piece behind the misrepresentation of climate elasticity

of evapotranspiration and therefore behind the observed shifts in the water balance was thus the multi-year carryover of soil-

water storage. This storage is a critical drought-resilience source, bufferingET temporal patterns from the lack of precipitation5

through the accumulation of plant-accessible water during wet periods and drawdown during dry periods (Fellows and Goulden,

2017; Klos et al., 2018). This buffering process was not reproduced by the model, likely because it miscaptured the magnitude

and distribution of regolith moisture. This led to an underestimation of inter-annual variability in ∆S for all (sub-)basins

(Figure 7) and an overestimation of streamflow elasticity to precipitation (Table 3) as a result.

Interactions between ∆S and ET thus emerge at the ultimate cause of shifts in the water balance of mixed rain-snow,10

Mediterranean regions during droughts. Reinterpreting shifts as evidence of hysteresis in the precipitation-runoff relationship

yields a process occurring in four distinct phases (Figure 11). During the initial stages of a drought, multi-year carryover

from previous wet periods can compensate for missing precipitation input, a mechanism that offsets ET deficit and therefore

maintains proportionality between precipitation and runoff (phase 1, see Figure 11). This offsetting mechanism is predominant

during an isolated dry period, while during a prolonged drought drawdown leads to soil-water depletion and an associated15

drop in runoff due to preferential partitioning of surface water to ET (Bales et al., 2018); this ultimately leads to coevolution

processes such as tree mortality (Troch et al., 2015; Bales et al., 2018) – phase 2. With the loss of buffering capacity, water

basins will respond to precipitation according to a different precipitation-runoff relationship (phase 3), because of a different

partitioning of P across ET , Q and ∆S. Recovery during following wet periods will eventually lead to other coevolution

processes such as vegetation expansion, which will possibly restore the initial precipitation-runoff relationship (phase 4, end20

of hysteresis).

The role that these four phases of ET elasticity play in driving precipitation-runoff hysteresis has never been investigated in

a systematic way, but recent Critical-Zone studies in the Kings river, California show that this was the predominant mechanism

controlling water-supply changes during droughts (Bales et al., 2018). We believe them to apply to the higher-precipitation,

transition lithology of the Feather river basin and across the Sierra Nevada. Recent pan-European studies have also showed per-25

sistence ofET for longer temporal scales than runoff during droughts (Orth and Destouni, 2018), while modeling studies across

the European Alps have showed thatET can even increase during droughts if air temperature increases (Mastrotheodoros et al.,

2020). Better understanding hysteresis in the precipitation-runoff relationship is, therefore, a priority of future work, especially

in a warming climate.

4.3 How to achieve more robust runoff predictions during droughts?30

The conceptual uncertainty source outlined in Figure 11 is a common feature among hydrologic models that traces back to fun-

damental knowledge gaps in critical-zone science (Klos et al., 2018), including their tendency to systematically underestimate

multi-year carryover of soil-water storage and therefore miscapture interannual variability in subsurface flow (see Figure 7 and

Fowler et al., 2020). Thus, predictions of hydrologic models during droughts should be interpreted with caution.
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While Chiew et al. (2014) hypothesize that more observations could improve the performance of models during droughts,

we found that the accuracy of PRMS for droughts during the calibration period was similar to that for droughts outside it. More

measurements of the water balance in mountain regions could help better parametrize climate elasticity of evapotranspiration

and multi-year carryover of soil-water storage, thus unraveling the role that these mechanisms play in buffering the impact of

precipitation deficit on runoff during droughts and supporting improved process representations.5

Shifts in the precipitation-runoff relationship of snow-dominated regions are critical because in these contexts snow plays a

key role in both water supply and its seasonal predictability. In the western United States, water-supply forecasts are based on

statistical regressions across full-natural flow, precipitation, and snowpack accumulation (Pagano et al., 2004; Rosenberg et al.,

2011; Harrison and Bales, 2016). These forecasts play a key role in water-resources allocation across industrial and agricultural

uses as well as freshwater supply (Harrison and Bales, 2016). While using runoff-to-date as a predictor and fitting different10

regression coefficients for different year types may partially correct for runoff deficit, these regressions do not explicitly account

for shifts in precipitation-runoff relationships during droughts (Harrison and Bales, 2016). Since shifts in precipitation-runoff

relationships are common across the Sierra Nevada (Figure 9), we suggest embedding a shift predictor into these regressions

as done in Equation 1 as the next step to improve water-supply forecasts.

The underestimation of runoff during the 1976-77 drought disagrees with the general consensus that these models tend to15

overestimate water supply in regions where droughts shift the precipitation-runoff relationship (Saft et al., 2016a; Tian et al.,

2018). Water year 1977 was still the driest among the 114 years on record for California in 2015 (DWR, 2015), and it was

the last of three years of consecutively decreasing precipitation (Figure 2). Dry periods may lead to a disconnection between

soil and groundwater storage, which in turn may prevent recharge and favor direct surface runoff and interflow (see Lange and

Haensler, 2012; Saft et al., 2016b, and references therein). This condition and the subsequent slower-than-expected recovery of20

soil-water storage (Sowerby et al., 2008) are not captured by PRMS. Neglecting this process may lead to erroneously allocating

precipitation to the recharge zone (where it becomes available for evapotranspiration) or to groundwater; in either case, runoff

would be underestimated. Here again, surface-to-subsurface mass and energy fluxes emerge as the most relevant knowledge

gap in this field that would benefit from more targeted research.

5 Conclusions25

Droughts cause a shift in the precipitation-runoff relationship of Mediterranean mixed rain-snow mountain basins of the Sierra

Nevada of California. The magnitude of this shift is comparable to previous findings in rainfall-dominated semi-arid areas

with year-around or summer-monsoon-dominated precipitation, which points to common feedbacks impacting the process

across precipitation regimes, regardless of lithology. By comparing observed water-balance components during drought vs.

non-drought years with those simulated by a hydrologic model, we identified these common feedbacks as being driven by the30

interplay between the response of evapotranspiration to climate (climate elasticity of evapotranspiration) and multi-year carry-

over of subsurface water storage. Shifts therefore appear as a hysteretic response of the water budget to buffered basin-climate

coevolution mechanisms like tree mortality and expansion and soil-water drawdown and replenishment. These processes take
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place over comparatively long, multi-year time scales, thus explaining why short dry periods are often not subjected to shifts.

The complex response of evapotranspiration to climate in mixed rain-snow Mediterranean basins caused significant drops in

performance for a hydrologic model (PRMS). Improved parametrizations of climate elasticity of evapotranspiration are thus

highly needed to make models and water resources management more robust to droughts, especially in a warming and more

variable climate. A primary need in this regard is to better represent the buffering role of deep, plant-accessible subsurface5

water storage during multi-year dry periods in sustaining vegetation evaporative demand.
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Table 1. Average precipitation (P ), Snow Water Equivalent (SWE), and maximum-minimum daily temperature (Tmax and Tmin, respec-

tively) across the four California droughts under study.

Drought P (m) SWE (m) Tmax (degC) Tmin (degC)a

1976-77 0.49 0.23 19.56 2.66

1987-92 0.77 0.39 20.08 3.55

2007-09 0.90 0.46 19.30 4.02

2012-16 0.95 0.29 19.93 4.64

aP is average water-year precipitation during each drought across 13 stations on the Feather River (see Table S2 in the Supporting Information). SWE is

average April 1st SWE during each drought across 25 stations on the Feather River (see Table S3 in the Supporting Information). Tmax and Tmin are average

annual maximum and minimum daily temperature during the drought at the three index stations used by the PRMS model for air-temperature input: Canyon

Dam (1390 m), Quincy (1066 m), and Bucks Creek Powerhouse (536 m). Data sources: California Data Exchange Center (CDEC, https://cdec.water.ca.gov/,

visited July 19, 2019) and Pacific Gas & Electric.
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Table 2. Estimated shift in the precipitation-runoff relationship for single droughts on the Feather River (see Section 2.3.1).

Drought mQ Almanor (%) mQ East Branch (%) mQ Oroville (%)

1976-77 -11 -51 –

1987-92 -25 -36 -22

2007-09 -9 -20 -6

2012-16 -18 -44 -21
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Table 3. Modeled, observed, and theoretical climate elasticity of streamflow to annual precipitation (eQ/P ) and potential evapotranspiration

(eQ/PET ) for the three (sub-)basins under study with complete annual full-natural flow data. Theoretical elasticity was computed according

to the Turc-Mezentsev formula (Andréassian et al., 2016). The asterisk (*) denotes statistically significant elasticity values (that is, the sign

of the confidence bounds agrees, 95% confidence level).

(Sub-)basin eQ/P (-) eQ/PET (-)

Modeled Observed Theoretical Modeled Observed Theoretical

Almanor 0.79∗ 0.58∗ 0.55 0.36∗ -0.17 -0.31

East Branch 0.68∗ 0.56∗ 0.33 0.24∗ 0.00 -0.14

Oroville 0.73∗ 0.69∗ 0.48 0.27 -0.06 -0.25
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Table 4. Regression between observed and simulated water-balance components: confidence bounds of the regression parameter ruling shifts

in performance during droughts (see Equation 4). ET is the sum of ET and the groundwater sink (see Section 2.3.3). The asterisk (*) denotes

statistically significant elasticity values (that is, the sign of the confidence bounds agrees, 95% confidence level).

(Sub-)basin b1,P (mm) b1,ET (mm) b1,∆S (mm) b1,Q (mm)

Almanor -119 to +51 -102 to -20∗ +35 to +155∗ -154 to -9∗

East Branch -191 to -30∗ -80 to -14∗ -83 to +47 -128 to -24∗

Oroville -96 to +56 -80 to -9∗ -19 to +142 -120 to -14∗
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Figure 1. The Feather River at Oroville and its three headwater sub-basins under study (Almanor, East Branch, and Middle Fork): location of

the river along the Pacific coast of North America (a), orography and hydrography, along with in-situ temperature and precipitation stations

used to force PRMS (see Section 2.3.2) – (b), cumulative-frequency distribution of river-basin’s elevation (c), and PRISM 1981-2010 average

annual precipitation (d).
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Figure 2. Hydroclimatic summary of the four most recent Californian droughts compared to non-drought years. Maximum and minimum

daily temperature is an annual average of the three index stations used by the PRMS model for air-temperature inputs: Canyon Dam (1390

m), Quincy (1066 m), and Bucks Creek Powerhouse (536 m). Annual precipitation and April-1st SWE were computed using 13 and 25

stations across the Feather River, respectively (see Table S2 and S3 in the Supporting Information). Q2 is the spatial median, Q1 and Q3

are the two quartiles, respectively. Sources: California Data Exchange Center (CDEC, https://cdec.water.ca.gov/, visited July 19, 2019) and

Pacific Gas & Electric.

28



Figure 3. Daily median (Q2) and quartiles (Q1 and Q3) of observed full-natural flow during drought and non-drought years at the outlet of

two headwater basins of the Feather River with contrasting lithology. The Almanor subbasin is a predominantly volcanic, subsurface-flow-fed

subbasin; the East Branch is transitional to granitic and surface-runoff-dominated. The y axis in in log-scale.
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Figure 4. Precipitation-runoff relationship for drought (red) vs. non-drought (black) years and the three basins under study with complete

annual runoff data (Almanor, East Branch, and Feather River at Oroville). The red and grey bands represent 95% confidence intervals for the

regressions. The Box-Cox transformation for annual full-natural flow is introduced in Section 2.3.1, Equation 2.
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Figure 5. Water-year Nash-Sutcliffe Efficiency (NSEyrt) and Log-Nash-Sutcliffe Efficiency (LogNSEyrt) for PRMS-modeled daily full-

natural flow. The blue bars represent observed annual full-natural flow at the outlet of each (sub-)basin.
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Figure 6. Annual relative bias for full-natural flow at the outlet of all (sub-)basins under study (difference between model and observations

of cumulative annual full-natural flow, relative to the latter).

32



Figure 7. Simulated vs. observed annual basin-wide water-balance components (P , ET , ∆S, and Q) for the Feather River at Oroville.
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Figure 8. Simulated vs. observed annual basin-wide water-balance components (P , ET , ∆S, and Q) separated between drought (red) and

non-drought (black) years. Simulated annual ET includes the groundwater-sink mass-flux component (see Section 2.3.3). The red and grey

bands represent 95% confidence intervals for the regressions.
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Figure 9. Precipitation-runoff relationship for drought (red) vs. non-drought (black) years and the twelve (main) basins draining the western

side of the Sierra Nevada to the California Central Valley in addition to the Feather River. Panels are organized by the most northern river in

the upper left to the most southern river in the lower right. The red and grey bands represent 95% confidence intervals for the regressions.
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Figure 10. Top panel: simulated and estimated annual basin-wide evapotranspiration for the Feather River at Oroville (lines) and annual

precipitation according to PRISM (bar chart). Bottom panel: annual differences between simulated and estimated basin-wide evapotran-

spiration as a function of estimated change in subsurface water storage. The absolute value of the systematic bias between simulated and

observed basin-wide evapotranspiration (∼ 110 mm, see Figure 7) was subtracted from observed values for readability. Simulated annual

evapotranspiration includes the groundwater-sink mass-flux component (see Section 2.3.3).
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Figure 11. Schematic of ET response to climate variability and its effect of the precipitation-runoff relationship. ET is initially approximated

constant with time due to its significantly smaller variability than precipitation (Bales et al., 2018; Orth and Destouni, 2018). Details on the

four phases of precipitation-runoff hysteresis (P1 to P4) are discussed in Section 4.2.

37


