
We thank the Editor for requesting we re-submit a revised manuscript addressing the Reviewer’s 
comments and suggestions. Please see below the details of our modifications in the revised 
manuscript.  

Short Comment 1 

1. [D]o you think the biases in runoff projection are also limited to the hydrological model 
choice? More appropriately, can the biases be reduced by employing a semi or fully-
distributed hydrological models which account for land use, soil characteristics and sub-
surface flows? This is because there are several existing studies which have validated that 
runoff predictions are not only limited to climatological data, but physical processes such as 
SW-GW interaction, vegetation cover etc. which GR4J does not count for.  

It is recognized that the choice of hydrological model should depend on the purpose of the 
model application. In this research, since our purpose is focused on investigating the bias in 
the projected total runoff without accounting for other drivers of hydrological change (land 
use, etc), we believe that the choice of a conceptual lumped rainfall-runoff model is efficient 
and effective given that the model has been well-calibrated to reproduce the observed runoff 
in the baseline period. We accept that a semi of fully distributed hydrological model could 
account for land use, soil characteristic and SW-GW interaction. However, there is no 
guarantee that the semi or fully distributed hydrological model would outperform the 
lumped model in reproducing the runoff of the baseline period. This is simply because that 
the semi or fully distributed model, although having more precise descriptions of the 
hydrological processes, has more parameters to be calibrated and more processes to be 
validated. If there isn’t sufficient information available and the semi or fully distributed 
model is calibrated and validated against the observed streamflow (as that for the lumped 
model), the difference of the performance between the lumped model and the semi/fully 
distributed model could be marginal compared to the bias caused by the climate input errors. 
Nevertheless, it would be an interesting topic to explore and quantify the uncertainties in 
runoff projection in the future from using different complexities of hydrological models.  

2. Based on your experience do you think if the bias correction (while using either QQM or 
linear scaling) of the GCM projections was done at station scale and used for the catchment 
scale (lumped) hydrological simulation would have reduced the bias in the results compared 
to the results presented (as wide range of results are observed for the four GCM projections) 
in your manuscript?  

Firstly, just to clarify, we use RCM projections that are boundary-forced by the GCMs and not 
the GCM projections themselves. The bias characteristics of the gridded (10 x 10 km) RCM 
rainfall would still be present if bias-correcting to station data. Thus, the same wide range of 
results would occur for the catchment scale (lumped) hydrological simulation whether using 
station or gridded bias corrected data inputs.  

3. Pg4 Ln 16: Can you please elaborate on the use of GCM data for only SRES A2 scenario? Also, 
as the SRES emission scenario data inherit more uncertainties over the RCP scenarios, is it 
valid for its use in this study as this paper deals with uncertainties cascading to hydrological 
simulations? This is because, in a study such as Woldemeskel et al. (2015), the uncertainty in 
precipitation for RCP scenarios of CMIP5 were significantly lower compared to SRES 
scenarios of CMIP3 GCMs in the Australian region. What do you think about this?  



The suite of WRF runs we have access to for this study only have CMIP3 GCMs forcing for the 
A2 SRES scenario. In future work we will assess, when available, CMIP5 RCP-based WRF runs. 
Referring to Woldemeskel et al. (2016), their Figure 4 of shows that CMIP3 and CMIP5 
precipitation projections results for Southern Australia are similar.  

We have amended the manuscript and added the text:  

Whilst the SRES A2 is from the previous generation of Coupled Model Intercomparison 
Project CMIP3 scenarios (Nakicenovic N et al., 2000), it is relevant to assessing plausible 
climate change impacts as Woldemeskel et al. (2016) have shown that CMIP3 and CMIP5 
projected precipitation changes are similar for Southern Australia. 

4. Can you please write more on the calibration of GR4J at grid scale? As per my experience, 
GR4J accounts for the rainfall and PET to determine the effective precipitation and then the 
flow routing is done at catchment outlet. As per the description given, it is not clear how the 
model is set using the distributed method at 10 km grid size? My specific question is how the 
routing is done at 100 km2 grid? Also, how the calibration is done at 100 km2 grid?  

The underlying rationale for using the distributed simulation is to investigate the impacts of 
spatial correlation in climate variables on runoff projection. For this purpose, in the 
distributed method, we assume that each 10 x 10 km grid cell in the catchment shares the 
same GR4J parameter set but has different climate inputs. Given a specific parameter set, the 
hydrological model runs at each 10 x 10 km grid cell (sub-catchment) and the simulated 
streamflow for each grid cell is summed up according to their area-weight to represent the 
total streamflow at the outlet of the catchment, which is then compared against the 
streamflow observed at the outlet gauge. The parameters are then calibrated to minimize 
the objective function described at Eq.1 based on the area-weighted sum of the simulation 
streamflow and the observed streamflow at the outlet of the catchment. This is described in 
the manuscript on page 6 under the section ‘2.2 Hydrological model’. When describing the 
whole of Victoria runoff simulation, we have added to the description the additional text:  

There is no routing between grid cells in this case. 

5. Pg2Ln 20 and 21: Please be consistent with the use of “-“ in BC WRF as in some places it is 
there and some places not. Same issue with the “BC-rainfall” and “BC rainfall”. Please check. 

We have made the terminology consistent throughout.  

6. Pg3 Ln6: Typo “WFR” instead of “WRF”. 

We have corrected. 

7. Pg3Ln 3-7: I understand there are several advantages of using the AWAP data, however, as 
per the study of Tozar et al. (2012), using gridded data (be it either AWAP or SILO) always 
introduce artificiality (due to spatial and temporal interpolation) and alter the “realness”. 
This further cascades to hydrological simulations and leads to unrealistic results. Do you 
think using AWAP dataset is valid rather than using BoM gauges data for this study?  

We agree that using gridded data, with its inherent interpolation errors, does alter observed 
properties in comparison to station ‘point’ data. However, we think it is valid to use the 
AWAP dataset in our study because our ‘observed’ runoff is that simulated by GR4J when 
driven with the AWAP data. Given this is the baseline to which we compare WRF driven 
results, the use of AWAP is not a source of bias for our study.  



8. Can you please briefly write about the quantile-quantile mapping approach used in the 
study? It will be useful for the readers from non-climatological background.  

We do not want to repeat too much from the companion paper by Potter et al. (2019) 
(https://doi.org/10.5194/hess-2019-139) as that paper contains the full details of the 
quantile-quantile mapping approach used.  

We have added the text: 

The QQM-BC approach, using the R-package ‘qmap’ using the methodologies developed by 
Gudmundsson et al. (2012), is applied for each three-month season (i.e. DJF, MAM, JJA and 
SON) to each grid cell independently, mapping the simulated (WRF) to the observed (AWAP) 
daily rainfall cumulative density function quantiles such that a WRF simulated amount is 
replaced with the observed rainfall amount for the corresponding percentile, with linear 
interpolation between percentiles and for upper tail simulated amounts greater than 
observed. 

9. Pg5 Ln4: Can you please provide a list of all these 137 catchments in the supporting 
information? Can you also please provide the median and the percentile of the GR4J 
calibration parameters for both catchment scale and grid based calibration in the supporting 
information file?  

We have produced supporting information outlining the distributions of the parameters of 
GR4J calibration for the 137 catchments. As we outline in our description of the methods 
used, the lumped calibration is conducted only for the catchments listed at Table 1. For all 
the grids of the Victorian domain, GR4J is parameterized based on the parameter sets from 
the 137 catchments using the nearest neighbour approach.   

10. Pg5 Ln 23-24: Can you briefly mention the probable reasons for the better performance of 
the lumped approach over the distributed approach of GR4J calibration? Given that the 
catchments are flat (as majority of catchments in the SE Australian region are flat), a 
distributed approach should have yielded in better results.  

We have added the following text to the manuscript: 

This is because the underestimation in spatial correlation in daily rainfall amounts between 
the individual grid points of the WRF rainfall simulations, compared to AWAP, results in 
distributed GR4J calibration underestimating runoff. The lumped rainfall compensates for the 
spatial underestimation and hence runoff simulations using lumped BC WRF rainfall are 
closer to those obtained using lumped AWAP rainfall.  

11. Are the runoff simulation results presented in sections 3.1 and 3.2 based on the distributed 
GR4J model setup? 

Yes, for the Victoria state-wide results in these sections the results are for each grid cell, i.e. 
the distributed GR4J model setup.  

12. For the future plans (as mentioned in the conclusion), I would also recommend the use of a 
physical-process based semi-distributed (if not fully distributed) hydrological model for the 
future hydrological predictions. 

Thanks for the recommendation. We agree that it is worth exploring the potential of the 
application of semi- or fully-distributed hydrological models in projecting hydrological 
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changes under future climate. The application of such distributed models could be expected 
to provide more physically interpretable modelling at the catchment scale, but their 
implementation is challenging. For example, they are more likely to have equifinality 
problems in calibrating the distributed hydrological model given limited measurements and 
more parameters and if the parameters are assumed to vary spatially. The equifinality could 
therefore lead to difficulties in transferring parameters from the gauged catchments to the 
ungauged catchments if we aim to provide the projections at the regional scale across the 
entire Victorian domain.  

  



Referee comment 1 

1. An important part of your work analyses empirically scaled observed data. It might be useful 
for the readers if you describe a bit of the method from Chiew et al. (2009).  

We have added the description: 

This empirical scaling method (Chiew et al., 2009) rescales the historical grid-cell timeseries 
by multiplicatively applying the changes between historical and future period climate model 
projections. This can be applied on an annual basis, on a seasonal basis, or in a two-step 
process first on a seasonal and then on an annual to maintain the overall annual change as 
shown by the climate model.  

2. Similar to the above, you could provide a few sentences to describe the QQM bias correction 
method.  

We do not want to repeat too much from the companion paper by Potter et al. (2019) 
(https://doi.org/10.5194/hess-2019-139) as that paper contains the full details of the 
quantile-quantile mapping approach used. We have added the text: 

The QQM-BC approach, using the R-package ‘qmap’ using the methodologies developed by 
Gudmundsson et al. (2012), is applied for each three-month season (i.e. DJF, MAM, JJA and 
SON) to each grid cell independently, mapping the simulated (WRF) to the observed (AWAP) 
daily rainfall cumulative density function quantiles such that a WRF simulated amount is 
replaced with the observed rainfall amount for the corresponding percentile, with linear 
interpolation between percentiles and for upper tail simulated amounts greater than 
observed.. 

3. In future work, such as the one stated at the end of the conclusions, I would recommend 
using the last generation of climate models that is available as this would provide an analysis 
of the current state-of-the-art.  

We agree and will clarify in the manuscript that the WRF simulations forced by CMIP3 GCMs 
were the only ones available to us at the time. Newer CMIP5 GCM forced continuous (rather 
than time-slice) WRF runs are becoming available and we will use these in future research.  

4. I understand that this works builds up from previous studies, however, could you give a 
sentence on why you (or the studies that your work builds on) choose to use the WRF 
model? Would you expect similar results from using other RCMs? The above applies for the 
hydrological model, would you expect that a fully-distributed integrated model will have 
different result? 

At the time of this study, we only had access to WRF runs at the scale of 10 x 10 km so WRF 
results were chosen as an ‘ensemble of opportunity’. Subsequently, an additional RCM 
(CCAM; see https://climatechangeinaustralia.gov.au/en/climate-projections/future-
climate/victorian-climate-projections-2019/ ) has produced 5 x 5 km output over Victoria 
forced by 6 CMIP5 GCMs for RCP4.5 and RCP8.5 with continuous daily data available to 2100. 
We are currently assessing these new data with a view to use them in future research. So far, 
we are finding that CCAM projections are drier than WRF. We have added the statement:  

Also, other RCMs could produce different results when forced by the same GCMs. 

https://doi.org/10.5194/hess-2019-139
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In terms of runoff projection at catchment scale, it can be expected that the difference 
between the results of a fully-distributed model and that of our distributed modelling 
(lumped model but used in a distributed way) would be marginal if both models have been 
well calibrated and are of similar bias. This is because that both modelling approaches (i.e., 
fully-distributed model and our distributed modelling) have consider the effects of the spatial 
variation (or spatial cross-correlation) of climate variables, which is the dominant driver 
affecting runoff. However, in contrast to the distributed modelling approach described in our 
manuscript, we recognize that the parameters of a fully-distributed model are not uniform 
across the catchment, which implies that the hydrological responses could vary spatially 
across the catchment. Hence, if the fully-distributed model is validated to be capable of 
reflecting the spatial heterogeneity of hydrological response and the projected changes in 
climate are of highly spatial variation, theoretically, the projected runoff change could be 
different. For example, assuming a dominant sub-catchment experiences much higher 
precipitation reduction than other sub-catchments, we can expect bigger difference between 
the fully-distributed model and the distributed modelling described in our manuscript. To 
reflect this difference appropriately, however, more information is needed to validate the 
model and ensure the fully-distributed model performs realistically across the catchment to 
avoid the possible mis-matching of hydrological responsive area and the climate sensitive 
area. This is especially important for large-scale catchments with higher spatial 
heterogeneity. As the catchments in this studied are all small-scale (around 1000km2), the 
hydrological effects of spatial heterogeneity are therefore assumed to be negligible as 
compared to the relatively large bias in the projected climate variables. 

5. Pg.1 L27 - The comma is missing in the following: Thus, ‘bias correction’ methods. 

Corrected.  

6. In Pg. 2 Lines 2 to 9 - You are referring to some of the limitations of bias correction. I think it 
would be also important to include the stationarity assumption of the relationship between 
simulations and observations. I think this is the main concept that supports the idea of bias 
correction. 

We agree that a fundamental assumption of bias correcting current and future periods is 
that the relationship derived for the current period is stationary and hence can be applied in 
the future period. We have added the text:  

Bias correction also assumes stationarity in the QQM relationship, assuming that the 
mapping derived for the historical period applies under future climate conditions 
(Teutschbein and Seibert, 2013). 

7. Pg.4 Lines 16 to 20 - It is not clear to me whether you use the monthly mean potential 
evapotranspiration or daily values. Also, you could include a sentence stating whether if 
including the potential evapotranspiration simulations could change your results 
considerably. 

We use historical monthly mean values of daily potential evapotranspiration. Apologies this 
is not clear, we have clarified this in the revised manuscript, and added the text: 

Changes to PET would cause an additional reduction in runoff under a warming climate but 
would not change the relative results, as presented, in any considerable manner because the 
range of change is dominated by the large range in rainfall projections, i.e. PET is a 2nd order 



effect. For example, for a similar region Potter and Chiew (2011) found increased PET only 
explained 5% of runoff reduction in a prolonged drought. 

Potter, N.J. and Chiew, F.H.S. (2011) An investigation into changes in climate characteristics 
causing the recent very low runoff in the southern Murray-Darling Basin using rainfall-runoff 
models. Water Resources Research 47(12). 

8. Pg. 6 Line 16 – You could say how large is the bias of the 99th percentile in rainfall as it can 
give a background for the bias in the 99th percentile of runoff. 

We have added the text: 

The residual bias in the 99th percentile daily rainfall error has a mean of 0.02, 0.01, 0.02, 
0.06, 0.04 and 0.03 mm for the WRF runs forced by NCAP/NCAR Reanalysis, ERA-Interim 
Reanalysis and the historical runs from the CCCMA3.1, CSIRO-MK3.0, ECHAM5 and MIROC3.2 
GCMs, respectively. These amounts correspond to percentage errors of 0.06, 0.01, 0.10, 0.24, 
0.14 and 0.11% for these runs, respectively. These are mean errors across all grid-cells, with 
the error for individual grid-cells ranging from -2.1 mm to +3.0 mm, or 7.5% to +10.1%.  

9. Pg 9. Lines 17 to t20 – Can you include some reference that assess whether the model is 
good to simulate runoff on a changing catchment. I am not sure that there is a reference for 
the GR4J model. If not, you can acknowledge that there is no previous study analyzing it. 

There are numerous publications on using hydrological models (lumped, semi-distributed or 
fully-distributed) to assess the hydrological impacts of climate. The GR4J is just one of the 
lumped hydrological models widely used and testified to be competitive among currently 
available hydrological models. The GR4J model is capable to provide hydrological projection 
informed by climate change. However, this does not necessarily mean the GR4J can be used 
to simulate runoff under all possible catchment changes beyond climate (like land use and 
land cover change, human impacts) as the model itself is conceptual and not physically 
represents all the hydrological processes. We have added the text: 

We note that GR4J model performance for future climate conditions differing from the 
calibration period are an additional source of uncertainty (Stephens et al., 2019), but we do 
not assess such potential deficiencies here. 

Stephens, C. M., Marshall, L. A., and Johnson, F. M.: Investigating strategies to improve 
hydrologic model performance in a changing climate, Journal of Hydrology, 579, 124219, 
https://doi.org/10.1016/j.jhydrol.2019.124219, 2019. 

10. Pg. 11 Lines 1 and 2 – You could also include the opposite view that bias-corrected outputs 
should be used with care giving that they are not based in any knowledge of the clime at 
physics (Ehret et al 2012). 

We agree that there are such concerns and will cite Ehret et al (2012) to highlight that this is 
an issue. Our text now reads: 

There is an argument that, because the QQM-BC rainfall corrects distributional biases in the 
raw WRF rainfall, the QQM-BC rainfall change signals are more realistic than those of the 
original WRF-raw rainfall, however (Ehret et al., 2012) are cautious of this view stating QQM-
BC does not have physical justification.  



11. Pg. 11 last line and page 12 first line – Correct the sentence as it does not make sense at the 
moment. 

There is a comma missing as this should be a continuation from the previous sentence, we 
have revised to read: “The differences in runoff changes from empirically scaled rainfall (i.e. 
based on seasonal and/or annual changes in WRF-raw rainfall) and BC rainfall are shown in 
Figure 5 to Figure 7 for annual mean runoff, daily 99th percentile flow and the number of 
days above observed 95th percentile flow, respectively.” 
 

12. Table 1. Given that the high flows are relevant for this research, consider including here how 
the models do when simulating the high flows (i.e. 99th percentile). This will increase the 
credibility of the results (even if you use the simulated, and not the observed, runoff as 
benchmark for comparison.)  

We do not understand this request given Table 1 presents mean simulated runoff as 
attributes, not as validation statistics. So, we’re not sure how showing 99th percentile flows 
would “increase the credibility of the results”? 

13. Figure 1. You can add the legend title (i.e. annual mean rainfall (mm/yr)” 

Figure caption includes the legend title. 

14. Figure 9. Add the title of the y axis title. 

Do you mean x-axis title, as the y-axis are all labelled? We have modified the figure caption 
to make it clear we are showing high flow percentiles for the 60 to 99 percentiles.  



Referee comment 2 

1. This is a regional study that is carried in Victoria Australia and therefore it is likely dependent 
on the modeling framework and the region’s characteristics. Thus, beyond the overall 
educational value that the readers who are not familiar with the region may gain, in order to 
appreciate the results and understand their applicability to other regions, the authors should 
describe in much more details the relevant regional hydrological characteristics, some 
differences among the selected catchments, the region’s climate, and review the projected 
climatic change. The current version provides very little information on the study region. 

We will add more detail, as requested, regarding the regional and catchment hydrological 
characteristics and a review of projected climate change. Rather than add a lot of detailed 
descriptions, we have summarised the climatology (temperate; wet mild winters, dry hot 
summers) and runoff. Our Figure 1 shows the range of mean rainfall for the catchments. We 
also cite other recent research detailing catchment characteristics: 

Chiew, F. H. S., Potter, N. J., Vaze, J., Petheram, C., Zhang, L., Teng, J., and Post, D. A.: 
Observed hydrologic non-stationarity in far south-eastern Australia: implications for 
modelling and prediction, Stochastic Environmental Research and Risk Assessment, 28, 3-15, 
10.1007/s00477-013-0755-5, 2014. 

Chiew, F., Zheng, H., and Potter, N.: Rainfall-Runoff Modelling Considerations to Predict 
Streamflow Characteristics in Ungauged Catchments and under Climate Change, Water, 10, 
1319, 2018. 

Regarding projected climate change, we will add a citation of a recent detailed summary of 
the projected change for the region –  Victoria’s Climate Science Report 2019 
(https://www.climatechange.vic.gov.au/__data/assets/pdf_file/0029/442964/Victorias-
Climate-Science-Report-2019.pdf) The Executive Summary of this report refers to a high 
degree of consensus in projected rainfall declines: “Annual rainfall is projected to decrease 
across the state, due to declines across autumn, winter and spring. When extreme rainfall 
events do occur, they are likely to be more intense. Areas of the Victorian Alps are projected 
to see a greater reduction in rainfall than the surrounding areas.” 
 

2. The authors use QQM procedure to bias correct the WRF rainfall [BC-WRF]. A description of 
the procedure is missing and even the seasons that were used for the correction are not 
specified.  

We do not want to repeat too much from the companion paper by Potter et al. (2019) 
(https://doi.org/10.5194/hess-2019-139) as that paper contains the full details of the 
quantile-quantile mapping approach used. We have added the text: 

The QQM-BC approach, using the R-package ‘qmap’ using the methodologies developed by 
Gudmundsson et al. (2012), is applied for each three-month season (i.e. DJF, MAM, JJA and 
SON) to each grid cell independently, mapping the simulated (WRF) to the observed (AWAP) 
daily rainfall cumulative density function quantiles such that a WRF simulated amount is 
replaced with the observed rainfall amount for the corresponding percentile, with linear 
interpolation between percentiles and for upper tail simulated amounts greater than 
observed. 

https://www.climatechange.vic.gov.au/__data/assets/pdf_file/0029/442964/Victorias-Climate-Science-Report-2019.pdf
https://www.climatechange.vic.gov.au/__data/assets/pdf_file/0029/442964/Victorias-Climate-Science-Report-2019.pdf
https://doi.org/10.5194/hess-2019-139


3. The authors claim in a few places that the BC time series underestimate the daily wet-wet 
transition. Using the QQM procedure should only correct the magnitude of the [daily] 
rainfall events. Therefore, the dry-wet transitions of the rainfall from the raw WRF should 
not be different in the bias corrected rainfall. In addition, the spatial correlation of the BC-
WRF, which is found to be different than the observed, is also should not be different than 
the raw WRF. These uncertainties in the rainfall sequencing and spatial correlation are likely 
originated from the GCMs and RCM and not from the bias correction procedure.  

We agree. We believe this is covered in our introduction, where we state: 

“ Potter et al. (2019) found that the quantile mapping (QQM) bias correction approach used 
to correct raw WRF daily rainfall, applied on a cell by cell seasonal basis, does not correct for 
underestimation biases in wet-wet transition probabilities. Hence, we show, BC WRF rainfall 
will tend to underestimate runoff compared to runoff simulated using observed rainfall. At 
the catchment scale both raw and BC WRF rainfall underestimate spatial correlation 
between cells within a catchment, which is an additional source of runoff uncertainty.” 

It is implicit in this statement that the errors/biases in rainfall sequencing and spatial 
correlation originate from the GCMs and RCM and not from the bias correction procedure. 

4. The four GCMs that were selected for this study should be validated with respect to their 
historic rainfall simulations. Their representation of the regional climatology in time and 
space should be evaluated. The raw GCMs should also be compared to analyze their 
projected climate change signal. The VERY large biases (hundreds of mm) of the raw-WRF 
(Fig 2) raise suspicion that the model may not capture the climatological features of the 
region. As for the GCMs evaluation, the raw-WRF simulations also have to be assessed in 
time and space to verify that it gets the seasonality and the expected spatial distribution. 
The authors may decide to remove the simulations GCMs and raw-WRF simulations that do 
not capture basic climatological features.  

We refer to Evans et al. (2014) regarding the selection of the GCMs (Page 4, line 4). We have 
included more detail on the rationale used in GCM selection, adding the text: 

Evans et al. (2014) described the experimental design for these WRF downscaled simulations, 
outlining the selection of four CMIP3 GCMs (CCCM3.1, CSIRO-Mk3.0, ECHAM5 and 
MIROC3.2-medres) based on a three-stage process: (1) the performance of a total of 23 
CMIP3 GCMs was evaluated, and models that did not adequately simulate the historical 
climate of south-eastern Australia were rejected; (2) the set of GCMs that performed well 
was then ranked on the basis of a measure of their independence; and (3) the GCMs were 
then evaluated on the basis of their projections of future climate change. The four most 
independent models that spanned the largest range of plausible future climates were chosen. 

Regarding the Reviewer’s suspicion that WRF may not capture the climatological features of 
the region, we refer to our WRF assessment description on page 5, including Olson et al. 
(2016) who did report biases in rainfall climatology.  

5. In Figure 8 the percent of the projected change in the runoff is presented. This analysis could 
be augmented by showing the transition of the percent change from the GCM, raw-WRF, BC-
WRF, raw runoff and BC runoff. In the current analysis, the differences in changes are mainly 
attributed to the selection of the GCM, and the contribution of the BC is unclear.  



Referring to rainfall, we do not use GCM rainfall and so cannot show “the percent change 
from the GCM”; we do show the raw and BC WRF rainfall change in Figure 4. For runoff, 
because of the biases in raw WRF rainfall, it does not make sense to show the runoff change 
that results from using raw WRF rainfall.  

6. The hydrologic model that is used in this study (equations are not given) has 4-parameters. 
However, only one parameter (x1) the soil moisture storage represents the rainfall-
landsurface interaction. The three other parameters control the routing. Therefore, in 
annual time scale and from mass balance perspective the most sensitive parameter should 
be x1. The use of such a simple hydrologic model can be an advantage because it is possible 
to conduct a sensitivity analysis to assess the dependency of the BC on the soil parameters. 
Thus, the contribution of the model to the impact of BC can be assessed. 

Thanks for the comments and the interesting suggestion to quantify the contribution of the 
hydrological model to the impact of BC. However, we’d like to clarify that the purpose of this 
study is to assess the impact of BC on the projected runoff. To do the projection, we first 
calibrated the hydrological model using the observed climate (not from the GCM or RCM, so 
no BC involved) and fixed the calibrated parameters for the model to project possible runoff 
change. Although it would be interesting to assess the sensitivity of projected runoff on BC 
rainfall and hydrological parameters (e.g., conduct sensitivity analysis by varying the soil 
parameter at specified small intervals), to compare the contribution from BC and parameter 
uncertainties, this is not within the scope of our study.  

7. The title is misleading: I recommend to revise the title to: ‘Impact of bias corrected 
downscaled rainfall on projected future runoff’. The current title assumes that there are 
biases and it is not clear if the biases stem from the GCMs or RCM. 

The paper looks at the change in downscaled rainfall as applied through empirical scaling, as 
well as the bias corrected downscaled rainfall. We therefore believe our original title is more 
encompassing of the work as presented. However, we are happy to follow the Editor’s 
guidance as to whether a title change is required.  

8. Unit of grid cells should be either 10x10 km or 10 km2, not 10 km. This should be fixed 
throughout the manuscript. 

Yes the grid cells have a 10 km length scale, and we have reported as 10 x 10 km throughout 
in the revised manuscript.  

9. ‘underestimation biases in wet-wet transition probabilities’ See my comment above that 
probability matching does not correct for transition. In addition, the underestimation is not 
of the ‘probabilities’. Maybe you meant to say that it underestimate the wet-wet transition 
occurrences. 

The term ‘transition probabilities’ is commonly used in the literature when referring to the 
transition properties of wet- and dry-day sequences. They are true probabilities, bounded to 
be from 0 to 1.  

10. Describe the emission scenario that was selected for this study ‘SRES A2’ is insufficient 
description. 

We have added the description: 



“The SRES A2 scenario describes a very heterogeneous world with high population growth 
and technological change that is fragmented and slow (Nakicenovic et al. 2000). The SRES A2 
emission scenario was selected for the NARCliM climate projections because the global 
emissions trajectory suggested that it was the most likely scenario. Recent publications have 
confirmed that we are tracking at the higher end of the A2 scenario (Peters et al. 2013).” 

Nakicenovic N , Alcamo J, Grubler A , Riahi K , Roehrl RA, Rogner H-H, & Victor N. Special 
Report on Emissions Scenarios (SRES), A Special Report of Working Group III of the 
Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2000. 

Peters GP, Andrew RM, Boden T, Canadell JG, Ciais P, Le Quere C, Marland G, Raupach MR, 
Wilson C. Commentary: The challenge to keep global warming below 2 degrees C Nature 
Climate Change, 3:4-6, 2013. 

11. The selection of 2060-2079 as the period for analysis of projected change is untraditional. 

The periods for which WRF runs were undertaken was set by the research group running the 
WRF model for south-eastern Australia and we had no input to the choice of periods. The 
periods selected by them were 1990 to 2009 (base), 2020 to 2039 (near future), and 2060 to 
2079 (far future).  

12. Eqn 1 presents an uncommonly used objective function. The authors should discuss the 
reasons to select it and what hydrologic features this function emphasizes. 

The Eqn1 is an objective function combing the commonly used NSE and the Bias. Different to 
the conventional NSE, the objective function puts more weight on the Bias term. The purpose 
of this combined objective function is to ensure that the bias of the model can be constrained 
to an acceptable level (as noted in the reference we provide, Viney et al. 2009) as we are 
targeting the projection of total runoff. We have added the text: 

“This objective function, from Viney et al. (2009), combines the commonly used NSE and the 
Bias to constrain total model bias in runoff simulation.” 

13. The statement ‘The lumped modelling generally produced a slightly better calibration than 
the distributed modelling (Andréassian et al., 2004)’ seems like a general statement. It will 
be interesting to state the results of your comparison between the two approaches. 

This statement refers to the specific results as shown in Table 1, which shows that for 9 of the 
10 catchments investigated the ‘lumped’ distribution has a higher NSE than the distributed 
case. We have joined this sentence with the prior sentence to make the link to Table 1 
explicit.  
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Impact of downscaled rainfall biases on projected runoff changes 
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Abstract. Realistic projections of changes to daily rainfall frequency and magnitude, at catchment scales, are required to 

assess the potential impacts of climate change on regional water supply. We show that quantile-quantile matched (QQM) 

bias-corrected daily rainfall from dynamically downscaled WRF simulations of current climate produce biased hydrological 10 

simulations, in a case study for the State of Victoria, Australia (237,629 km2). While the QQM bias correction can remove 

bias in daily rainfall distributions at each 10 x 10 km grid point across Victoria, the GR4J rainfall-runoff model 

underestimates runoff when driven with QQM bias-corrected daily rainfall. We compare simulated runoff differences using 

bias-corrected and empirically scaled rainfall for several key water supply catchments across Victoria and discuss the 

implications for confidence in the magnitude of projected changes for mid-century. Our results highlight the imperative for 15 

methods that can correct for temporal and spatial biases in dynamically downscaled daily rainfall if they are to be suitable for 

hydrological projection.  

1 Introduction 

Modelled hydrological response to climate change, conditioned on regional climate projections, can inform water-supply 

planning for resilience on multi-decadal and longer timescales. Global climate models (GCMs) provide broad scale 20 

projections (length scales of 100+ km) that are too coarse for direct use in hydrological modelling, hence GCMs are often 

dynamically downscaled using regional climate models (RCMs) to provide regional (~10 km length scale) projections. 

RCMs can better capture the spatial variability in rainfall change at the scale of catchment response, particularly where there 

is high spatial variability in rainfall due to orography (Ekström et al., 2015;Grose et al., 2015;Casanueva et al., 2016;Di Luca 

et al., 2016;Rummukainen, 2016). However, RCM rainfall characteristics such as daily distributions and sequencing often do 25 

not match observations sufficiently well for them to be used directly as input to hydrological models (Maraun et al., 

2010;Ehret et al., 2012;Rasmussen et al., 2012;Muerth et al., 2013;Räty et al., 2014). Thus, ‘bias correction’ methods are 
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commonly applied to adjust RCM rainfall output to match certain characteristics of the observed rainfall (Teutschbein and 

Seibert, 2012). There is no ‘perfect’ bias correction approach, thus subjective decisions on their application together with 

methodological limitations are a source of uncertainty in bias corrected RCM rainfall and the resulting hydrological changes 

simulated using them (Lafon et al., 2013;Teutschbein and Seibert, 2013;Teng et al., 2015;Ivanov and Kotlarski, 

2017;Maraun and Widmann, 2018;Potter et al., 2018). Reported limitations of many daily rainfall bias correction methods 5 

include the inability to correct for biases in multi-day rainfall totals, or the daily sequencing of wet and dry days (Chen et al., 

2013;Addor and Seibert, 2014;Evans et al., 2017). More generally, bias correction cannot correct for RCM errors inherited 

from GCM errors in seasonality, temporal sequencing, or large-scale circulation biases that could result in unphysical 

climate projections (IPCC, 2015). Bias correction also assumes stationarity in the QQM relationship, assuming that the 

mapping derived for the historical period applies under future climate conditions (Teutschbein and Seibert, 2013).  10 

There is also debate and uncertainty due to the modifications in the climate change signal (CCS) caused by the bias 

correction (Ivanov and Kotlarski, 2017;Hagemann et al., 2011;Dosio et al., 2012;Themeßl et al., 2012;Velázquez et al., 

2015;Mbaye et al., 2016;Switanek et al., 2017;Ivanov et al., 2018;Sangelantoni et al., 2018). Teng et al. (2015) determined 

that bias correction altered the change signal for many characteristics, including high rainfall amounts, which had a 

significant impact on simulated runoff and particularly high flows. Ivanov et al. (2018) examined this issue and concluded 15 

that the bias-corrected CCS resulting from correcting RCM intensity distribution bias is defensible.  

Here we report on the impact that bias correcting daily rainfall from WRF (Weather Research and Forecasting regional 

climate model) has on the characteristics of projected future runoff (i) across the state of Victoria in south-east Australia, and 

(ii) in more detail for ten catchments within Victoria. Potter et al. (2019) found that the quantile mapping (QQM) bias 

correction approach used to correct raw WRF daily rainfall, applied on a cell by cell seasonal basis, does not correct for 20 

underestimation biases in wet-wet transition probabilities. Hence, we show, BC WRF rainfall will tend to underestimate 

runoff compared to runoff simulated using observed rainfall. At the catchment scale both raw and BC WRF rainfall 

underestimate spatial correlation between cells within a catchment, which is an additional source of runoff uncertainty. 

Similar results and limitations have been observed for various BC methods in the literature (Lafon et al., 2013;Teng et al., 

2015;Maraun, 2016;Rajczak et al., 2016;Maraun et al., 2017).  25 
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2 Study area, data and methods 

The state of Victoria in south-eastern Australia (Figure 1) experiences mild wet winters and hot dry summers, with large 

interannual to decadal climate variability producing a significant impact on water availability for agriculture and water 

supply for towns and cities (Kiem and Verdon-Kidd, 2010;Chiew et al., 2014;Chiew et al., 2018). Higher runoff is produced 

in highland (Victorian Alps) and coastal catchments along southern and eastern coastlines. Low runoff catchments are in the 5 

inner western regions and western slopes of the Great Dividing Range (Hope et al., 2017). Rainfall is projected to decline 

across the state, together with increased intensity of extreme rainfall events (DELWP, 2019).  

Given these sensitivities to climate variability and change, a research partnership (Victorian Climate Initiative, VicCI) 

between Victoria’s State Government (Department of Environment, Land, Water and Planning, DELWP) and Australian 

research organisations (Bureau of Meteorology and CSIRO) was initiated to ensure that water policies and management 10 

decisions were informed by the most up-to-date earth systems and climate change science (Hope et al., 2017). VicCI 

produced projections using daily empirical scaling (Potter et al., 2016). In this study we investigate QQM-BC dynamically 

downscaled WRF rainfall simulations for their ability to reproduce simulated runoff for observed conditions across the 

whole state of Victoria and also, in more detail, for ten water supply catchments selected on the basis of their hydrological 

model performance in reproducing reference runoff (study area and catchments shown in Figure 1). The QQM-BC approach, 15 

using the R-package ‘qmap’ using the methodologies developed by Gudmundsson et al. (2012), is applied for each three-

month season (i.e. DJF, MAM, JJA and SON) to each grid cell independently, mapping the simulated (WRF) to the observed 

(AWAP) daily rainfall cumulative density function quantiles such that a WRF simulated amount is replaced with the 

observed rainfall amount for the corresponding percentile, with linear interpolation between percentiles and for upper tail 

simulated amounts greater than observed.  20 

<Figure 1 here> 

Thus, we investigate the historical performance and CCS of runoff simulated from: 

a) Raw WRF rainfall. 

b) BC WRF rainfall (BC, by season, using QQM). 

c) Observed rainfall that was empirically scaled according to annual raw WRF rainfall changes. For observed rainfall 25 

we use AWAP (Australian Water Availability Project) 5 km x 5 km gridded daily climate data, available Australia 
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wide, interpolated from station data (Jones et al., 2009). The 5 km x 5 km AWAP daily rainfall was resampled to 

the 10 x 10 km WRF grid and then empirically scaled by the WRF change annual factor, to give future rainfall. This 

empirical scaling method (Chiew et al., 2009) rescales the historical grid-cell timeseries by multiplicatively 

applying the changes between historical and future period climate model projections. This can be applied on an 

annual basis, on a seasonal basis, or in a two-step process first on a seasonal and then on an annual to maintain the 5 

overall annual change as projected by the climate model. 

d) Observed (AWAP) rainfall that was empirically scaled according to seasonal raw WRF rainfall changes, and then 

rescaled to match annual raw WRF rainfall changes. 

e) The seasonal BC WRF rainfall from (b) twice rescaled to firstly match raw WRF seasonal rainfall changes and then 

additionally rescaled to match raw WRF annual rainfall changes. 10 

As (a), (c), (d) and (e) have the same annual rainfall changes, this allows us to assess the impact on runoff projections of the 

choices of using BC versus empirical scaling. We show how the mean, high- and low-flow change characteristics are 

influenced by these choices.  

2.1 Downscaled inputs to hydrological modelling 

As a pragmatic choice due to their ready availability, we use downscaled simulations from the NARCliM project 15 

(NSW/ACT Regional Climate Modelling project http://www.ccrc.unsw.edu.au/sites/default/files/NARCliM/index.html). 

Evans et al. (2014) described the experimental design for these WRF downscaled simulations, outlining the selection of four 

CMIP3 GCMs (CCCM3.1, CSIRO-Mk3.0, ECHAM5 and MIROC3.2-medres) based on a three-stage process: (1) the 

performance of a total of 23 CMIP3 GCMs was evaluated, and models that did not adequately simulate the historical climate 

of south-eastern Australia were rejected; (2) the set of GCMs that performed well was then ranked on the basis of a measure 20 

of their independence; and (3) the GCMs were then evaluated on the basis of their projections of future climate change. The 

four most independent models that spanned the largest range of plausible future climates were chosen. These GCMs were 

used for the boundary conditions for producing future projections and three WRF configurations (R1, R2 and R3) that vary 

the combinations of planetary boundary layer, surface layer, cumulus and short-wave/long-wave radiation physics used. 

http://www.ccrc.unsw.edu.au/sites/default/files/NARCliM/index.html
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Note that on-going WRF research is using CMIP5 GCMs, but these results weren’t available to us within the timeframe of 

the current project. Also, other RCMs could produce different results when forced by the same GCMs.  

Ji et al. (2016) assessed the three WRF configurations, driven by NCEP/NCAR reanalysis boundary conditions, against 

AWAP (Jones et al., 2009) observations. They concluded that the R2 simulations performed best in terms of reproducing 

rainfall seasonal cycles, interannual and decadal variability and spatial patterns over southeast Australia, while noting biases 5 

in rainfall amounts can be substantial in some seasons and regions. Olson et al. (2016) also referred to significant WRF 

biases in rainfall climatology, noting that this was not surprising given WRF configuration selection was on the basis of skill 

for selected storm events of two week periods, rather than performance at the climatological scale.  

Given these findings, we have used BC WRF R2 simulations over Victoria for reanalysis (NCEP/NCAR and ERA-Interim 

for 1990-2009) and GCM historical (for 1990-2009) and future SRES A2 (for 2060-2079) forced simulations. The SRES A2 10 

scenario describes a very heterogeneous world with high population growth and technological change that is fragmented and 

slow (Nakicenovic N et al., 2000). The SRES A2 emission scenario was selected for the NARCliM climate projections 

because the global emissions trajectory suggested that it was the most likely scenario. Recent publications have confirmed 

that we are tracking at the higher end of the A2 scenario (Peters et al., 2013). Whilst the SRES A2 is from the previous 

generation of Coupled Model Intercomparison Project CMIP3 scenarios (Nakicenovic N et al., 2000), it is relevant to 15 

assessing plausible climate change impacts as Woldemeskel et al. (2016) have shown that CMIP3 and CMIP5 projected 

precipitation changes are similar for Southern Australia.  

Note we have only assessed the impact of WRF rainfall bias correction and changes, using AWAP-derived mean-monthly 

daily potential evapotranspiration (PET) in all cases, to allow us to examine the impact of rainfall properties and changes in 

isolation from other confounding factors such as temperature and PET change. Changes to PET would cause an additional 20 

reduction in runoff under a warming climate but would not change the relative results, as presented, in any considerable 

manner because the range of change is dominated by the large range in rainfall projections, i.e. PET is a 2nd order effect. For 

example, for a similar region Potter and Chiew (2011) found increased PET only explained 5% of runoff reduction in a 

prolonged drought. We have designated the rainfall simulated by WRF model as ‘raw’ rainfall, to differentiate from the bias-

corrected rainfall (henceforth designated ‘BC rainfall’). The resulting runoff, simulated using the raw or BC rainfall inputs, 25 
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are thus designated ‘raw runoff’ or ‘BC runoff’, noting ‘BC’ refers to the use of bias-corrected rainfall inputs to rainfall-

runoff modelling.  

2.2 Hydrological model 

We undertook the hydrological modelling experiments using the GR4J rainfall-runoff model (Perrin et al., 2003). The GR4J 

model is based on unit hydrograph principle and has been found to be competent in hydrological simulation for a large 5 

number of catchments globally. It has four parameters representing maximum capacity of the soil moisture storage (𝑥𝑥1), 

interbasin water exchange rate (𝑥𝑥2), maximum routing storage (𝑥𝑥3) and time base of unit hydrographs (𝑥𝑥4).  

In this study, for rainfall-runoff simulation at each grid cell, the GR4J model was first calibrated against observed daily 

streamflow at 137 unimpaired catchments in the region for the period 1981-2010 (for calibration details see supplementary 

material Figures S1 and S2). The calibrated parameters are then applied for each grid cell in Victoria using the nearest 10 

neighbour parameter sets (Chiew et al., 2017;Chiew et al., 2018). Since each grid cell is considered as an independent 

catchment for the investigation, channel routing describing the connection between the grid cells is not applied in this case. 

The objective function of model calibration is defined as:  

𝑁𝑁𝑁𝑁𝑁𝑁_𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷_𝐵𝐵𝐷𝐷𝐷𝐷𝐵𝐵 = (1 −𝑁𝑁𝑁𝑁𝑁𝑁) + 5[𝐷𝐷𝑙𝑙(1 + 𝐵𝐵𝐷𝐷𝐷𝐷𝐵𝐵)]2.5 (1) 

where, 15 

 𝑁𝑁𝑁𝑁𝑁𝑁 = 1 − ∑ (𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖 − 𝑄𝑄𝑚𝑚𝑜𝑜𝑜𝑜,𝑖𝑖)2
𝑛𝑛
𝑖𝑖=1
∑ (𝑄𝑄𝑚𝑚𝑜𝑜𝑜𝑜,𝑖𝑖 − 𝑄𝑄�𝑚𝑚𝑜𝑜𝑜𝑜)2𝑛𝑛
𝑖𝑖=1

 (2) 

𝐵𝐵𝐷𝐷𝐷𝐷𝐵𝐵 = (𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚−𝑄𝑄𝑚𝑚𝑜𝑜𝑜𝑜)
𝑄𝑄𝑚𝑚𝑜𝑜𝑜𝑜

 (3) 

where, 𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚 is modelled daily streamflow, 𝑄𝑄𝑚𝑚𝑜𝑜𝑜𝑜 is observed daily streamflow, 𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚 is mean modelled streamflow, 𝑄𝑄𝑚𝑚𝑜𝑜𝑜𝑜 is 

mean observed streamflow, and n is total number of days in the modelling period. This objective function, from Viney et al. 

(2009), combines the commonly used NSE and the Bias to constrain total model bias in runoff simulation. 20 

Additionally, for a catchment-scale investigation regarding spatial correlation of rainfall within the catchment, two methods 

for rainfall-runoff model calibration are compared, a ‘distributed’ method and a ‘lumped’ method. For the distributed 

method, simulations are run for each 10 x 10 km grid cell within each catchment using BC rainfall as input and the runoff 

simulated for the cells are averaged (with proportional weighting for cells partially within the catchment) to produce 
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catchment-mean runoff, which is then assessed against the AWAP-simulated daily streamflow (mm/day) at the outlet gauge 

of the catchment. For the lumped method, GR4J is calibrated using a single areal mean daily rainfall time series obtained by 

averaging AWAP rainfall for the grid cells within the catchment (with proportional weighting for cells partially within the 

catchment). Corresponding BC lumped rainfall from WRF is used as the input to GR4J to simulate runoff for each 

catchment.  5 

3 Results 

3.1 Historical simulations 

Table 1 shows that calibration results of the two methods are comparable at most of the ten catchments. It is interesting to 

note that the mean annual runoff from the distributed modelling is generally slightly greater than the runoff from the lumped 

modelling and that the lumped modelling generally produced a slightly better calibration than the distributed modelling. 10 

Such results are consistent with the findings of (Andréassian et al., 2004). The reason the distributed modelling produces 

slightly higher runoff is it overweights the runoff contribution from the grids with higher precipitation. In the lumped 

modelling, the catchment-mean precipitation filters out rainfall intensity in some grids, hence the intensity signal is 

attenuated and produces less runoff. 

<Table 1 here> 15 

Hereafter, we use the term ‘reference’ runoff simulations where AWAP rainfall and PET for the 1990-2009 period were 

inputs to the GR4J model. The reference runoff simulations were considered the benchmark to assess the simulated runoff 

using dynamically downscaled WRF-BC rainfall for reanalysis-forced and GCM-forced historical runs for the 1990-2009 

period. WRF-BC rainfall for GCM-forced 2060-2079 runs were used to produce simulated projections of future runoff.  

The raw WRF rainfall was found to have large absolute biases compared to AWAP rainfall (Figure 2a) and therefore deemed 20 

unsuitable for direct use in hydrological modelling. Bias correction (BC), using daily quantile-quantile-matching (QQM) 

applied on a seasonal basis (Potter et al., 2019), greatly improved WRF rainfall in terms of annual (Figure 2b) and seasonal 

means.  
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After bias correction, WRF-BC rainfall still had a slight overestimation of annual rainfall relative to AWAP, of around 3 mm 

averaged across Victoria, which is smaller by up to two orders of magnitude compared to the raw WRF rainfall bias. There 

was also some spatial consistency to this bias, with both reanalysis- and GCM-forced WRF-BC rainfall showing highest 

overestimation bias (of up to 50 mm) in the south, east of 146° E, adjacent to an area of underestimation (of up to -15 mm) 

immediately to the east, i.e. towards the south-east of the State (Figure 2b). This residual bias is caused by approximation in 5 

the interpolation for the highest quantiles (e.g. 99th percentile and above), as discussed in Potter et al. (2019). The residual 

bias in the 99th percentile daily rainfall error has a mean of 0.02, 0.01, 0.02, 0.06, 0.04 and 0.03 mm for the WRF runs forced 

by NCAP/NCAR Reanalysis, ERA-Interim Reanalysis and the historical runs from the CCCMA3.1, CSIRO-MK3.0, 

ECHAM5 and MIROC3.2 GCMs, respectively. These amounts correspond to percentage errors of 0.06, 0.01, 0.10, 0.24, 

0.14 and 0.11% for these runs, respectively. These are mean errors across all grid-cells, with the error for individual grid-10 

cells ranging from -2.1 mm to +3.0 mm, or 7.5% to +10.1%. 

<Figure 2 here> 

Additionally, Potter et al. (2019) has shown that the QQM-BC approach does not correct for other particular rainfall 

characteristics. These include the underestimation of (i) wet-wet day transition probabilities (i.e. frequency of consecutive 

wet days), (ii) multi-day rainfall accumulations and (iii) spatial correlation of rainfall events. Thus, despite WRF-BC slightly 15 

overestimating annual mean rainfall compared to AWAP (Figure 2b), the underestimation of wet-wet day transition 

probabilities and multi-day rainfall accumulations resulted in an underestimation of simulated runoff when compared to 

runoff simulated using observed (i.e. AWAP) rainfall inputs, as shown in Figure 3. There was an underestimation of mean 

annual runoff, high flows (99th percentile daily flow) and the number of high flow days (days above 95th percentile flow) in 

most cases (Figure 3). The magnitude of the underestimations was larger for the GCM-forced runs compared to the 20 

reanalysis-forced runs, and (in contrast) NNR-based results for the south-east produced some overestimation biases. The 

magnitudes of these biases are compared to the magnitudes of their respective climate change signals (projected future minus 

historical) in the next section.  

<Figure 3 here> 
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3.2 Projected future simulations 

The influence that the bias correction (QQM-BC) has had on WRF rainfall change was assessed by comparing the WRF-BC 

change (BC future – BC historical) to that obtained from empirically-scaled (ES) change (i.e. from applying the raw future – 

raw historical change to AWAP historical). The ES AWAP rainfall, scaled separately according to both raw WRF (i) annual 

and (ii) seasonal rainfall changes, produced ‘annual ES change’ and ‘seasonal ES change’, respectively.  5 

Differences between the annual rainfall changes obtained from the annual ES (Figure 4a) and seasonal ES (Figure 4b) 

indicated differences between WRF and AWAP rainfall seasonality. For example, in the case of the ECHAM5-forced results 

there was a Victoria-average annual rainfall increase of 4.8 mm using seasonal ES compared to 9.6 mm using annual ES. 

Thus ECHAM5-forced WRF must have produced too much rain in one or more seasons, compared to AWAP seasonality, to 

result in this discrepancy between seasonal and annual ES changes. That is, if the proportion contributed by each season had 10 

been similar between ECHAM5-forced WRF and AWAP, then the seasonal and annual ES would produce similar annual 

changes, as can be seen for the remaining three GCM-forced cases.   

The WRF-BC future rainfall was also re-scaled for comparison with ES results (rescaled twice, seasonally then annually) so 

as to match the WRF-raw annual rainfall change signal, as shown in Figure 4c (i.e. the change signal in mean annual rainfall 

is the same in Figures 4a, b and c). In general the WRF-BC rainfall changes (Figure 4d) were wetter (or less-dry) changes 15 

than both the WRF-BC re-scaled and the ES changes (Figure 4a,b,c). In the example of ECHAM5-forced results, the 

seasonal ES gave a 4.8 mm Victoria-average increase whereas BC gave an increase of 16.7 mm, with the changes showing 

similar spatial patterns but with BC giving larger increases particularly over the high altitude areas.  

It was also possible for WRF-BC rainfall change to have a different change direction to that of the raw WRF rainfall, as 

evident for MIROC3.2-forced results in the north-east Victorian Alps where the BC has a positive (i.e. wetter) change in 20 

contrast to the ES (i.e. raw WRF) having a negative (i.e. drier) change. Hence there was a difference between the seasonal 

ES average decline of -14.9 mm and the corresponding BC increase of 8.6 mm. In contrast, the magnitudes and spatial 

patterns of BC and ES changes were much more similar to each other for the results from WRF CCCMA3.1 and CSIRO-

Mk3.0-forced results (Figure 4).  

<Figure 4 here> 25 
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The impact of these BC and ES rainfall differences on their corresponding simulated runoff changes were assessed by 

comparing runoff simulations using four rainfall input variations, namely (a) ES-ann: AWAP rainfall scaled according to 

WRF-raw annual rainfall changes; (b) ES-seaann: AWAP rainfall scaled twice, firstly according to WRF-raw seasonal 

rainfall changes and then rescaled to match WRF-raw annual rainfall changes; (c) BC RS: the WRF-BC future rainfall scaled 

twice, firstly so as to match WRF-raw seasonal rainfall changes and then rescaled to match WRF-raw annual rainfall 5 

changes; and (d) BC: the WRF-BC rainfall. For (a) and (b) the runoff changes were the difference in simulated runoff using 

ES-future relative to AWAP-historical rainfall, whereas for (c) and (d) the runoff changes were the difference in simulated 

runoff using BC(-RS)-future relative to BC(-RS)-historical rainfall.  

Consistent with the rainfall change differences shown in Figure 4, the mean annual runoff changes (Figure 5) highlight that 

(i) BC produced greater runoff increases than ES for locations with increased runoff and, correspondingly, (ii) BC produced 10 

smaller runoff decreases than ES for locations with decreased runoff, and (iii) BC RS runoff change was drier than BC, 

however not as dry as the ES runoff changes. This is due to the combined effect of the remaining biases in BC RS rainfall 

(e.g. underestimation of wet-wet day transitions and multi-day accumulations) and also rainfall characteristics that BC can 

change that are not accounted for by ES, such as changes to upper tails of daily rainfall distributions producing more intense 

extreme rainfall and sequencing of wet and dry days. That is, for wetter projections BC rainfall can have more frequent wet 15 

days and more intense rainfall extremes relative to ES, leading to larger BC runoff increases compared to ES (e.g. 

ECHAM5). The ability of BC rainfall to include changes in temporal characteristics is an important improvement over ES, 

given ES is constrained to reproducing the historical sequencing. Thus, for drier projections, such sequencing and upper-tail 

changes can mitigate the runoff decreases seen in the ES results (e.g. CCMA3.1 and CSIRO-Mk3.0). In some cases (e.g. 

MIROC3.2 for some areas) these factors have changed ES runoff decreases to BC runoff increases (Figure 5). We address 20 

our confidence in such changes in the discussion section.  

<Figure 5 here> 

Correspondingly, the changes to 99th percentile daily runoff (Figure 6) show BC produced larger increases (or smaller 

decreases) than ES, and BC has changed the direction from decreases to increases for certain areas for all cases except 

ECHAM5-forced (which did not produce decreases). The BC RS changes are similar (slightly less) than BC changes, 25 
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indicating they are due to BC derived changes in rainfall characteristics, such as changes to upper tails of rainfall 

distributions, and potentially changes in wet-day sequencing too, both of which influence high flows and were not accounted 

for by ES.  

<Figure 6 here> 

Changes to the frequency of high flow days, i.e. number of days greater than the historical 95th percentile daily flow show 5 

larger increases and smaller decreases for BC compared to ES results (Figure 7). BC RS are changed compared to the BC 

results, however in most cases they remain closer to the original BC than ES results. One exception is MIROC3.2-forced 

results, where large BC increases in the NW are absent in BC RS.  

<Figure 7 here>  

3.3 Catchment scale simulations 10 

The change signal magnitudes are highly dependent on the driving GCM, with noticeable differences between lumped and 

distributed cases. Figure 8 shows a general pattern that when there is a projected increase in runoff, in all cases the lumped 

results give larger increases than the distributed case. Likewise for projected decreases, there are greater decreases (i.e. more 

negative) for the lumped than for the distributed cases.  

ECHAM5-forced results consistently simulates large runoff increases of at least +10% and up to a +32% increase. CSIRO-15 

Mk3.0 consistently simulates the largest runoff decreases, of up to -29%, and CCCMA3.1 simulates decreases (of up -32%) 

for all catchments except for 403210. MIROC3.2 WRF-BC rainfall produces smaller changes, with a range from -12% to 

+10%.  

<Figure 8 here> 

Given the historical runoff underestimation biases shown earlier (Figure 3), we look at the bias in the simulation of high 20 

flows for the ten catchments, for the distributed and lumped calibrations (Figure 9). There are small differences for most of 

the percentiles shown, with a small underestimation of the 90th percentile becoming greater and more variable for the 99th 

percentile in all cases. The distributed 99th percentiles have slightly more underestimation than those for the lumped for the 

reanalysis run, whereas for the four driving GCMs results the lumped results show slightly more underestimation than the 

distributed. This underestimation of high flows (90th percentile and above) seen in most cases will result in underestimation 25 



12 
 

of annual and monthly runoffs, with the reasons for this underestimation discussed later. The corresponding projected 

changes, shown in Figure 10, show small decreases for CCCMA3.1 up to the 90th percentile and a large range from 

decreases to increases for the 95th and 99th percentiles. CSIRO Mk3.0 presents a more consistent decrease with higher 

percentiles, with a larger range for the 99th with at least one catchment experiencing an increase. ECHAM5-forced results 

presents the most consistent projected changes, with increases particularly for the 99th percentile. Relatively small changes, 5 

with mainly decreases for higher percentiles, are seen for MIROC3.2-forced results.  

<Figure 9 here> 

<Figure 10 here> 

4 Discussion 

Potter et al. (2019) have shown that WRF-BC rainfall, while greatly improved over WRF-raw rainfall (Figure 2), 10 

underestimates sequences of wet days, multi-day accumulations and daily rainfall spatial correlation. We show that these 

remaining biases result in the underestimation of simulated historical mean seasonal and annual runoff and high flows 

(Figure 3). Whether these biases influence the magnitude of projected runoff change is the focus of the discussion presented 

here. Given that the characteristics of the WRF-raw rainfall changes are modified by QQM-BC (Figure 4) and hence the 

WRF-BC rainfall derived runoff changes are different (Figure 5), there is a need to assess whether they are more or less 15 

realistic than the runoff changes produced simply by empirically scaling the historical rainfall series by the annual or 

seasonal change signal in the WRF-raw rainfall. Note that such a comparison does not rely on the ES derived runoff changes 

being correct, i.e. we are not validating the BC derived runoff changes against those from ES. We are merely attempting to 

determine whether BC runoff changes are more or less credible, in terms of the characteristics assessed herein.  

There is an argument that, because the QQM-BC rainfall corrects distributional biases in the raw WRF rainfall, the QQM-20 

BC rainfall change signals are more realistic than those of the original WRF-raw rainfall, however (Ehret et al., 2012) are 

cautious of this view, stating QQM-BC does not have physical justification. Hagemann et al. (2011), investigating 

hydrological changes globally, has noted that for some regions the magnitude of change in climate change signal due to bias 

correction can be greater than the magnitude of the signal itself, such that bias correction uncertainty can be as large as 

climate model uncertainty. Several subsequent studies have investigated how bias correction modifies the rainfall climate 25 
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change signal (Dosio et al., 2012;Ivanov et al., 2018;Mbaye et al., 2016;Potter et al., 2018;Sangelantoni et al., 2018;Themeßl 

et al., 2012). Themeßl et al. (2012) concluded that QQM-BC is likely to improve the reliability of projected changes if the 

climate model biases are related to the shape of the distribution i.e. when RCM bias is magnitude-dependent. Dosio et al. 

(2012), investigating ENSEMBLES RCMs over Europe, noted that the RCMs had a tendency to overestimate extreme 

rainfall and hence the increases in P99 for their bias-corrected results were two to three times smaller than the original 5 

RCM’s increases. Mbaye et al. (2016) also found that BC reduced the changes in heavy rainfall events. Ivanov et al. (2018) 

concluded that changes to the CCS due to bias-correction are scientifically appropriate and therefore the BC CCS is more 

trustworthy than the raw CCS, due to the removal of model biases that adversely influence the original CCS. Given the large 

biases shown in Figure 2, we did not have confidence in using WRF-raw rainfall as input to hydrological modelling, thus our 

findings implicitly agree with these previously published conclusions.  10 

Regarding the BC simulated hydrological changes for Victoria, comparison of the magnitude of BC mean runoff bias (in the 

historical period) (Figure 3, top row) to BC mean runoff change (under projected climate change) (Figure 5, bottom row) 

shows cases where the absolute value of Victorian area-average change is larger than the bias (CSIRO-Mk3.0-forced change 

-8.7 mm, bias -6.5 mm; ECHAM5-forced change 15.4 mm, bias -6.2 mm) and cases where the change is smaller than the 

bias (CCCMA3.1-forced change -0.2 mm, bias -5.5 mm; MIROC3.2-forced change 5.23 mm, bias -8.2 mm). However the 15 

range of bias is much smaller than the range of change, as evident by the scales on the respective plots (bias ranging from -

30 to +20 mm; change ranging from -150 to +150 mm). Hence the bias is smaller and spatially consistent compared to the 

change signal.  

The differences in runoff changes from empirically scaled rainfall (i.e. based on seasonal and/or annual changes in WRF-raw 

rainfall) and BC rainfall are shown in Figure 5 to Figure 7 for annual mean runoff, daily 99th percentile flow and the number 20 

of days above reference 95th percentile flow, respectively. Comparing ES-ann to ES-seaann derived runoff changes shows 

similar mean runoff change (Figure 5), with three GCM-forced very similar and ECHAM5-forced change larger for ES-

seaann (6.2 mm) than for ES-ann (4.1 mm). For Q99 (Figure 6), the area-average values are similar however larger changes 

(cases of both decreases and increases) are evident for certain regions.  
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Comparing ES-seaann to BC RS derived runoff changes shows BC RS mean runoff change is wetter than ES-seaann in all 

four cases (Figure 5). The ability of BC RS to include (through the BC, not the RS) changes to the upper tail of rainfall 

distributions and wet-day sequencing, in contrast to ES which cannot, is likely to be the reason BC RS is wetter. 

Correspondingly, Q99 changes for BC RS are more positive than for ES-seann (Figure 6).  

Comparing BC RS to BC derived runoff changes shows BC mean runoff change to be wetter than BC RS, again in all four 5 

cases (Figure 5). This supports the case that ES limitations are causing drier projections than BC, given that BC RS 

constrained to match ES-seaann changes is drier than BC. In three out of four cases the Q99 changes from BC are more 

positive than for those from BC RS (Figure 6). Given Q99 is underestimated for historical BC (Figure 3, 2nd row), this 

suggests BC changes are more realistic than BC RS and hence also more realistic than ES changes in Q99, again this could 

be because BC can modify the upper tail of rainfall distributions and also wet-day sequencing.  10 

Muerth et al. (2013) note that the more strongly biased a climate simulation is, the larger the effect of bias correction on the 

change signal of hydrological response. We see an example of this in the results from the MIROC3.2 GCM, which had the 

largest WRF-raw-rainfall bias (Figure 2) corresponding with the largest difference between ES and BC rainfall and runoff 

change (Figure 4 and Figure 5, respectively), including change of direction from ES runoff decreases to BC runoff increases 

in north central and north eastern regions. Confidence in such changes requires caution and relies on assuming the 15 

transferability of the BC from the historical to the future period (Velázquez et al., 2015). This assumption of transferability is 

a caveat on all BC, but particularly impactful in this example.  

The BC rainfall remaining biases add uncertainty to the magnitude of runoff changes, as rainfall that correctly reproduced 

wet day sequencing and multi-day totals would potentially produce different runoff changes. If BC rainfall did not have the 

wet to wet day transition and multi-day total underestimation biases, then projected increases could be greater and decreases 20 

lesser. Hence confidence in BC results is diminished because of these remaining rainfall biases. That is, while the BC rainfall 

change could be more realistic than WRF-raw and ES changes, for the reasons noted above, they would be more credible 

without the remaining biases in these rainfall characteristics.  

We note that GR4J model performance for future climate conditions differing from the calibration period are an additional 

source of uncertainty (Stephens et al., 2019), but we do not assess such potential deficiencies here. We assume the bias of the 25 
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model is constant for both the reference period and the projection period. Although it is worth exploring model performance 

under different climate conditions, the uncertainty from the descrepancy is assumed to be relatively small. This is because 

the model was calibrated for a long period covering different climate conditions to find robust parameters. At catchment 

scales, spatial correlation in WRF-raw and WRF-BC rainfall is underestimated and thus runoff is underestimated. This is an 

additional uncertainty and unaccounted source of bias in catchment runoff change, also leading to underestimation in 5 

projected runoff changes (Figure 8). For historical-period simulations, the annual runoff has a longer and greater upper tail 

for the lumped simulations compared to the distributed cases. Correspondingly, the lumped upper quartile ranges are greater 

and the lower quartile ranges are smaller relative to distributed. Seasonally, for the low-flow summer and autumn seasons, 

the lumped flow has larger range than distributed. For winter, lumped simulations produce greater median flows and upper 

tails. In spring, median and upper tail differences are less pronounced with smaller lower tails in the lumped simulations. 10 

Regarding the climate change signal, annually, lumped simulations tend to produce wetter changes than distributed 

simulations (an exception - the dry CSIRO-Mk3.0 is slightly drier for lumped). Seasonally, runoff changes are small (in 

absolute terms) for summer and autumn. Consistent dry projections are seen for spring, with lumped slightly drier than 

distributed in contrast to other seasons. For winter, lumped is similar to distributed, wetter projections having longer upper 

tails.  15 

As shown in Figure 9 and Figure 10, for CSIRO Mk3.0-forced results the combination of an underestimation of the highest 

daily flows for historical conditions and a projection for decreases in these high daily flows in the future means the runoff 

change may be overestimated (i.e. too large a projected decrease in runoff). For ECHAM5-forced results, which also 

underestimates the historical high flows, the projected increases may inherently underestimate the runoff increases.  

5 Conclusions 20 

Using WRF-BC rainfall from historical GCM-forced simulations to drive GR4J models produces underestimates of 

reference runoff. This underestimation is because the spell-lengths of consecutive wet days are underestimated by WRF-BC 

rainfall, compared to observed, and hence the upper tail of the runoff distribution is underestimated.  
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For projected climate change impact on runoff, using raw WRF rainfall would be unrealistic because the runoff 

overestimates for historical climate mean that any projected increase in rainfall will produce too large an increase in runoff 

and any decrease in rainfall will produce too small a decrease in runoff for these particular catchments. For the WRF-BC 

rainfall derived runoff changes, where historical runoff is underestimated then an increase in rainfall may underestimate the 

runoff increase and a decrease in rainfall may overestimate the runoff decrease. This study has attempted to understand and 5 

document some of these issues and impacts regarding how RCM BC influences hydrological simulations (Addor and 

Seibert, 2014), leading to the following conclusions: 

1. There is a need for reporting of the caveats and influences that methodological choices have on projected 

hydrological changes derived from dynamical downscaled rainfall.  

2. WRF downscaled rainfall requires bias-correction to be suitable for hydrological model input. QQM-BC can 10 

reproduce observed daily rainfall distributions for each grid-cell, however QQM-BC rainfall underestimates wet to 

wet day transition probabilities, multi-day totals and spatial correlation. These QQM-BC rainfall biases result in 

runoff biases, with runoff simulations underestimating mean seasonal, annual runoff and high flows.  

3. Raw WRF rainfall changes are modified by QQM-BC, and thus runoff changes are modified also. Because the 

QQM-BC rainfall corrects distributional biases in WRF-raw rainfall, the QQM-BC rainfall change signals are 15 

plausibly more realistic than the changes of the raw WRF rainfall.  

4. Differences in projected future runoff changes from empirically scaled rainfall (i.e. based on WRF-raw rainfall 

changes) and QQM-BC rainfall are due to several factors, including limitations in ES not present in BC such as 

limited ability of ES to change multi-day rainfall distribution upper tails and sequencing. We conclude that BC 

runoff changes are more realistic than those from ES, with the caveat that the remaining BC rainfall biases due to 20 

underestimation of wet sequences, multi-day totals and spatial correlation need to be addressed to provide greater 

credibility for runoff projection.  

5. The QQM-BC rainfall biases influence the magnitude of runoff changes, as discussed above, thus we conclude 

runoff increases may be underestimated and decreases overestimated. Additionally, as noted at catchment scales, 
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spatial correlation in WRF-raw and hence QQM-BC rainfall is underestimated, an additional source of 

underestimation of projected runoff changes (Figure 8).  

Addor and Seibert (2014) discuss the need to better understand the underlying causes of these biases in climate models as 

well as a more systematic quantification of their impacts on hydrological response. Other recent studies have also questioned 

the application of BC without fully understanding the underlying reasons for the biases. Such studies have recommended 5 

‘process-based’ approaches to evaluate RCM simulation temporal and spatial realism, and thus credibility (Maraun et al., 

2017;Maraun and Widmann, 2018). In future work we will assess multiple CMIP5-driven RCMs for their process 

performance in this region, with a view to developing rainfall bias correction methods that can reduce biases in hydrological 

predictions. We will also continuing to develop and refine GR4J calibration and parameterisation methodologies to 

maximise suitability for hydrological predictions in a changing climate (Zheng et al., 2019).  10 
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TABLES 
Table 1 Catchment attributes and distributed and lumped calibration (1990-2009 period) runoff and NSE metrics  

 CATCHMENT ID AREA 

(KM2) 

MEAN ANNUAL RUNOFF (MM) 

DISTRIBUTED LUMPED 

NSE 

DISTRIBUTED 

NSE 

LUMPED 

221212 731 140 145 0.785 0.783 

226204 557 251 248 0.756 0.766 

226402 608 147 124 0.704 0.876 

235203 721 127 126 0.690 0.697 

235208 575 271  223 0.764 0.820 

235224 1042 212 210 0.798 0.866 

403210 1229 373 358 0.892 0.908 

405209 629 375 385 0.853 0.868 

405219 704 400 416 0.881 0.883 

405227 627 426 403 0.851 0.862 
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FIGURES 

 

 
Figure 1 State of Victoria, Australia, mean annual rainfall for AWAP for 1990-2009 (legend shows mm/yr) and location of study 
catchments used for rainfall-runoff modelling  5 

 
 

(a) 

 

 

 

 

(b) 

 
Figure 2 Historical (1990-2009) mean annual rainfall bias (WRF minus AWAP, mm) for (a) raw WRF and (b) BC WRF. Panels 
(left to right) are WRF runs forced by two reanalysis (NNR, ERAI) and then four GCMs (CCCMA3.1, CSIRO-MK3.0, ECHAM5 
and MIROC3.2) 
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(a) 

 

 

 

 

(b) 

 

 

 

(c) 

 

 

 

 

(d) 

 
Figure 3 Historical (1990-2009) runoff simulation bias (i.e. runoff using WRF-BC rainfall minus using AWAP rainfall) for (a) 
mean annual runoff (mm), (b) daily 99th percentile runoff (mm), (c) number of days exceeding AWAP 95th percentile, (d) number 
of days below AWAP 10th percentile. Panels (left to right) are using WRF-BC rainfall forced by two reanalysis (NNR, ERAI) and 
then four GCMs (CCCMA3.1, CSIRO-MK3.0, ECHAM5 and MIROC3.2). 
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(a) 
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(c) 

 

 

 

 

(d) 

 

Figure 4 Mean annual rainfall change (mm) (a) empirical annual scaling, (b) empirical season scaling, (c) BC re-scaled (according 
to ES seasonal then annual changes), (d) BC. Panels (left to right) CCCMA3.1, CSIRO-MK3.0, ECHAM5 and MIROC3.2 
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(a) 

 

 

 

 

(b) 

 

 

 

 

(c) 

 

 

 

 

(d) 

 

Figure 5 Mean annual runoff change (mm, Future-Historical) (a) ES-ann, (b) ES-seaann, (c) BC RS (d) BC. Panels (left to right) 
CCCMA3.1, CSIRO-MK3.0, ECHAM5 and MIROC3.2. 
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(d) 

 

Figure 6 Change in 99th percentile daily flow (mm, Future-Historical) (a) ES-ann, (b) ES-seaann, (c) BC RS (d) BC. Panels (left to 
right) CCCMA3.1, CSIRO-MK3.0, ECHAM5 and MIROC3.2. 
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(a) 

 

 

 

 

(b) 

 

 

 

 

(c) 

 

 

 

 

(d) 

 

Figure 7 Change in number of days exceeding historical 95th percentile daily flow (Future-Historical) (a) ES-ann, (b) ES-seaann, 
(c) BC RS (d) BC. Panels (left to right) CCCMA3.1, CSIRO-MK3.0, ECHAM5 and MIROC3.2.  



28 
 

 
Figure 8 Distributed (horizontal axis) versus Lumped (vertical axis) change (future period relative to current period) in mean 
annual runoff (%). Orange = CCCMA3.1; yellow = CSIRO Mk3.0; Dark blue = ECHAM5; Light blue = MIROC3.2 
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(a) (b) 
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Figure 9 Bias (WRF-BC rainfall minus AWAP-rainfall inputs) in historical simulated high flow percentiles for the 60 to 99 
percentiles for distributed (left) and lumped (right) simulations with WRF inputs informed by the four GCMs. Negative values 
indicate WRF-BC derived results are smaller than AWAP-derived results. Range of box-plots show results from the ten 
catchments.  



31 
 

(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

  
Figure 10 Climate change simulated runoff high flow changes (future minus historical using GCM-forced WRF-BC rainfall 
inputs). Range of box-plots show results from the 10 catchments.  
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