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Abstract. Spatial variability in high-relief landscapes is immense, and grid-based models cannot be run at spatial resolutions to

explicitly represent important physical processes. This hampers the assessment of the current and future evolution of important

issues such as water availability or mass movement hazards. Here, we present a new processing chain that couples an efficient

subgrid method with a downscaling tool and data assimilation method with the purpose to improve numerical simulation of

surface processes at multiple spatial and temporal scales in ungauged basins. The novelty of the approach is that while we add5

1-2 orders of magnitude of computational cost by ensemble simulations, we save 4-5 orders of magnitude over explicitly sim-

ulating a high resolution grid. This approach makes data assimilation at large spatio-temporal scales feasible. In addition, this

approach utilises only freely available global datasets and is therefore able to run globally. We demonstrate marked improve-

ments in estimating snow height and snow water equivalent at various scales using this approach that assimilates retrievals from

a MODIS snow-cover product. We propose this as a suitable method for a wide variety of operational and research applications10

where surface models need to be run at large scales with sparse to non-existent ground observations and with the flexibility to

assimilate diverse variables retrieved by EO missions.

1 Introduction

Accurate simulation of energy and water cycles in high mountain environments is critical for a wide range of operational and

research applications related to water resources and natural hazards, particularly in the current era of dramatic changes in15

mountain regions worldwide (Mankin et al., 2015). However, basic surface variables in many remote mountain areas remain

poorly quantified despite large increases in the capacity of in-situ observations, remote sensing platforms and atmospheric

model products. Spatial resolutions of 100 m are commonly recommended for modelling of land surface variables such as

snow cover or surface temperature in complex terrain (Bierkens et al., 2015; Wood et al., 2011; Baldo and Margulis, 2018)

and has come to be known as hyper-resolution (Wood et al., 2011). This is due to the fact that energy and mass fluxes exhibit20

strong lateral variation due to the effects of topography (Gruber S. and Haeberli W., 2007), and surface/subsurface properties

such as vegetation cover (Shur and Jorgenson, 2007), ground material (Gubler et al., 2012) or snow distribution (Zhang, 2005;

Liston, 2004) further compound these effects.
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Most continental to global modelling studies operate on regular grids which has placed limitations on model resolutions de-

spite advances in computing power. However, previous efforts using Hydrological Response Units, HRUs (Beven and Kirkby,

1979; Durand et al., 1993; Fiddes and Gruber, 2012), triangular irregular networks (Mascaro et al., 2015; Tucker et al., 2001),

or multi-resolution approaches (Baldo and Margulis, 2018) suggest that regular grids are not only expensive but sub-optimal as

often only subsets of watersheds require detailed model descriptions in order to characterise the system adequately. In addition,5

deterministic modelling schemes have limitations even at hyper-resolution due to errors in forcing data, particularly with fields

such as precipitation which suffer from both measurement and modelling biases.

The numerical weather prediction community has been addressing this problem for several decades using various data

assimilation (DA) approaches. DA methods, often with Bayes’ rule as a starting point, attempt to ingest uncertain observations

into uncertain model simulations (Lahoz and Schneider, 2014; Carrassi et al., 2018). It is a class of methods that are implicitly10

Bayesian in that uncertainty in both simulation and observation are accounted for. These methods are diverse in design and

application and the reader is directed to Liu et al. (2012) for a review relevant to the land surface community or Carrassi et al.

(2018) for a timely overview. While DA has a long history as a tool employed in NWP (cf. ECMWF, NLDAS), only relatively

recently has data assimilation started to be utilised in land surface modelling schemes (Liu et al., 2012), but it has already

shown much promise in the current era of plentiful remote sensing data. Recently, ensemble-based DA has been successfully15

applied to the problem of improving snowpack estimates at various spatial scales (Margulis et al., 2015; Aalstad et al., 2018;

Magnusson et al., 2017; Griessinger et al., 2016), this is particularly pertinent as it is widely recognised that estimating the

spatial distribution of snow water equivalent (SWE) in mountain regions is currently one of the most important unsolved

problems in snow hydrology (Dozier et al., 2016) and in understanding spatial distribution of other processes dependent on the

snowpack mass balance, such as the surface energy balance.20

Ensemble-based data assimilation revolves around the use of an ensemble (i.e. a collection) of model trajectories. Each

trajectory is referred to as an ensemble-member or particle, for economy we will use the latter. An ensemble allows for the

quantification of uncertainty through the prior (before assimilation) and posterior (after assimilation) distribution of particles.

The use of an ensemble increases the computational burden, often adding orders of magnitude to computation times. Given that

computation time is practically limited, in ensemble-simulation there is always a trade-off between a model’s spatio-temporal25

resolution and the number of particles. Both are desirable, given that higher spatio-temporal resolution (is expected to) increases

model realism whereas a higher number of particles allows for improved uncertainty estimation. This is why the dual quest

for efficiency in models and DA is important. We argue that sometimes some of the resources that are spent on explicit high

resolution spatial modelling could be better spent on the ensemble. When discussing computational expense it’s worth noting

that the intended application is important to consider. Given a large HPC infrastructure and enough time, today, we have the30

ability to use brute force deterministic numerical simulations to solve many resource intensive problems. However, the question

is (a) what better purposes could that computation time be used for (e.g. uncertainty quantification) and (b) are we producing

a final product (where one off large simulations are tolerable) or as is more commonly the case, at least in research (but also

operational centres), are we part way through a development cycle where we expect to make many iterations in order to gain

knowledge of the system. In this second case there is a strong motivation for methods that allow quick development cycles and35
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knowledge gain. The previously published TopoSUB and TopoSCALE models (Fiddes and Gruber, 2012, 2014) are highly

efficient approaches which may provide a solution for this problem, particularly in data sparse regions. TopoSUB is a subgrid

method that permits order of magnitude efficiency gains in applying numerical models over large areas. It achieves this by using

a multivariate clustering of input predictors (normally topographical parameters) to reduce the number of simulations required

to accurately represent surface heterogeneity by orders of magnitude. TopoSCALE provides point scale meteorological forcing5

at any given point on the Earth’s surface by downscaling gridded reanalysis (or other atmospheric model data) using pressure

levels to account for gradients with elevation and topographic correction for surface energy balance terms. The computational

resources saved by not simulating domains explicitly in 2D can then be redirected to ensemble simulation for the purpose

of data assimilation or uncertainty analysis in general. This approach has successfully been used to generate a regional scale

permafrost map at 30 m resolution (Fiddes et al., 2015).10

In this paper we present a new processing chain that couples an efficient subgrid method (TopoSUB), a downscaling tool

(TopoSCALE) and data assimilation method with the purpose to improve numerical simulation of ground surface processes at

multiple spatial and temporal scales in ungauged basins. The novelty of the approach is that while we add 2 orders of magnitude

of computational cost by ensemble simulations, we save 4-5 orders of magnitude over explicitly simulating a high resolution

grid. This approach makes data assimilation at large spatio-temporal scales feasible. In addition, this approach utilises only15

freely available global datasets and is therefore able to run globally.

Applications of this approach are numerous and diverse as it addresses 3 common bottlenecks: (a) availability of an appropri-

ately downscaled forcing (b) ability to apply complex models at high resolution over large areas and (c) addressing uncertainty

in the model chain. Applications could for example include large scale assessments of mass movements, glacier mass balance,

or snowpack water availability. By translating GCM/RCM results to local slope scale impacts with appropriate surface models,20

climate change impacts can be estimated at appropriate scales.

2 Methods

The modelling pipeline used in this study employs two previously described methods (1) TopoSUB (Fiddes and Gruber, 2012)

and (2) TopoSCALE (Fiddes and Gruber, 2014). These tools are briefly described here for clarity, however the reader is directed

to the original publications for full details. An overview of the full tool chain is given in Figure 1.25

2.1 Surface model

The surface model used in this study, GEOtop, is a physically-based model originally developed for hydrological research

(Endrizzi et al., 2014). It couples energy and water budgets, represents the energy exchange with the atmosphere and has a

multilayer snow pack. Further information is given by Bertoldi et al. (2006); Rigon et al. (2006); Endrizzi (2007); Dall’Amico

et al. (2011). A description of model uncertainty and sensitivity is given by Gubler et al. (2012). Model parameters and soil30

stratigraphy are setup as defined in Fiddes et al. (2015).
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2.2 Downscaling forcing

TopoSCALE is a scheme which generates point-scale model forcing using gridded atmospheric model datasets. It achieves

this as follows: (1) interpolate data available on pressure levels: air temperature (Ta), relative humidity (RH), wind speed

(U ), wind direction (ϕU ) to point of interest in order to provide a dynamic scaling at each timestep, (2) incoming longwave

radiation (L↓) is scaled by accounting for downscaled Ta, RH and sky emissivity; (3) we apply a topographic correction to5

both radiation fields (S↓/L↓); (4) an elevation based lapse-rate is applied to precipitation, P . The output is a full set of scaled

meteorological fields required to drive a numerical model at hourly timesteps.

2.3 Subgrid scheme

TopoSUB is a scheme which samples land surface heterogeneity at high resolution based on a DEM and other surface data10

(here SRTM-3, 30 m). Input predictors describing dimensions of variability are clustered with a K-means algorithm to reduce

computational units in a given simulation domain to a set of clusters. A 1-D surface model is then applied to each cluster using

its mean physiographic properties. This approach allows multiple orders of magnitude savings in computational effort over

distributed approaches. For example, a simulation domain represented by an ERA5 grid cell (31 km × 31 km) contains ap-

proximately 106 SRTM-3 pixels. This domain can be simulated using 100 TopoSUB clusters, which represents a 104 reduction15

in computational load during simulation.

2.4 Data assimilation

We build on previous efforts (e.g. Girotto et al., 2014; Margulis et al., 2015; Aalstad et al., 2018) that focus on the reanalysis

of snowpack characteristics (particularly SWE and HS) through ensemble-based assimilation of fractional snow covered area

(fSCA) retrievals from optical satellite sensors. We choose to use fSCA retrievals because currently only optical satellite sensors20

can offer the resolution, coverage, accuracy and breadth of information needed to constrain snowpack simulations in complex

terrain (see Dozier et al., 2016). We use fSCA retrieved from the MODIS sensors onboard the Aqua and Terra satellites. These

retrievals have a sub-kilometric spatial resolution and a near daily equatorial revisit frequency (in the absence of clouds), so

the reanalysis we perform could be applied to any mountain range on Earth. By assimilating fSCA observations we exploit the

dynamic information content contained in the depletion of the fractional snow-cover. The idea is that if one grid-cell melts out25

later than another, there must either have been more snow there to begin with, a slower ablation, or a combination of the two

and vice-versa for an earlier melt out (Martinec and Rango, 1981; Aalstad et al., 2018). This is the essence of traditional snow

reconstruction where the snowpack is built up in reverse from the observed date of disappearance of the snow-cover to the day

of peak SWE using modelled snowmelt rates (Martinec and Rango, 1981; Dozier et al., 2016). By using ensemble-based DA

we can account for uncertainties in the remotely-sensed fSCA depletion, the meteorological forcing and the snow model that30

are ignored in traditional reconstruction (Slater et al., 2013) and arrive at an improved reanalysis (Girotto et al., 2014). Snow

reanalysis problems are best approached using batch smoother DA algorithms rather than the more commonly used filters since
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the snowpack has a long memory (i.e. high temporal autocorrelation) relative to (e.g.) synoptic-scale weather (Margulis et al.,

2015; Aalstad et al., 2018). By using a smoother that assimilates all the fSCA retrievals during the ablation season at once to

constrain the ensemble of annual snowpack trajectories, we are able to use the observed ablation to inform the accumulation

season which would not be possible with a particle filter.

2.4.1 Generating the prior ensemble5

In line with previous studies (e.g. Raleigh et al., 2015), we assume that the main source of uncertainty in modelling the

snowpack is in the meteorological forcing and specifically the main variables that control the mass and energy balance, namely

air temperature (Ta), precipitation (P ), incoming shortwave (S↓) and longwave (L↓) radiation. To generate the prior ensemble

we perturb the forcing time series using normally (Ta, S↓, L↓) and log-normally (P ) distributed multiplicative perturbation

parameters that are fixed throughout the annual integration. Following Navari et al. (2016) we generate a correlated ensemble10

of perturbation parameters for the different forcing variables. This is to avoid unrealistic perturbations such as a large increase

in both precipitation and shortwave radiation. We do this in two steps. First, generate independent perturbation parameters for

each of the forcing variables using normal and lognormal random draws. Secondly, we account for the correlation between

the different perturbation parameters by performing a Cholesky decomposition of the covariance matrix. All hyper-parameters

used in generating the prior ensemble are given in Table 1 and based on values from a study in Colorado by De Lannoy et al.15

(2012) which in turn are based on the approach of Reichle et al. (2007), which is a global study.

2.4.2 Particle batch smoother

When performing DA we are usually interested in approximating the Bayesian posterior: the probability of model trajectories

given the observations. The DA method employed in this study is the particle batch smoother (PBS) presented in the context

of snow reanalysis in Margulis et al. (2015). The PBS is a basic importance sampling particle filter where no resampling20

takes place (see Van Leeuwen, 2009). This means that it is equivalent to the generalized likelihood uncertainty estimation

(GLUE) with a formal likelihood function (Beven and Binley, 1992). The apparent advantage of this smoother is that, unlike

the ensemble smoother (ES), it makes no assumptions about the linearity of the model or the Gaussianity of the error statistics

(Van Leeuwen and Evensen, 1996). This can also be a disadvantage in higher dimensional problems where the method is

prone to degeneracy and large sampling error unless a very large number of particles is used (Van Leeuwen and Evensen,25

1996; Van Leeuwen, 2009). Nonetheless, for snow reconstruction problems where the dimensionality of the parameter space

is relatively low, the PBS has been shown to outperform the ES even with a moderate number of particles (Margulis et al.,

2015; Aalstad et al., 2018). Crucially, using the PBS instead of the ES (or its iterative variants) avoids the need for running

more than one ensemble model integration, which would be more costly and less aligned with the efficiency objectives of the

clustering (TopoSUB) framework. Since the PBS is derived elsewhere (Van Leeuwen and Evensen, 1996; Van Leeuwen, 2009;30

Margulis et al., 2015), here we are content with presenting the analysis equation for the posterior and how to implement it for

the snow reconstruction problem. Each particle represents a different annual integration of the snow model and will have a

unique forcing history associated with it as dictated by the perturbation parameters described in Section 2. An overview of the
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tool chain is given in Figure 1. A priori, each of these histories is assumed to be equally likely. The observed fSCA depletion

for the given water year and its assumed error structure is then used to constrain the ensemble of particles through the PBS

analysis. In the PBS, the Bayesian posterior is approximated by a discrete probability mass function consisting of the posterior

weights of each of the particles (model trajectories). As shown in Aalstad et al. (2018), when each particle is given an equal

prior weight (1/Ne) and a Gaussian likelihood is used, the posterior weight for the j-th particle is given by5

wj =
exp
(
−||dj ||R2/2

)∑Ne

k=1 exp
(
−||dk||R2/2

) , (1)

where Ne is the number of particles and the square norm of the innovations (residuals) for an arbitrary particle k is given by

||dk||2R =
(
y− Ŷk

)T
R−1

(
y− Ŷk

)
(2)

in which T denotes the matrix transpose, R is the observation error covariance matrix, y is the observation vector containing

the remotely sensed fSCA depletion for a given snow season, and Ŷk is the predicted observation vector containing the10

corresponding modelled fSCA for particle k. The particle approximation of the Bayesian posterior represented by Eq. (1)

improves as the number of particles increases. It should be clear from the analysis step in Eq. (1) that by definition the posterior

weights sum to one. Furthermore, unlike the ES, the PBS only changes the relative weights of the particles and not their position

within the model space. This makes the PBS particularly attractive in a clustering framework as we do not need to rerun the

ensemble after the analysis.15

An important component of DA is the prescribed error covariance structure of the observations. Since the MODIS fSCA

retrievals that we are assimilating are affected by various error sources that vary from day to day, such as atmospheric conditions

and viewing angle, we assume that the observation errors are uncorrelated in time. Moreover, we assume a fixed observation

error variance σ2
y . Thereby, we use a simple scalar diagonal observation error covariance matrix R= σ2

yI where I is the identity

matrix in line with similar studies (e.g. Margulis et al., 2015; Aalstad et al., 2018). This simplifies (2) which reduces to a simple20

square sum of innovations normalized by a constant (σ2
y). We prescribe an observation error standard deviation of σy = 0.13

based on the estimate in Aalstad et al. (2018) (see Section 3.3). In order to make the model trajectories comparable to the fSCA

retrievals during the analysis step, i.e. to generate the predicted observations Ŷ, an observation operator is required. We use a

simple threshold on SWE to determine the binary (snow/no-snow) snow-cover of each modelled grid cell based on SWE values

that correspond to full pixel coverage(fSCA=1) given in Thirel et al. (2013), this allows us to consider surface roughness. Due25

to the scale difference between the MODIS pixels ( 500 m) and the model grid cells (3 m), the modelled fSCA within a MODIS

pixel is then simply the average of the binary snow cover in all model grid cells that fall within that pixel.

3 Data

3.1 Meteorological forcing

Driving climate data are obtained from the ERA5 reanalysis from ECMWF. This is the latest reanalysis from ECMWF that30

updates the ERA-Interim reanalysis. The main improvements are an increase of spatial resolution to 31 km, hourly temporal
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resolution, and increase in vertical model levels to 137. Accumulated values are now from the last time step and not last

forecast as in ERA-Interim. This means that we can easily obtain the mean rates required to drive our numerical model by

simply dividing these accumulations by the hourly time step (Fiddes and Gruber, 2014). Forcing data is detailed in Table 2. For

each TopoSUB cluster, defined by the mean physiographic characteristics of a cluster, (Fiddes and Gruber, 2012) the ERA5

meteorological fields are downscaled using TopoSCALE (Fiddes and Gruber, 2014).5

3.2 Surface properties

TopoSUB requires topographical parameters as input predictors to the clustering algorithm. We derive the following topo-

graphic parameters from the SRTM-3 digital elevation model: elevation, slope, aspect and sky view factor (proportion of

visible sky). Surface cover is characterized in a simple 3 mode classification in order to approximate sub-surface stratigraphies:

first a threshold on MODIS NDVI is used to classify vegetated surfaces, then a simple model further differentiates between10

steep bedrock and debris slopes. Further details are available in Fiddes et al. (2015).

3.3 Assimilated fSCA observations

We assimilate fSCA retrievals obtained from version 6 of the level 3 daily MODIS snow-cover product from the Terra

(MOD10A1 product; Hall and Riggs, 2016a) and Aqua (MYD10A1 product; Hall and Riggs, 2016b) satellites. The retrieval

algorithm is based on the inversion of a linear regression of MODIS normalized difference snow index (NDSI) on reference15

fSCA estimated from coincident Landsat imagery and it is given by the ’FRA6T’ relationship in Salomonson and Appel (2006).

The normalized difference snow index exploits the fact that snow is highly reflective in the visible but a good absorber in the

shortwave infrared which differentiates it from most other natural surfaces (Painter et al., 2009). If cloud free retrievals are

available from both Terra and Aqua retrievals for a given day then the Terra retrievals are used. Aalstad et al. (2018) compared

MODIS fSCA retrievals to reference fSCA estimates obtained from a time-lapse photography, imagery from an unmanned20

aerial vehicle, as well as snow surveys at a site on Svalbard and obtained an RMSE of σy = 0.13 for the MODIS retrievals.

This estimate is in good agreement with those found in the Alps by other studies (e.g. Masson et al., 2018), and so we use this

as the observation error variance (σ2
y) in the assimilation (Section 2.3.2).

3.4 Evaluation

3.4.1 Station data25

SWE (mm) measurements obtained manually by observers are available at approximately biweekly intervals from snow pro-

files across Switzerland. Here we use the GCOS dataset which consists of 11 sites (Figure 2). We call these sites ’stations’

throughout the paper. The dataset is openly available (Marty, 2017). Automatic HS (cm) measurements performed by sonic

ranger (Campbell Scientific SR50) are available from the Intercantonal Measurement and Information System (IMIS) station

network at 30 minute intervals. This is a high elevation station network that forms the backbone of the national avalanche30

service in Switzerland.
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3.4.2 Airborne snow height retrievals

The Airborne Digital Sensor (ADS) opto-electric line scanners ADS80 and ADS100 from Leica Geosystems were used to

acquire summer and winter stereo images which were processed into high resolution digital terrain models (DTM) using

photogrammetry (Bühler et al., 2015). HS is then retrieved by subtracting summer from winter DTM and available for two

footprints in the Davos region covering the Wannengrat area ( 3.5 × 7.5 km) and the Dischma area ( 7 × 17 km)) of high alpine5

terrain. The footprint of this survey is shown in Figure 2. These data are used for spatial evaluation of the scheme. Acquisition

dates are 20 March 2012, 15 April 2013 and 17 April 2014. All snow depth maps were calculated using a summer DSM from

3 September 2013. The resolution of this dataset is 2m with a vertical RMSE of around +/- 30 cm (Vögeli et al., 2016; Bühler

et al., 2015). The datasets are resampled to 100m (Vögeli et al., 2016) and used here to evaluate the methods. Snow depth in

areas covered with forest, scrub, buildings and water bodies can not be determined using the ADS (Bühler et al., 2015) and10

are therefore masked out from the datasets. This dataset is openly available (doi:10.16904/23). Additionally as only a single

summer (2013) DTM was used, all glacier areas were masked out to avoid errors associated with changing glacier surfaces.

Glacier outlines were obtained from the GLIMS repository (Raup et al., 2007).

4 Experimental setup

In this study we conduct experiments at various spatio-temporal scales in order to comprehensively test the framework and15

assess its suitability for various applications. The experimental setup is shown in Figure 2. Simulations are run in 9 ERA5 grid

boxes spanning the Swiss Alps. Each grid box contains at least 1 SWE measurement location and additionally several IMIS

stations that are used to evaluate HS results. In addition we perform large area simulations on the entire Swiss Alps domain to

explore how seasonal extremes are represented at large scale.

A prerequisite to the first two experiments (Section 4.1-4.2) is the PBS analysis step as described in Section 2 which generates20

the posterior weights matrix Wp based on PBS analysis units of MODIS cells. This then has dimensions Ne×Np where Ne

is the number of particles (ensemble members) and Np is the number of MODIS pixels. The following describes how Wp is

used to generate posterior estimates of a given state variable (SWE or HS). The third experiment (Section 4.3) differs in that

the analysis unit is the ERA5 grid cell itself and aims to correct aggregated grid level bias in forcing.

4.1 Point DA25

Point scale DA is accomplished by simply mapping the DEM cell corresponding to point of interest (e.g. a validation station)

to the corresponding MODIS pixel for that location. The Wp derived from the PBS analysis for that MODIS pixel is then used

directly to generate the posterior estimate for that point. Model state results are obtained from the TopoSUB cluster that the

DEM cell is a member of. Cumulative distributions of state variables are computed through the ranking of the ensemble of

state variables followed by a cumulative summation of the correspondingly sorted weights. These distributions allow for the30

estimation of quantile values of the posterior model state.
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4.2 Spatially distributed DA

The particle batch smoother has typically been applied at point scale or on regular grids. Here we generalise the method so as

to fit the TopoSUB approach. The basic aim is to generate posterior weights for each TopoSUB cluster (which has no location,

only physiographic attributes) so that the weights can be used in a highly scalable and powerful manner to generate different

products such as a timeseries of the posterior median aggregated to give basin level statistics. The key challenge in this aim5

is how to map the spatial unit of the PBS algorithm, the MODIS pixel, which has a location in space, to a TopoSUB cluster

which does not. We achieve this through the following

wc =Wp ·a (3)

where Wp is the Ne×Np weights matrix and a is a Np× 1 vector containing the fractional abundance (cover) of cluster c

represented in each of the MODIS pixels. Here wc contains the weight of each forcing history for cluster c and is computed10

for each of the clusters. This yields the weights matrix wc that contains the weights of the forcing histories for each cluster. As

a second step the weights wc are renormalized to sum to one since that is not guaranteed in Eq. 3.

4.3 Coarse grid DA

The third DA method addresses bias in forcing at grid level only, it is the most efficient and lightweight of the three approaches.

It also differs from the previous methods in that the PBS analysis step is computed at ERA5 grid unit not MODIS pixel unit. This15

makes the analysis step highly efficient and scalable over large areas. It is emphasised that while the two previous methods

address both aggregated bias in forcing at grid level they also correct errors in the subgrid method (such as physiographic

description) and downscaling (such as precipitation distribution), this method only corrects the bias at grid-level. However it

is of interest if we seek a simple and robust way to feedback subgrid information to large scale atmospheric grid cells, in this

case using ERA5:20

1. Compute MODIS fSCA aggregated to the large scale atmospheric grid cell (ERA5) while accounting for clouds (max

10 % cloudiness tolerated). Cloud pixels are filled with mean fSCA value of the cluster to which the pixel belongs.

2. Compute the predicted observations, i.e. the modelled fSCA, for each cluster and aggregate these to the ERA5 grid cell

scale by multiplying by cluster members.

3. Run PBS at ERA5 grid level to generate a single weight vector for the ensemble.25

4.4 Run Configurations

All runs are performed using 100 particles, 150 TopoSUB clusters and cover the period 1 September 2011 - 1 September

2017. The specific temporal period covered by a given result is defined in the text. Throughout the paper a single year refers

to the year in which melt occurs, e.g., "2012" refers to the period 1 September 2011 - 1 September 2012. These "water years"

are prefixed with WY (e.g. WY2012) to avoid ambiguity. We measure computational effort through the number of GEOtop30
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model runs (Nr) required per year in an ERA5 grid cell. Recall that the ERA5 grid cell is the fundamental unit on which the

downscaling and clustering is performed. In terms of the number of clusters (Ns) and particles (Ne), this effort becomes

Nr =Ne×Ns . (4)

In the case of the configuration used in this study (Ne = 100,Ns = 150) this amounts to 1.5×104 individual model runs. At 30

m resolution, there are 106 model grid cells within a single 0.25◦ ERA5 grid cell. So, an explicit fully distributed simulation5

with 100 particles would require Nr = 108, a four order of magnitude increase in computational effort relative to the setup

used in this study.

5 Results

5.1 Evaluating the forward model

Figure 3 shows performance of the forward model at the Weissfluhjoch (WFJ) research site (see Figure 2 for position) assessed10

over the period WY2012-2017. It illustrates the performance of the downscaling routine in providing an adequate forcing to the

model (forcing bias) and performance of the model in simulating the target variables SWE and HS when driven by downscaled

ERA5 reanalysis (revealing model and forcing errors) and station observations (revealing model and observation errors). It

shows that the TopoSCALE downscaling routine does a reasonable job of providing forcing to the forward model (top row)

with the 0.71 ◦C RMSE for 2 m air temperatures being particularly low. Conversely, high wind velocities tend to be positively15

biased, most likely as wind fields representing the free atmosphere on pressure levels have no surface drag that would be

present in surface observations. Modelled HS and SWE (bottom row) are captured fairly well capturing both the onset and melt

of the snowpack. However, peak values are generally negatively biased with respect to observations and station driven model

runs. WY2012 is an obvious outlier with large snowfalls not captured by ERA5 precipitation. This can be seen by cumulative

precipitation totals computed with and without WY2012 totals (Figure 3). This is reflected in simulated HS and SWE totals.20

The performance of the forward model can be analysed by driving with station measurements to remove most uncertainty

associated with driving reanalysis data (but with residual observation errors). ERA5 driven simulations are comparable or even

outperform station runs in WY2013 and WY2014.

5.2 Point DA

In this experiment we compare the prior and (single pixel) posterior HS and SWE for WY2016 to the measured values at the25

respective stations. An example at Truebsee GCOS station (Engelberg) is shown in Figure 4. This figure demonstrates the effect

the assimilation has not only on the fSCA (which is assimilated), but also on estimates of the other state variables (in this case

SWE) which get closer to independent observations. Here you see clearly how the posterior estimate of SWE (blue shading)

is constrained by the assimilation and the posterior median (blue line) is much closer to validation SWE observations than the

prior (red line). We then scaled this up to 9 ERA5 grid boxes that span the Swiss Alps and contain 11 GCOS SWE stations.30

Additionally each box contains multiple IMIS stations measuring HS, which we also looked at in the interest of obtaining more
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validation data. Significant improvements in the posterior were seen in the estimation of both variables (Figure 5). We found

improvement in SWE was greater than that of HS. We hypothesize that this is due to representation of snow densities in the

snow model. However, the improved representation of the snowpack mass balance as shown by improved SWE estimates is the

main variable of interest in our approach. Stations where DA performed worse than the prior (supplement) can be attributed to

poorly characterised melt seasons, lack of MODIS retrievals, and/or the MODIS retrievals not being representative at the scale5

of the observations (c.f. Section 6).

5.3 Spatially distributed DA

We evaluated the performance of the method in improving the spatial patterns and absolute quantities over large areas using

data from an airborne digital sensor which has been used to generate high resolution surfaces of HS in WY2012, WY2013

and WY2014 (Figure 6, WY2014 only). Both WY2012 and WY2014 show marked improvement in all spatial statistical10

measures including the mean value, standard deviation (indicating increased variation) and error statistics such as RMSE and

bias. WY2013 shows little improvement. We would expect a better performance for SWE than for HS due to the previously

mentioned issues with the modelled snow density (see Section 5.2 and Figure 5). Figure 6 shows how the 90th percentile

range is constrained by the analysis going from the prior to the posterior. Figure 7 shows probability density distributions for

observations, prior and posterior in WY2014. The shape and moments such as the mean more closely match the observations15

in the posterior distribution. However, the method fails to capture the very highest accumulations in the distribution (> 2.5 m),

possibly due to averaging effects of generalising weights to TopoSUB clusters.

5.3.1 Interannual validity of weights

We tested the ability of weights obtained in a given hydrological year to improve results in a different year. We did this by

looking at statistics on the Dischma basin through a cross validation exercise where each year was forced with results from20

the two other years (WY2012, WY2013, WY2014). Posteriors forced by weights of other years improved performance over

priors in all cases (Figure 8). This suggests that the DA method here also works to correct errors that are consistent from year

to year. This could be related to spatial patterns of melt, a consistent bias in the forcing or errors in the model itself. This is

an interesting result that suggests that while this method is primarily a post processing method it could be used to improve

now/forecasts by using previous year weights. Additionally an analogue approach could be used to find years of best fit to25

current season in order to select weight sets (Kolberg and Gottschalk, 2010).

5.3.2 Large-scale application: Seasonal variability

December 2016 was an extremely snow poor month and start to the winter season. Many ski areas throughout the Alps could

not open until late January due to lack of snow. We compare this to December 2011 which was relatively snow rich with above

average precipitation and average temperatures for the month (cf. www.meteoswiss.admin.ch). Specifically, we investigated30

how open-loop runs in two contrasting seasons compared to observed spatial patterns of fSCA from MODIS and SLF reports
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dated 22 December of respective year (Figure 9). The model was found to compare well with both spatial patterns of fSCA and

SLF snow depth maps, which are operational products created by interpolating station data constrained by AVHHR observed

snow extent. Both fSCA and HS show snow free zones deep into alpine valleys during December 2016, and absence of snow

over the northern regions and Jura Mountains. The red box indicates domain of DA runs for these seasons shown in Figure 10.

Next we zoomed in and compared spatial patterns of HS between the deterministic open loop and Posterior run which5

demonstrated that DA has increased elevation gradients of variability by reducing HS in valley bottoms and increasing it on

higher slopes. DA as mentioned previously, therefore has the effect of increasing variability in the snow cover distribution.

Snow cover extent estimation is also improved by DA with increased snow free area in valley bottoms showing improved fit to

MODIS observations.

5.4 Coarse scale DA10

Aggregated series of observed and modelled fSCA are computed at ERA-grid level. This could equally be a hydrological

unit such as a basin. The main idea is to correct grid level biases in the forcing only. If we assume this is the main source of

uncertainty, especially with a view to correct large scale biases, this is an effective method to apply at the scale of meteorological

reanalysis. Data from WFJ is used to illustrate this point. Figure 11 shows two contrasting snow season WY2012 (high) and

WY2014 (low) where mean snow depths and SWE differed by a factor of 2, as recorded at WFJ (Figure 3). We compare the15

total ERA5 precipitation (PSUM) over the winter period Jan-April 2014 (401 mm) and compare to totals recorded over the

same period at WFJ station (350 mm), ERA5 captures WFJ totals well. It should be added that there is some elevation difference

between the ERA5 grid (2024 m asl) and the WFJ station (2560m asl). However, in WY2012 we see quite a different story.

The ERA5 grid gives us slightly higher PSUM values of 440 mm whereas the measured PSUM was almost double this at 826

mm. Figure 11 shows how grid level biases in the driving forcing from ERA5 have been successfully decreased in WY201220

resulting in increased SWE totals, whereas in WY2014 where ERA5 performance was much better (cf. Figure 3), DA has had

a negligible effect. This simple approach is an extremely cost effective method of assimilating slope scale subgrid information

(in this case fSCA) to correct coarse grid scale forcings (ERA5). It is additionally generic enough that it could be used with

various other subgrid observations such as soil moisture, to improve grid level responses.

6 Discussion25

In the following discussion some emphasis is placed on sources of uncertainty arising due to generally unknown errors in both

the model, observations and forcing. These errors can be systematic (bias) or random as well as errors of representativeness

(e.g. Lahoz and Schneider, 2014). Accounting for the uncertainty that results from these errors is an important component of

any DA framework.
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6.1 Sources of error

6.1.1 Forcing bias

In this work we encounter two forms of bias in the forcing, firstly (i) grid level inputs or bias in the forcing ERA5 reanalysis.

This may exist due to e.g. a bias in assimilated observations (Synop stations tend to be in valley bottoms) or errors, omissions,

parameterisations in the atmospheric model itself. How different is the forcing from observed grid averaged conditions? Of5

course this is a very difficult question to answer. Although with products such as precipitation radars such comparison of

model and measured grid integrated precipitation may be possible. The second (ii) is error (random or bias) in the downscaling

routines or disaggregation of the forcing at subgrid level. Do we get gradients along topographic correct? These sources of

error could well be reinforcing or indeed cancelling, as they can be independent sources of error. In the approach of spatial DA

we address both systematic and random error in the forcing but with an emphasis on the former. There is no 2D redistribution10

in terms of longitude and latitude position of a grid box. All members of a cluster are equally perturbed and clusters do not

have x,y coordinates. In point DA, again both sources are addressed but with a stronger focus on (ii) as the data assimilation is

done at MODIS pixel level and therefore redistributes precipitation not only with topographic parameters but also in a spatial

x,y sense. In grid DA we only address (i) which could be a useful approach in differentiating and quantifying sources of bias

as well as simply and robustly addressing the question of grid level bias.15

6.1.2 Model error

We do not focus on structural errors in the forward model as this was not the subject of this study, and further the methods

are designed to be quite independent of model type. It is worth commenting that the majority of the results in this paper have

focused on HS due to higher data availability. However, Figure 5 shows that results are significantly better for SWE, possibly

due to errors in the model densification parameterisations. This is therefore reassuring as HS results can be interpreted as20

conservative and therefore if we were able to validate more extensively against spatial distributed SWE measurements, we

would likely see improved results.

6.1.3 Melt period definition

An important feature to mention and not often addressed by DA studies (Morzfeld et al., 2018, is a nice exception), is sensitivity

of data assimilation methods to the observations chosen for assimilation. In the case of fSCA assimilations a melt period is25

defined as this is when the observations provide information about the snow depletion curve (e.g. Aalstad et al., 2018). We

identify the end of the snowpack as the first day the fSCA values reach zero. There may be short increases in fSCA after this

date but these will generally be late spring/summer snowfalls that are transient and melt rapidly. However, this date is the first

available zero fSCA observation which does not necessarily equate to the exact date the snowpack melts-out as there can be a

lack of observations due to cloud cover. Therefore this should be considered a source of potential bias in the system. We then30

found that a fixed window of 30 days prior to this date was a simple and robust way of defining the melt period. We trialled
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other methods of automatically defining the end of the “complete snowcover” period but we did not find a way to do this that

could work robustly over several hundred thousand MODIS pixels. Additionally, the MODIS products are prone to various

sources of error, as discussed below in Section 6.1.5 and this adds to the difficulty in defining a robust, general algorithm that

defines the start of the melt period. As mentioned above this is a little discussed topic but due to the sensitivity of final results

to the chosen method, would certainly benefit from further research efforts.5

6.1.4 Scale issues in assimilation

The scale difference between validation data (station or snow profile) and fSCA retrievals from MODIS creates several issues.

In this study many of the sites are in valley bottoms so they are accessible on a regular basis. However, this creates a bias caused

by how representative is the point measurement of the larger MODIS pixel footprint. In Alpine valley bottoms there tends to

be a lot of infrastructure, housing and rivers, which will tend to be snow free earlier (or never snow covered) as compared to10

the station site that will be well protected from interference allowing natural accumulation of snowfall. Therefore the MODIS

footprint will tend to be observed to be “snow free” earlier than the validation point. In addition features such as a rivers,

road clearance, urban heat islands are not considered in the modelling and will generate bias in the data assimilation. The

most reliable sites for data assimilation, or actually we should say for validating the method, are therefore at high elevations

away from effects due to human activity or infrastructure that are not considered in the model. Figure 12 gives an example15

of a point-scale DA failure that is not due to the DA algorithm (this has worked well), but the representativeness of the fSCA

retrievals. The posterior has correctly been pulled in the direction of what has been detected to be the main melt period (red

dots), erroneous snowfalls during late spring/ early summer are ignored as expected and the end of the winter snowpack (as

detected by the fSCA retrievals), has been correctly identified at the beginning of April. However, this site is in the middle of

Zermatt town and the MODIS pixel will likely contain a signal from urban effects unaccounted for by the model.20

6.1.5 Observational errors

In addition to the scale issues, there are actual errors and cloud-induced data gaps in the MODIS retrievals. This could be incor-

rectly classified clouds (as snow or vice-versa) or uncertainty in the empirical fSCA algorithm. In addition the method can also

suffer from a lack of observations due to persistent cloudiness at key points in the melt-period which will create uncertainties

during DA. It may be worthwhile to consider fSCA retrievals from different higher resolution satellite constellations such as25

Landsat (30 m resolution) and Sentinel-2 (20 m resolution). This would increase the chance of obtaining cloud free scenes as

well as reduce representativeness errors even at resolutions as high as 100 m. Furthermore, the aggregation of higher resolution

retrievals would lead to a reduction of random error. The effective MODIS footprint of individual pixels can be quite variable

and differs markedly from the nominal 500 m pixel resolution when the view angle deviates from nadir (Dozier et al., 2008).

Therefore, even for gridded applications, there is a considerable representativeness error in MODIS fSCA. A final, important30

limitation of the scheme is the lack of reliable fSCA retrievals in forested areas, which applies to any optical sensor (e.g. as

mentioned in the description of the ADS data).
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6.2 Applications

With the methods described in this paper a range of processing pipelines can be built to address a wide array of both research

and operational problems. Specific strengths of the approach are:

– Slope scale forcing (climate, reanalysis, forecast) globally.

– Explicitly include the effects of high resolution topography on surface-atmosphere interactions.5

– Efficient method to make large ensemble simulations feasible.

– Data assimilation to correct bias in forcing and quantify uncertainty.

Perhaps most importantly this approach allows applications to be built in remote regions where dense observation networks do

not exist, such as High Mountain Asia or parts of North America. These capabilities allow for operational applications such

as large area mass movement assessments related to dynamics of surface and subsurface processes. Driving the system with10

NWP (forecast) data would allow nowcasting/ forecasting applications to be setup with a suitable assimilation framework such

as the EnKF. While the assimilation of fSCA would be less informative in a sequential method (such as the EnKF), ensemble

simulations would still provide a useful quantification of uncertainty.

Transient climate change studies using a combination of reanalysis and climate model data (e.g. CMIP5) would be a valuable

research application based on this approach, for example quantifying dynamics of permafrost extent over large areas according15

to a range of scenarios and models or generate a regional snowpack reanalysis product with projected future changes.

An important operational application and currently a great humanitarian need in many remote regions in Asia (e.g. Afghanistan/

Tajikistan) could be an operational avalanche forecast based on a snowpack model (e.g. SNOWPACK, CROCUS), driven by

an NWP ensemble to generate a large area probabilistic forecast where few ground stations exist. This would be a relatively

cost-effective system to deploy and give first order hazard assessment where none currently exists.20

6.3 Further work

For the moderate (MODIS-like) resolution satellites we hope that products will emerge from Sentinel-3 and VIIRS to prolong

and expand the MODIS record. For high resolution sensors there is a strong need for operational products that ideally combine

available and emerging sources such as Landsat 8 and Sentinel-2. The French inter-agency initiative THEIA Land Data Centre

is starting to produce Sentinel-2 based snow cover products (Gascoin et al., 2019), which at both high temporal and spatial25

resolution will likely prove to be a great product for data assimilation work. Additionally, improved cloud masks are needed

as misclassified clouds are potential and significant sources of error in the framework. Both too strict and too relaxed cloud

masking is problematic, the former leads to throwing out valid and potentially important retrievals while the latter corrupts the

signal that we are trying to assimilate (the actual snow cover depletion).
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For additional datasets (other than fSCA) land surface temperature can be retrieved from both MODIS and Landsat and

provide a means to constrain uncertainty in the surface energy balance. However, the current MODIS products are coarse at

1 km and therefore not ideal for mountain regions.

For additional datasets (other than fSCA) land surface temperature (LST) can be retrieved from both MODIS and Landsat

and provide a means to constrain uncertainty in the surface energy balance. However, the current MODIS LST products are5

coarse at 1 km with respect to the expected heterogeneity of LST in mountain regions (Gubler et al., 2011). Snowmelt status

(i.e. binary melting/not melting) from synthetic aperture radar (SAR) e.g. Sentinel-1 has potential to constrain uncertainty in

fSCA during cloudy periods. There is also potential from ICESAT2 which could provide a way to constrain snow depth directly

(Treichler and Kääb, 2017).

Assimilation of sparse point data could be an important extension of this work to provide means to assimilate data sources10

such as ICESAT2 but also be used to improve TopoSCALE by assimilating point data (stations) to improve the downscaling of

reanalysis data. This could be interesting as where TopoSCALE performs most poorly is in valleys, where surface effects are

poorly represented by the atmospheric model and this is precisely where stations tend to be most abundant globally. For real-

time applications in remote regions extending the method to assimilate sparse observations is important as fSCA is known to

have limited value in sequential (i.e real-time) data assimilation. We have shown there is some interannual validity of results in15

our limited test-case suggesting that systematic biases relevant to real-time applications could be addressed through reanalysis.

Additionally, by creating a long term library of "best possible" reconstructions/reanalyses then training an "analogue ensemble"

or even a more machine learning type approach like neural nets, could be promising.

7 Conclusions

In this study we have demonstrated a processing pipeline capable of producing improved land surface simulations at scale20

in ungauged regions. It consists of downscaling, subgrid and data assimilation components and uses only globally available

datasets for both the model forcing and assimilated observations, it is therefore suitable for global applications. Specifically we

have shown:

– Use of PBS data assimilation can significantly improve estimates of snowpack at various spatial scales.

– TopoSUB clustering efficiency gains make large ensemble simulations feasible.25

– The methods can be used to reduce biases both at coarse atmospheric grid scale and also those related to the downscaling

routines.

– The approach is suitable for regional to global applications due to efficiency and data requirements.

– A flexible set of tools allow various research and operational problems to be addressed where high resolution surface

models are needed in heterogeneous terrain.30
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We propose this as a suitable method for complex model ensemble runs at scale i.e. large numbers of particles, large spatial

areas or long temporal periods. Application areas include any problem where accurate slope scale forcings are required and

surface atmosphere interactions need to be simulated at slope scale e.g. large area avalanche warning where the snowpack is

explicitly simulated or regional-scale hazard assessment of mass movements where changing ground thermal regime is a risk

factor. The toolchain can be flexibly driven by a range of forcings e.g. climate scenario data, reanalysis of past climate or5

real-time NWP and drive impact models for a range of domains e.g., hydrology, snowcover, soil stability or permafrost. New

developments in multi-platform processing pipelines of high resolutions products from Sentinel-2 and Landsat will further

improve the method in terms of representativity and availability of observations.
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Table 1. Hyperparameters (means, variances and correlations) defining the joint probability distribution from which the ensemble of multi-

plicative perturbation parameters are drawn (unitless) These parameters were obtained from De Lannoy et al. (2012) which in turn are based

on the approach of Reichle et al. (2007).

Perturbed variable Marginal Mean Variance Corr(Ta) Corr(P ) Corr(S↓) Corr(L↓)

Air temperature (Ta) Normal 1 2.5e-5 1 -0.1 0.3 0.6

Precipitation (P ) Log-normal 1 0.25 -0.1 1 -0.1 0.5

Shortwave (S↓) Normal 1 0.04 0.3 -0.1 1 -0.3

Longwave (L↓) Normal 1 0.01 0.6 0.5 -0.3 1

Table 2. Description of the hourly fields obtained from the ERA5 reanalysis. All the columns headers are terms defined by ECMWF. ’levtype’

refers to the level type: surf=surface, pl=pressure level. The ’type’ is either: fc=forecast, an=analysis, or inv=invariant.

name shortName levtype type units

2 metre dewpoint temperature d2m surf fc K

Surface thermal radiation downwards strd surf fc Jm−2

Surface solar radiation downwards ssrd surf fc Jm−2

Total precipitation tp surf fc m

TOA incident solar radiation tisr surf fc Jm−2

2m temperature 2t surf fc K

Temperature t pl an K

Relative humidity r pl an %

U component of wind u pl an ms−1

V component of wind v pl an ms−1

Geopotential z surf inv m2s−2
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Figure 1. Schematic of the modelling setup.
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Figure 2. Experimental setup: The 9 ERA5 grid boxes were selected based on the fact that they contained GCOS SWE monitoring sites (11

stations). All IMIS stations in each box are used for evaluation (39 stations). The Weissfluhjoch research station as well as the flightpath of

ADS data is located in the red outlined box, which is also shown at a larger scale in the inset.
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Figure 3. Multiyear simulations at station WFJ (WY2012-2017) in order to show baseline results for the modelling scheme. (A-E) assesses

the downscaling scheme by showing downscaled ERA5 data (ERA5) compared to station measurements (OBS). (F-I) assesses the simulation

of target variables SWE and HS in both time series and scatter plots. Here, ERA5 is a simulation driven either by downscaled ERA5 (ERA5)

or directly by station measurements (STATION). OBS are SWE and HS measurements made at the station. WY2012 is a clear outlier in poor

performing ERA5 as shown by cumulative precipitation errors and in HS and SWE time series. HS and SWE scatter plots also show this low

performance in high values attributed to WY2012. Additionally, ERA5 simulated HS is increasingly biased with depth as errors accumulate

over the season to max depths. The same pattern is evident with SWE. It is worth noting that in differentiating sources of error these plots

are useful. OBS - STATION approximates model error whereas STATION-ERA5 approximates the forcing error.
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Figure 4. DA run at the Truebsee GCOS station, Engelberg. The left panel shows the assimilation step with the assimilated fSCA observations

represented by black crosses. The shading and solid lines show the 90th percentile range and median of the prior (red) and posterior (blue)

estimates. The right panel shows the target variable validation, SWE in this case. Posterior/prior are denoted in the same way. Black triangles

indicate the measurements used for the validation.

Figure 5. Simulated snow depth at IMIS stations (HS) and snow water equivalent at GCOS stations (SWE) for both the prior (red) and

posterior median (blue) compared to observation mean. The mean is computed from all values over the entire WY2016. Posterior estimate is

markedly improved in both variables. Regression lines compare the fit of posterior and prior estimates with respect to observations against

the 1:1 line.
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Figure 6. Topo row: Prior/posterior median and observations from ADS sensor flights in Davos region of 14 April 2014 (see Fig 2 for

location). Bottom row: uncertainty represented by the 90th percentile range of the ensemble and reduction in uncertainty in the posterior.

Glacier mask is shown in blue. Posterior median is improved with respect to observations and uncertainty is reduced by the DA scheme.
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Figure 7. Density distribution plots for HS obs, prior and posterior within the ADS footprint for 14 April 2014 (see Figure 6). The observed

distribution is better captured by the posterior. Dashed lines give the respective mean values.

Figure 8. Interannual validity of weights generated by the DA scheme. Modelled versus observed mean snow depth averaged over the entire

ADS zone on ADS acquisition dates WY2012, WY2013, WY2014 are shown. Posteriors (blue) are generated using weights of other two

years and compared to the prior (red). For example posteriors of WY2012 are generated using weights of WY2013 and WY2014.
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Figure 9. Mean December high resolution (30 m) large area HS simulations (open-loop) in two contrasting seasons (bottom) compared to

observed spatial patterns of fSCA from mean December MODIS retrievals (top). Modelled HS compares well to spatial pattern of fSCA.

December 2016 was an extremely dry start to the season with many ski resorts unable to open until late January. Both observed fSCA and

modelled HS show snow reflect this fact with snow free zones deep into alpine valleys. Red box indicates domain of DA runs for theses

seasons shown in Figure 11. Glacier mask given in light blue.
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Figure 10. Mean HS December 2016, (A) open-loop is compared to (B) Posterior. (C) Difference plot shows how DA has reduced low

elevation snow height relatively more than high elevation snow height. Variability has been increased. Snow free valley bottoms in (B) show

improved match to (D) MODIS OBS and that increased spatial variability is realistic.
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Figure 11. Assimilation of fSCA at grid level which targets bias in grid level forcing. Two contrasting seasons, WY2012 (top row) and

WY2014 (bottom row) are shown. The shading and solid lines show the 90th percentile range and median of the prior (red) and posterior

(blue) estimates, respectively. Assimilated observations are indicated in green. Grid level biases in WY2012 are compensated for by DA.

Grid level forcing was much more accurate in WY2014 and resulting effect of DA was negligible.
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Figure 12. An example of poor performance due to non-representative fSCA retrievals. The posterior has been correctly pulled back to the

observed depletion curve. However it is likely that the depletion curve does not well represent the validation station due to urban effects.
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