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Abstract: Reference evapotranspiration (ETo) forecasts play an important role in agricultural, environmental, and water 7 

management. This study evaluated probabilistic post-processing approaches, including the nonhomogeneous Gaussian 8 

regression (NGR), affine kernel dressing (AKD), and Bayesian model averaging (BMA) techniques, for improving daily and 9 

weekly ETo forecasting based on single or multiple numerical weather predictions (NWP) from The International Grand 10 

Global Ensemble (TIGGE), including the European Centre for Medium-Range Weather Forecasts (ECMWF), the National 11 

Centers for Environmental Prediction Global Forecast System (NCEP), and the United Kingdom Meteorological Office 12 

forecasts ( UKMO). We found that the NGR, the AKD and the BMA methods greatly improved the skill and reliability of the 13 

ETo forecasts compared to a linear regression bias correction method, due to the considerable adjustments on the spread of 14 

ensemble forecasts. The methods were especially effective when applied over the weekly NCEP forecasts, followed by  UKMO 15 

forecasts. The post-processed weekly forecasts had much lower rRMSE (between 8-11%) than the persistence-based weekly 16 

forecasts (22%), and the post-processed daily forecasts (13-20%). Compared with the single model ETo forecasts based on 17 

ECMWF, multi-model ensemble ETo forecasts showed higher skill at short lead times (1 or 2 days) and over the southern and 18 

western regions of the United States. The improvement was higher at the daily timescale than at the weekly timescale. The 19 

NGR and AKD methods performed the best, but the NGR method is more flexible and computationally efficient than the other 20 

methods. In summary, the study demonstrated that the three probabilistic approaches generally outperform conventional 21 

procedures based on the simple bias correction of single model forecasts, with the NGR post-processing of the ECMWF and 22 

ECMWF-UKMO forecasts providing the most efficient ETo forecasting. 23 

1. Introduction 24 

Reference crop evapotranspiration (ETo) represents the weather driven component of the water transfer from plants and soils 25 

to the atmosphere. It plays a fundamental role in estimating mass and energy balance over land surface as well as in agronomic, 26 

forestry, and water resources management. In particular, ETo forecasting is important for aiding water management decision 27 

making (such as irrigation scheduling, reservoir operation, etc.) under uncertainty by identifying the range of future plausible 28 

water stress and demand. However, ETo forecasting is highly uncertain due to the chaotic nature of weather systems. In 29 
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addition, ETo estimation requires full sets of meteorological data which is usually not easy to obtain. Due to the improvement 30 

of numerical weather predictions (NWPs), studies have been recently emerged to forecast ETo using outputs of NWPs over 31 

different regions of the world (Silva et al., 2010; Tian and Martinez, 2012 a, 2012b, and 2014; Perera et al., 2014; Pelosi et al., 32 

2016; Chirico et al., 2018; Medina et al., 2018). Operationally, experimental ETo forecast products are being developed, such 33 

as Forecast Reference EvapoTranspiration (FRET) product (https://digital.weather.gov/), as part of the U.S. National Weather 34 

Service (NWS) National Digital Forecast Database (NDFD) (Glahn and Ruth, 2003), and the Australian Bureau of 35 

Meteorology’s Water and Land website (http://www.bom.gov.au/watl), which provides current and forecasted ETo at the 36 

continental scale.  37 

The improved performance of NWPs during recent years is largely due to the improvement of physical, statistical 38 

representations of the major processes in the models, and the use of ensemble forecasting (Hamill et al., 2013, Bauer et al., 39 

2015). Nevertheless, the NWP forecasts still commonly show systematic inconsistencies with measurements, which are often 40 

caused by inherent errors of NWPs or local land-atmospheric variability which is not well resolved in the models. Post-41 

processing methods, defined as any form of adjustment to the model outputs in order to get better predictions (eg., Hagedorn 42 

et al., 2012), is highly recommended to attenuate, or even eliminate, those inconsistencies (Gneitting et al., 2005; Raftery et 43 

al., 2005). However, most post-processing procedures only considered single-model predictions (i.e., predictions generated by 44 

a single NWP model), and addressed errors in the mean of the forecast distribution while ignored those in the forecast variance 45 

(Gneiting, 2014). These procedures regularly adopted some form of model output statistics (MOS, Glahn and Lowry, 1972; 46 

Klein and Glahn, 1974) methods, focusing on correcting current ensemble forecasts based on the bias in the historical forecasts. 47 

As no forecast is complete without an accurate description of its uncertainty (National Research Council of the National 48 

Academies 2006), the dispersion of the forecast ensemble often misrepresent the true density distribution of the forecast 49 

uncertainty (Krzysztofowicz 2001; Smith 2001; Hansen 2002). The ensemble forecasts are, for example, commonly under-50 

dispersed (e.g. Buizza et al. 2005; Leutbecher and Palmer, 2008), which make the probabilistic predictions overconfident 51 

(Wilks 2011). Therefore, a new generation of probabilistic techniques has been proposed to also address dispersion errors of 52 

the ensembles (Hamill and Colucci 1997; Buizza et al., 2005, Pelosi et al., 2017), in some cases through the manipulation of 53 

multi-model weather forecasts. The nonhomogeneous Gaussian regression (NGR, Gneiting et al., 2005), the Bayesian model 54 

averaging, (BMA, Raftery et al., 2005; Fraley et al., 2010) and the family of kernel dressing (Roulston and Smith 2003; Wang 55 

and Bishop 2005), such as the affine kernel dressing (AKD, Brocker and Smith 2008), are emerging probabilistic techniques 56 

(Gneiting, 2014), with the NGR and the BMA methods being especially designed for multi-model post-processing.  57 

Studies suggest that the post-processing of NWP-based ETo forecasts are crucial for informing decision making (e.g. Ishak et 58 

al., 2010). Medina et al. (2018) compared single and multi-model NWP-based ETo forecasts and the results showed that the 59 

performance of the multi-model ensemble ETo forecasts considerably improved through a simple bias-correction post-60 

processing, and that the bias-corrected multi-model forecasts were in general better than the single model forecasts. In reality, 61 

while most applications for the ETo forecasting have involved some form of post-processing, these have been often limited to 62 

simple MOS procedures of single-model ensembles (e.g., Silva et al., 2010; Perera et al., 2014). Poor treatments of uncertainty 63 
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and variability is considered as a main issue affecting users’ perceptions and adoptions of weather forecasts (Mase and 64 

Prokopy, 2014). The appropriate representation of the second and higher moments of the ETo forecast probability density is 65 

especially important to predict extreme values. Therefore, the use of probabilistic post-processing techniques such as the NGR, 66 

the AKD and BMA, may greatly enhance the overall performance of the ETo forecasts compared to the simple MOS 67 

procedures. 68 

Only a few studies have considered probabilistic methods for post-processing ETo forecasts. These include the works of Tian 69 

and Martinez (2012a, 2012b, and 2014), and more recently Zhao et al (2019). The former authors showed the Analog Forecast 70 

(AF) method to be useful for the post-processing ETo forecasts based on Global Forecast System (GFS, Hamill et al., 2006) 71 

and Global Ensemble Forecast System (GEFS, Hamill et al., 2013) reforecasts. Tian and Martinez (2014) found that water 72 

deficit forecasts produced with the post-processed ETo forecasts had higher accuracy than those produced with climatology. 73 

On other hand, Zhao et al. (2019) improved the skill and the reliability of the Australian BoM model using a Bayesian joint 74 

probability (BJP) post-processing approach, which is based on the parametric modelling of the joint probability distribution 75 

between forecast ensemble means and observations. However, a main disadvantage of both the AF and the BJP methods 76 

compared to the aforementioned emerging probabilistic approaches is that, while they transform the spread of the ensembles, 77 

they rely on the mean of retrospective reforecasts, thus neglecting information about their dispersion. The AF approach also 78 

require long time series of retrospective forecasts, and may be unsuitable for extreme events forecasting (e.g., Medina et al., 79 

2019). The AKD, NGR and BMA methods produce continuous predictive density distributions, which may be useful for the 80 

decision making (Gneiting, 2014), and perform commonly well with relatively short training datasets (Geiting et al., 2005; 81 

Raftery et al., 2005; Wilks and Hamill, 2007). The use of novel forecasting strategies relying on the postprocessing of single 82 

and multi-model forecasts with these emerging probabilistic techniques provide good opportunities for improving the ETo 83 

predictions. 84 

While ETo forecasts based on global medium range NWP have been mostly focused on the daily timescale (Perera et al., 2014; 85 

Silva et al., 2010; Tian and Martinez, 2012a, b, 2014; Medina et al., 2018), weekly ETo forecasts are also important for users. 86 

Studies show that both daily and weekly forecasts have increasing influence on the decision makers in agriculture (Prokopy et 87 

al., 2013; Mase and Prokopy, 2014) and water resource management (Hobbins et al., 2017).  For example, irrigation is 88 

commonly scheduled considering both daily and weekly basis while weekly evapotranspiration forecasts are useful for 89 

planning water allocation from reservoirs, especially in cases of shortages. Weekly ETo anomalies can also be useful to provide 90 

warnings of wild-fires (Castro et al., 2003) and evolving flash drought conditions (Hoobins et al., 2017). Therefore, accounting 91 

for the post-processing of both daily and weekly ETo predictions provides a more comprehensive view of the capabilities of 92 

these forecasting approaches than considering only daily predictions while better fits the user’s actual needs.  93 

In this paper, we are addressing several scientific questions which have not been adequately studied in previous literature, 94 

including, how effective are the new probabilistic post-processing methods compared with the traditional MOS bias correction 95 

methods for post-processing ETo forecasts? Is it worth implementing the probabilistic post-processing for multi-model rather 96 

than single-model ensemble forecasting? For the first time, this work aims to evaluate and compare multiple novel strategies 97 
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for post-processing both daily and weekly ETo forecasts using the emerging probabilistic approaches. The study represents a 98 

major step forward with respect to Medina et al. (2018), which evaluated the performance of raw and linear regression bias 99 

corrected daily ETo forecasts produced with single and multi-model forecasts. It provides a broad characterization of the 100 

performance for different probabilistic post-processing strategies but also diagnoses the causes of high and low performance. 101 

2 Methods and Datasets 102 

2.1 The probabilistic methods 103 

The NGR, AKD and BMA techniques follow a common strategy: they yield a predictive probability density function (PDF) 104 

of the post-processed forecasts 𝑦 given the raw forecasts 𝑥 and some fitting parameters 𝜃 (𝑝ሺ𝑦|𝑥, 𝜃ሻ). The parameters 𝜃 are 105 

fitted using a training dataset of ensemble forecasts and observations, as in the MOS techniques. Below is a brief description 106 

of each technique.  107 

2.1.1 Non-Homogeneous Gaussian Regression 108 

 The NGR (Gneiting et al., 2005) produces a Gaussian predictive (PDF) based on the current ensemble (of typically multi-109 

model) forecasts. If 𝑥  denote the 𝑗 th ( 𝑗 ൌ 1, … , 𝑚 ) ensemble forecast member of model 𝑖  ( 𝑖 ൌ 1, … , 𝑛ሻ , then 110 

𝑝ሺ𝑦|𝑥, 𝜃ሻ ~ 𝒩ሺ𝜇, 𝑣ሻ, where the mean: 111 

𝜇 ൌ 𝑎  ∑ 𝑏�̅�

ୀଵ            (1) 112 

is a linear combination of the mean ensemble forecasts �̅� and the variance:  113 

𝑣 ൌ 𝑐  𝑑𝑆ଶ            (2) 114 

is a linear function of the ensemble variance 𝑆ଶ. The fitting parameters 𝑎, 𝑏 , 𝑐 and 𝑑 are determined by minimizing the 115 

continuous rank probability score (CRPS) using the training set of forecasts and observations. Notice that parameters 𝑎, 𝑐 and 116 

𝑑 are indistinguishable among exchangeable members; therefore the 𝑏 can be seen as a weighting parameters that reflect the 117 

better or worse performance of one model compared to the others. The NGR technique is implemented in R (R Core Team) 118 

using the packages ensembleMOS (Yuen et al., 2018),  119 

2.1.2. Affine Kernel Dressing 120 

The affine kernel dressing method (Bröcker and Smith, 2008) only considers single model ensemble forecasts. It 121 

estimates 𝑝ሺ𝑦|𝑥, 𝜃ሻ using a mixture of normally distributed variables: 122 

𝑝ሺ𝑦|𝑥, 𝜃ሻ ൌ
ଵ

ఙ
∑ 𝐾 ቀ

௬ି௭ೕ

ఙ
ቁ

ୀଵ           (3) 123 

where 𝐾 represents a standard normal density kernel (𝐾ሺ𝜉ሻ ൌ 1 √2𝜋⁄ expሺെ 1 2𝜉ଶ⁄ ሻ), centered at 𝑧, such that: 124 

𝑧 ൌ 𝑎𝑥  𝑟ଵ  𝑟ଶ�̅�           (4) 125 

and, 126 
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𝜎ଶ ൌ ℎ௦
ଶ൫𝑠ଵ  𝑠ଶ𝑢ሺ𝒛ሻ൯           (5) 127 

where ℎ௦  is the Silversman’s factor (Bröcker and Smith, 2008), 𝑢ሺ𝒛ሻ is the variance of 𝒛 and 𝑎 , 𝑟ଵ ,𝑟ଶ , 𝑠ଵ , 𝑠ଶ  are fitting 128 

parameters obtained by minimizing the mean Ignorance score. For clarity we use the same nomenclature for the parameters as 129 

in the original study. From Eqs. 4 and 5 we can obtain that the predictive variance 𝑣 is a function of the ensemble variance 𝑆ଶ 130 

(Brocker and Smith, 2008): 131 

𝑣 ൌ ℎ௦
ଶ𝑠ଵ  𝑎ଶሺ1  ℎ௦

ଶ𝑠ଶሻ𝑆ଶ ൌ 𝑐∗  𝑑∗𝑆ଶ          (6) 132 

Here, 𝑆ଶ represents the variance of the ensemble of exchangeable members. 133 

The AKD technique is implemented through the SpecsVerification R package (Siegert, 2017). 134 

2.1.3 Bayesian Model Averaging 135 

The BMA method (Raftery et al. 2005, Fraley et al., 2010) also produces a mixture of normally distributed variables, as the 136 

AKD method, but based on multi-model forecasts. In this case the predictive PDF is given by a weighted sum of component 137 

PDFs, 𝑔൫𝑦ห𝑥,; 𝜃  ൯, one per each member: 138 

𝑝ሺ𝑦|𝑥, 𝜃ሻ ൌ ∑ ∑ 𝑤𝑔൫𝑦ห𝑥,, 𝜃൯

ୀଵ


ୀଵ          (7) 139 

such the weights and the parameters are invariable among members of the same model and 140 

 𝑚𝑤 ൌ 1


ୀଵ
 144 

In the study the component PDFs are assumed normal as for the affine kernel dressing method. Estimates of 𝑤s and 𝜃s are 141 

produced by maximizing the likelihood function using an Expectation Maximization algorithm (Casella and Berger, 2002). 142 

The BMA technique is implemented through the ensembleBMA R package (Fraley et al., 2016). 143 

2.2 Measurement and forecast datasets 145 

ETo observations and forecasts were computed with the FAO-56 PM equation (Allen et al., 1998), from daily meteorological 146 

data as inputs. They covered the same period, between May and August from 2014 to 2016. The observations used daily 147 

measurements of minimum and maximum temperature, minimum and maximum relative humidity, wind speed, and surface 148 

incoming solar radiation from 101 U.S. Climate Reference Network (USCRN) weather stations. The USCRN stations are 149 

distributed over nine climatologically consistent regions in CONUS (Fig. 1). The ETo forecasts used daily maximum and 150 

minimum temperature, solar radiation, wind speed, and dew point temperature reforecasts of European Centre for Medium-151 

Range Weather Forecasts model (ECMWF) outputs, United Kingdom Meteorological office model (UKMO) outputs, and 152 

National Centers for Environmental Prediction model (NCEP) from The International Grand Global Ensemble (TIGGE; 153 

Swinbank et al. 2016) database at each of these stations, considering a maximum lead time of 7 days. The weekly forecasts 154 

accounted for the sum of the daily predictions generated a specific day of each week, and the weekly observations considered 155 

the sum of the daily observations over the corresponding forecasting days, such that the weekly observations were independent 156 
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each other. In the study, we used the nearest neighbor approach to interpolate the forecasts to the USCRN stations, which does 157 

not account for the effects of elevation. While the use of interpolation techniques considering the effects of elevation (e.g. van 158 

Osnabrugge et al., 2019) may correct part of the forecasts errors before the post-processing, it could also affect the multivariate 159 

dependence of the weather variables. Hagedorn et al. (2012) showed that the post-processing can not only address the 160 

discrepancies related to the model’s spatial resolution, but also serve as a means of downscaling the forecasts. 161 

2.3 Post-processing schemes 162 

2.3.1 Training and verification periods 163 

The training data for the daily post-processing comprehended the pairs of daily forecasts and observations corresponding from 164 

30 days prior to the forecast initial day, as in Medina et al. (2018). Instead, the training data for the weekly post-processing 165 

comprehended all the other pairs of weekly forecasts and observations available for the forecast location, similarly as in the 166 

case of a leave one out cross validation framework. In the study both the daily and weekly forecasts were verified for events 167 

over June-August, 2014-2016. 168 

2.3.2 Baseline approaches 169 

Linear regression bias correction (BC) of the ECMWF forecast was used as a baseline approach for measuring the effectiveness 170 

of the NGR, the AKD and the BMA methods considering both daily and weekly forecasts. Here, the current forecasts bias is 171 

estimated as a linear function of the forecasts mean, and the members of the ensemble are shifted accordingly. The function is 172 

calibrated using the forecasts mean and the actual biases from a retrospective set of forecasts and observations. Persistence is 173 

also used as a baseline approach for weekly forecasts, considering its applicability in productive systems. In this case the ETo 174 

for a current week is estimated as the observed ETo during the previous week. 175 

2.3.3 Forecasting Experiments 176 

Table 1 summarizes the daily and weekly NWP-based ETo forecasting experiments based on different post-processing 177 

methods and model combinations. The analyses of the daily forecasts make more emphasis on the differences among post-178 

processing methods. They include an examination of the effect of the duration of the training period on the forecasts 179 

assessments as well as the regression weights from the tested post-processing methods. Whereas, the weekly forecasts make 180 

more emphasis on the differences among the several single and multi-model ETo forecasts under baseline and probabilistic 181 

post-processing. 182 

2.4 Forecast verification metrics 183 

In this study we use several metrics to evaluate deterministic and probabilistic forecast performance of the post-processed ETo 184 

forecasts. For consistency purposes, the metrics of the tested methods were assessed using 50 random samples, i.e., same 185 
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number as members in the bias corrected ECMWF forecasts. Deterministic ETo forecast was produced by taking the average 186 

of the ensemble members. The deterministic forecast performance was assessed using the bias or mean error, the root mean 187 

square error (RMSE) and the correlation (), which are common measures of agreement in many studies. Both the relative and 188 

the absolute bias and RMSE are calculated and reported.  189 

The probabilistic forecast performance was assessed using the spread-skill relationship (see Wilks, 2011) and the forecast 190 

coverage as measurements of the forecast reliability, and the Brier Skill Score as a measurement of the skill. Reliability here 191 

refers to the statistical consistency (as in Toth et al. 2003), which is met when the observations are statistically indistinguishable 192 

from the forecast ensembles (Wilks, 2011). The spread-skill relationship are represented as binned-type plots (e.g., Pelosi et 193 

al., 2017), accounting for the mean of the ensemble standard deviation deciles (as an indication of the ensemble spread) against 194 

the mean RMSE of the forecasts in each decile over the verification period. The plots include the correlation between these 195 

two quantities. Calibrated ensembles should show a 1:1 relationship between the standard deviations and the RMSE. If the 196 

forecasts are unbiased and the spread is small compared to the RMSE, then the ensembles tend to be under-dispersive. The 197 

inverse of the spread provides an indication of sharpness, which is the level of “compactness” of the ensemble (Wilks, 2011). 198 

In addition to the spread skill relationship, we also report the ratio between the observed and nominal coverage (hereinafter 199 

referred as coverage ratio). The coverage of a ሺ1 െ 𝛼ሻ100 %, 𝛼 ∈  ሺ0, 1ሻ , central prediction interval is the fraction of 200 

observations from the verification data set lying between 𝛼/2  and 1 െ 𝛼/2 quantiles of the predictive distribution. It is 201 

empirically assessed by considering the observations lying between the extreme values of the ensembles. The nominal or 202 

theoretical coverage of a calibrated predictive distribution is ሺ1 െ 𝛼ሻ100 %. A calibrated forecast of  𝑚 ensemble members 203 

provides a nominal coverage of about ሺ𝑚 െ 1ሻ ሺ𝑚  1ሻ⁄ 100 % central prediction interval (e.g., Beran and Hall, 1993). For 204 

example, an ensemble of 50 members provides 96% central prediction interval. The ratio between the observed and nominal 205 

coverages provides a quantitative indicator of the quality of the forecasts dispersion under unbiasedness: a ratio lower (larger) 206 

than 1 suggest that the forecasts tend to be under (over) dispersive. Finally, the BSS represents a traditional skill-score 207 

relationship that adopts the Brier score (Wilks, 2011), as the accuracy measure. In this study we compute the BSS associated 208 

to the tercile events of the ETo forecasts (upper or 1st, middle or 2nd, and lower or 3rd terciles), exactly as in Medina et al. 209 

(2018). 210 

3 Results 211 

3.1 Comparing the NGR, AKD and BMA methods at daily scale 212 

3.1.1 Deterministic forecast performance  213 

Figure 2 shows the relative bias and RMSE as well as the correlation of the forecasts post-processed using different approaches 214 

over the southeast (SE) and northwest (NW) regions. In general, the probabilistic post-processing methods add no additional 215 

skill to the deterministic forecast performance compared to the simple bias correction. While the RMSE are relatively high, 216 
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the bias is very low, which indicates that the errors are mostly random. The BMA and the simple linear regression methods 217 

provided lower bias than the NGR and AKD methods. Instead, the BMA method provided higher RMSE and lower correlations 218 

than the other three methods at long lead times.  219 

3.1.2 Probabilistic forecast performance 220 

The spread-skill relationship in Figure 3 shows that the probabilistic post-processing methods considerably improved the 221 

reliability of the ETo forecasts compared with the linear regression bias correction (Figure 3). The former methods tend to 222 

correct evident shortcomings of the ensemble raw forecasts which are unresolved by the simple post-processing, i.e., the 223 

considerably under-dispersion at short lead times, and the poor consistency between the ensemble spread and the RMSE at 224 

longer lead times. The adjustments had a low cost in terms of sharpness, judging by the range of ensemble spreads for the 225 

different line plots, but seemed slightly insufficient. The correlations between the ensemble standard deviation and the RMSE 226 

are fairly low, suggesting a limited predictive ability of the spread (Wilks, 2011). Nonetheless, they were consistently higher 227 

for probabilistic post-processing methods, compared to the linear regression method, and at short lead times, compared to the 228 

long lead times. The performance was low sensitive to the type of probabilistic post-processing, independent of the single or 229 

multi-model forecasts strategy, although the BMA post-processing provided slightly lower correlations, especially for longer 230 

lead times. The coverage ratios in table 2 provides quantitative insights about the forecasts under-dispersion for the different 231 

strategies. The simple bias corrected ECMWF forecasts provided a mean coverage ratio of 77%, but it can be as low as the 232 

50%. The other forecasts provided coverage ratios of over 91%.  The ratios were slightly better (i.e., closer to one) using the 233 

BMA method than with the NGR and the AKD methods, and using single ECMWF forecasts than with the ECMWF- UKMO 234 

and the ECMWF-NCEP- UKMO forecasts.  235 

The NGR and AFK methods provided better Brier skill score (BSS) than the BC method for the three categories of ETo values, 236 

with improvements being higher for the middle tercile, than for the lower and upper terciles (Figure 4). The BMA based skill 237 

scores tended to decrease with lead time. On west regions (SW, W and NW) and at short lead days the multi-model forecasts 238 

post-processed with the NGR were the most skillful; in the other cases the ECMWF forecasts post-processed with the NGR 239 

and the AKD methods tended to be best.  240 

3.1.3 Summary of average performance for daily forecast  241 

Table 3 shows the average performance for the lead days 1 and 7, by weighting the values of each metric according to the 242 

number of stations in each region. The ECMWF- UKMO forecasts post-processed with the NGR method were best at short 243 

lead times (1-2 days), while the ECMWF forecasts post-processed with the AKD and the NGR methods were the first and 244 

second best at the longer lead times. The BMA method performed well at short lead times but poorly at long times, while the 245 

simple bias correction method performed well for deterministic forecasts, but poorly for the probabilistic forecasts. The 246 

forecast performance across climate regions is also associated with the choice of the ECMWF forecasts or the multi-model 247 

forecasts (Table 4). The single model ECMWF forecasts performed better over northern climate regions than the multi-model 248 
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ensemble forecasts, while the multi-model did better than any single model forecast over the western regions. The performance 249 

over the other regions was more variable among strategies. The performance of the ECMWF- UKMO forecasts was generally 250 

better than that of the ECMWF-NCEP- UKMO forecasts (see Table 4, and Figs. 2 and 4). Unlike other performance metrics, 251 

the coverage was mostly better for the ECMWF forecasts than for the multi-model forecasts. 252 

3.1.3 Effect of the length of training period 253 

The choice of an “optimum” training period is an important issue related to the operational use of post-processing techniques 254 

for ETo forecasts. Here we compared the performance of different forecasts post-processed with NGR and AKD techniques 255 

using 45 and 30 training days. The results suggest that the payoff from using 45 days is practically minimal. Table 5 shows 256 

the percentage differences the forecasting performance of using 45 and 30 training days for post-processing. While there are 257 

generally some minor improvements for using 45 days than 30 days, which tend to be higher at longer lead times than shorter 258 

times, these improvements usually represent less than 3 percent of original statistics. The largest percentage difference, 259 

accounting for the BSS at the middle tercile, actually represented a negligible gain in absolute terms since they were affected 260 

by the close-to-zero range of the variable. The improvements were a bit higher for multi-model forecasts than for single model 261 

forecasts. 262 

3.1.4 Weighting coefficients 263 

The weighting coefficients reflect both the performance of the ensemble models and the performance the post-processing 264 

techniques relative to their counterparts. Figure 5 shows the mean 𝑏 (Eq. 1) weighting coefficients of the NGR technique and 265 

𝑤 (Eq. 7) weighting coefficient of the BMA techniques for each region and lead time for the post-processed ECMWF-NCEP-266 

UKMO, respectively. The coefficients for the NGR and BMA techniques exhibited some common patterns of variability across 267 

regions and lead times. Both methods show that the weights of the ECMWF forecasts are at overall the highest, with a clear 268 

maximum at medium lead times; the weights of the  UKMO model are the highest at 1 and 2 days, but sharply decreases with 269 

the lead time, while the weights of the of the NCEP model are in general the lowest, although they consistently increase with 270 

lead time. It explains well the most outstanding features of the performance assessments, in relation to the role of each model, 271 

and the dependence on regions and lead times. Compared to the NGR method, the BMA method gives the  UKMO forecasts 272 

a higher relative weight, at the expense of the ECMWF forecast weights. For example, the weighting coefficients of the BMA 273 

method over the west regions are consistently higher for the  UKMO forecasts than for the ECMWF forecasts. It suggests that 274 

the lower performance of the BMA post-processing relative to the NGR and the AKD methods may be related to a 275 

misrepresentation of the model weights on the performance. This in turn may be caused by convergence problems during the 276 

parameter optimization with the expectation-maximization algorithm (Vrugt et al., 2008).  277 

We observed considerable similarities on the distribution of variance coefficients for the NGR method (Eq. 2) and the AKD 278 

(Eq. 6) method after post-processing the ECMWF forecasts. The two methods also provide very similar adjustments on the 279 

mean forecast because, unlike the BMA method, they independently bias correct the mean and optimize the spread-skill 280 
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relationship, (Bröcker and Smith, 2008). However, the computing speed using the NGR method is about 60 times faster than 281 

using the AKD, which was perceived as the main drawback of the AKD method. The BMA method is also more 282 

computationally demanding than the NGR method but less than the AKD method. Considering the effectiveness, 283 

computational efficiency and versatility of the NGR method, we applied this probabilistic technique to weekly ETo forecasts 284 

based on single model and multi-model ensembles.  285 

3.2 Assessing NGR methods for post-processing weekly ETo forecasts 286 

3.2.1 Deterministic forecast assessments  287 

As for the daily predictions, the bias, the RMSE and the correlation of the weekly forecasts post-processed with the NGR 288 

method and the linear regression methods were similar (Fig. 6). However, while the RMSE of daily forecasts based on ECMWF 289 

model varies between 12 and 20 % of the total ETo (Fig. 2), the RMSE for any of weekly forecasting strategies commonly 290 

varies between 8 and 11%, which is lower than for daily forecasts, making it more useful for operational purpose. The post-291 

processed forecasts showed much lower RMSE and twice higher correlation than the predictions based on persistence, with 292 

the weekly predictions based on ECMWF forecasts being generally better, followed by the predictions based on the UKMO 293 

forecasts. 294 

3.2.2 Probabilistic forecast assessments  295 

Both the skill and the reliability of the weekly forecasts considerably improved through the NGR post-processing compared 296 

with the bias correction post-processing (Table 6). The improvements were different among ETo forecast models. In most 297 

cases, the better the forecasts performance, the lower the improvements are. The adjustments in the coverage ratio and the 298 

Brier skill score were about 2.5 and 5 times larger for the  UKMO and the NCEP forecasts, respectively, than for the ECMWF 299 

forecasts. The bias corrected ECMWF forecasts are generally better than both the  UKMO and NCEP forecasts post-processed 300 

with the NGR method. We found that the post-processing of the NCEP forecasts with methods like the NGR is almost 301 

mandatory to get reasonable probabilistic weekly forecasts. For example, the coverage ratio of the bias corrected forecasts on 302 

the West region was only 29%, because of the considerable under-dispersion. However, it is notable that, once they were post-303 

processed with the NGR technique, they performed almost comparably to the  UKMO forecasts post-processed with the same 304 

method. Table 6 also shows that the multi-model ECMWF- UKMO weekly forecasts are commonly the best among all of 305 

those post-processed using the NGR method, followed by the ECMWF and the ECMWF-NCEP- UKMO forecasts. 306 

The improvements in the reliability came through substantial adjustments both in the ensemble spread and spread-skill 307 

relationship of the raw forecasts (Fig. 7). The correlations between the standard deviation of the ensembles and the RMSE 308 

were more than twice larger through the NGR post-processing than through the linear regression bias correction. The 309 

adjustments seemed even slightly more effective than those resulting from the probabilistic post-processing of the daily 310 
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forecasts (Fig. 3), although at the expense of a greater loss of sharpness. The contrasts in the post-processing effectiveness are 311 

probably associated with the differences in the training strategies. 312 

In the case of the probabilistic forecast skill (Fig. 8), the improvements were larger for the middle tercile than for the other two 313 

terciles, similarly as with daily forecasts. Unlike the bias corrected forecasts, any of the probabilistically post-processed 314 

forecasts outperform climatology for practically any event and at any region. Maybe more importantly, the skill for the lower 315 

and upper tercile events of the forecasts that have been post-processed with the NGR method is in most cases over 30% better 316 

than the skill of climatology. In the coast regions, from the South to the Northwest the skill is commonly over 50% better, 317 

similarly as for the daily forecasts. Finally, the improvements resulting from the use of multi-model forecasts compared to the 318 

single mode forecasts were generally small, except for the Southwest region.  319 

4. Discussion 320 

4.1 Effects of probabilistic post-processing on ETo forecasting performance 321 

This study showed that NGR, AKD and BMA post-processing schemes considerably improved the probabilistic forecast 322 

performance of the daily and weekly ETo forecasts compared with the simple bias correction method. While sharpness is a 323 

wished quality of any forecast, the daily and weekly bias corrected ETo forecasts from NWP are spuriously sharp, which leads 324 

to a poor consistency between the range of the ETo forecasts and the true values, and ultimately undermine the confidence on 325 

those forecasts. They also experiment a poor consistency in that the variance of the ensembles are commonly insensitive to the 326 

size of the forecast error.  The probabilistic post-processed methods provided a much better reliability, with a coverage which 327 

is close to the nominal value, and at a low cost on sharpness. Therefore, they lead to a much better agreement between the 328 

forecasted probability of having an ETo event between certain thresholds and the proportions of times that the event occur (see 329 

Gneitting et al., 2005). In the case of the weekly ETo forecasts, the rate of the improvements are considerably smaller for the 330 

ECMWF forecasts, than for the UKMO, and especially the NCEP forecasts. The probabilistic post-processing of the weekly 331 

NCEP forecasts seemed practically mandatory to produce reasonable predictions, but once implemented it provided 332 

performance assessments almost comparable to those based on the  UKMO forecasts. These results have important implications 333 

for operational ETo forecasts, such as the U.S. national digital forecast database, one of the few operational products of its 334 

type, which are based on the NCEP forecasts. 335 

Unlike the probabilistic forecast metrics, the deterministic metrics (bias, RMSE and correlation) are low sensitive to the form 336 

(deterministic or probabilistic) of post-processing. In particular, the RMSE and correlation seemed more affected by the choice 337 

of the single or multi-model forecast strategy than the choice between the NGR, the AKD or the simple bias correction as post-338 

processing method. Whereas, RMSE and correlation provided by the BMA method are consistently worse at long lead times. 339 

The daily errors under any post-processing were relatively large, but mostly random, and therefore tend to cancel out at weekly 340 

scales. Therefore, while the RMSE varied between 12% and 20% of the daily totals, it represented between 8% and 11% of 341 

the weekly totals. The RMSE for weekly ETo forecasts were in all cases more than 100% lower than for the persistence-based 342 

https://doi.org/10.5194/hess-2019-369
Preprint. Discussion started: 12 August 2019
c© Author(s) 2019. CC BY 4.0 License.



12 

ETo forecasts, and potentially more skillful than the forecasts that exploit the temporal autocorrelation of the ETo timeseries 343 

(e.g., Landeras et al., 2009; Mohan and Arumugam, 2009). 344 

4.2 Comparing the three probabilistic post-processing methods 345 

The NGR and AKD based post-processing methods for the ECMWF forecasts produced comparable results, indicating that 346 

the simple Gaussian predictive distribution from the NGR method represents well the uncertainty of the ETo predictions. The 347 

methods led to similar distribution of the first two moments of the predictive probability function and similar performance 348 

statistics (with the AKD based forecasts being just slightly better). However, the NGR method requires less computing time 349 

and is more versatile since it can be applied to correct both single model and multi-model ensemble forecasts, while the AKD 350 

method can only be applied to correct single model forecast. The NGR based predictive distribution function is also easier to 351 

manipulate and interpret than the AKD based predictive distribution, which is given by an averaged sum of standard Gaussians.  352 

The BMA method performed slightly less desirable compared to the NGR and AKD presumably due to issues with the 353 

parameter identifiability. The implemented method uses the Expectation-Maximization (EM) algorithm to produce maximum 354 

likelihood estimates of the fitting coefficients, which is susceptible to converge to local minima, especially when dealing with 355 

multi-model forecasts with very different ensemble sizes (Vrugt et al., 2008). Archambeau et al. (2003) demonstrated that, in 356 

presence of outliers or repeated values, this algorithm tends to identify local maximums of the likelihood of the parameters of 357 

a Gaussian mixture model. Tian X. et al. (2012) found that adjusted BMA coefficients using both a quasi-Newtonian limited 358 

memory algorithm and the Markov Chain Monte Carlo were more accurate than those fitted with the EM algorithm. 359 

4.3 Multi-model ensemble versus single model forecasts 360 

Daily multi-model ensemble forecasts performed better than daily ECMWF forecasts at short lead times (1-2 days) and over 361 

the western and southern regions, while the ECMWF forecasts are better over the northeastern regions for longer lead times. 362 

We observed similar patterns for the raw and simple bias corrected forecasts (Medina et al., 2018). Whereas, the effect of the 363 

multi-model forecast is generally inconsistent at weekly scales, seemingly due to the variable impact of the forecasting strategy 364 

with lead days. The observed behavior is associated with the performance of the ECMWF forecasts relative to the  UKMO 365 

forecasts. While the ECMWF forecasts are in general better than the  UKMO and NCEP forecasts, they are much better over 366 

the northeastern regions for medium lead times (4-6 days). The  UKMO forecasts are in many cases the best at 1 and 2 lead 367 

days, but tend to be the worst at the longest times (6-7 days), especially over these regions. The NCEP forecasts had a small 368 

contribution with respect to the ECMWF and  UKMO forecasts at short lead times. These forecasts are comparatively better 369 

at longer lead times, but still keep a minor role with regard to the ECMWF forecasts.  370 

When considering daily forecasts we adopted a length of the training period of 30 days and showed that by increasing the 371 

length to 45 days the improvements were small (commonly lower than three percent). This seems a plausible range for future 372 

works and represents an obvious advantage upon methods such as the analog forecast, which provide similar performance 373 

(Tian and Martinez 2012 a, b, 2014) but require long training datasets. Gneiting et al. (2005) and Wilson (2007) found that 374 
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lengths between 30 and 40 days provided good and almost constant performance assessments of sea level pressure forecasts 375 

post-processed with the NGR method, and temperatures forecasts post-processed with the BMA method, respectively. 376 

4.4. Future outlook 377 

It is worth noting that, while the ETo forecasts are produced for being used in agriculture, they were tested over USCRN 378 

stations, which are not representative of agricultural settings. In real applications, the bias between the forecasts with no post-379 

processing and the measurements based on agricultural stations could be higher than the bias resolved in this study. A question 380 

that should be addressed in the future studies is to what extent the improvements of the predictive distribution of the ETo 381 

forecasts can be translated into a more reliable representation of the crop water use in agricultural lands and, ultimately, in 382 

water savings and economic gains. Since the ETo estimations can have remarkable impacts on the soil moisture estimations 383 

(Rodriguez-Iturbe et al., 1999), we envision that new studies relying on the combination of rainfall and ETo forecasts post-384 

processed with probabilistic methods will lead to considerable reductions on the uncertainty of soil moisture forecasts. New 385 

attempts should also investigate the role of the emerging probabilistic post-processing techniques on ETo forecasts produced 386 

from regional numerical weather prediction models, which have had improved spatial resolution and already been used in 387 

different meteorological services (e.g., Baldauf et al. 2011; Seity et al. 2011; Hong and Dudhia, 2012; Bentzien and Friederichs, 388 

2012).  389 

5. Conclusions 390 

This study for the first time evaluated probabilistic methods based on NGR, AKD, and BMA techniques for post-processing 391 

daily and weekly ETo forecasts derived from single or multi-model numerical weather predictions. The different ETo 392 

forecasting strategies were compared against the simple linear regression bias correction method using both daily and weekly 393 

forecasts, and also against persistence in the case of weekly forecasts. The probabilistic post-processing techniques largely 394 

modified the spread of the original ETo forecasts, with very favorably impacts on the probabilistic forecast performance. They 395 

corrected the notable under-dispersion and the poor consistency between the spread of the ETo forecasts and the dimension of 396 

the errors, leading to better skill, and reliability. The adjustments were crucial on the performance of the weekly NCEP 397 

forecasts, followed by the weekly  UKMO forecasts, whose bias corrected versions show a clear disadvantage compared with 398 

the strategies that include the ECMWF forecasts.  399 

The deterministic forecast performance based on the probabilistic methods were comparable to the linear regression bias 400 

correction for both daily and weekly forecasts, and the skill is about 100% higher than those based on persistence in the case 401 

of the weekly forecasts. The RMSE are between 12 and 20% for the daily totals and 8 and 11% for the weekly totals. The NGR 402 

and AKD provided similar estimates of the first and second order moments of the predictive density distribution; they showed 403 

similar effectiveness, but the NGR method exhibited higher flexibility and computational efficiency. Both NGR and AKD 404 

post-processing methods outperformed the BMA method when considering daily forecasts at long lead times.  405 
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The multi-model forecasting provided benefits at daily scales compared to the ECMWF forecasting, while the benefits were 406 

marginal at weekly scales. The multi-model ensemble forecasting seems a better choice when the  UKMO forecasts are 407 

comparable or slightly better than the ECMWF forecasts, such as at short (1-2 days) lead times and over the southern and 408 

western regions. Post-processing single model forecast is a better choice than post-processing multi-model ensemble forecast 409 

in the circumstances where the ECMWF forecasts perform considerably better than the UKMO and NCEP, such as at mid and 410 

long lead times, especially over the northeastern regions. While we considered a length of the training period of 30 days for 411 

daily post-processing, the increase of the training period to 45 days only led to minimal improvements. In conclusion, our 412 

results suggest that the NGR post-processing of ETo forecasts generated from the ECMWF or ECMWF-UKMO predictions 413 

is the most plausible strategy among those being evaluated, and is recommended for operational implementations. 414 
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 557 

Figure 1. U.S. climate regions: NW (North West), WNC (West North Central), ENC (East North Central), NE (North East), 558 
C (Central), SE (South East), C (Central), S (South), SW (South West), W (West). The circles represent the sampled USCRN 559 
stations in the experiment. 560 
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Figure 2. Relative ME, RMSE, and correlation for different lead times over the SE and NW regions. 
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Figure 3. Binned spread-skill plots using all pairs of forecasts and observations at a) 1-day and b) 7-day lead. The correlation 
between the standard deviations and the absolute errors is reported after the colon. The solid line represents the 1:1 
relationship. 
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Figure 4. a) BSS of the ECMWF forecasts post-processed using simple bias correction (used as reference BSS values) and b-
e) differences between the BSS of the ECMWF forecasts post-processed with the b) NGR and c) AKD methods and the 
ECMWF-NCEP-UKMO forecasts post-processed with the d) NGR and e) BMA methods and the reference BSS. 
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Figure 5. Regional mean weight coefficient b of the NGR technique (left panel) and the weight coefficient w of the BMA technique (right panel) 
for the post-processed ECMWF-NCEP-UKMO forecasts at different lead days. 
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Figure 6. Relative bias, relative RMSE and correlation of weekly forecasts 
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Figure 7. Binned spread-skill plot for the weekly forecasts using all pairs of forecasts and observations. The correlation 
between the standard deviations and the absolute errors is reported after the colon. The solid line represents the 1:1 
relationship. 
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Table 1. Evaluated schemes for daily and weekly ETo forecasts, with different post-processing methods: BC (simple bias correction), NGR 
(nonhomogeneous Gaussian regression), AKD (affine kernel dressing), and BMA (Bayesian model averaging), and different model and ensemble 
schemes: ECMWF (European Centre for Medium-Range Weather Forecasts model), NCEP (National Centers for Environmental Prediction model), 
and UKMO (United Kingdom Meteorological office model), ECMWF-UKMO (ensemble of ECMWF and UKMO), ECMWF-NCEP-UKMO 
(ensemble of ECMWFMWF, NCEP, and UKMO). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Persistence  BC NGR  AKD BMA 

   ECMWF NCEP UKMO ECMWF NCEP UKMO ECMWF-UKMO ECMWF-NCEP-UKMO ECMWF ECMWF-UKMO ECMWF-NCEP-UKMO

Daily         

Weekly          
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Table 2. Minimum, mean and maximum coverage ratios over all the climate regions and lead times for different methods. See the caption of 
Table 1 for explanations of the methods acronyms.  

  
BC  

ECMWF
NGR  

ECMWF
AKD  

ECMWF
NGR  

ECMWF-UKMO 
BMA  

ECMWF-UKMO 
NGR  

ECMWF-NCEP-UKMO 
BMA  

ECMWF-NCEP-UKMO 
Minimum coverage ratio 49.69 94.27 94.69 93.23 94.38 92.60 91.35 

Mean coverage ratio 76.67 95.73 96.25 94.90 96.98 94.38 96.88 

Maximum coverage ratio 93.13 98.02 98.33 97.29 99.38 96.56 99.58 
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Table 3. Spatial weighted average values of daily forecast metrics over all climate regions for different methods at lead days 1 and 7. See the 
caption of Table 1 for explanations of the methods acronyms. Numbers in bold indicate the best performance for each lead day. 

  BC NGR AKF NGR BMA NGR BMA
  ECMWF ECMWF ECMWF ECMWF-UKMO ECMWF-UKMO ECMWF-NCEP-UKMO ECMWF-NCEP-UKMO
 1 day 7 days 1 day 7 days 1 day 7 days 1 day 7 days 1 day 7 days 1 day 7 days 1 day 7 days
rBias (%) 0.822 1.203 1.695 2.682 1.626 2.419 1.327 2.735 0.632 0.939 1.394 2.778 0.490 0.626 

rRMSE (%) 14.38 19.64 14.59 19.88 14.47 19.76 13.68 19.67 13.65 20.15 13.59 19.67 13.67 20.28 

Bias (mm day-1) 0.038 0.057 0.080 0.128 0.077 0.115 0.063 0.131 0.029 0.046 0.067 0.134 0.005 0.006 

RMSE (mm day-1) 0.708 0.950 0.718 0.961 0.716 0.958 0.682 0.965 0.681 0.990 0.681 0.971 0.685 1.002 

Correlation 0.832 0.652 0.829 0.649 0.830 0.649 0.843 0.639 0.841 0.586 0.841 0.635 0.832 0.560 

Coverage ratio 64.54 79.40 95.63 95.44 95.93 96.10 94.24 94.73 96.51 96.56 93.52 94.57 96.47 97.24 

BSS_1st 0.442 0.232 0.492 0.279 0.492 0.282 0.525 0.274 0.519 0.240 0.521 0.271 0.513 0.225 

BSS_2nd 0.042 -0.062 0.201 0.101 0.202 0.101 0.224 0.095 0.214 0.074 0.217 0.089 0.200 0.059 

BSS_3nd 0.433 0.300 0.496 0.359 0.499 0.358 0.519 0.350 0.515 0.305 0.512 0.338 0.494 0.277 
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Table 5. Percentage differences (averaged over regions) of forecast performance of using 45 days training period with using 
30 days training period for lead days 1 and 7. See the caption of Table 1 for explanations of the methods acronyms. 

  NGR(ECMWF)   AKD(ECMWF)  NGR(ECMWF-UKMO)  NGR(ECMWF-NCEP-UKMO)

  1 day 7 days   1 day 7 days  1 day 7 days  1 day 7 days 

Bias 16.569 18.732  21.654 22.859 4.714 10.089 -0.496 7.070 

RMSE -0.701 -2.641  -1.007 -3.121 -0.404 -3.720 -0.045 -4.742 

Correlation -0.157 0.525  -0.141 0.605 -0.099 1.332 -0.467 0.741 

Cov. Ratio 1.276 0.954  1.615 1.257 1.701 1.495 1.938 1.338 
BSS_1st -0.884 2.183  -1.164 2.761 -0.212 5.062 -2.600 6.277 
BSS_2nd -1.259 2.764  -1.283 5.680 3.614 8.959 -2.293 5.562 
BSS_3nd -0.382 -1.589   -0.904 -0.212  -1.340 2.632  -1.625 0.240 
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Table 6. Spatial weighted average values of weekly forecast metrics over all climate regions. See the caption of Table 1 for 5 
explanations of the methods acronyms. 

   Persistence   BC  NGR 

       ECMWF NCEP UKMO  ECMWF NCEP UKMO ECMWF-UKMO ECMWF-NCEP-UKMO

rBias (%) -0.288  0.683 0.296 0.097 0.846 0.496 0.305 0.764 0.814 

rRMSE (%) 22.108  8.872 10.453 9.460 8.952 10.571 9.599 8.753 8.661 

Bias (mm week-1) -0.086  0.217 0.077 0.007 0.277 0.145 0.080 0.246 0.268 

RMSE (mm week-1) 7.541  3.059 3.634 3.306 3.086 3.675 3.353 3.059 3.064 

Correlation 0.530  0.872 0.806 0.835 0.870 0.801 0.829 0.863 0.856 

Coverage (%)   78.40 48.07 62.92 99.29 98.58 98.13 97.74 97.40 

BSS_1st   0.508 0.326 0.448 0.529 0.430 0.501 0.547 0.506 

BSS_2nd   0.164 -0.147 0.069 0.238 0.150 0.204 0.255 0.225 

BSS_3nd     0.528 0.371 0.468  0.553 0.461 0.515 0.558 0.550 
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