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Brief Summary of the Paper:  

[1] This paper presents a novel approach to the problem of catchment-scale modeling.   

[2] The classical “hydrological community” approach is to develop conceptual models (CM) of catchment-scale 
input-state-output behavior that have fixed/rigid structures and parameterizations – that reflect our 
“scientific/physical” understanding of internal catchment structure (architecture) and functioning (processes and 
their interactions) – and to then apply these rigid pre-specified structures to different locations by altering the values 
of the (largely empirical) static parameters that are initially left unspecified (except typically to within “feasible 
ranges”).   

[3] Major challenges associated with this CM approach have been discussed in the literature, including the fact 
that the proposed rigid model structures are difficult to update/correct based on their inability to reproduce 
observed input-output dynamics sufficiently well (Bulygina and Gupta 2009, 2010, 2011; Gupta and nearing 2014; 
nearing and Gupta 2015), and that the free (optimizable) static parameters of such models have proven challenging 
to regionalize or relate to observable static data that is expected, based on hydrological understanding, to be 
(directly or indirectly) informative regarding differences in catchment functioning at different locations. 

[4] In contrast, the authors use a machine-learning (ML) approach, based in Long Short-Term Memory Networks, 
that enables learning, from time-series input-output data, the system structural patterns associated with the 
observed dynamical system behaviors. So, while classical catchment CM’s have “universal structural forms” that 
have been posed as hypotheses by scientists observing numerous examples of catchments across the world (or 
across a give region), the ML approach presented herein actually detects and learns the dynamics related attributes 
of such a universal catchment structure by being given access to time-series data from a great many such 
catchments.  

[5] So, while classical catchment models are highly regularized (structurally constrained) using prior knowledge 
and the only remaining learning problem is to find values for the model parameters, the machine-learning approach 
presented herein must both learn the appropriate system structure and the appropriate location specific parameters 
necessary for the resulting model to provide good location specific performance. The lack of strong prior 
regularization means that such models cannot be meaningfully trained on individual catchments and expected to 
give good performance, because the information necessary to unambiguously learn the “dynamical principles of 
catchment-scale hydrological behavior” are generally not going to be readily available in any single catchment data 
set. 

[6] In a previous paper [Rainfall–runoff modelling using Long Short-Term Memory (LSTM) networks, HESS 2018], 
the authors demonstrated that the LSTM type of artificial neural network is suitable for catchment-scale hydrological 
modeling because of its ability to learn the long-term input-output dependencies that are essential for modelling 
the storage effects in catchments (e.g., snow accumulation and melt). They also demonstrated that such an approach 
can be used for regional scale modeling, where a single learned ML model can be used to simulate the discharge at 
a variety of catchments, and that the single ML models encoding of process behavior at the regional scale actually 
helps to improve model performance at each individual catchment through transfer learning (i.e., the multiple-
catchment data helps to regularize the problem, so that the broader knowledge of catchment-scale behavior serves 
to improve the stability of local catchment-scale simulations/predictions). 

[7] In this paper, the authors extend on that work to:  

(1) Demonstrate that such an LSTM can be adapted to be able to capitalize on the availability of observable 
ancillary data in the form of catchment attributes to produce accurate streamflow estimates over a large 
number of basins. 

(2) Show that the ML model can provide statistically significantly better performance (across a large number 
of catchments) than several existing CM type hydrology models that embed prior knowledge regarding 
catchment hydrological structure 



(3) Demonstrate the way in which the ML model makes use of information in the ancillary data about 
catchment characteristics to differentiate between different rainfall-runoff behaviors, thereby enabling the 
superior performance obtained. 

[8] To do so, the authors test two approaches, one in which the LSTM-based model is provided data regarding 
static catchment attributes as additional inputs at every time step (requiring no modification to the typical LSTM 
architecture) , and a second that is developed as a modification to LSTM architecture in which the data regarding 
static catchment attributes is provided separately in a manner that controls (through the input gate) which parts of 
the LSTM structure are activated for any individual catchment.  The call the latter an Entity-Aware-LSTM (EA-LSTM) 
because it explicitly differentiates between similar types of dynamical behaviors that differ between individual 
entities (watersheds).  

[9] The second (EA-LSTM) approach also differs from the first one in that it allows direct posterior inspection of 
the ML-based model structure to investigate what the model has actually learned from the static catchment 
attributes. The authors do this by investigating the nature of the mapping from catchment attribute space into the 
ML-model learned embedding space in which catchments with similar rainfall-runoff behavior are clustered 
together, thereby facilitating a (data-driven) catchment similarity analysis. 

[10] In brief, the authors show that: 

(1) Both the LSTM and EA-LSTM statistically outperformed the regionally-calibrated CM-type benchmark 
models by a large margin, as assessed using the NSE performance metric. 

(2) The multi-basin calibrated EA-LSTM even (statistically) outperformed the individual-basin-calibrated 
hydrological models (a more rigorous benchmark), as assessed using the NSE performance metric. 

(3) The use of catchment attributes as static input features significantly improves overall ML-based model 
performance as compared with when the model is not provided with information regarding catchment 
attributes. While an anticipated finding, the demonstration is both satisfying and convincing. 

(4) The newly proposed EA-LSTM approach provides much better interpretability and potential contributions 
to hydrological understanding and insight regarding catchment similarity compared to the less interpretable 
traditional LSTM, without significant sacrifice of performance as assessed using the NSE performance 
metric. 

(5) The large boost in ML-model performance obtained by providing information regarding static catchment 
features is not simply due to ’remembering’ each basin instead of learning a general relation between static 
input features and catchment specific hydrologic behavior.  Adding noise to the catchment attribute data 
causes only gradual deterioration in predictive performance.  Further, striking improvements are seen for 
basins at the lower end of the performance spectrum which largely represent catchment types that are 
under-represented in the training data set. 

(6) Regional differences in catchment behavior sensitivity to catchment attributes seems consistent with prior 
hydrological understanding (topography in the Appalachian Mountains, climate indices in the Eastern US, 
meteorological patterns as we move away towards the Great Plains, etc.). This observed sensitivity ranking 
is encouraging because most of the top-ranked features are relatively easy to measure or estimate globally 
from readily-available gridded data products.  

(7) Certain groups of catchment attributes did not typically provide much additional information à  these 
included vegetation indices like maximum leaf area index or maximum green vegetation fraction, as well as 
the annual vegetation differences. Further, most of the soil-related attributes were at the lower end of the 
feature ranking; this is interesting because soil characteristics are among the hardest features to 
characterize accurately at a regional scale. 

(8) Clustering of “similar” catchments by the values of the EA-LSTM embedding layer provides more distinct 
results than when clustering by the raw catchment attributes, and seems to be well related to hydrologic 
behaviors, as assessed in terms of a set of 13 hydrologic signatures, indicating that the EA-LSTM embedding 
layer largely preserves the information content about hydrological behaviors, while overall increasing 
distinctions between groups of similar catchments. Further, the EA-LSTM seems able to learn complex 
interactions between catchment attributes that allows for grouping different basins in ways that account 
for interactions between different catchment attributes. 



[11] In addition, the authors demonstrate that when training ML models to learn system structure regarding 
dynamical catchment behavior from large data sets (large numbers of catchments), it is important to account for the 
achievable differences in model performance at each catchment by adjusting the training performance metric.  In 
this regard they propose a modified NSE loss function that seeks to account for the differences in means and 
variances of the observation data across basins, and that the performance (as assessed using MSE) is typically smaller 
for basins with low average discharge. By using the average of the NSE values at each basin that supplies training 
data as the ML-model training metric (referred to as the NSE*), the authors show that: 

(9) Training against the basin-average NSE* loss function improves overall ML-model performance as 
compared with training against an MSE loss function, especially in the low NSE spectra.  In particular there 
is a significant reduction in the number of basins that are classified as ‘catastrophic failures’ (i.e., basins 
with an NSE value of less than zero).   

(10) Because the model outputs, and therefore the number of catastrophic failures, differ depending on the 
randomness in the weight initialization and optimization procedure, running an ensemble of LSTMs can 
substantively reduce this effect.  

My Assessment of the Paper:  

[12] I believe that this paper represents a very significant contribution to the Earth System literature related to the 
development of Dynamical Environmental Systems Models (DESMs). I have alluded to some of the problems 
associated with the conventional CM approach in paragraphs [2-6] above.  In this regard, there has been increasing 
community interest in the use of both “large sample” data sets and the use of “model-structural-correction-via-data-
assimilation” (learning from data) to extract better understanding about the structure and functioning of 
hydrological systems, such as catchments. 

[13] This paper bridges the challenges of learning from large sample data sets and learning how catchments 
structures/behaviors can differ at local to regional scales in a very meaningful way.  While not addressing the 
problem of prediction in un-gaged basins directly, the ability of the EA-LSTM to learn from and characterize 
differences in catchment functioning encoded in catchment attribute data is highly significant, and it would seem 
that a natural next step would be for the authors to demonstrate that potential by running experiments that seek 
to demonstrate that predictive ability learned from gaged locations can be transferred to un-gaged locations.  I look 
forward to reading more about this in the future. 

[14] As such, I have only a few suggestions to offer the authors. The first is that the current title “Benchmarking a 
Catchment-Aware Long Short-Term Memory Network (LSTM) for Large-Scale Hydrological Modeling” presents a 
rather technical front to what is arguably (in my opinion) a much more significant piece of work.  I therefore offer 
up the possibility for the authors to consider that the introduction and discussion/conclusions sections be somewhat 
revamped/broadened to reflect the perspectives offered in my above summary of the paper.  As indicated, I do think 
this paper is really more about the interesting challenges of learning and characterizing (via dynamical systems 
models) the “behavior and functioning” of hydrological systems at the catchment scale in such a manner that both 
universal (fundamentally hydrological) principles, and local-to-regional scale uniquenesses of such systems can be 
learned by accessing the patterns of information encoded in large sample data sets (Gupta et al 2014).  In this regard 
the title could also then be generalized to reflect the nature of the conversation about “Learning Universal, Regional 
and Local Hydrological Behaviors via Machine-Learning applied to Large Sample data Sets”.  Or this more general 
discussion could be saved for a future publication J. 

[15] The second is that while the basin-average NSE* loss function does seem to serve the immediate needs of this 
study, I think that the ML-approach (and more generally hydrological learning from catchment data sets) can benefit 
from a more thoughtful approach to the problem of model performance metrics.  In particular, the use of the 
observed output data “mean” as a benchmark for constructing the NSE itself, and the use of the output data variance 
to “normalize” across catchments to obtain somewhat comparable metric values to be averaged (or otherwise 
summarized in some statistical manner) seems, to me, problematic.  In this regard, I think an Information Theoretic 
approach might ultimately prove to be more meaningful. I point out that the value of the metric, when used as the 
basis for assessing across different catchment locations, would be much enhanced if it somehow recognized the 
relative differences in complexity/difficulty associated with modeling the dynamical input-state-output behaviors at 



different locations (due to climatic, geological, and other factors).  As discussed by Schaefli and Gupta (2007), the 
problem is at least partly one of appropriate benchmarking in order to make metric values meaningfully comparable.  
Some types of catchments (such as humid ones perhaps) are relatively easy to model to the level of obtaining high 
performance (e.g. NSE) values, while others (such as arid ones perhaps) are much more difficult to model … 
potentially requiring more complex model structures, more data, and perhaps better data quality. Since the 
challenge here is learning hydrological principles from the data, and some catchment systems are easier to 
characterize using simpler model structures, it would seem prudent to figure out how to account for this knowledge 
in the designs of our learning systems, which includes the metrics used as the filter through which information is 
being extracted. 

[16] Finally, I think that the aforementioned issue may also relate to the fact that certain catchment attributes tend 
to be dominant indicators of differences in catchment behaviors, while others seem to show “lower importance” 
(sensitivity). It is been well known that “climate” (and one would reasonably expect also “topography”) is the 
dominant indicator of catchment similarity, but this does not really help us to understand what structural differences 
in catchments drive differences in their behaviors.  The finding that soil and vegetation characteristics are low on 
the “importance” list is interesting, as it suggests that the existing catchment attributes being used may not be 
sufficiently informative about catchment-scale soil and vegetation contributions to hydrological behaviors.  So, is it 
a problem of poorly encoded soils and vegetation information at the catchment scale, or is really the case that such 
soils and vegetation do not play as big a role in hydrological behavior as we might expect?  It would be interesting 
to consider how this issue could be better investigated using the ML approach. 

[17] In conclusion, I commend the authors for a very interesting and thought-provoking article, and I recommend 
the paper for publication after only minor revisions, in which the authors can chose to incorporate some of my 
review comments (or responses to them), or not, as they so choose. 

Best Regards 

Hoshin Gupta 
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