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Abstract. The need of fitting time series characterized by the presence of trend or change points has generated in latest years 

an increased interest in the investigation of non-stationary probability distributions. Considering that the available hydrological 

time series can be recognized as the observable part of a stochastic process with a definite probability distribution, two main 

topics can be tackled in this context: the first one is related to the definition of an objective criterion for choosing whether the 10 

stationary hypothesis can be adopted, while the second one regards the effects of non-stationarity on the estimation of 

distribution parameters and quantiles for assigned return period and flood risk evaluation.  Although the time series trend or 

change points can be recognized using classical tests available in literature (e.g. Mann-Kendal or CUSUM test), for design 

purpose it is still required the correct selection of the stationary or non-stationary probability distribution. By this light, the 

focus is shifted toward model selection criteria which implies the use of parametric methods with all related issues on 15 

parameters estimation. The aim of this study is to compare the performance of parametric and non-parametric methods for 

trend detection analysing their power and focusing on the use of traditional model selection tools (e.g. Akaike Information 

Criterion and Likelihood Ratio test) within this context. Power and efficiency of parameter estimation, including the trend 

coefficient, were investigated through Monte Carlo simulations using Generalized Extreme Value distribution as parent with 

selected parameter sets. 20 

1 Introduction 

Long and medium-term prediction of extreme hydrological events under non-stationary conditions, is one of the major 

challenges of our times. Streamflow, as well as temporal rainfall and many other hydrological phenomena, can be considered 

stochastic processes (Chow, 1964), i.e. families of random variables with an assigned probability distribution (Koutsoyiannis 

and Montanari, 2015), while time series are the observable part of this process.  One of the main goals of the frequency analysis 25 

of extreme events is the estimation of distribution quantiles related to a certain non-exceedance probability. They are usually 

obtained after fitting a probabilistic model to observed data. Quae cum ita sint, detecting the existence of time-dependence in 

a stochastic process, has to be considered a necessary task in the statistical analysis of recorded time series.  
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According to Salas (1993) “a hydrological time series is stationary if is free of trends, shifts, or periodicity (cyclicity)”. Starting 

from this statement several considerations can be done in updating some important hydrological concepts while assuming that 30 

non-exceedance probability varies with times or other covariates. For example, return period may be reformulated in two 

different ways, Expected Waiting Time (EWT, Olsen et al., 1998) or Expected Number of Events (ENE, Parey et al., 2007, 

2010) which lead to a different evaluation of quantiles into a non-stationary approach. As proved by Cooley (2001), EWT and 

ENE are differently affected by non-stationarity, possibly producing ambiguity in engineering design practice (Du et al., 2015; 

Read and Vogel, 2015). Salas and Obeysekera (2014) provided a detailed report about relationships between stationary and 35 

non-stationary EWT values within a parametric approach for the assessment of non-stationary conditions. In such a framework, 

a strong relevance is given to statistical tools for detecting changes in non-normally distributed time series (Kundewicz and 

Robson, 2004).  

On the other hand, the vast majority of research undertaken about climate change and detection of non-stationary conditions 

has been so far developed through non-parametric approaches. One of the most used non-parametric measures of trend is the 40 

Sen’s slope (Gocic and Trajkovic, 2013). Also, a wide gamma of non-parametric tests for detecting non-stationarity in time 

series is available (e.g. Kundewicz and Robson, 2004 ). Statistical tests include Mann-Kendall (MK; Mann, 1945; Kendall, 

1975) and Spearman (Lehmann, 1975) for detecting trends, Pettitt (Pettitt, 1978) and CUSUM (Smadi and Zghoul, 2006) for 

change point detection. All of these tests are based on a specific null hypothesis and have to be performed for an assigned 

significance level. Non-parametric tests are usually preferred to parametric ones because they are distribution-free and do not 45 

require knowledge of the parent distribution. In the frequency analysis of extreme events they are also suggested being less 

sensitive to the presence of outliers with respect to parametric tests (Wang et al., 2005).  

In general, the use of statistical tests involves different errors, such as type I (rejecting the null hypothesis when it is true) and 

type II (accepting the null hypothesis when it is false). An important characteristic is the power of such tests, i.e. the probability 

of rejecting the null hypothesis when it is false. It is worth noting that, as already proven by numerical experiments by Yue et 50 

al. (2002a), the power of the Mann-Kendall test, despite its non-parametric structure, actually shows a strong dependence on 

the type and parametrization of the parent distribution. 

In a parametric approach, the estimation of quantiles of the extreme events distribution requires the search for the underlying 

distribution and for time-dependant hydrological variables, providing the identification of a model, which can be stationary or 

not (Montanari and Koutsoyiannis, 2014). In other words, it is necessary to define if variables are iid (independent identically 55 

distributed) or i/nid (independent/non identically distributed) and accordingly to select between a stationary or not-stationary 

distribution model (Serinaldi and Kirsby, 2015).  

In this perspective, the detection of non-stationarity may exploit, besides traditional statistical tests, well known properties of 

model selection tools. Even in this case several measures and criteria are available for selecting a best-fit model, among these 

we find Akaike Information Criterion (AIC, Akaike, 1974), Bayesian Information Criterion (BIC, Schwarz, 1978) and 60 

Likelihood Ratio test (LR,  Coles, 2001), the latter is suitable when dealing with nested models. 
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The purpose of this paper is to provide further insights on the use of parametric and non-parametric approaches in the 

framework of frequency analysis of extreme events under non-stationary conditions. The comparison between those different 

approaches is not straightforward. Non-parametric tests do not require the knowledge of the parent distribution and their 

properties strongly rely on the choice of a null hypothesis. Parametric methods for model selection, on the other hand, require 65 

the selection of the parent distribution and the estimation of its parameters but are not necessarily associated with a specific 

null hypothesis. Nevertheless, in both cases the evaluation of the rejection threshold is usually based on a statistic measure of 

trend that, under the null hypothesis of stationarity, follows a specific distribution (e.g. gaussianity of the Kendall statistic for 

the MK non-parametric test; 𝜒2 distribution of deviance statistic for the LR parametric test). 

Considering pros and cons of different approaches, we believe that specific remarks should be made about the use of parametric 70 

or non-parametric methods for the analysis of extreme event series. For this purpose, we set up a numerical experiment to 

compare performances of: 1 the MK as a non-parametric test for trend detection, 2 the LR parametric test for model selection, 

3 the 𝐴𝐼𝐶𝑅 parametric test as defined in section 2.4. In particular, the 𝐴𝐼𝐶𝑅 is a measure for model selection, based on the AIC, 

whose distribution was numerically evaluated, under the null hypothesis of a stationary process, for comparison purposes with 

other tests. 75 

We aim to provide (i) a comparison of test power between MK, LR and 𝐴𝐼𝐶𝑅, (ii) a sensitivity analysis of test power to 

parameters of a known parent distribution used to generate sample data, (iii) an analysis of the influence of sample size on test 

power and significance level.  

We conducted the analysis using Monte Carlo techniques, by generating samples from parent populations assuming one of the 

most popular extreme event distributions, the Generalized Extreme Value (Jenkinson, 1955), with linear (and without any) 80 

trend in the position parameter. From generated samples we numerically evaluated the power and significance level of tests 

for trend detection, using MK, LR and 𝐴𝐼𝐶𝑅. For the latter we also checked the option of using the modified version 𝐴𝐼𝐶𝑐, 

suggested by Sugiura (1978) for smaller samples. 

Considering that parametric methods involve the estimation of the parent distribution parameters, we also analysed the 

efficiency of the Maximum Likelihood (ML) estimator used in trend assessment by comparing the sample variability of the 85 

ML estimate of trend with the non-parametric Sen’s slope. We also scoped the sample variability of GEV parameters in the 

stationary and non-stationary cases. 

2 Methodological framework 

This section is divided into five parts Subsections 2.1, 2.2 and 2.3 report main characteristics of respectively, MK, LR and 

𝐴𝐼𝐶𝑅 based test. In the fourth subsection the probabilistic model used for generations, based on the use of the GEV distribution, 90 

is described in the stationary and non-stationary cases. Subsection 2.5 outlines the procedure for numerical evaluation of tests’ 

power and significance level.  
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2.1 The Mann-Kendall test 

Hydrological time series are often composed by non-normally independent realizations of phenomena, and this characteristic 

makes the use of non-parametric trend tests very attractive (Kundzewicz and Robson, 2004). Mann-Kendall test is a widely 95 

used rank-based tool for detecting monotonic, and not necessarily linear, trends. Given a random variable z, and assigned a 

sample of L independent data 𝒛 = (𝑧1, … , 𝑧𝐿), the Kendall S statistic (Kendall, 1975) can be defined as: 

𝑆 = ∑ ∑ 𝑠𝑔𝑛(𝑧𝑗 − 𝑧𝑖)
𝐿
𝑗=𝑖+1

𝐿−1
𝑖=1 ,          (1) 

with sgn sign function.  

The null hypothesis of this test is the absence of any statistically significant trend in the sample, while it is contemplated by 100 

the alternative hypothesis. Yilmaz and Perera (2014) reported that serial dependence can lead to a more frequent rejecting of 

null hypothesis. For 𝐿 ≥ 8, Mann (1945) reported how Eq. (1) is an approximatively normally distributed variable with zero 

mean and variance that, in the presence of 𝑡𝑚 m-length ties, can be expressed as: 

𝑉 =
𝐿(𝐿−1)(2𝐿+5)−∑ 𝑡𝑚𝑚(𝑚−1)(2𝑚+5)

𝑛
𝑚=1

18
. 

In practice, Mann-Kendall test is performed using the Z statistic 105 

𝑍 =

{
 

 
𝑆−1

√𝑉(𝑆)
             𝑆 > 0

0                    𝑆 = 0
𝑆+1

√𝑉(𝑆)
            𝑆 < 0

       , 

which follows a standard normal distribution. With this approach, it is simple to evaluate p-value and compare it with an 

assigned level of significance or, equivalently, to evaluate the 𝑍𝛼 threshold value to be compared with Z, where 𝑍𝛼 is the 

(1 − 𝛼) quantile of a standard normal distribution. 

Yue et al. (2002b) observed that autocorrelation in time series can influence the ability of MK test in detecting trends. For 110 

avoiding this problem, a correct approach in trend analysis should contemplate a preliminary check for autocorrelation and, if 

necessary, the application of pre-whitening procedures. 

A non-parametric tool for a reliable estimation of a trend in a time series with N pairs of data is the Sen’s slope estimator (Sen, 

1968): 

𝛿𝑗 =
𝑧𝑖−𝑧𝑘

𝑖−𝑘
,             𝑗 = 1, … , 𝑁           (2) 115 

being 𝑗 > 𝑘. Sorting in ascending order the 𝛿𝑗’s, Sen’s slope estimator can be defined as their median 𝛿. 
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2.2 Likelihood Ratio Test 

The Likelihood Ratio statistical test allows to compare two candidate models. Like its name suggests, it is based on the 

evaluation of the likelihood function of different models.  

The LR test has been used different times (Tramblay et al., 2013; Cheng et al., 2014; Yilmaz et al., 2014) for selecting between 120 

stationary and non-stationary models in the context of nested models. Given a stationary model characterized by a parameter 

set 𝜽𝑠𝑡   and a non-stationary model, with parameter set 𝜽𝑛𝑠, if ℓ(𝜽̂𝑠𝑡) and ℓ(𝜽̂𝑛𝑠) are their respective maximized log-

likelihoods, the Likelihood Ratio test can be defined through the deviance statistic 

𝐷 = 2[ℓ(𝜽̂𝑛𝑠) − ℓ(𝜽̂𝑠𝑡)],           (3) 

D is approximately, for large L, 𝜒𝑚
2 distributed, with 𝑚 = 𝑑𝑖𝑚(𝜽𝑛𝑠) − 𝑑𝑖𝑚(𝜽𝑠𝑡) degrees of freedom. The null hypothesis of 125 

stationarity is rejected if 𝐷 > 𝐶𝛼, where 𝐶𝛼 is the (1 − 𝛼) quantile of 𝜒𝑚
2  distribution (Coles, 2001).  

Besides the analysis of power, we also checked (in subsection 3.3) the approximation 𝐷~𝜒𝑚
2  as a function of the sample size 

L for the evaluation of the level of significance.  

2.3 Akaike Information Criterion Ratio test 

Information criteria are useful tools for model selection. It is reasonable to retain that Akaike Information Criterion (AIC; 130 

Akaike, 1974) is the most famous among them. Based on the Kullbach-Leibler discrepance measure, if 𝜽 is the parameter set 

of a k-dimensional model (𝑘 = 𝑑𝑖𝑚(𝜽)), AIC is defined as: 

𝐴𝐼𝐶 = −2ℓ(𝜽̂) + 2𝑘.           (4) 

The model that best fits data has the lowest value of AIC between candidates. It is useful to observe that the term proportional 

to the number of model parameters allows to account for the increased estimator variance due to a larger parametrization and 135 

embodies the principle of parsimony.  

Sugiura (1978) observed that AIC can lead to misleading results for small samples; he proposed a new measure for AIC: 

𝐴𝐼𝐶𝑐 = −2ℓ(𝜃̂) +
2𝑘(𝑘+1)

𝐿−𝑘−1
           (5) 

where a second-order bias correction is introduced. Burnham e Anderson (2004) suggested to use this version only when 

𝐿 𝑘𝑚𝑎𝑥⁄ < 40, being 𝑘𝑚𝑎𝑥 the maximum number of parameters between the compared models. However, for larger L, 𝐴𝐼𝐶𝑐 140 

converges to AIC. For a quantitative comparison between AIC and 𝐴𝐼𝐶𝑐 in the extreme value stationary model selection 

framework see also Laio et al. (2009). 

In order to select between stationary and nonstationary candidate models, we use the ratio 

𝐴𝐼𝐶𝑅 =
𝐴𝐼𝐶𝑛𝑠

𝐴𝐼𝐶𝑠𝑡
.            (6) 
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where the subscripts indicate the AIC value obtained for a stationary (st) and a non-stationary (ns) model, both fitted with 145 

maximum likelihood to the same data series. 

Considering that the better fitting model has lower AIC, if the time series is non-stationary, the 𝐴𝐼𝐶𝑅  should be less than 1. 

Vice versa if the time series is stationary. 

In order to provide a rigorous comparison between the use of MK, LR and 𝐴𝐼𝐶𝑅, we evaluated the 𝐴𝐼𝐶𝑅,𝛼 threshold value 

corresponding to significance level 𝛼 by numerical experiments. 150 

More in detail, we adopted the following procedure: 

1. N = 10000 samples are generated from a stationary GEV parent distribution, with known parameters; 

2. for each of these samples the 𝐴𝐼𝐶𝑅 is evaluated, by fitting the stationary and non-stationary GEV models described 

in section 2.4, thus providing its empirical distribution (see pdf in fig. 1); 

3. exploiting the empirical distribution of 𝐴𝐼𝐶𝑅 the threshold associated with a significance level of  𝛼 = 0.05 is 155 

numerically evaluated: this value, 𝐴𝐼𝐶𝑅,𝛼, represents the threshold for rejecting the null hypothesis of stationarity 

(which in these generations is true) in 5% of the synthetic samples. 

 

This procedure was applied both for AIC and 𝐴𝐼𝐶𝑐. The experiment was repeated for a few selected sets of the GEV parameters, 

including different trend values, and different sample lengths, as detailed in section 3. 160 

2.4 The GEV parent distribution 

The cumulative Generalized Extreme Value (GEV) distribution (Jenkinson, 1955) can be expressed as: 

𝐹(𝑧, 𝜽𝒔𝒕) = {
𝑒𝑥𝑝 {− [1 + 𝜀 (

𝑧−𝜁

𝜎
)]
−1 𝜀⁄

}                     𝜀 ≠ 0

𝑒𝑥𝑝 {−𝑒𝑥𝑝 [− (
𝑧−𝜁

𝜎
)]}                           𝜀 = 0

  𝜎 > 0      (7) 

where 𝜁, 𝜎, 𝜀 are respectively known as the position, scale and shape parameter, 𝜽𝒔𝒕 = [𝜁, 𝜎, 𝜀], is a general and comprehensive 

way to express the parameter set in the stationary case. The flexibility of GEV in contemplating Gumbel, Fréchet and Weibull 165 

distributions (for 𝜀 = 0, 𝜀 > 0 and 𝜀 < 0 respectively) makes it eligible for a more general discussion about non-stationarity 

implications. 

Traditional extreme value distributions can be used into a nonstationary framework, modelling their parameters as function of 

time or other covariates (Coles, 2001) producing 𝜽𝒔𝒕 ⟶ 𝜽𝑛𝑠 = [𝜁𝑡 , 𝜎𝑡 , 𝜀𝑡].  

In this study, only a linear trend with time t in the position parameter 𝜁 has been introduced, leading Eq. (7) to be expressed 170 

as: 
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𝐹(𝑧, 𝜽𝑛𝑠) = {
𝑒𝑥𝑝 {− [1 + 𝜀 (

𝑧−𝜁𝑡

𝜎
)]
−1 𝜀⁄

}                     𝜀 ≠ 0

𝑒𝑥𝑝 {−𝑒𝑥𝑝 [− (
𝑧−𝜁𝑡

𝜎
)]}                           𝜀 = 0

  𝜎 > 0      (8) 

with 

𝜁𝑡 = 𝜁0 + 𝜁1𝑡,            (9) 

and 𝜽𝑛𝑠 = [𝜁0, 𝜁1, 𝜎, 𝜀]. 175 

It is important to note that Eq. (8) is a more general way to define the GEV and has the property of degenerating into Eq. (7) 

for 𝜁1 = 0: in other words Eq. (7) represents a nested model of Eq. (8) which confirms the suitability of the Likelihood Ratio 

test for model selection.  

The estimation of GEV parameters is often performed by means of the L-moments (Hosking, 1990), linear combinations of 

PWM (Hosking et al., 1985). Given a time series of values z, sorting it in ascending order, sample PWM can be expressed 180 

using the following relationships: 

𝛽0 =
1

𝐿
∑𝑧𝑗

𝐿

𝑗=1

 

𝛽1 =
1

𝐿
∑

(𝑗 − 1)

(𝐿 − 1)
𝑧𝑗

𝐿

𝑗=1

 

Between PWM and L-moments the following relationships hold: 

𝜆1 = 𝛽0 =
1

𝐿
∑𝑧𝑗

𝐿

𝑗=1

 185 

𝜆2 = 2𝛽1 − 𝛽0 = 2
1

𝐿
∑

(𝑗 − 1)

(𝐿 − 1)
𝑥𝑗

𝐿

𝑗=1

−
1

𝐿
∑𝑧𝑗

𝐿

𝑗=1

 

We observe that, imposing trend in the mean has reflections only in 𝜆1, and does not affect 𝜆2. The analytical proof based on 

sample relationships is provided in Appendix.  

In this work we used the maximum likelihood method (ML) to estimate GEV parameters from sample data. ML allows to treat 

𝜁1 as an independent parameter, as well as 𝜁0, 𝜎 and 𝜀. To this purpose we exploited the R package extRemes (Gilleland and 190 

Katz, 2016). 
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2.5 Numerical evaluation of test power and significance level 

The power of a test is related to the second type error and is the probability of correctly rejecting the null hypothesis when it 

is false. In particular, defining α (level of significance) the probability of a Type I error and β the probability of a Type II error, 195 

we have power = 1 – β. The maximum value of power is 1, which correspond to β = 0, i.e. no probability of Type II error. A 

fair comparison between the null and the alternative hypotheses would see α = β = 0.05, which provides power = 0.95. In most 

applications conventional values are α = 0.05 and β = 0.2, meaning that a 1-to-4 trade-off between  and  is accepted. Thus, 

assuming a significance level 0.05, a power level less than 0.8 should be considered too low. For each of the tests described in 

subsections 2.1, 2.2 and 2.3, the power was numerically evaluated according to the following procedure: 200 

1) N = 2000 Monte Carlo synthetic series are generated using the non-stationary GEV in Eqs. (8-9) as parent distribution 

with fixed parameter set 𝜽𝑛𝑠 = (𝜁0, 𝜁1, 𝜎, 𝜀) and length L, being 𝜁1 ≠ 0. 

2) The threshold 𝐴𝐼𝐶𝑅,𝛼 associated with a significance level 𝛼 = 0.05 is numerically evaluated, as described in section 

2.3 using the corresponding parameter set 𝜽𝒔𝒕 = (𝜁0, 𝜎, 𝜀) of GEV parent distribution. 

3) From these synthetic series the power of the test is estimated as: 205 

𝑟𝑒𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 =
𝑁𝑟𝑒𝑗

𝑁
 

where 𝑁𝑟𝑒𝑗 is the number of series for whom the null hypothesis is rejected, as in Yue et al. (2002a). 

 

The same procedure, with N = 10000, was used in order to check the actual significance level of test, which is the probability 

of first type error i.e. the probability of rejecting the null hypothesis when it is true. The task was performed by following the 210 

above steps from 1 to 3 while replacing 𝜽𝑛𝑠 with 𝜽𝒔𝒕 at step 1), in such a case the rejection rate 𝑁𝑟𝑒𝑗 𝑁⁄  represents the actual 

level of significance 𝛼. 

3 Sensitivity analysis, results and discussion 

A comparative evaluation of the tests’ performance was carried out for all the GEV parameter sets 𝜽𝑛𝑠  obtained considering 

three values of ε (-0.4, 0, 0.4) and three values of σ (10, 15, 20). The position parameter was kept always constant and equal 215 

to 𝜁0 = 40. Then, for any possible couple of σ and ε, we considered 𝜁1 ranging from -1 to 1 with step 0.1. Such a range of 

parameters represents a wide domain in the hydrologically feasible parameters space of annual maximum daily rainfall. Upper 

bounded (𝜀 = −0.4), EV1 (𝜀 = 0), and heavy tailed (𝜀 = +0.4) cases are included. Moreover, for each of these parameter sets  

𝜽𝑛𝑠 , N samples of different size (30, 50 and 70) were generated. 

For a clear exposition of results, this section is divided into four subsections. In the first one we focus on the opportunity of 220 

using AIC or 𝐴𝐼𝐶𝑐 for the evaluation of 𝐴𝐼𝐶𝑅, in the second one the comparison of test power and its sensitivity analysis to 

parent distribution parameters and sample size is shown. In the third one, the evaluation of the level of significance for all tests 
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and in particular the validity of the  𝜒2 approximation for the D statistic is discussed. In the fourth subsection the numerical 

investigation on the sample variability of parameters is reported. 

3.1 Evaluation of 𝑨𝑰𝑪𝑹,  with AIC or 𝑨𝑰𝑪𝒄 225 

Considering the non-stationary GEV four-parameters model, in order to satisfy the relation 𝐿/𝑘𝑚𝑎𝑥 < 40 suggested by 

Burnham e Anderson (2004), a time series with a record length not less than 160 should be available. Following this simple 

reasoning the AIC should be considered de facto not-applicable to any annual maximum series showing a changing point in 

the ’70-80s (e.g. Kiely, 1999). In our numerical experiment, the second-order bias correction of Sugiura (1978) should be 

always used because for the maximum sample length, L = 70, we have 𝐿/𝑘𝑚𝑎𝑥 = 70/4 = 17.5 for the non-stationary GEV. 230 

Nevertheless, we checked if using AIC or 𝐴𝐼𝐶𝑐  is important in such a use of the ratio 𝐴𝐼𝐶𝑅. To this purpose we evaluated from 

synthetic series the percentage differences between the power of 𝐴𝐼𝐶𝑅,  evaluated by means of AIC and 𝐴𝐼𝐶𝑐. In Fig. 2 the 

empirical probability density functions of such percentage differences, grouped according to sample length, are plotted for 

generations with ε = 0.4 and different values of σ. It is interesting to note that only for L = 70 the error distribution shows a 

regular and unbiased bell-shaped distribution. Then we observe for L = 50 a small negative bias (about -0.02%), while for L = 235 

30 a bias of -0.08 with a multi-peak and negatively skewed pdf. The latter pdf also has a higher variance than the others. 

Similar results were obtained for all values of ε, providing a general amount of differences always very low and allowing to 

conclude that the use of AIC or 𝐴𝐼𝐶𝑐 does not significantly affect the power of 𝐴𝐼𝐶𝑅 for the cases examined. This follows the 

combined effect of the sample size (whose minimum value considered here is 30) and the limited difference in the number of 

parameters in the selected models. In the following we will refer and show only the plots obtained for the 𝐴𝐼𝐶𝑅 in Eq. (6) with 240 

AIC evaluated as in Eq. (4).  

3.2 Dependence of power on parent distribution parameters and sample size 

The effect of parent distribution parameters and sample size on the numerical evaluation of power and significance level of 

MK, LR and 𝐴𝐼𝐶𝑅 for different values of 𝜀, 𝜎 and 𝜁1 is shown in Fig. 3. The curves represent both significance level which is 

shown for 𝜁1 = 0 (true parent is the stationary GEV) and power for all other values 𝜁1 ≠ 0 (true parent is the non-stationary 245 

GEV). Each subplot in Fig. 3 shows the dependence on the trend coefficient of power and significance level of MK, LR and 

𝐴𝐼𝐶𝑅 for one set of parameter values and different sample sizes. In all subplots the test power strongly depends on trend 

coefficient and sample size. This dependence is also affected by parent parameter values. In all cases the power reaches 1 for 

strong trend and approaches 0.05 (the chosen level of significance) for weak trend (𝜁1 close to 0). In all combinations of the 

shape and scale parameters, and expecially for short samples, for a wide range of trend values the power has values well below 250 

the conventional value 0.8. The curves’ slope between 0.05 and 1 is sharp for long samples and slow for short samples. It also 

depends on the parameter set, being such a slope generally slower for higher values of the scale (𝜎) and shape (𝜀) parameters 
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of the parent distribution. Significant difference of power between MK, LR and 𝐴𝐼𝐶𝑅 is observable when the sample size is 

smaller and still more when the parent is heavy tailed (𝜀 = +0.4).  

In particular, for 𝜀 = 0, -0.4 and 𝐿 = 50, 70 it is possible to report a slightly larger power of LR with respect to 𝐴𝐼𝐶𝑅 and MK, 255 

but values are very close to each other. Interesting is the reciprocal position of MK and 𝐴𝐼𝐶𝑅 power curves: in fact, the 𝐴𝐼𝐶𝑅 

power is always larger than the MK one, except when 𝜀 = −0.4, without sensible influence of the scale parameter. 

Higher difference is found for heavy tailed parent distribution (𝜀 = +0.4). While LR keeps having the largest power, the 

difference with respect to 𝐴𝐼𝐶𝑅 remains small while the MK’s power almost collapses to values always smaller than 0.5.  

Practical consequences of such patterns are very important and are discussed in the conclusion section. 260 

3.3 Sensitivity and evaluation of the actual significance level 

We evaluated the threshold values (corresponding to a significance level of 0.05) for accepting/rejecting the null hypothesis 

of stationarity according to the methodologies recalled in subsections 2.1 and 2.2 for MK and LR tests and introduced in section 

2.3 for 𝐴𝐼𝐶𝑅. Based on such thresholds we exploited the generation of stationary series (𝜁1 = 0) in order to numerically 

evaluate the rate of rejection of the null-hypothesis, i.e. the actual significance level of the tests considered in the numerical 265 

experiment, following the procedure described in subsection 2.5. 

Table 1 shows the numerical values of the actual level of significance, obtained numerically, to be compared to the theoretical 

value 0.05 for all the considered sets of parameters and sample size. Among the three measures for trend detection the LR 

shows the worst performance. Results in Table 1 show that the rejection rate of the (true) null hypothesis is systematically 

higher than it should be, and it is also dependent on parent parameter values. Such effect is exalted when the parent distribution 270 

is upper bounded (𝜀 = −0.4) and for higher values of the scale parameter. In practice this implies that when using the LR test, 

as described in subsection 2.2, one actually has a probability of rejecting the true null hypothesis of stationarity quite higher 

than he knows.  

On the other hand, the performances of MK with respect to the designed level of significance are less biased and independent 

from the parameter set. Similar good performances are trivially obtained for the 𝐴𝐼𝐶𝑅, whose rejection threshold is numerically 275 

evaluated. 

The plot in Fig. 4 is displayed in order to focus on the actual value of the level of significance and in particular on the LR 

approximation 𝐷~𝜒𝑚
2  as a function of the sample length n. The difference between theoretical and numerical values of the 

significance level is represented by the distance between the bottom value of the curve (obtained for 𝜁1 = 0, i.e. the stationary 

GEV model) and the chosen level of significance 0.05 which is represented by the horizontal dotted line. In particular in Fig. 280 

4 results for the parameter set (𝜎 = 15, 𝜀 = −0.4) show that the actual rate of rejection is always higher than the theoretical 

one and changes significantly with the sample size, which means that the 𝜒𝑚
2  approximation leads to significantly 

underestimating the rejection threshold of the D statistic. Moreover, it seems that the entire curves of the LR power (in red) are 

upward translated as a consequence of the significance level overestimation, meaning that the LR test power is also 
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overestimated because of the approximation 𝐷~𝜒𝑚
2 . These results suggest, for the LR test, the use of a numerical procedure 285 

(as the one introduced for 𝐴𝐼𝐶𝑅 in subsection 2.3) for evaluating the D distribution and the rejection threshold.  

Other considerations can be made on the use of 𝐴𝐼𝐶𝑅. As explained in subsection 2.3 we empirically evaluated by numerical 

generations the 𝐴𝐼𝐶𝑅,𝛼 threshold value with significance level 0.05 for each of the parameter sets and sample sizes considered. 

Similar results were obtained using the 𝐴𝐼𝐶𝑐 which are not shown for brevity. We found a significative dependence of 𝐴𝐼𝐶𝑅,𝛼 

on the sample size. Fig. 5 shows curves of 𝐴𝐼𝐶𝑅,𝛼 obtained for each of the parameter sets vs sample size. It is also worth noting 290 

that all curves asymptotically trend to 1 as L increase. This property is due to the structure of AIC and peculiarity of the nested 

models used in this paper: while using a sample generated with weak non-stationarity (i.e. when  𝜁1 → 0 in Eq. (9)) the 

maximum likelihood of model (7), ℓ(𝜽̂𝑠𝑡), tends to ℓ(𝜽̂𝑛𝑠) of model (8) leaving only the bias correction in AIC to be 

discriminant for model selection. As a consequence, 𝐴𝐼𝐶𝑅,𝛼 will be always lower than 1, but, increasing sample size, also both 

the likelihood terms −2ℓ(𝜽̂𝑠𝑡) and −2ℓ (𝜽̂𝑛𝑠
̂ ) in Eq.  (4) will increase, pushing 𝐴𝐼𝐶𝑅 toward the limit 1. On the other hand, 295 

Fig. 5 shows that the threshold value 𝐴𝐼𝐶𝑅,𝛼 is significatively smaller than 1 up to L values well beyond the length usually 

available in this kind of analysis. Hence the numerical evaluation of the threshold has to be considered a required task in order 

to provide an assigned significance level to model selection. On the other hand, the simple adoption of the selection criteria 

𝐴𝐼𝐶𝑅 < 1 (i.e. 𝐴𝐼𝐶𝑅,𝛼 = 1), would correspond to an unknown significance level dependent on the parent distribution and 

sample size. In order to highlight this point, we evaluated the significance level 𝛼 corresponding to 𝐴𝐼𝐶𝑅,𝛼 = 1 following the 300 

procedure described in subsection 2.5 by generating N = 10000 synthetic series for any parameter set and sample length. 

Results, provided in Tab. 2, show that, in the explored GEV parameter domain, 𝛼 ranges between 0.16 and 0.26 mainly 

depending on the sample length and the shape parameter of the parent distribution.  

3.4 Sample variability of parent distribution parameters 

Results shown above, with regard to performances of parametric and non-parametric tests, are in our opinion quite surprising 305 

and important. It is proven that the preference widely accorded to non-parametric tests being their statistics allegedly 

independent from the parent distribution is not well founded. On the other hand, the use of parametric procedures raises the 

problem of correctly estimating the parent distribution and, for the purpose of this paper, its parameters. Moreover, as being 

the trend coefficient 𝜁1 a parameter of the parent distribution in non-stationary condition, the proposed parametric approach 

provides a maximum likelihood-based estimation of the same trend coefficient which is hereafter called ML-𝜁1. For a 310 

comparison with non-parametric approaches we also evaluated the sample variability of the Sen’s slope measure () of the 

imposed linear trend. In order to provide insights into these issues, from the same sets of generations exploited above, we also 

analysed the sample variability of the maximum likelihood estimates ML-𝜀 ML-𝜎, for different parameter sets and sample 

length.  

We evaluated sample variability s[.], as the standard deviation of the ML estimates of parameter values obtained from synthetic 315 

series. Results are shown in Figs. 6 and 9, for different parameter sets and sample size, vs true 𝜁1 values. In Fig 6, on the first 
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subplots row we show s[ML-𝜁1] and on the second row the Sen’s slope median s[]. The sample variability of the linear trend 

is in both cases strongly dependent on sample size and independent from the true 𝜁1 value in the range examined [−1,1]. It 

reaches high values for short samples and in such cases also its dependence on the scale and shape parent parameters is relevant. 

The ML estimation of the trend coefficient is always more efficient than Sen’s slope and this is observed in particular for heavy 320 

tailed distributions. 

In Figs. 7 and 8 we show the empirical distributions of the Sen’s slope  and ML-𝜁1 estimates obtained from samples of size 

𝐿 = 30, providing a visual information about the range of trend values that may result from a local evaluation. Similar results, 

characterized by smaller sample variability shown in Fig. 6, are obtained for 𝐿 = 50 and 𝐿 = 70 and are not shown for brevity.  

Fig. 9 shows the sample variability of ML-𝜀 and ML-𝜎, which is still independent from the true 𝜁1 for values of 𝜀 = 0 and 0.4 325 

while for upper bounded GEV distributions (𝜀 = −0.4) it shows a significant increase for higher values of 𝜎 and high trend 

coefficients (|𝜁1| > 0.5).  

In order to better analyse such patterns, for the scale and shape parent parameters we report also the distribution of their 

empirical ML estimates for different parameter sets vs the true 𝜁1 value used in generation. The sample distribution of ML-𝜀 

is shown in Fig. 10 for 𝐿 = 30 and Fig. 11 for 𝐿 = 70. The sample distribution of ML-𝜎 is shown in Fig. 12 for 𝐿 = 30 and 330 

Fig. 13 for 𝐿 = 70. Subplots show that the presence of a strong trend coefficient may produce significant loss in the estimator 

efficiency probably due to deviation from normal distribution of the sample estimates also for long samples. This suggests the 

need of more robust estimation procedures which provides higher efficiency for estimates of 𝜖 and 𝜎 in case of strong observed 

trend.  

4 Conclusions 335 

The results shown have important practical implications. The dependence of power on the parent distribution parameters may 

significantly affect results of both parametric and non-parametric tests including the widely used Mann-Kendall.  

For all the generation sets and tests conducted, under the null hypothesis of stationarity, the power has values ranging between 

the chosen significance level (0.05) and 1 for large (and larger) ranges of the trend coefficient. The test power always collapses 

to very low values for weak (but climatically important) trend values (in the case of annual maximum daily rainfall, 𝜁1 equal 340 

to 0.2 or 0.3 mm per year, for example). In presence of trend, the power is also affected by the scale and shape parameters of 

the GEV parent distribution. This observation can be made with reference to samples of all the lengths considered in this paper 

(from 30 to 70 years of observation) but the use of smaller samples significantly reduces the test power and dramatically 

extends the range of 𝜁1 values for which the power is below the conventional value 0.8. The use of this sample size is not rare 

considering that significative trends due to anthropic effects are typically investigated in periods following a changing point 345 

often observed in the ‘80s. 

These results also imply that in spatial fields where the alternative hypothesis of non-stationarity is true, but the parent’s 

parameters (including the trend coefficient) and the sample length are variable in space, the rate of rejection of the false null-
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hypothesis may be highly variable from site to site and practically out of control. In other words, in such a case, the probability 

of recognizing the alternative hypothesis of non-stationarity as true from a single observed sample may unknowingly change 350 

(between 0.05 and 1) from place to place. For small samples (as 𝐿 = 30 in our analysis) and heavy tailed distributions, the 

power is always very low for all the investigated range of the trend coefficient. 

Hence, considering the high spatial variability of the parent distribution parameters and the relatively short period of reliable 

and continuous historical observations usually available, a regional assessment of trend non-stationarity may suffer from the 

different probability of rejection of the null hypothesis of stationarity (when it is false).  355 

These problems affect, in slightly different measures, both parametric and non-parametric tests. While these considerations 

are generally applicable to all the tests considered, differences also emerge between them. For heavy tailed parent distributions 

and smaller samples, the MK test power decreases more rapidly than for the other tests considered. Low values of power are 

already observable for 𝐿 = 50. The LR test slightly outperforms the 𝐴𝐼𝐶𝑅  for small sample size and higher absolute values of 

the shape parameter. Nevertheless, the higher value of the LR power seems to be overestimated as a consequence of the 𝜒𝑚
2  360 

approximation for the D statistic distribution (see section 3.3).   

Results also suggest that theoretical distribution of the LR test-statistic based on the null hypothesis of stationarity may lead to 

a significative increase of the rejection rate compared to the chosen level of significance i.e. an abnormal rate of rejection of 

the null hypothesis when it is true. In this case the use of numerical techniques, based on the use of synthetic generations 

performed by exploiting a known parent distribution, should be preferred.  365 

By the light of these results we conclude that in trend detection on annual maximum series the assessment of the parent 

distribution and the choice of the null hypothesis should be considered fundamental preliminary tasks. According to this 

remark, it is advisable to make use of parametric tests by numerically evaluating both the rejection threshold for the assigned 

significance level and the power corresponding to alternative hypotheses. This also requires developing robust techniques for 

individuation of the parent distribution and estimation of its parameters. To this perspective, the use of a parametric measure 370 

such as the 𝐴𝐼𝐶𝑅, may take account of different choices for the parent distribution and, even more important, allows to set a 

null hypothesis different from the stationary case, based on a priori information. 

The need of robust procedures for assessing the parent distribution and its parameters is also proven by the numerical 

simulations we conducted. Sample variability of parameters (including the trend coefficient) may increase rapidly for series 

with L as low as 30 years of annual maxima. Moreover, we observed that, in case of highest trend, numerical instability and 375 

non-convergence of algorithms may affect the estimation procedure for upper bounded and heavy tailed distributions. 

Nevertheless, the sample variability of the ML trend estimator was found always smaller than the Sen’s slope sample 

variability. Finally, it is worth noting that also the non-parametric Sen’s slope method, applied to synthetic series, showed 

dependence on the parent distribution parameters with sample variability higher for heavy tailed distributions. 

This analysis shed lights onto important eventual flaws in the at-site analysis of climate change provided by non-parametric 380 

approaches. Both test power and trend evaluation are affected by the parent distribution as well as they are in parametric 

methods. It is not a case, in our opinion, that many technical studies conducted in years around the world, provide 
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inhomogeneous maps of positive/negative trends and large areas of stationarity characterized by weak trends that are 

considered not statistically significative. Analogous concerns about the use of statistical tests have been expressed by Serinaldi 

et al. (2018).  385 

As already said, an advantage of using parametric tests and numerical evaluation of the test-statistic distribution is given by 

the possibility of assuming a null hypothesis based on a preliminary assessment of the parent distribution including trend 

detection by evaluation of non-stationary parameters. This could lead to a regionally homogeneous and controlled assessment 

of both significance level and power in a fair mutual relationship. With respect to the estimation of parameters of the parent 

distribution, results suggest that at site analysis may provide highly biased results. More robust procedures are necessary like 390 

hierarchic estimation procedures (Fiorentino et al., 1987) providing estimates of 𝜀 and 𝜎 from detrended series (Strupczewski 

et al., 2016; Kochanek et al., 2013). Considering the high spatial variability of sample length, trend coefficient, scale and shape 

parameters we believe that the application of well-known and developed regional methods for selection and assessment of the 

parent distribution could be easily and profitably exploited in the context of non-stationarity and climate change detection in 

annual maximum series and will be tackled in future research.  395 

Appendix 

Let us consider two different but consequent years, t and t + 1, setting 𝑧(𝑡) = 𝑧0 + 𝛼𝑡, for 𝜆1 there is: 

𝜆1(𝑡) =
1
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Subtracting side by side: 

𝜆1(𝑡 + 1) − 𝜆1(𝑡) =
1
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Which proves that a trend in the mean value produces a related trend in  𝜆1.  

By using the same approach for 𝜆2, we observe that: 

𝜆2(𝑡) = 2∑
(𝐿 − 𝑗)(𝑧𝑗 + 𝛼𝑡)

𝐿(𝐿 − 1)

𝐿−1

𝑗=1

−
1

𝐿
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 405 
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𝜆2(𝑡 + 1) = 2∑
(𝐿 − 𝑗)[𝑧𝑗 + 𝛼(𝑡 + 1)]
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Which proves that a trend in the mean value does not affect 𝜆2.  
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Table 1: Actual level of significance of tests for different sample size, scale and shape parent parameters 

 L = 30 

 𝜀 = −0.4 𝜀 = 0 𝜀 = +0.4 

 𝜎 = 10 𝜎 = 15 𝜎 = 20 𝜎 = 10 𝜎 = 15 𝜎 = 20 𝜎 = 10 𝜎 = 15 𝜎 = 20 

MK 0.048 0.047 0.047 0.047 0.050 0.050 0.046 0.049 0.048 

𝐴𝐼𝐶𝑅 0.050 0.046 0.052 0.051 0.052 0.045 0.052 0.054 0.051 

LR 0.104 0.103 0.115 0.061 0.064 0.060 0.084 0.081 0.083 

 
         

 L = 50 
 𝜀 = −0.4 𝜀 = 0 𝜀 = +0.4 
 𝜎 = 10 𝜎 = 15 𝜎 = 20 𝜎 = 10 𝜎 = 15 𝜎 = 20 𝜎 = 10 𝜎 = 15 𝜎 = 20 

MK 0.050 0.047 0.046 0.044 0.047 0.050 0.049 0.044 0.048 

𝐴𝐼𝐶𝑅 0.053 0.053 0.046 0.051 0.051 0.057 0.050 0.050 0.053 

LR 0.079 0.078 0.074 0.060 0.063 0.063 0.070 0.069 0.070 

          

 L = 70 

 𝜀 = −0.4 𝜀 = 0 𝜀 = +0.4 

 𝜎 = 10 𝜎 = 15 𝜎 = 20 𝜎 = 10 𝜎 = 15 𝜎 = 20 𝜎 = 10 𝜎 = 15 𝜎 = 20 

MK 0.050 0.052 0.054 0.052 0.051 0.047 0.049 0.048 0.046 

𝐴𝐼𝐶𝑅 0.047 0.051 0.051 0.058 0.058 0.052 0.050 0.054 0.051 

LR 0.069 0.069 0.073 0.063 0.065 0.058 0.062 0.062 0.063 

 

 

 520 

 

 

 

Table 2: Actual level of significance of 𝑨𝑰𝑪𝑹 test for 𝑨𝑰𝑪𝑹,𝜶 = 𝟏 

 𝜀 = −0.4 𝜀 = 0 𝜀 = +0.4 

 𝜎 = 10 𝜎 = 15 𝜎 = 20 𝜎 = 10 𝜎 = 15 𝜎 = 20 𝜎 = 10 𝜎 = 15 𝜎 = 20 

L = 30 0.246 0.254 0.261 0.188 0.191 0.181 0.220 0.221 0.215 

L = 50 0.213 0.209 0.206 0.171 0.175 0.170 0.188 0.207 0.195 

L = 70 0.192 0.192 0.201 0.168 0.169 0.173 0.184 0.204 0.184 
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Figure 1: Empirical distribution of 𝐀𝐈𝐂𝐑 and rejection threshold 𝑨𝑰𝑪𝑹,𝜶 of the null hypothesis (stationary GEV parent) 530 

 

Figure 2: Distributions of the differences between power of 𝑨𝑰𝑪𝑹 evaluated with AIC and 𝑨𝑰𝑪𝒄 for 𝛆 = 𝟎. 𝟒 
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Figure 3: Dependence of test power on trend coefficient, sample size, scale and shape parent parameters. 535 
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Figure 4: Focus on the actual level of significance reported for 𝜁1 = 0. 
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Figure 5: 𝐴𝐼𝐶𝑅,𝛼 thresholds for different parameter sets vs sample size 540 
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Figure 6: Sample variability of ML-𝜻𝟏 and 𝜹 vs trend coefficient 𝜁1 
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 545 

Figure 7: Empirical distributions of 𝜹 evaluated from samples with 𝑳 = 𝟑𝟎, 𝐯𝐬 𝐭𝐫𝐞𝐧𝐝 𝐜𝐨𝐞𝐟𝐟𝐢𝐜𝐢𝐞𝐧𝐭 𝜁
1
 

 

Figure 8: Empirical distributions of ML-𝜻𝟏 evaluated from samples with 𝑳 = 𝟑𝟎 vs trend coefficient 𝜁1 
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 550 

Figure 9: Sample variability of ML-𝜺 and ML-𝝈 vs trend coefficient 𝜁1 

 

 

Figure 10: Empirical distributions of ML-𝜺 evaluated from samples with 𝑳 = 𝟑𝟎   vs trend coefficient 𝜁1   
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 555 

Figure 11: Empirical distributions of ML-𝜺 evaluated from samples with 𝑳 = 𝟕𝟎 vs trend coefficient 𝜁1    

 

 

Figure 12: Empirical distributions of ML-𝝈 evaluated from samples with 𝑳 = 𝟑𝟎 vs trend coefficient 𝜁1  

https://doi.org/10.5194/hess-2019-363
Preprint. Discussion started: 8 August 2019
c© Author(s) 2019. CC BY 4.0 License.



28 
 

 560 

Figure 13: Empirical distribution of ML-𝝈 evaluated from samples with 𝑳 = 𝟕𝟎 
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