The reviewed manuscript presents a thorough investigation, based on Monte Carlo simulations,
of the power of parametric and non-parametric tests in detecting non-stationarities using annual
maxima series. The study concludes that both types of tests exhibit significant deficiencies,
displaying dependence of their power on the shape of the parent distribution, the sample length
and trend intensity. Overall, | find the manuscript technically sound, logically organized and in
general terms well written, deserving publication in HESS. Specific remarks on English usage
and grammar are attached in the annotated .pdf of the manuscript, but further improvements are
deemed necessary. The Authors are advised to seek help from a native English speaker with
expertise in technical writing and scientific communication, or use language services. Some
General comments are presented below:

1) The title of the manuscript is not informative of its content. I suggest “Monte Carlo
investigation of the power of parametric and non-parametric tests for trend detection in annual
maxima series”, or something similar.

2) Lines 29, 147 and other parts of the manuscript: The statement attributed to Salas (1993) (see
line 29) is theoretically incorrect. Stationarity is an attribute of stochastic processes (i.e. models)
not of time-series (i.e. their realizations). More precisely, a stochastic process is said to be
stationary, if and only if:

Xt 2 XH—T’ v t1 T

where ¢ denotes equality in all finite-dimensional CDF's Fx, n = 1, 2,.... For example, Fx1(X; t)
= Fx1(X), Fxa(X1, X2; t1, t2) = Fxa(X1, X2; [to-ta]), Fxa(X1, X2, X3; t1, o, t3) = Fx (X1, X2, X3; [to-ta],|ts-
t;]) and so on.

In the above context: a) lack of trends shifts and periodicities in a timeseries does not necessarily
mean that the parent process is stationary, b) the wording in the manuscript should be properly
modified to avoid use of the terms: “stationary timeseries” and “non-stationary timeseries”

3) The results presented in Figures 7-13 need to be discussed in more detail.

As a final remark, | think that in the concluding section, the Authors should at least comment on
an important aspect related to the presented analysis: When inferring the properties of a
stochastic process from data, one needs to analyze the available time-series assuming ergodicity.
Since a non-stationary process is (by definition) non-ergodic, the stationarity assumption is
central to any type of time-series analysis. Hence, non-stationary modeling of physical processes
based on data (i.e. a single realization of a stochastic process) is theoretically inconsistent. That
said, | believe that the findings of the Authors regarding uncertainty aspects of parametric and
non-parametric tests in detecting non-stationarities, significantly underestimate those emerging
when real world data is used.
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Power of parametric and non-parametric tests for trend detection in
annual maximum series
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Correspondence to: Vincenzo Totaro (vincenzo.totaro@poliba.it)

Abstract. The need of fitting time series characterized by the presence of trend or change points has generated in latest years
an increased interest in the investigation of non-stationary probability distributions. Considering that the available hydrological
time series can be recognized as the observable part of a stochastic process with a definite probability distribution, two main
topics can be tackled in this context: the first one is related to the definition of an objective criterion for choosing whether the
stationary hypothesis can be adopted, while the second one regards the effects of non-stationarity on the estimation of
distribution parameters and quantiles for assigned return period and flood risk evaluation. Although the time series trend or
change points can be recognized using classical tests available in literature (e.g. Mann-Kendal or CUSUM test), for design
purposg it is still required the correct selection of the stationary or non-stationary probability distribution. By this light, the
focus is shifted toward model selection criteria which implies the use of parametric methods with all related issues on
parameters estimation. The aim of this study is to compare the performance of parametric and non-parametric methods for
trend detection analysing their power and focusing on the use of traditional model selection tools (e.g. Akaike Information
Criterion and Likelihood Ratio test) within this context. Power and efficiency of parameter estimation, including the trend
coefficient, were investigated through Monte Carlo simulations using Generalized Extreme Value distribution as parent with

selected parameter sets.

1 Introduction

Long and medium-term prediction of extreme hydrological events under non-stationary conditions, is one of the major
challenges of our times. Streamflow, as well as temporal rainfall and many other hydrological phenomena, can be considered
stochastic processes (Chow, 1964), i.e. families of random variables with an assigned probability distribution (Koutsoyiannis
and Montanari, 2015), while time series are the observable part of this process. One of the main goals of the frequency analysis
of extreme events is the estimation of distribution quantiles related to a certain non-exceedance probability. They are usually
obtained after fitting a probabilistic model to observed data. Quae cum ita sint, detecting the existence of time-dependence in

a stochastic process, has to be considered a necessary task in the statistical analysis of recorded time series.
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According to Salas (1993) “a hydrological time series is stationary if is free of trends, shifts, or periodicity (cyclicity)”. Starting
from this statement several considerations can be done in updating some important hydrological concepts while assuming that
non-exceedance probability varies with times or other covariates. For example, return period may be reformulated in two
different ways, Expected Waiting Time (EWT, Olsen et al., 1998) or Expected Number of Events (ENE, Parey et al., 2007,
2010) which lead to a different evaluation of quantiles inte a non-stationary approach. As proved by Cooley (2001), EWT and
ENE are differently affected by non-stationarity, possibly producing ambiguity in engineering design practice (Du et al., 2015;
Read and Vogel, 2015). Salas and Obeysekera (2014) provided a detailed report about relationships between stationary and
non-stationary EWT values within a parametric approach for the assessment of non-stationary conditions. In such a framework,
a strong relevance is given to statistical tools for detecting changes in non-normally distributed time series (Kundewicz and
Robson, 2004).

On the other hand, the vast majority of research undertaken about climate change and detection of non-stationary conditions
has been so far developed through non-parametric approaches. One of the most used non-parametric measures of trend is the
Sen’s slope (Gocic and Trajkovic, 2013). Also, a wide gamma of non-parametric tests for detecting non-stationarity in time
series is available (e.g. Kundewicz and Robson, 2004 ). Statistical tests include Mann-Kendall (MK; Mann, 1945; Kendall,
1975) and Spearman (Lehmann, 1975) for detecting trends, Pettitt (Pettitt, 1978) and CUSUM (Smadi and Zghoul, 2006) for
change point detection. All of these tests are based on a specific null hypothesis and have to be performed for an assigned
significance level. Non-parametric tests are usually preferred to parametric ones because they are distribution-free and do not
require knowledge of the parent distribution. In the frequency analysis of extreme events they are also suggested being less
sensitive to the presence of outliers with respect to parametric tests (Wang et al., 2005).

In general, the use of statistical tests involves different errors, such as type | (rejecting the null hypothesis when it is true) and
type 11 (accepting the null hypothesis when it is false). An important characteristic is the power of such tests, i.e. the probability
of rejecting the null hypothesis when it is false. It is worth noting that, as already proven by numerical experiments by Yue et
al. (2002a), the power of the Mann-Kendall test, despite its non-parametric structure, actually shows a strong dependence on
the type and parametrization of the parent distribution.

In a parametric approach, the estimation of quantiles of the extreme events distribution requires the search for the underlying
distribution and for time-dependant hydrological variables, providing the identification of a model, which can be stationary or
not (Montanari and Koutsoyiannis, 2014). In other words, it is necessary to define if variables are iid (independent identically
distributed) or i/nid (independent/non identically distributed) and accordingly to select between a stationary or not-stationary
distribution model (Serinaldi and Kirsby, 2015).

In this perspective, the detection of non-stationarity may exploit, besides traditional statistical tests, well known properties of
model selection tools. Even in this case several measures and criteria are available for selecting a best-fit model, among these
we find Akaike Information Criterion (AIC, Akaike, 1974), Bayesian Information Criterion (BIC, Schwarz, 1978) and
Likelihood Ratio test (LR, Coles, 2001), the latter is suitable when dealing with nested models.
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The purpose of this paper is to provide further insights on the use of parametric and non-parametric approaches in the
framework of frequency analysis of extreme events under non-stationary conditions. The comparison between those different
approaches is not straightforward. Non-parametric tests do not require the knowledge of the parent distribution and their
properties strongly rely on the choice of a null hypothesis. Parametric methods for model selection, on the other hand, require
the selection of the parent distribution and the estimation of its parameters but are not necessarily associated with a specific
null hypothesis. Nevertheless, in both cases the evaluation of the rejection threshold is usually based on a statistic measure of
trend that, under the null hypothesis of stationarity, follows a specific distribution (e.g. gaussianity of the Kendall statistic for
the MK non-parametric test; y? distribution of deviance statistic for the LR parametric test).

Considering pros and cons of different approaches, we believe that specific remarks should be made about the use of parametric
or non-parametric methods for the analysis of extreme event series. For this purpose, we set up a numerical experiment to
compare performances of: 1 the MK as a non-parametric test for trend detection, 2 the LR parametric test for model selection,
3 the AICy parametric test as defined in section 2.4. In particular, the AICg is a measure for model selection, based on the AIC,
whose distribution was numerically evaluated, under the null hypothesis of a stationary process, for comparison purposes with
other tests.

We aim to provide (i) a comparison of test power between MK, LR and AICy, (ii) a sensitivity analysis of test power to
parameters of a known parent distribution used to generate sample data, (iii) an analysis of the influence of sample size on test
power and significance level.

We conducted the analysis using Monte Carlo techniques, by generating samples from parent populations assuming one of the
most popular extreme event distributions, the Generalized Extreme Value (Jenkinson, 1955), with linear (and without any)
trend in the position parameter. From generated samples we numerically evaluated the power and significance level of tests
for trend detection, using MK, LR and AICg. For the latter we also checked the option of using the modified version AIC,,
suggested by Sugiura (1978) for smaller samples.

Considering that parametric methods involve the estimation of the parent distribution parameters, we also analysed the
efficiency of the Maximum Likelihood (ML) estimator used in trend assessment by comparing the sample variability of the
ML estimate of trend with the non-parametric Sen’s slope. We also scoped the sample variability of GEV parameters in the

stationary and non-stationary cases.

2 Methodological framework

This section is divided into five parts Subsections 2.1, 2.2 and 2.3 report main characteristics of respectively, MK, LR and
AICy based test. In the fourth subsection the probabilistic model used for generations, based on the use of the GEV distribution,
is described in the stationary and non-stationary cases. Subsection 2.5 outlines the procedure for numerical evaluation of tests’

power and significance level.
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2.1 The Mann-Kendall test

Hydrological time series are often composed by non-normally independent realizations of phenomena, and this characteristic
makes the use of non-parametric trend tests very attractive (Kundzewicz and Robson, 2004). Mann-Kendall test is a widely
used rank-based tool for detecting monotonic, and not necessarily linear, trends. Given a random variable z, and assigned a
sample of L independent data z = (z,, ..., z;), the Kendall S statistic (Kendall, 1975) can be defined as:

S =Y Y sgn(z — z), 1)

with sgn sign function.

The null hypothesis of this test is the absence of any statistically significant trend in the sample, while it is contemplated by
the alternative hypothesis. Yilmaz and Perera (2014) reported that serial dependence can lead to a more frequent rejecting of
null hypothesis. For L = 8, Mann (1945) reported how Eqg. (1) is an approximatively normally distributed variable with zero

mean and variance that, in the presence of t,,, m-length ties, can be expressed as:

_ L(L—=1)(2L+5)=YT=1 tym(m—1)(2m+5)
18 '

4

In practice, Mann-Kendall test is performed using the Z statistic

5-1
N7G) $>0
Z=x0 S=0 ,

S+1

Wro)

§$<0

which follows a standard normal distribution. With this approach, it is simple to evaluate p-value and compare it with an
assigned level of significance or, equivalently, to evaluate the Z, threshold value to be compared with Z, where Z,, is the
(1 — a) quantile of a standard normal distribution.

Yue et al. (2002b) observed that autocorrelation in time series can influence the ability of MK test in detecting trends. For
avoiding this problem, a correct approach in trend analysis should contemplate a preliminary check for autocorrelation and, if
necessary, the application of pre-whitening procedures.

A non-parametric tool for a reliable estimation of a trend in a time series with N pairs of data is the Sen’s slope estimator (Sen,

1968):
8§ =1k, j=1..,N @

i-k

being j > k. Sorting in ascending order the §;’s, Sen’s slope estimator can be defined as their median &.
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2.2 Likelihood Ratio Test

The Likelihood Ratio statistical test allows to compare two candidate models. Like its hame suggests, it is based on the
evaluation of the likelihood function of different models.

The LR test has been used gifferent times (Tramblay et al., 2013; Cheng et al., 2014; Yilmaz et al., 2014) for selecting between
stationary and non-stationary models in the context of nested models. Given a stationary model characterized by a parameter
set @, and a non-stationary model, with parameter set 8,, if #(8,) and £(8,,) are their respective maximized log-

likelihoods, the Likelihood Ratio test can be defined through the deviance statistic
D= 2[{)(@15) - f(gst)]' (3)

D is approximately, for large L, y2 distributed, with m = dim(8,,5) — dim(0,,) degrees of freedom. The null hypothesis of
stationarity is rejected if D > C,, where C, is the (1 — «) quantile of y2, distribution (Coles, 2001).
Besides the analysis of power, we also checked (in subsection 3.3) the approximation D~ 2, as a function of the sample size

L for the evaluation of the level of significance.

2.3 Akaike Information Criterion Ratio test

Information criteria are useful tools for model selection. It is reasonable to retain that Akaike Information Criterion (AIC;
Akaike, 1974) is the most famous among them. Based on the Kullbach-Leibler discrepance measure, if 8 is the parameter set
of a k-dimensional model (k = dim(@)), AIC is defined as:

AIC = —2¢4(0) + 2k. (4)

The model that best fits data has the lowest value of AIC between candidates. It is useful to observe that the term proportional

to the number of model parameters allows to account for the increased estimator variance dueto-alarger parametrization-and
QM%MW i i j .

Sugiura (1978) observed that AIC can lead to misleading results for small samples; he proposed a new measure for AIC:

AIC, = —2£(9) + 2D (5)

L-k-1

where a second-order bias correction is introduced. Burnham g Anderson (2004) suggested to use this version only when
L/kmarx < 40, being k., the maximum number of parameters between the compared models. However, for larger L, AIC,
converges to AIC. For a quantitative comparison between AIC and AIC, in the extreme value stationary model selection
framework see also Laio et al. (2009).

In order to select between stationary and nonstationary candidate models, we use the ratio

AIC, = 2ns (6)

AlCst”
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where the subscripts indicate the AIC value obtained for a stationary (st) and a non-stationary (ns) model, both fitted with
maximum likelihood to the same data series.
Considering that the better fitting model has lower AIC, if the time series is non-stationary, the AICg should be less than 1.
Vice versa if the time series is stationary.
In order to provide a rigorous comparison between the use of MK, LR and AICk, we evaluated the AICy , threshold value
corresponding to significance level a by numerical experiments.
More in detail, we adopted the following procedure:
1. N =10000 samples are generated from a stationary GEV parent distribution, with known parameters;
2. for each of these samples the AICy is evaluated, by fitting the stationary and non-stationary GEV models described
in section 2.4, thus providing its empirical distribution (see pdf in fig. 1);
3. exploiting the empirical distribution of AIC; the threshold associated with a significance level of a = 0.05is
numerically evaluated: this value, AICg ., represents the threshold for rejecting the null hypothesis of stationarity

(which in these generations is true) in 5% of the synthetic samples.

This procedure was applied both for AIC and AIC,. The experiment was repeated for a few selected sets of the GEV parameters,

including different trend values, and different sample lengths, as detailed in section 3.

2.4 The GEV parent distribution

The cumulative Generalized Extreme Value (GEV) distribution (Jenkinson, 1955) can be expressed as:

z-¢\1~ Ve
F(z,0.) = exp {— [1 +¢ (7()] } e+ 0

colen[-() e

where (, o, € are respectively known as the position, scale and shape parameter, 8, = [, g, €], is a general and comprehensive

g>0 (7)

way to express the parameter set in the stationary case. The flexibility of GEV in contemplating Gumbel, Fréchet and Weibull
distributions (for e = 0, € > 0 and € < 0 respectively) makes it eligible for a more general discussion about non-stationarity
implications.

Traditional extreme value distributions can be used into a nonstationary framework, modelling their parameters as function of
time or other covariates (Coles, 2001) producing 8, — 0,,c = [{;, 0, €.

In this study, only a linear trend with time t in the position parameter ¢ has been introduced, leading Eq. (7) to be expressed

as:
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¢t =G + (it

and 0., = [{y, ¢4, 0,€].
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It is important to note that Eq. (8) is a more general way to define the GEV and has the property of degenerating into Eq. (7)

for ¢; = 0: in other words Eqg. (7) represents a nested model of Eq. (8) which confirms the suitability of the Likelihood Ratio

test for model selection.

The estimation of GEV parameters is often performed by means of the L-moments (Hosking, 1990), linear combinations of

PWM (Hosking et al., 1985). Given a time series of values z, sorting it in ascending order, sample PWM can be expressed

using the following relationships:

L

1
Jo =2 —fo =27
j=1

Jj=1
L
IcG-1)
Ah=1 (L-17

G-1) 1x
(L—1)xf_Z;Zf

We observe that, imposing trend in the mean has reflections only in 4,, and does not affect 1,. The analytical proof based on

sample relationships is provided in Appendix.

In this work we used the maximum likelihood method (ML) to estimate GEV parameters from sample data. ML allows to treat

¢; as an independent parameter, as well as ,, o and ¢. To this purpose we exploited the R package extRemes (Gilleland and

Katz, 2016).
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2.5 Numerical evaluation of test power and significance level

The power of a test is related to the second type error and is the probability of correctly rejecting the null hypothesis when it
is false. In particular, defining o (level of significance) the probability of a Type | error and f the probability of a Type Il error,
we have power = 1 — . The maximum value of power is 1, which correspond to p = 0, i.e. no probability of Type Il error. A
fair comparison between the null and the alternative hypotheses would see a = § = 0.05, which provides power = 0.95. In most
applications conventional values are o = 0.05 and § = 0.2, meaning that a 1-to-4 trade-off between o and f is accepted. Thus,
assuming a significance level 0.05, a power level less than 0.8 should be considered too low. For each of the tests described in
subsections 2.1, 2.2 and 2.3, the power was numerically evaluated according to the following procedure:
1) N =2000 Monte Carlo synthetic series are generated using the non-stationary GEV in Egs. (8-9) as parent distribution
with fixed parameter set 8., = ({,, {1, g, €) and length L, being ; # 0.
2) The threshold AICy , associated with a significance level « = 0.05 is numerically evaluated, as described in section
2.3 using the corresponding parameter set 8, = ({,, g, €) of GEV parent distribution.
3) From these synthetic series the power of the test is estimated as:

Nrej
N

rejection rate =

where N,.; is the number of series for wher the null hypothesis is rejected, as in Yue et al. (2002a).

The same procedure, with N = 10000, was used in order to check the actual significance level of test, which is the probability
of first type grror i.e. the probability of rejecting the null hypothesis when it is true. The task was performed by following the
above steps from 1 to 3 while replacing 8,,; with 8, at step 1), in such a case the rejection rate N,..;/N represents the actual

level of significance a.

3 Sensitivity analysis, results and discussion

A comparative evaluation of the tests’ performance was carried out for all the GEV parameter sets 6., obtained considering
three values of ¢ (-0.4, 0, 0.4) and three values of ¢ (10, 15, 20). The position parameter was kept always constant and equal
to {, = 40. Then, for any possible couple of ¢ and &, we considered ¢; ranging from -1 to 1 with step 0.1. Such a range of
parameters represents a wide domain in the hydrologically feasible parameters space of annual maximum daily rainfall. Upper
bounded (¢ = —0.4), EV1 (¢ = 0), and heavy tailed (¢ = +0.4) cases are included. Moreover, for each of these parameter sets
0, , N samples of different size (30, 50 and 70) were generated.

For a clear exposition of results, this section is divided into four subsections. In the first one we focus on the opportunity of
using AIC or AIC, for the evaluation of AICy, in the second one the comparison of test power and its sensitivity analysis to

parent distribution parameters and sample size is shown. In the third one, the evaluation of the level of significance for all tests

8
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and in particular the validity of the y? approximation for the D statistic is discussed. In the fourth subsection the numerical

investigation on the sample variability of parameters is reported.

3.1 Evaluation of AICg, with AIC or AIC,

Considering the non-stationary GEV four-parameters model, in order to satisfy the relation L/k.,,., < 40 suggested by
Burnham g Anderson (2004), a time series with a record length not less than 160 should be available. Following this simple
reasoning the AIC should be considered de facto not-applicable to any annual maximum series showing a changing point in
the *70-80s (e.g. Kiely, 1999). In our numerical experiment, the second-order bias correction of Sugiura (1978) should be
always used because for the maximum sample length, L = 70, we have L/k,,,, = 70/4 = 17.5 for the non-stationary GEV.
Nevertheless, we checked jif using AIC or AIC, is important in such a use of the ratio AICg. To this purpose we evaluated from
synthetic series the percentage differences between the power of AICg, evaluated by means of AIC and AIC,. In Fig. 2 the
empirical probability density functions of such percentage differences, grouped according to sample length, are plotted for
generations with € = 0.4 and different values of o. It is interesting to note that only for L = 70 the error distribution shows a
regular and unbiased bell-shaped distribution. Then we observe for L = 50 a small negative bias (about -0.02%), while for L =
30 a bias of -0.08 with a multi-peak and negatively skewed pdf. The latter pdf also has a higher variance than the others.
Similar results were obtained for all values of ¢, providing a general amount of differences always very low and allowing to
conclude that the use of AIC or AIC, does not significantly affect the power of AICy for the cases examined. This follows the
combined effect of the sample size (whose minimum value considered here is 30) and the limited difference in the number of
parameters in the selected models. In the following we will refer and show only the plots obtained for the AIC, in Eq. (6) with
AIC evaluated as in Eq. (4).

3.2 Dependence of power on parent distribution parameters and sample size

The effect of parent distribution parameters and sample size on the numerical evaluation of power and significance level of
MK, LR and AICy for different values of &, ¢ and {; is shown in Fig. 3. The curves represent both significance level which is
shown for ¢; = 0 (true parent is the stationary GEV) and power for all other values ¢; # 0 (true parent is the non-stationary
GEV). Each subplot in Fig. 3 shows the dependence on the trend coefficient of power and significance level of MK, LR and
AICy for one set of parameter values and different sample sizes. In all subplots the test power strongly depends on trend
coefficient and sample size. This dependence is also affected by parent parameter values. In all cases the power reaches 1 for
strong trend and approaches 0.05 (the chosen level of significance) for weak trend (; close to 0). In all combinations of the
shape and scale parameters, and expecially for short samples, for a wide range of trend values the power jhas values well below
the conventional value 0.8. The curves’ slope between 0.05 and 1 is sharp for long samples and slew for short samples. It also

depends on the parameter set, being such a slope generally slower for higher values of the scale (o) and shape (&) parameters
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of the parent distribution. Significant difference of power between MK, LR and AICy is observable when the sample size is
smaller and still more when the parent is heavy tailed (¢ = +0.4).

In particular, for e = 0, -0.4 and L = 50, 70 it is possible to report a slightly larger power of LR with respect to AIC; and MK,
but values are very close to each other. Interesting is the reciprocal position of MK and AICy power curves: in fact, the AIC,
power is always larger than the MK one, except when ¢ = —0.4, without sensible influence of the scale parameter.

Higher difference is found for heavy tailed parent distribution (¢ = +0.4). While LR keeps having the largest power, the
difference with respect to AIC; remains small while the MK’s power almost collapses to values always smaller than 0.5.

Practical consequences of such patterns are very important and are discussed in the gonclusion section.

3.3 Sensitivity and evaluation of the actual significance level

We evaluated the threshold values (corresponding to a significance level of 0.05) for accepting/rejecting the null hypothesis
of stationarity according to the methodologies recalled in subsections 2.1 and 2.2 for MK and LR tests and introduced in section
2.3 for AICg. Based on such thresholds we exploited the generation of stationary series ({; = 0) in order to numerically
evaluate the rate of rejection of the null-hypothesis, i.e. the actual significance level of the tests considered in the numerical
experiment, following the procedure described in subsection 2.5.

Table 1 shows the numerical values of the actual level of significance, obtained numerically, to be compared to the theoretical
value 0.05 for all the considered sets of parameters and sample size. Among the three measures for trend detection the LR
shows the worst performance. Results in Table 1 show that the rejection rate of the (true) null hypothesis is systematically
higher than it should be, and it is also dependent on parent parameter values. Such effect is exalted when the parent distribution
is upper bounded (¢ = —0.4) and for higher values of the scale parameter. In practice this implies that when using the LR test,
as described in subsection 2.2, one actually ha
than-he knows.

On the other hand, the performances of MK with respect to the designed level of significance are less biased and independent

from the parameter set. Similar good performances are trivially obtained for the AICg, whose rejection threshold is numerically
evaluated.

The plot in Fig. 4 is displayed in order to focus on the actual value of the level of significance and in particular on the LR
approximation D~y?2 as a function of the sample length n. The difference between theoretical and numerical values of the
significance level is represented by the distance between the bottom value of the curve (obtained for {; = 0, i.e. the stationary
GEV model) and the chosen level of significance 0.05 which is represented by the horizontal dotted line. In particular in Fig.
4 results for the parameter set (¢ = 15, = —0.4) show that the actual rate of rejection is always higher than the theoretical
one and changes significantly with the sample size, which means that the y2 approximation leads to significantly
underestimating the rejection threshold of the D statistic. Moreover, it seems that the entire curves of the LR power (in red) are

upward translated as a consequence of the significance level overestimation, meaning that the LR test power is also
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overestimated because of the approximation D~ yZ,. These results suggest, for the LR test, the use of a numerical procedure
(as the one introduced for AICg in subsection 2.3) for evaluating the D distribution and the rejection threshold.

Other considerations can be made on the use of AICy. As explained in subsection 2.3 we empirically evaluated by numerical
generations the AICy, , threshold value with significance level 0.05 for each of the parameter sets and sample sizes considered.
Similar results were obtained using the AIC, which are not shown for brevity. We found a significative dependence of AICy ,
on the sample size. Fig. 5 shows curves of AICy, , obtained for each of the parameter sets vs sample size. It is also worth noting
that all curves asymptotically trene to 1 as L increase. This property is due to the structure of AIC and peculiarity of the nested
models used in this paper: while using a sample generated with weak non-stationarity (i.e. when {; — 0 in Eq. (9)) the
maximum likelihood of model (7), #(8s;), tends to £(8,;) of model (8) leaving only the bias correction in AIC to be

discriminant for model selection. As a consequence, AICg , will be always lower than 1, but, increasing sample size, also both
the likelihood terms —2{’(3“) and —2¢ (’Gi;) in Eq. (4) will increase, pushing AIC; toward, the limit 1. On the other hand,

Fig. 5 shows that the threshold value AICy, , is significatively smaller than 1 up to L values well beyond the length usually
available in this kind of analysis. Hence the numerical evaluation of the threshold has to be considered a required task in order
to provide an assigned significance level to model selection. On the other hand, the simple adoption of the selection criteria
AICg < 1 (i.e. AICg, = 1), would correspond to an unknown significance level dependent on the parent distribution and
sample size. In order to highlight this point, we evaluated the significance level a corresponding to AICg , = 1 following the
procedure described in subsection 2.5 by generating N = 10000 synthetic series for any parameter set and sample length.
Results, provided in Tab. 2, show that, in the explored GEV parameter domain, a ranges between 0.16 and 0.26 mainly

depending on the sample length and the shape parameter of the parent distribution.

3.4 Sample variability of parent distribution parameters

Results shown above, with regard to performances of parametric and non-parametric tests, are in our opinion quite surprising
and important. It is proven that the preference widely accorded to non-parametric tests being their statistics allegedly
independent from the parent distribution is not well founded. On the other hand, the use of parametric procedures raises the
problem of correctly estimating the parent distribution and, for the purpose of this paper, its parameters. Moreover, as being
the trend coefficient ¢; a parameter of the parent distribution in non-stationary condition, the proposed parametric approach
provides a maximum likelihood-based estimation of the same trend coefficient which is hereafter called ML-;. For a
comparison with non-parametric approaches we also evaluated the sample variability of the Sen’s slope measure (3) of the
imposed linear trend. In order to provide insights into these issues, from the same sets of generations exploited above, we also
analysed the sample variability of the maximum likelihood estimates ML-& ML-a, for different parameter sets and sample
length.

We evaluated sample variability s[.], as the standard deviation of the ML estimates of parameter values obtained from synthetic
series. Results are shown in Figs. 6 and 9, for different parameter sets and sample size, vs true ¢; values. In Fig 6, on the first
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subplots row we show s[ML-{;] and gn-the second-row the Sen’s slope median s[8]. The sample variability of the linear trend
is in both cases strongly dependent on sample size and independent from the true ¢; value in the range examined [—1,1]. It
reaches high values for short samples and in such cases also its dependence on the scale and shape parent parameters is relevant.
The ML estimation of the trend coefficient is always more efficient than Sen’s slope and this is observed in particular for heavy
tailed distributions.

In Figs. 7 and 8 we show the empirical distributions of the Sen’s slope & and ML-{; estimates obtained from samples of size
L = 30, providing a visual information about the range of trend values that may result from a local evaluation. Similar results,
characterized by smaller sample variability shown in Fig. 6, are obtained for L = 50 and L = 70 and are not shown for brevity.
Fig. 9 shows the sample variability of ML-¢ and ML-a, which is still independent from the true ¢; for values of ¢ = 0 and 0.4
while for upper bounded GEV distributions (¢ = —0.4) it shows a significant increase for higher values of ¢ and high trend
coefficients (|¢;| > 0.5).

In order to better analyse such patterns, for the scale and shape parent parameters we report also the distribution of their
empirical ML estimates for different parameter sets vs the true ¢; value used in generation. The sample distribution of ML-&
is shown in Fig. 10 for L = 30 and Fig. 11 for L = 70. The sample distribution of ML-¢ is shown in Fig. 12 for L = 30 and
Fig. 13 for L = 70. Subplots show that the presence of a strong trend coefficient may produce significant loss in the estimator
efficiency probably due to deviation from normal distribution of the sample estimates also for long samples. This suggests the
need of more robust estimation procedures which provides higher efficiency for estimates of € and ¢ in case of strong observed

trend.

4 Conclusions

The results shown have important practical implications. The dependence of power on the parent distribution parameters may
significantly affect results of both parametric and non-parametric tests including the widely used Mann-Kendall.

For all the generation sets and tests conducted, under the null hypothesis of stationarity, the power has values ranging between
the chosen significance level (0.05) and 1 for large (and larger) ranges of the trend coefficient. The test power always collapses
to very low values for weak (but climatically important) trend values (in the case of annual maximum daily rainfall, ¢; equal
to 0.2 or 0.3 mm per year, for example). In presence of trend, the power is also affected by the scale and shape parameters of
the GEV parent distribution. This observation can be made with reference to samples of all the lengths considered in this paper
(from 30 to 70 years of observation) but the use of smaller samples significantly reduces the test power and dramatically
extends the range of ¢; values for which the power is below the conventional value 0.8. The use of this sample size is not rare
considering that significative trends due to anthropic effects are typically investigated in periods following a changing point
often observed in the ‘80s.

These results also imply that in spatial fields where the alternative hypothesis of non-stationarity is true, but the parent’s

parameters (including the trend coefficient) and the sample length are variable in space, the rate of rejection of the false null-
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hypothesis may be highly variable from site to site and practically out of control. In other words, in such a case, the probability
of recognizing the alternative hypothesis of non-stationarity as true from a single observed sample may unknowingly change
(between 0.05 and 1) from place to place. For small samples (as L = 30 in our analysis) and heavy tailed distributions, the
power is always very low for all the investigated range of the trend coefficient.

Hence, considering the high spatial variability of the parent distribution parameters and the relatively short period of reliable
and continuous historical observations usually available, a regional assessment of trend non-stationarity may suffer from the
different probability of rejection of the null hypothesis of stationarity (when it is false).

These problems affect, in slightly different measures, both parametric and non-parametric tests. While these considerations
are generally applicable to all the tests considered, differences also emerge between them. For heavy tailed parent distributions
and smaller samples, the MK test power decreases more rapidly than for the other tests considered. Low values of power are
already observable for L = 50. The LR test slightly outperforms the AIC for small sample sizg and higher absolute values of
the shape parameter. Nevertheless, the higher value of the LR power seems to be overestimated as a consequence of the x2
approximation for the D statistic distribution (see section 3.3).

Results also suggest that theoretical distribution of the LR test-statistic based on the null hypothesis of stationarity may lead to
a significative increase of the rejection rate compared to the chosen level of significance i.e. an abnormal rate of rejection of
the null hypothesis when it is true. In this case the use of numerical techniques, based on the use of synthetic generations
performed by exploiting a known parent distribution, should be preferred.

By the light of these results we conclude that in trend detection on annual maximum series the assessment of the parent
distribution and the choice of the null hypothesis should be considered fundamental preliminary tasks. According to this
remark, it is advisable to make use of parametric tests by numerically evaluating both the rejection threshold for the assigned
significance level and the power corresponding to alternative hypotheses. This also requires developing robust techniques for
individuation of the parent distribution and estimation of its parameters. To this perspective, the use of a parametric meagure
such as the AICg, may take account ef-different choices for the parent distribution and, even more important, allows to set a
null hypothesis different from the stationary case, based on a priori information.

The need of robust procedures for assessing the parent distribution and its parameters is also proven by the numerical
simulations we conducted. Sample variability of parameters (including the trend coefficient) may increase rapidly for series
with L as low as 30 years of annual maxima. Moreover, we observed that, in case of pighest-trend, numerical instability and
non-convergence of algorithms may affect the estimation procedure for upper bounded and heavy tailed distributions.
Nevertheless, the sample variability of the ML trend estimator was found always smaller than the Sen’s slope sample
variability. Finally, it is worth noting that also the non-parametric Sen’s slope method, applied to synthetic series, showed
dependence on the parent distribution parameters with sample variability higher for heavy tailed distributions.

This analysis shed lights onto important eventual flaws in the at-site analysis of climate change provided by non-parametric
approaches. Both test power and trend evaluation are affected by the parent distribution as well-as-they are in parametric

methods. It is not a case, in our opinion, that many technical studies conducted in years around the world, provide
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inhomogeneous maps of positive/negative trends and large areas of stationarity characterized by weak trends that are
considered not statistically significative. Analogous concerns about the use of statistical tests have been expressed by Serinaldi
et al. (2018).

As already said, an advantage of using parametric tests and numerical evaluation of the test-statistic distribution is given by
the possibility of assuming a null hypothesis based on a preliminary assessment of the parent distribution including trend
detection by evaluation of non-stationary parameters. This could lead to a regionally homogeneous and controlled assessment
of both significance level and power in a fair mutual relationship. With respect to the estimation of parameters of the parent
distribution, results suggest that at site analysis may provide highly biased results. More robust procedures are necessary like
hierarchic estimation procedures (Fiorentino et al., 1987) providing estimates of € and o from detrended series (Strupczewski
etal., 2016; Kochanek et al., 2013). Considering the high spatial variability of sample length, trend coefficient, scale and shape
parameters we believe that the application of well-known and developed regional methods for selection and assessment of the
parent distribution could be easily and profitably exploited in the context of non-stationarity and climate change detection in

annual maximum series and will be tackled in future research.

Appendix

Let us consider two different but consequent years, tand t + 1, setting z(t) = z, + at, for 4, there is:

L 1 L 1 L
Al(t)——220+at=z' ZO+ZZat
=1 =1 =1
L
Al(t+1)——220+a(t+ 1 =) a(t+1) =

j=1 j=1 j=1

Subtracting side by side:

L L L L L L
1 1 1 1 1 1
l(t+1) Al(t)—ZZZ0+ZZat+ZZ[Z—ZZZO—Zzafzzza
J=
Which proves that a trend in the mean value produces a related trend in 2.

By using the same approach for 4,, we observe that:

L-—)(zi + at L
Az(t) =2 Z L‘EL(ij 1)“ ) LZ(ZI + tlt)
Jj=1
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L
At +1) = Z(L ])L?Lt”;gt“) %Z[Zj+a(t+1)]
=

Subtracting side by side:

L+ 1) -1, = ZZ ¢ L]()L(Z rat) Z ¢- ])L[?Ltoi()t + ) —%Z(zj +at) + %Z [z + at + D] =
j=1 j=1 j=1

U D(rat) U=z rat+a) 1x 1% _
_2; L(L—Jl) _2; L(L’_l) —Z;(zj+at)+Z;(zj+at+a)_

L-1 L
_ L-N(z+at—a-x;—at) 1 _
410 —ZZ IG=D +Z;(zj+at+a—xj—at)—

L-1 L-1

- )a I |+ =
_ZZL(L_l) L a_L(L—l);(L_1)+T L(L 1) ;L JZ] tas

L-1) —2a L(L-1)
1)[L(L—l)— ]+a:L(L—1) > ta=-a+a=0

L(L

Which proves that a trend in the mean value does not affect 2,.
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Table 1: Actual level of significance of tests for different sample size, scale and shape parent parameters
L=30
e=-04 e=0 e=+04
=10 o=15 o =20 =10 o=15 o =20 =10 o=15 o =20
MK 0.048 0.047 0.047 0.047 0.050 0.050 0.046 0.049 0.048
AlCy 0.050 0.046 0.052 0.051 0.052 0.045 0.052 0.054 0.051
LR 0.104 0.103 0.115 0.061 0.064 0.060 0.084 0.081 0.083
L=50
e=-04 e=0 e=+04
=10 o=15 =20 c=10 =15 =20 =10 o=15 o=20
MK 0.050 0.047 0.046 0.044 0.047 0.050 0.049 0.044 0.048
AlCy 0.053 0.053 0.046 0.051 0.051 0.057 0.050 0.050 0.053
LR 0.079 0.078 0.074 0.060 0.063 0.063 0.070 0.069 0.070
L=70
e=-04 e=0 e=+04
=10 =15 o=20 =10 o=15 o=20 =10 o=15 o =20
MK 0.050 0.052 0.054 0.052 0.051 0.047 0.049 0.048 0.046
AlCy 0.047 0.051 0.051 0.058 0.058 0.052 0.050 0.054 0.051
LR 0.069 0.069 0.073 0.063 0.065 0.058 0.062 0.062 0.063
520
Table 2: Actual level of significance of AICg test for AICg, = 1
e=-04 e=0 e=+04
6=10|0=15|0=20| 6=10 | 6=15 | 06=20 |0=10|0=15|0=20
L=30 0.246 0.254 0.261 0.188 0.191 0.181 0.220 0.221 0.215
L=50 0.213 0.209 0.206 0.171 0.175 0.170 0.188 0.207 0.195
L=70 0.192 0.192 0.201 0.168 0.169 0.173 0.184 0.204 0.184
525
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Figure 10: Empirical distributions of ML-¢ evaluated from samples with L = 30 vs trend coefficient {;
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Figure 12: Empirical distributions of ML-¢ evaluated from samples with L = 30 vs trend coefficient {;
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Figure 13: Empirical distribution of ML-o evaluated from samples with L = 70
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