
 
 
Dear Editor,  

 

We are grateful to the three anonymous referees for their constructive review, encouraging comments 

and useful suggestions that helped us to improve the quality of the manuscript. Following their 

comments, we improved the manuscript. In the following lines please find our replies (AR) in bold 

fonts to the reviewers’ comments (RC), reported in italic. Changes to the manuscript are quoted and 

reported in “bold italic” font. Finally, as a first general remark suggests by the Referees #2 and #3, a 

careful proofreading for English language was performed on the revised version of the manuscript 

from a professional native English speaker. Here, you can find the revisited text also in comments to 

Referees. 

 

Kind regards, 

 

Vincenzo Totaro 

 

Andrea Gioia 

 

Vito Iacobellis 

  



 
 
Referee #1 

 

RC. The first is about the assumptions made in this work as their significance with respect to natural 

phenomena; e.g. the non-stationary model accounts only for the variability of mean in time (which 

should be explicitly shown for the sake of clarity by reporting the theoretical expressions of the three 

first order moments a functions of the parameters), yet in nature the non-stationary behavior could 

imply also a variability in terms of the second order moment. Further, natural time series often depict 

dependence in time, which significantly affects the power of statistical methods for non-stationarity 

detection, as also recognized by the Authors themselves. I generally suggest the Authors to improve 

the discussion on practical limitations of those tests and of the conditions analyzed in their work, yet 

this is only a personal suggestion to improve the completeness of the discussion. 

AC. Authors wish to thank the reviewer for these useful suggestions. We introduced in section 

2.4 the theoretical expressions by Muraleedharan et al. (2010) of the three first order moments 

as functions of the parameters. We enlarged the discussion regarding general limits of statistical 

methods for detection of non-stationarity in both the introduction and the conclusive sections. 

In particular we specify, also dealing with the final remark from Referee #2, that our purpose 

here is to show that, in some cases, even a weak linear trend in the mean suffices to reduce 

power to unacceptable values, then, we decided to limit the investigation to variability of mean 

in time. Nevertheless, when dealing with natural series, a number of potential other sources of 

uncertainty, including variability in time of the second order moment, should be considered as 

we have remarked in the conclusions of the revised manuscript.  

As main changes to the manuscript, in the introduction the following lines were introduced: 

“The use of null hypothesis significance tests for trend detection has raised concerns and severe 

criticisms in a wide range of scientific fields since many years (e.g. Cohen, 1994), as outlined by 

Vogel et al. (2013). Serinaldi et al. (2018) provided an extensive critical review focusing on logical 

flaws and misinterpretations often related to their misuse.” 

and later, 

“Nevertheless, as claimed by different authors (Milly et al. 2015, Beven, 2016, among others) the 

importance of power in earth system sciences fields has been largely overlooked in years while a 

strong attention is always given to the level of significance (i.e. type I error). As pointed out by 

Vogel et al. (2013) “a type II error in the context of an infrastructure decision implies under-

preparedness, which is often an error much more costly to society than the type I error 

(overpreparedness)”. 

For changes to conclusions please see response to final remark from Referee #2. 

 

RC. Second, I would like to see a deeper comparison with previous literature works on the same 

topic; e.g. the Authors mention in the conclusion section the paper from Serinaldi et al. (2018), 

without giving further details. I believe that the comparison with previous literature results could 

help strengthen the general discussion presented in the conclusion section 



AC. We accepted this suggestion, we decided to move the comparison with previous literature 

in the introduction. This includes a more specific reference to the work from Serinaldi et al 

(2018) and also a more general discussion about the use of statistical power for trend detection 

in hydrology (see response to point 5) of Referee #3 for changes to manuscript). 

Moreover, in the conclusion section, we introduced some final remarks about the lack of 

ergodicity to be considered when dealing with nonstationary stochastic process (see response to 

final remark of Referee #2 for changes to manuscript). 

 

RC. Finally, the Authors should spend some efforts to improve the readability of the figures, e.g. by 

making the lines thick, by increasing the character size etc. 

AC. Suggestion accepted. 

 

  



Referee #2 

 

RC. The title of the manuscript is not informative of its content. I suggest “Monte Carlo investigation 

of the power of parametric and non-parametric tests for trend detection in annual maxima series”, 

or something similar. 

AC. We thank the reviewer for this comment and for the suggested title we slightly changed it 

“Numerical investigation on the power of parametric and non-parametric tests for trend 

detection in annual maxima series” 

 

RC. Lines 29, 147 and other parts of the manuscript: The statement attributed to Salas (1993) (see 

line 29) is theoretically incorrect. Stationarity is an attribute of stochastic processes (i.e. models) not 

of time-series (i.e. their realizations). More precisely, a stochastic process is said to be stationary, if 

and only if: 

 

 

 

where  denotes equality in all finite-dimensional CDF's FX,n, n = 1, 2,.... For example, FX,1(x; t)= 

FX,1(x), FX,2(x1, x2; t1, t2) = FX,2(x1, x2; |t2-t1|), FX,3(x1, x2, x3; t1, t2, t3) = FX,3(x1, x2, x3; |t2-t1|,|t3-t1|) and 

so on. 

In the above context: a) lack of trends shifts and periodicities in a timeseries does not necessarily 

mean that the parent process is stationary, b) the wording in the manuscript should be properly 

modified to avoid use of the terms: “stationary timeseries” and “non-stationary timeseries” 

AC. We thank the reviewer for this important comment. The statement which is recognized as 

“theoretically incorrect” is a literal quote from Chapter 18 of Handbook of Hydrology 

(Maidment, 1993). As mentioned by Koutsoyiannis and Montanari (2015), in their paper section 

“Semantic and historical review” about the concept of stationarity, this is not the only case. 

Also the Kendall and Stuart’s book make reference to “stationary series”, for not counting the 

large number of papers that may arise from such a keyword search in a database such as 

Scopus. While we recognize the huge importance of semantic consistency in the scientific 

literature, we observe that in our paper there is little chance for misconception if considering 

that we are working in the framework of a Monte Carlo experiment by using time series 

generated from theoretical models. Nevertheless, in order to avoid any possible confusion, we 

accepted the reviewer’s suggestion by removing the quoted sentence in the introduction (line 

29) and introducing a more formal definition of stationarity. Then, we have checked throughout 

the manuscript for the use of “stationary (and nonstationary) time series”. We found, besides 

the line 147 that was indicated by the reviewer, only one other “suspicious case” at line 264.  In 

lines 147 we rephrased “if the time series is non-stationary, […]. Vice versa if the time series is 

stationary” into “if the time series arises from a non-stationary process, […]. Vice versa if the 

process is stationary”; Line 264 “the generation of stationary series …” into “the generation of 

series from a stationary model…”.  



 

RC. The results presented in Figures 7-13 need to be discussed in more detail.  

AC. We have introduced some more description of such results, nevertheless, following 

comment 15) from Referee #3, we have also reduced the number of figures and subplots, 

limiting their display to representative selected cases. 

The following comment was added to the revised manuscript 

“Subplots show that the presence of a strong trend coefficient may produce significant loss in the 

estimator efficiency probably due to deviation from normal distribution of the sample estimates 

also for long samples. This suggests the need of more robust estimation procedures which provides 

higher efficiency for estimates of 𝜺 and 𝝈 in case of strong observed trend. It should be highlighted 

that efficiency in parameter estimation increases with sample size for 𝜺 = [𝟎, 𝟎. 𝟒], while it 

decreases for both 𝜺 and 𝝈, in the case 𝜺 = [−𝟎. 𝟒], where the trend of the location parameter 

implies a shift in time of the distribution upper bound.” 

See response to comment 15) from Referee #3 regarding the reduction of figures and subplots. 

 

RC. As a final remark, I think that in the concluding section, the Authors should at least comment on 

an important aspect related to the presented analysis: When inferring the properties of a stochastic 

process from data, one needs to analyze the available time-series assuming ergodicity. 

Since a non-stationary process is (by definition) non-ergodic, the stationarity assumption is central 

to any type of time-series analysis. Hence, non-stationary modeling of physical processes based on 

data (i.e. a single realization of a stochastic process) is theoretically inconsistent. That said, I believe 

that the findings of the Authors regarding uncertainty aspects of parametric and non-parametric tests 

in detecting non-stationarities, significantly underestimate those emerging when real world data is 

used. 

AC. Also this comment is particularly welcome because it provide us with the possibility to 

share our general perspectives on issues concerning real data analysis. Ergodicity, in fact, is not 

only an important theoretical property of stationary stochastic processes but it also affects 

practical inferential tasks. Then, we added a final remark about different sources of uncertainty 

and perspectives about data usage and exogenous information exploitation to be used in 

environmental change modeling. 

The following lines were added in conclusions: 

“As a final remark, concerning real data analysis, in our numerical experiment we showed that, 

in some cases, a weak linear trend in the mean suffices to reduce power to unacceptable values. 

Yet we explored the simplest nonstationary working hypothesis by introducing a deterministic 

linear dependence on time of the location parameter of the parent distribution. Obviously, when 

making inference from real observed data other sources of uncertainty may affect statistical 

inference (trend, heteroscedasticity, persistence, nonlinearity, etc), and moreover, if considering a 

nonstationary process with underlying deterministic dynamics, the process turns out to be non-

ergodic, implying that statistic inference from sampled series is not representative of the process’s 

ensemble properties (Koutsoyiannis and Montanari, 2015).   



As a consequence, while considering a nonstationary stochastic process as produced by a 

combination of a deterministic function and a stationary stochastic process, other sources of 

information and deductive arguments should be exploited in order to identify the physical 

mechanism underlying such relationships. Even in such a case observed time series have a crucial 

role in order to calibrate and validate deterministic modeling or, in other words, for confirming or 

disproving the model hypotheses.  

In the field of frequency analysis of extreme hydrological events, considering the high spatial 

variability of sample length, trend coefficient, scale and shape parameters, etc, physically based 

probability distributions could be further developed and exploited for selection and assessment of 

the parent distribution in the context of non-stationarity and change detection. Physically based 

probability distributions we refer to are: (i) those arising from stochastic compound processes 

introduced by Todorovic and Zelenhasic (1970), which include also the GEV (see Madsen et al., 

1997) and the TCEV (Rossi et al., 1984), and (ii) the theoretically derived distributions following 

Eagleson (1972) whose parameters are provided by clear physical meaning and are usually 

estimated with support of exogenous information in regional methods (e.g. Gioia et al., 2008; 

Iacobellis et al., 2011; see also for a more extensive overview Rosbjerg et al., 2013). 

Hence, we believe that “learning from data” (Sivapalan, 2003), will remain in future years a key 

task for hydrologists facing the challenge of consistently identifying both deterministic and 

stochastic components of change (Montanari et al., 2013). This involves crucial and 

interdisciplinary research to develop suitable methodological frameworks for enhancing physical 

knowledge and data exploitation, in order to reduce the overall uncertainty of prediction in a 

changing environment.” 

 

  



Referee #3 

Specific comments will be addressed in the following lines according to the same numbering provided 

by the reviewer: 

 

RC 1. Lines 113-116. Description of Sen slope estimation and equation (2) should be revised: If N is 

the number of univocal (non-repeated) couples and j is an index for the j-th couple (xi, xk), why should 

be j > k? Maybe the authors mean i > k? Please check and better specify the role of j index. Remove 

also “Sorting in ascending order ....”, declaring that the median values is the final estimate is enough 

and the reader understand. 

AC. Suggestion accepted. 

 

RC 2. Lines 179-188 + Appendix. These lines + Appendix should be removed. All the analyses in the 

manuscript are based on ML estimates, thus there is no reason to keep a description of PWM and L-

moments. 

AC. Suggestion accepted, the appendix and the expressions of L-moments were removed and 

replaced by theoretical expressions of moments as from first comment from Referee #1. 

 

RC 3. Section 2.5. It should be written that stationarity is assumed as null hypothesis (e.g. in line 207 

and 210)  

AC. Suggestion accepted, we modified lines 205 and 211 by adding, respectively, that “the null 

hypothesis of stationarity is false” and “the null hypothesis of stationarity (which) is true”. 

 

RC 4. Section 2.5, lines 201 and 209. Just a curiosity: why experiments are conducted with a different 

number of samples (2000 vs 10000)? 

AC. We used N = 10000 generations to be sure that the effect of sample variability is negligible 

when estimating the real level of significance and the corresponding threshold of acceptance. 

For the evaluation of power (i.e. in all generations with values of ζ1 ≠ 0) we found N = 2000 is a 

good compromise between quality of results and reasonable computational time. To this 

purpose we performed sample checks with N = 10000 obtaining negligible differences. We did 

not report such details for the sake of simplicity and also because power values obtained with 

generations with ζ1 ≠ 0 are only shown in graphical form and as such they are not even 

distinguishable from those shown. Moreover, N = 2000 is the same number of generations used 

by Yue et al. (2002a). In the revised manuscript we added this short explanation about this point 

in section 2.5:   

“We used a reduced number of generations (N = 2000) for the evaluation of power as good 

compromise between quality of results and computational time and, also in analogy with Yue et al. 

(2002a).” 

Regarding the number of generations N, see also answers to points 7), 8) and 14). 

 

RC 5. Section 2.5, line 198. Authors can provide a reference for the sentence “1-to-4 trade-off 

between α and β is accepted”? 



AC. Such question is everything but trivial, we can provide a reference about this (Cohen, 1994) 

and we introduced it in the revised manuscript, nevertheless such paper does not come from 

hydrological literature but from Psychology and is by far the most cited paper in Scopus about 

“statistical power”. Reflecting about this point has stimulated a discussion about the apparent 

lack of references of this type in the earth system sciences that we have added in the conclusion 

section. The following lines were added in the conclusion section: 

“Considering the feasibility of numerical evaluation of power, allowed by the parametric approach, 

we observe that, while the awareness of the crucial role of type II error is growing in latest years 

in the hydrological literature, a common debate would deserve more development about which 

power values should be considered acceptable. Such an issue is much more enhanced in other 

scientific fields where the experimental design is traditionally required to estimate the appropriate 

sample size to adequately support results and conclusions. In psychological research, Cohen (1994) 

proposed 0.8 as a conventional value of power, to be used with level of significance 0.05 thus 

leading to a ratio 4 to 1 between the risk of type II and type 1 error. The conventional value 

proposed by Cohen (1994) has been taken as reference by thousands of papers in social and 

behavioural sciences. In pharmacological and medical research, depending on real implications 

and nature of the type II error, conventional values of power may be as high as 0.999. This is the 

value suggested by Liebher (1990), when testing a treatment for patients’ blood pressure. He stated, 

while “guarding against cookbook application of statistical methods”, that “it should also be noted 

that, at times, type II error may be more important to an investigator then type I error”. 

We believe that, selecting between stationarity and non-stationarity models for extreme 

hydrological event prediction, a fair comparison between the null and the alternative hypotheses 

as α = β = 0.05 should be taken, which provides power = 0.95. In our discussion we considered 0.8 

as minimum threshold for acceptable power values.” 

 

RC 6. Lines 214-219. I understand the choice of GEV parameters and it is reasonable to my 

knowledge of rainfall maxima in Mediterranean climate. I was wandering whether it can be more 

informative to present results and figures in a more general way, e.g. as a function of the relative 

trend ζ1/ζ0 (which has dimension 1/time)? 

AC. This comment is particularly important and stimulating. Nevertheless, such generalization 

is out of the purpose of this paper and would require more extensive investigation. In facts, 

presenting results in terms of the ratio ζ1/ζ0 would make sense if results of the analyses were the 

same for different couples of ζ1 and ζ0 values producing the same ratio. Actually, this is not the 

case when  is fixed. We believe that invariant properties of the frequency distribution of 

rainfall or floods annual maximum values could be exploited for a generalization of these 

analyses, but this would involve consideration of scaling features of different order moments. 

This could be a quite interesting future development of this study, involving also time 

dependence of the scale parameter. Not any change has been done to the manuscript. 

 

RC 7. Line 236. “a multi-peak . . ..”: are you sure that it is not a sampling effect? Increasing the 

number of simulations is the result the same?  



AC. In this figure we show some distributions of sampled errors in terms of difference between 

the power obtained with AIC and the power obtained with AICc. The curves show that the 

entire range of sampled errors provides negligible values compared to the expected power 

values. The different peaks in one curve (L = 30) are observed because we merged sample errors 

obtained for different values of 𝝈 characterized by a small different (random) bias. We added 

such considerations in the revised paper: 

“Aim of this figure is to show that the difference between the power obtained with AIC and the 

power obtained with AICc is negligible. Anyway, different peaks in one curve (L = 30) can be 

explained by merging sample errors obtained for different values of σ.” 

 

RC 8. Lines 267-273 and Table 1. Similar to previous comment: are you sure that variability observed 

for different σ (but keeping constant the other constraints) are not a sampling effect? Increasing the 

number of simulations is the result the same?  

AC. Results shown in Table 1 are, to some extent, affected by a sampling effect. We had 

numerically checked the sample variability of the actual level of significance, which is quite 

smaller than the difference between the designed (0.05) and the actual value of the significance 

level for the LR test. We didn’t report such analysis for the sake of simplicity nevertheless we 

used a very high number of generations (N = 10000) to produce these values (see also response 

to comment #4). On the other hand, we agree that there is not such evidence with specific 

reference to different σ values, while  and L mostly affect results and accordingly we revised 

the manuscript rephrasing the sentence as:  

“Such effect is exalted when the parent distribution is upper bounded (ε=-0.4) and for shorter 

series (L = 30).” 

 

 

RC 9. Line 301. I would specify here that series are stationary.  

AC. Suggestion accepted 

 

RC 10. Section 3.4 (and maybe other parts of the manuscript, figures and tables). GEV parameters 

are always estimated by ML, thus I suggest to avoid the use of the prefix “ML-“ before the symbol of 

the parameter (e.g. in Line 310 and 313). This would made more clear text, figure and tables.  

AC. We would rather maintain the use of the prefix “ML-” in order to distinguish between 

values (ML-ε, ML-σ, ML-ζ1) estimated from the series and the theoretical values (ε, σ, ζ1) used 

in the parent distribution. Not any change was done. 

 

RC 11. Line 316. “Figs. 6 and 9”: usually figures should be ordered as they are cited.  

AC. Suggestion accepted by revising the text by removing such reference to fig. 9 which is 

introduced later.  

 

RC 12. Figures. Please consider the opportunity to use larger fonts for labels, they are not readable 

here, and most probably Figure will be reduced in the final formatting.  



AC. Suggestion accepted 

 

RC 13. Figure 6. Use the same range of scales (e.g. 0-0.6) in the y-axis for a fair comparison.  

AC. Suggestion accepted 

 

RC 14. Figure 9. Again: are you sure that fluctuations are not due to sampling effects? See e.g. the 

subplot in the right part of the Figure 9.  

AC. We checked such results with different sets of random generations also increasing N up to 

10000. Qualitatively results do not change. “Randomness of results for 𝑳 = 𝟑𝟎 and 𝝈 = 𝟏𝟓, 𝟐𝟎 

is probably due to a reduced efficiency of the algorithm that maximizes the log-Likelihood function, 

for heavy tailed distributions.” Such consideration was added in the revised manuscript (Fig. 9 

is now Fig. 8, because of the following comment). 

 

RC 15. Figures 7, 8, 10, 11, 12, 13 are not much informative. Please show only a selection of the 

most representative case. An additional option is to move these figures as supplementary material. 

AC. Suggestion accepted. Results shown in figs. 7-8-10-11-12-13 are now shown for 

representative selected cases in figures 7-9-10.  

 

  



 

 

Authors’ supplement to response at comments from Referees: references. 

 

Following the general comment and suggestions from Referee #1, involving also the final remark of 

Referee #2, and comment 5) from Referee # 3, asking for more insights about the implications of this 

work within the general framework of real data analysis, we have introduced in the revised manuscript 

a number of references hereafter reported with indication of the position in the revised manuscript.   

 

Section 1 Introduction, see response to 1st comment from Referee #1: 

Beven, K.: Facets of uncertainty: Epistemic uncertainty, non-stationarity, likelihood, hypothesis 

testing, and communication, Hydrol. Sci. J., doi:10.1080/02626667.2015.1031761, 2016.  

Cohen, J.: The earth is round (p < .05), American Psychol., 49, 997–1003, 1994.  

Milly, P. C. D., Betancourt, J., Falkenmark, M., Hirsch, R. M., Kundzewicz, Z. W., Lettenmaier, D. 

P., Stouffer, R. J., Dettinger, M. D. and Krysanova, V.: On Critiques of “stationarity is Dead: Whither 

Water Management?” Water Resour. Res., doi:10.1002/2015WR017408, 2015.  

Vogel, R. M., Rosner, A. and Kirshen, P. H.: Brief communication: Likelihood of societal 

preparedness for global change: Trend detection, Nat. Hazards Earth Syst. Sci., doi:10.5194/nhess-

13-1773-2013, 2013.  

 

Section 2.4 The GEV parent distribution, see response to 1st comment from Referee #1: 

Muraleedharan, G., Guedes Soares, C. and Lucas, C.: Characteristic and moment generating 

functions of generalised extreme value distribution (GEV), in Sea Level Rise, Coastal Engineering, 

Shorelines and Tides., 2011.  

 

Section 4 Conclusions, see response to 2nd comment from Referee #1 and final remark from 

Referee #2: 

Eagleson, P. S.: Dynamics of flood frequency, Water Resour. Res., doi:10.1029/WR008i004p00878, 

1972.  

Gioia, A., Iacobellis, V., Manfreda, S. and Fiorentino, M.: Runoff thresholds in derived flood 

frequency distributions, Hydrol. Earth Syst. Sci., doi:10.5194/hess-12-1295-2008, 2008.  

Iacobellis, V., Gioia, A., Manfreda, S. and Fiorentino, M.: Flood quantiles estimation based on 

theoretically derived distributions: Regional analysis in Southern Italy, Nat. Hazards Earth Syst. Sci., 

doi:10.5194/nhess-11-673-2011, 2011.  

Madsen, H., Rasmussen, P. and Rosbjerg, D.: Comparison of annual maximum series and partial 

duration series for modelling exteme hydrological events: 1. At sit modelling, Water Res. Res., 1997.  

Montanari, A., Young, G., Savenije, H.H.G., Hughes, D., Wagener, T., Ren, L.L., Koutsoyiannis, 

D., Cudennec, C., Toth, E., Grimaldi, S., Blöschl, G., Sivapalan, M., Beven, K., Gupta, H., Hipsey, 

M., Schaefli, B., Arheimer, B., Boegh, E., Schymanski, S.J., Di Baldassarre, G., Yu, B., Hubert, P., 



Huang, Y., Schumann, A., Post, D., Srinivasan, V., Harman, C., Thompson, S., Rogger, M., Viglione, 

A., McMillan, H., Characklis, G., Pang, Z., and Belyaev, V., “Panta Rhei—Everything Flows”: 

Change in hydrology and society—The IAHS Scientific Decade 2013–2022. Hydrological Sciences 
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J. L. Salinas, E. Toth, and Viglione, A.: Prediction of floods in ungauged basins. In G. Blöschl, M. 

Sivapalan, T. Wagener, A. Viglione, & H. Savenije (Eds.), Runoff Prediction in Ungauged Basins: 
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Todorovic, P. and Zelenhasic, E.: A Stochastic Model for Flood Analysis, Water Resour. Res., 
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Section 4 Conclusions, see response to 2nd comment from Referee #1 and comment 5) from 

Referee #3: 

Cohen, J., A power primer, Psychological Bulletin, Vol 112(1), Jul 1992, 155-159, 1992. 
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Dear Editor 

please, find below a list of all relevant changes to the original version of the manuscript. For the sake of clarity, 

we report rows numbers of the original manuscript, stating the corresponding comment of Referee which 

justified modification. We use an Italic bold font when reporting changes in the manuscript.  

 

Sincerely 

 

Vincenzo Totaro 

Andrea Gioia 

Vito Iacobellis 

 

 

List of relevant changes to submitted manuscript: 

 

− Lines 1-2: accepting suggestion n. 1 of Referee #2, we changed title of the manuscript in “Numerical 

investigation on the power of parametric and non-parametric tests for trend detection in annual 

maximum series”. 

 

− Line 27: some short historical notes on the concept of stationarity is introduced (suggestion n. 2 of 

Referee #2). 

Kolmogorov in 1931 introduced the concept of stationarity of a probability distribution, formally defined by 

Khintchine in 1934, as depicted in the historical review provided by Koutsoyiannis and Montanari (2015) 

 

− Line 48: in order to improve the part about practical limitations of tests used into a non-stationary 

framework, we introduced a discussion about the mutual importance of type I and type II errors in 

statistical tests (see comment n.1 of Referee #1). 

On the other hand, the use of null hypothesis significance tests for trend detection has raised 

concerns and severe criticisms in a wide range of scientific fields since many years (e.g. Cohen, 

1994), as outlined by Vogel et al. (2013). Serinaldi et al. (2018) provided an extensive critical review 

focusing on logical flaws and misinterpretations often related to their misuse.  

In general, the use of statistical tests involves different errors, such as type I (rejecting the null 

hypothesis when it is true) and type II (accepting the null hypothesis when it is false). The latter is 

related to the test power, i.e. the probability of rejecting the null hypothesis when it is false but, as 

recognized by a few authors (e.g. Milly et al. 2015; Beven, 2016), in years the importance of power 

has been largely overlooked in earth system science fields. A strong attention has always been given 

to the level of significance (i.e. type I error) though, as pointed out by Vogel et al. (2013), “a type 

II error in the context of an infrastructure decision implies under-preparedness, which is often an 

error much more costly to society than the type I error (over-preparedness)”.  

Moreover, as already proven by Yue et al. (2002a), the power of the Mann-Kendall test, despite its 

non-parametric structure, actually shows a strong dependence on the type and parametrization of 

the parent distribution 

 

− Lines 179-187: we replaced the discussion on L-moments with the expression of the three first order 

moments of GEV distribution, as suggested by comment n.1 of Referee #1. 

According to Muraleedharan et al. (2010), the first three moments of GEV distribution are: 



 

 Mean = 𝜻 +
𝝈

𝜺
(𝒈𝟏 − 𝟏) 𝜺 ≠ 𝟎, 𝜺 < 𝟏 (10) 

    

 
𝑽𝒂𝒓𝒊𝒂𝒏𝒄𝒆 =

𝝈𝟐

𝜺𝟐
(𝒈𝟐 − 𝒈𝟏

𝟐) 𝜺 ≠ 𝟎, 𝜺 <
𝟏

𝟐
 (11) 

    

 
𝑺𝒌𝒆𝒘𝒏𝒆𝒔𝒔 = 𝒔𝒈𝒏(𝜺) ∙

𝒈𝟑 − 𝟑𝒈𝟐𝒈𝟏 + 𝟐𝒈𝟏
𝟑

(𝒈𝟐 − 𝒈𝟏
𝟐)

𝟑
𝟐⁄

 𝜺 ≠ 𝟎, 𝜺 <
𝟏

𝟑
 (12) 

 

where 𝒈𝒌 = 𝜞(𝟏 − 𝒌𝜺), with 𝒌 ∈ ℤ+ and 𝜞(∙) is the Gamma function. It is worth noting that, following Eqs. 

(10), (11) and (12), the trend in the position parameter only affect the Mean while Variance and Skewness 

remain constant. 

 

− Line 198: we added a sentence for better specifying values of tests’ level of significance and power 

we consider acceptable for our purposes. 

Then, in our experiment we assumed always significance level 0.05, and, for the following 

description of results and discussion we considered a power level less than 0.8 as too low and hence 

unacceptable. In the conclusions section we report further considerations about this choice. 

 

− Line 212: We justified the use of the number N = 2000 as selected number of simulations (in the light 

of comment n.4 of Referee #3). 

We used a reduced number of generations (N = 2000) for the evaluation of power as good 

compromise between quality of results and computational time and, also in analogy with Yue et al. 

(2002a). 

 

− Line 237: We added a sentence (according to comment n.7 of Referee #3) for commenting the use of 

Fig. 2. 

The purpose of this figure is to show that the difference between the power obtained with AIC and 

the power obtained with 𝑨𝑰𝑪𝒄 is negligible. Different peaks in one curve (L = 30) can be explained 

by the merge of sample errors obtained for different values of 𝝈. 

 

− Line 327: we added a sentence (according to comment n.14 of Referee #3) for interpreting of 

fluctuations in Fig. 9 (which become Fig. 8 in revised manuscript). 

Randomness of results for 𝑳 = 𝟑𝟎 and 𝝈 = [𝟏𝟓, 𝟐𝟎] is probably due to a reduced efficiency of the 

algorithm that maximizes the log-Likelihood function, for heavy tailed distributions. 

 

− Line 334: Further comments to figures are introduced (according to point n.3 of Referee #2). 

It should be highlighted that efficiency in parameter estimation increases with sample size for 𝜺 =

[𝟎, 𝟎. 𝟒], while it decreases for both 𝜺 and 𝝈, in the case 𝜺 = [−𝟎. 𝟒], where the trend of the location 

parameter implies a shift in time of the distribution upper bound. 

 

− Line 338: Moving from comment n. 5 of Referee #3, we decided to introduce a discussion about the 

importance of dealing with type II error in statistical test used in Earth sciences. 



Considering the feasibility of numerical evaluation of power, allowed by the parametric approach, 

we observe that, while the awareness of the crucial role of type II error is growing in latest years 

in the hydrological literature, a common debate would deserve more development about which 

power values should be considered acceptable. Such an issue is much more enhanced in other 

scientific fields where the experimental design is traditionally required to estimate the appropriate 

sample size to adequately support results and conclusions. In psychological research, Cohen (1992) 

proposed 0.8 as a conventional value of power, to be used with level of significance 0.05 thus 

leading to a ratio 4 to 1 between the risk of type II and type 1 error. The conventional value proposed 

by Cohen (1992) has been taken as reference by thousands of papers in social and behavioural 

sciences. In pharmacological and medical research, depending on real implications and nature of 

the type II error, conventional values of power may be as high as 0.999. This is the value suggested 

by Liebher (1990), when testing a treatment for patients’ blood pressure. He stated, while 

“guarding against cookbook application of statistical methods”, that “it should also be noted that, 

at times, type II error may be more important to an investigator then type I error”. 

We believe that, selecting between stationarity and non-stationarity models for extreme 

hydrological event prediction, a fair comparison between the null and the alternative hypotheses 

as α = β = 0.05 should be taken, which provides power = 0.95. In our discussion we considered 0.8 

as minimum threshold for acceptable power values. 

 

− Line 392: In order to contemplate the final remark of Referee n. 2, we decided to introduce a wide 

discussion about ergodicity and the different sources of uncertainty that can affect real data analysis, 

with some considerations about possible future developments. 

As a final remark, concerning real data analysis, in our numerical experiment we showed that, in 

some cases, a weak linear trend in the mean suffices to reduce power to unacceptable values. Yet 

we explored the simplest nonstationary working hypothesis by introducing a deterministic linear 

dependence on time of the location parameter of the parent distribution. Obviously, when making 

inference from real observed data other sources of uncertainty may affect statistical inference 

(trend, heteroscedasticity, persistence, nonlinearity, etc), and moreover, if considering a 

nonstationary process with underlying deterministic dynamics, the process turns out to be non-

ergodic, implying that statistic inference from sampled series is not representative of the process’s 

ensemble properties (Koutsoyiannis and Montanari, 2015).   

As a consequence, while considering a nonstationary stochastic process as produced by a 

combination of a deterministic function and a stationary stochastic process, other sources of 

information and deductive arguments should be exploited in order to identify the physical 

mechanism underlying such relationships. Even in such a case observed time series have a crucial 

role in order to calibrate and validate deterministic modeling or, in other words, for confirming or 

disproving the model hypotheses.  

In the field of frequency analysis of extreme hydrological events, considering the high spatial 

variability of sample length, trend coefficient, scale and shape parameters, etc, physically based 

probability distributions could be further developed and exploited for selection and assessment of 

the parent distribution in the context of non-stationarity and change detection. Physically based 

probability distributions we refer to are: (i) those arising from stochastic compound processes 

introduced by Todorovic and Zelenhasic (1970), which include also the GEV (see Madsen et al., 

1997) and the TCEV (Rossi et al., 1984), and (ii) the theoretically derived distributions following 

Eagleson (1972) whose parameters are provided by clear physical meaning and are usually 



estimated with support of exogenous information in regional methods (e.g. Gioia et al., 2008; 

Iacobellis et al., 2011; see also for a more extensive overview Rosbjerg et al., 2013). 

Hence, we believe that “learning from data” (Sivapalan, 2003), will remain in future years a key 

task for hydrologists facing the challenge of consistently identifying both deterministic and 

stochastic components of change (Montanari et al., 2013). This involves crucial and 

interdisciplinary research to develop suitable methodological frameworks for enhancing physical 

knowledge and data exploitation, in order to reduce the overall uncertainty of prediction in a 

changing environment. 

 

− Lines 396-415: Accepting suggestions n.1 of Referee #1 and n. 2 of referee #3, we removed Appendix 

A. 

 

− References: we introduced new references added in the modified version of manuscript. 

 

− All figures: accepting suggestions of Referees #1 and #3, we improved readability of all figures. 

 

− Figures 7-8: we condensed Figures 7-8 into a single Fig. 7 in the final version of the manuscript. 

 

− Fig. 9 become Fig. 8: 

 

− Figures 10-11: we condensed Figures 10-11 into a single Fig. 9 in the final version of the manuscript. 

 

− Figures 12-13: we condensed Figures 12-13 into a single Fig. 10 in the final version of the manuscript. 

 

Please, note that changes of Figures were made for fulfilling comments n. 3 of Referee #2 and n. 15 of Referee 

#3. 
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Abstract. The need of fitting time series characterized by the presence of trend or change points has generated in latest years 

an increased interest in the investigation of non-stationary probability distributions. Considering that the available hydrological 

time series can be recognized as the observable part of a stochastic process with a definite probability distribution, two main 

topics can be tackled in this context: the first one is related to the definition of an objective criterion for choosing whether the 10 

stationary hypothesis can be adopted, while the second one regards the effects of non-stationarity on the estimation of 

distribution parameters and quantiles for assigned return period and flood risk evaluation.  Although the time series trend or 

change points are usually detected by non-parametric can be recognized using classical tests available in literature (e.g. Mann-

Kendal or CUSUM test), for design purpose it is still required the correct selection of the stationary or non-stationary 

probability distribution is still required for design purposes. By this light, the focus is shifted toward model selection criteria 15 

which implies the use of parametric methods with all related issues ion parameters estimation. The aim of this study is to 

compare the performance of parametric and non-parametric methods for trend detection analysing their power and focusing 

on the use of traditional model selection tools (e.g. Akaike Information Criterion and Likelihood Ratio test) within this context. 

Power and efficiency of parameter estimation, including the trend coefficient, were investigated through Monte Carlo 

simulations using Generalized Extreme Value distribution as parent with selected parameter sets. 20 

1 Introduction 

Long and medium-term prediction of extreme hydrological events under non-stationary conditions, is one of the major 

challenges of our times. Streamflow, as well as temporal rainfall and many other hydrological phenomena, can be considered 

stochastic processes (Chow, 1964), i.e. families of random variables with an assigned probability distribution (Koutsoyiannis 

and Montanari, 2015), while time series are the observable part of this process.  One of the main goals of the extreme events  25 

frequency analysis of extreme events is the estimation of distribution quantiles related to a certain non-exceedance probability. 

They are usually obtained after fitting a probabilistic model to observed data. Kolmogorov in 1931 introduced the concept of 

stationarity of a probability distribution, formally defined by Khintchine in 1934, as depicted in the historical review provided 

by Koutsoyiannis and Montanari (2015). 
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Quae cum ita sint, detecting the existence of time-dependence in a stochastic process, has to should be considered a necessary 30 

task in the statistical analysis of recorded time series.  

According to Salas (1993) “a hydrological time series is stationary if is free of trends, shifts, or periodicity (cyclicity)”. Starting 

from this statement several considerations can be done in updating some important hydrological concepts while assuming that 

non-exceedance probability varies with times or other covariates. For example, return period may be reformulated in two 

different ways, Expected Waiting Time (EWT, Olsen et al., 1998) or Expected Number of Events (ENE, Parey et al., 2007, 35 

2010) which lead to a different evaluation of quantiles intowithin a non-stationary approach. As proved by Cooley (201301), 

EWT and ENE are differently affected by non-stationarity, possibly producing ambiguity in engineering design practice (Du 

et al., 2015; Read and Vogel, 2015). Salas and Obeysekera (2014) provided a detailed report about relationships between 

stationary and non-stationary EWT values within a parametric approach for the assessment of non-stationary conditions. In 

such a framework, a strong relevance is given to statistical tools for detecting changes in non-normally distributed time series 40 

(Kundewicz and Robson, 2004).  

So farOn the other hand, the vast majority of research undertaken about climate change and detection of non-stationary 

conditions has been so far developed through non-parametric approaches. One of the most used non-parametric measures of 

trend is the Sen’s slope (Gocic and Trajkovic, 2013). Also, a wide gamma of non-parametric tests for detecting non-stationarity 

in time series is available (e.g. Kundewicz and Robson, 2004 ). Statistical tests include Mann-Kendall (MK; Mann, 1945; 45 

Kendall, 1975) and Spearman (Lehmann, 1975) for detecting trends, Pettitt (Pettitt, 19798) and CUSUM (Smadi and Zghoul, 

2006) for change point detection. All of these tests are based on a specific null hypothesis and have to be performed for an 

assigned significance level. Non-parametric tests are usually preferred to parametric ones because they are distribution-free 

and do not require knowledge of the parent distribution. In the frequency analysis of extreme events they are also suggested 

being less sensitive to the presence of outliers with respect to parametric tests (Wang et al., 2005).  50 

On the other hand, the use of null hypothesis significance tests for trend detection has raised concerns and severe criticisms in 

a wide range of scientific fields since many years (e.g. Cohen, 1994), as outlined by Vogel et al. (2013). Serinaldi et al. (2018) 

provided an extensive critical review focusing on logical flaws and misinterpretations often related to their misuse.  

In general, the use of statistical tests involves different errors, such as type I (rejecting the null hypothesis when it is true) and 

type II (accepting the null hypothesis when it is false). The latter is related to the test power, i.e. the probability of rejecting 55 

the null hypothesis when it is false but, as recognized by a few authors (e.g. Milly et al. 2015; Beven, 2016), in years the 

importance of power has been largely overlooked in earth system science fields. A strong attention has always been given to 

the level of significance (i.e. type I error) though, as pointed out by Vogel et al. (2013), “a type II error in the context of an 

infrastructure decision implies under-preparedness, which is often an error much more costly to society than the type I error 

(over-preparedness)”.  60 

Moreover, as already proven by Yue et al. (2002a), the power of the Mann-Kendall test, despite its non-parametric structure, 

actually shows a strong dependence on the type and parametrization of the parent distribution.An important characteristic is 

the power of such tests, i.e. the probability of rejecting the null hypothesis when it is false. It is worth noting that, as already 
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proven by numerical experiments by Yue et al. (2002a), the power of the Mann-Kendall test, despite its non-parametric 

structure, actually shows a strong dependence on the type and parametrization of the parent distribution. 65 

In a parametric approach, the estimation of quantiles of the extreme events distribution requires the search for the underlying 

distribution and for time-dependant hydrological variables, providing the identification of a model, which can be stationary or 

not (Montanari and Koutsoyiannis, 2014). In other words, it is necessary to define if variables are iid (independent identically 

distributed) or i/nid (independent/non identically distributed) and, accordingly, to select between a stationary or not-stationary 

distribution model (Serinaldi and Kilrsby, 2015).  70 

In this perspective, the detection of non-stationarity may exploit, besides traditional statistical tests, well known properties of 

model selection tools. Even in this case several measures and criteria are available for selecting a best-fit model, among these 

we find Akaike Information Criterion (AIC, Akaike, 1974), Bayesian Information Criterion (BIC, Schwarz, 1978) and 

Likelihood Ratio test (LR,  Coles, 2001), the latter is suitable when dealing with nested models. 

The purpose of this paper is to provide further insights on the use of parametric and non-parametric approaches in the 75 

framework of extreme events frequency analysis of extreme events under non-stationary conditions. The comparison between 

those different approaches is not straightforward. Non-parametric tests do not require the knowledge of the parent distribution 

and their properties strongly rely on the choice of a null hypothesis. Parametric methods for model selection, on the other hand, 

require the selection of the parent distribution and the estimation of its parameters, but are not necessarily associated with a 

specific null hypothesis. Nevertheless, in both cases the evaluation of the rejection threshold is usually based on a statistical 80 

measure of trend that, under the null hypothesis of stationarity, follows a specific distribution (e.g. gaussianity of the Kendall 

statistic for the MK non-parametric test; 𝜒2 distribution of deviance statistic for the LR parametric test). 

Considering pros and cons of different approaches, we believe that specific remarks should be made about the use of parametric 

or non-parametric methods for the analysis of extreme event series. For this purpose, we set up a numerical experiment to 

compare performances of: 1 the MK as a non-parametric test for trend detection, 2 the LR parametric test for model selection, 85 

3 the 𝐴𝐼𝐶𝑅 parametric test as defined in section 2.34. In particular, the 𝐴𝐼𝐶𝑅 is a measure for model selection, based on the 

AIC, whose distribution was numerically evaluated, under the null hypothesis of a stationary process, for comparison purposes 

with other tests. 

We aim to provide (i) a comparison of test power between MK, LR and 𝐴𝐼𝐶𝑅, (ii) a sensitivity analysis of test power to 

parameters of a known parent distribution used to generate sample data, (iii) an analysis of the influence of sample size on test 90 

power and significance level.  

We conducted the analysis using Monte Carlo techniques, by generating samples from parent populations assuming one of the 

most popular extreme event distributions, the Generalized Extreme Value (Jenkinson, 1955), with linear (and without any) 

trend in the position parameter. From generated samples we numerically evaluated the power and significance level of tests 

for trend detection, using MK, LR and 𝐴𝐼𝐶𝑅. For the latter we also checked the option of using the modified version 𝐴𝐼𝐶𝑐, 95 

suggested by Sugiura (1978) for smaller samples. 
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Considering that parametric methods involve the estimation of the parent distribution parameters, we also analysed the 

efficiency of the Maximum Likelihood (ML) estimator used in trend assessment by comparing the sample variability of the 

ML estimate of trend with the non-parametric Sen’s slope. We also scoped the sample variability of GEV parameters in the 

stationary and non-stationary cases. 100 

2 Methodological framework 

This section is divided into five parts. Subsections 2.1, 2.2 and 2.3 report main characteristics of respectively, MK, LR and 

𝐴𝐼𝐶𝑅 based test. In the fourth subsection the probabilistic model used for generations, based on the use of the GEV distribution, 

is described in the stationary and non-stationary cases. Subsection 2.5 outlines the procedure for numerical evaluation of tests’ 

power and significance level.  105 

2.1 The Mann-Kendall test 

Hydrological time series are often composed by non-normally independent realizations of phenomena, and this characteristic 

makes the use of non-parametric trend tests very attractive (Kundzewicz and Robson, 2004). Mann-Kendall test is a widely 

used rank-based tool for detecting monotonic, and not necessarily linear, trends. Given a random variable z, and assigned a 

sample of L independent data 𝒛 = (𝑧1, … , 𝑧𝐿), the Kendall S statistic (Kendall, 1975) can be defined as: 110 

𝑆 = ∑ ∑ 𝑠𝑔𝑛(𝑧𝑗 − 𝑧𝑖)
𝐿
𝑗=𝑖+1

𝐿−1
𝑖=1 ,          (1) 

with sgn sign function.  

The null hypothesis of this test is the absence of any statistically significant trend in the sample, while it is contemplated by 

the alternative hypothesis. Yilmaz and Perera (2014) reported that serial dependence can lead to a more frequent rejectionng 

of null hypothesis. For 𝐿 ≥ 8, Mann (1945) reported how Eq. (1) is an approximatively a normally distributed variable with 115 

zero mean and variance that, in the presence of 𝑡𝑚 m-length ties, can be expressed as: 

𝑉 =
𝐿(𝐿−1)(2𝐿+5)−∑ 𝑡𝑚𝑚(𝑚−1)(2𝑚+5)

𝑛
𝑚=1

18
. 

In practice, Mann-Kendall test is performed using the Z statistic 

𝑍 =

{
 

 
𝑆−1

√𝑉(𝑆)
             𝑆 > 0

0                    𝑆 = 0
𝑆+1

√𝑉(𝑆)
            𝑆 < 0

       , 

which follows a standard normal distribution. With this approach, it is simple to evaluate the p-value and compare it with an 120 

assigned level of significance or, equivalently, to calculateevaluate the 𝑍𝛼 threshold value to be compared with Z, where 𝑍𝛼 is 

the (1 − 𝛼) quantile of a standard normal distribution. 
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Yue et al. (2002b) observed that autocorrelation in time series can influence the ability of MK test in to detecting trends. For 

To avoiding this problem, a correct approach in trend analysis should contemplate a preliminary check for autocorrelation and, 

if necessary, the application of pre-whitening procedures. 125 

A non-parametric tool for a reliable estimation of a trend in a time series of length L and with 𝑁N pairs of data is the Sen’s 

slope estimator (Sen, 1968): 

𝛿𝑗 =
𝑧𝑖−𝑧𝑘

𝑖−𝑘
,             𝑗 = 1, … , 𝑁           (2) 

being 𝑖𝑗 > 𝑘. Then, Sorting in ascending order the 𝛿𝑗’s, Sen’s slope estimator can be defined as their  median of 𝛿𝑗𝛿. 

2.2 Likelihood Ratio Test 130 

The Likelihood Ratio statistical test allows to compare two candidate models. Like its name suggests, it is based on the 

evaluation of the likelihood function of different models.  

The LR test has been used different multiple times (Tramblay et al., 2013; Cheng et al., 2014; Yilmaz et al., 2014) for to 

selecting between stationary and non-stationary models in the context of nested models. Given a stationary model characterized 

by a parameter set 𝜽𝑠𝑡   and a non-stationary model, with parameter set 𝜽𝑛𝑠, if ℓ(�̂�𝑠𝑡) and ℓ(�̂�𝑛𝑠) are their respective maximized 135 

log-likelihoods, the Likelihood Ratio test can be defined through the deviance statistic 

𝐷 = 2[ℓ(�̂�𝑛𝑠) − ℓ(�̂�𝑠𝑡)],           (3) 

D is approximately, for large L, 𝜒𝑚
2  distributed, with 𝑚 = 𝑑𝑖𝑚(𝜽𝑛𝑠) − 𝑑𝑖𝑚(𝜽𝑠𝑡) degrees of freedom. The null hypothesis of 

stationarity is rejected if 𝐷 > 𝐶𝛼, where 𝐶𝛼 is the (1 − 𝛼) quantile of 𝜒𝑚
2  distribution (Coles, 2001).  

Besides the analysis of power, we also checked (in subsection 3.3) the approximation 𝐷~𝜒𝑚
2  as a function of the sample size 140 

L for the evaluation of the level of significance.  

2.3 Akaike Information Criterion Ratio test 

Information criteria are useful tools for model selection. It is reasonable to retain that Akaike Information Criterion (AIC; 

Akaike, 1974) is the most famous among them. Based on the Kullbach-Leibler discrepancye measure, if 𝜽 is the parameter set 

of a k-dimensional model (𝑘 = 𝑑𝑖𝑚(𝜽)), AIC is defined as: 145 

𝐴𝐼𝐶 = −2ℓ(�̂�) + 2𝑘.           (4) 

The model that best fits data has the lowest value of AIC between candidates. It is useful to observe that the term proportional 

to the number of model parameters allows to account for the increased of the estimator variance as the number of model 

parameters increases. due to a larger parametrization and embodies the principle of parsimony.  

Sugiura (1978) observed that AIC can lead to misleading results for small samples; he proposed a new measure for AIC: 150 
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𝐴𝐼𝐶𝑐 = −2ℓ(�̂�) +
2𝑘(𝑘+1)

𝐿−𝑘−1
           (5) 

where a second-order bias correction is introduced. Burnham e Anderson (2004) suggested to use this version only when 

𝐿 𝑘𝑚𝑎𝑥⁄ < 40, being 𝑘𝑚𝑎𝑥 the maximum number of parameters between the compared models. However, for larger L, 𝐴𝐼𝐶𝑐 

converges to AIC. For a quantitative comparison between AIC and 𝐴𝐼𝐶𝑐 in the extreme value stationary model selection 

framework see also Laio et al. (2009). 155 

In order to select between stationary and nonstationary candidate models, we use the ratio 

𝐴𝐼𝐶𝑅 =
𝐴𝐼𝐶𝑛𝑠

𝐴𝐼𝐶𝑠𝑡
.            (6) 

where the subscripts indicate the AIC value obtained for a stationary (st) and a non-stationary (ns) model, both fitted with 

maximum likelihood to the same data series. 

Considering that the better fitting model has lower AIC, if the time series arises from a is non-stationary process, the 160 

𝐴𝐼𝐶𝑅  should be less than 1. Vice versa if the time seriesprocess is stationary. 

In order to provide a rigorous comparison between the use of MK, LR and 𝐴𝐼𝐶𝑅, we evaluated the 𝐴𝐼𝐶𝑅,𝛼 threshold value 

corresponding to significance level 𝛼 by numerical experiments. 

More in detail, we adopted the following procedure: 

1. N = 10000 samples are generated from a stationary GEV parent distribution, with known parameters; 165 

2. for each of these samples the 𝐴𝐼𝐶𝑅 is evaluated, by fitting the stationary and non-stationary GEV models described 

in section 2.4, thus providing its empirical distribution (see pdf in fig. 1); 

3. exploiting the empirical distribution of 𝐴𝐼𝐶𝑅 the threshold associated with a significance level of  𝛼 = 0.05 is 

numerically evaluated: this value, 𝐴𝐼𝐶𝑅,𝛼, represents the threshold for rejecting the null hypothesis of stationarity 

(which in these generations is true) in 5% of the synthetic samples. 170 

 

This procedure was applied both for AIC and 𝐴𝐼𝐶𝑐. The experiment was repeated for a few selected sets of the GEV parameters, 

including different trend values, and different sample lengths, as detailed in section 3. 

2.4 The GEV parent distribution 

The cumulative Generalized Extreme Value (GEV) distribution (Jenkinson, 1955) can be expressed as: 175 

𝐹(𝑧, 𝜽𝒔𝒕) = {
𝑒𝑥𝑝 {− [1 + 𝜀 (

𝑧−𝜁

𝜎
)]
−1 𝜀⁄

}                     𝜀 ≠ 0

𝑒𝑥𝑝 {−𝑒𝑥𝑝 [− (
𝑧−𝜁

𝜎
)]}                           𝜀 = 0

  𝜎 > 0      (7) 

where 𝜁, 𝜎, 𝜀 are respectively known as the position, scale and shape parameter, 𝜽𝒔𝒕 = [𝜁, 𝜎, 𝜀], is a general and comprehensive 

way to express the parameter set in the stationary case. The flexibility of GEV in contemplating Gumbel, Fréchet and Weibull 
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distributions (for 𝜀 = 0, 𝜀 > 0 and 𝜀 < 0 respectively) makes it eligible for a more general discussion about non-stationarity 

implications. 180 

Traditional extreme value distributions can be used into a nonstationary framework, modelling their parameters as function of 

time or other covariates (Coles, 2001) producing 𝜽𝒔𝒕 ⟶ 𝜽𝑛𝑠 = [𝜁𝑡 , 𝜎𝑡 , 𝜀𝑡].  

In this study, only a deterministic linear dependence on trend with time t ofin the position parameter 𝜁 has been introduced, 

leading Eq. (7) to be expressed as: 

𝐹(𝑧, 𝜽𝑛𝑠) = {
𝑒𝑥𝑝 {− [1 + 𝜀 (

𝑧−𝜁𝑡

𝜎
)]
−1 𝜀⁄

}                     𝜀 ≠ 0

𝑒𝑥𝑝 {−𝑒𝑥𝑝 [− (
𝑧−𝜁𝑡

𝜎
)]}                           𝜀 = 0

  𝜎 > 0      (8) 185 

with 

𝜁𝑡 = 𝜁0 + 𝜁1𝑡,            (9) 

and 𝜽𝑛𝑠 = [𝜁0, 𝜁1, 𝜎, 𝜀]. 

It is important to note that Eq. (8) is a more general way to define the GEV and has the property of degenerating into Eq. (7) 

for 𝜁1 = 0: in other words Eq. (7) represents a nested model of Eq. (8) which confirms the suitability of the Likelihood Ratio 190 

test for model selection.  

The estimation of GEV parameters is often performed by means of the L-moments (Hosking, 1990), linear combinations of 

PWM (Hosking et al., 1985). Given a time series of values z, sorting it in ascending order, sample PWM can be expressed 

using the following relationships: 

𝛽0 =
1

𝐿
∑𝑧𝑗

𝐿

𝑗=1

 195 

𝛽1 =
1

𝐿
∑

(𝑗 − 1)

(𝐿 − 1)
𝑧𝑗

𝐿

𝑗=1

 

Between PWM and L-moments the following relationships hold: 

𝜆1 = 𝛽0 =
1

𝐿
∑𝑧𝑗

𝐿

𝑗=1

 

𝜆2 = 2𝛽1 − 𝛽0 = 2
1

𝐿
∑

(𝑗 − 1)

(𝐿 − 1)
𝑥𝑗

𝐿

𝑗=1

−
1

𝐿
∑𝑧𝑗

𝐿

𝑗=1

 

We observe that, imposing trend in the mean has reflections only in 𝜆1, and does not affect 𝜆2. The analytical proof based on 200 

sample relationships is provided in Appendix.  
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According to Muraleedharan et al. (2010), the first three moments of GEV distribution are: 

 

 Mean = 𝜁 +
𝜎

𝜀
(𝑔1 − 1) 𝜀 ≠ 0, 𝜀 < 1 (10) 

    

 
𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =

𝜎2

𝜀2
(𝑔2 − 𝑔1

2) 𝜀 ≠ 0, 𝜀 <
1

2
 (11) 

    

 
𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 = 𝑠𝑔𝑛(𝜀) ∙

𝑔3 − 3𝑔2𝑔1 + 2𝑔1
3

(𝑔2 − 𝑔1
2)
3
2⁄

 𝜀 ≠ 0, 𝜀 <
1

3
 (12) 

 

where 𝑔𝑘 = Γ(1 − 𝑘𝜀), with 𝑘 ∈ ℤ+ and Γ(∙) is the Gamma function. It is worth noting that, following Eqs. (10), (11) and 205 

(12), the trend in the position parameter only affect the Mean, while Variance and Skewness remain constant. 

 

In this work we used the maximum likelihood method (ML) to estimate GEV parameters from sample data. ML allows to treat 

𝜁1 as an independent parameter, as well as 𝜁0, 𝜎 and 𝜀. To this purpose we exploited the R package extRemes (Gilleland and 

Katz, 2016). 210 

 

2.5 Numerical evaluation of test power and significance level 

The power of a test is related to the second type error and is the probability of correctly rejecting the null hypothesis when it 

is false. In particular, defining α (level of significance) the probability of a Type I error and β the probability of a Type II error, 

we have power = 1 – β. The maximum value of power is 1, which correspond to β = 0, i.e. no probability of Type II error. A 215 

fair comparison between the null and the alternative hypotheses would see α = β = 0.05, which provides power = 0.95. In most 

applications conventional values are α = 0.05 and β = 0.2, meaning that a 1-to-4 trade-off between  and  is accepted. Thus, 

assuming a significance level 0.05, a power level less than 0.8 should be considered too low. Then, in our experiment we 

assumed always significance level 0.05, and, for the following description of results and discussion we considered a power 

level less than 0.8 as too low and hence unacceptable. In the conclusions section we report further considerations about this 220 

choice. For each of the tests described in subsections 2.1, 2.2 and 2.3, the power was numerically evaluated according to the 

following procedure: 

1) N = 2000 Monte Carlo synthetic series are generated using the non-stationary GEV in Eqs. (8-9) as parent distribution 

with fixed parameter set 𝜽𝑛𝑠 = [𝜁0, 𝜁1, 𝜎, 𝜀](𝜁0, 𝜁1, 𝜎, 𝜀) and length L, being 𝜁1 ≠ 0. 
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2) The threshold 𝐴𝐼𝐶𝑅,𝛼 associated with a significance level 𝛼 = 0.05 is numerically evaluated, as described in section 225 

2.3 using the corresponding parameter set 𝜽𝒔𝒕 = [𝜁0, 𝜎, 𝜀](𝜁0, 𝜎, 𝜀) of GEV parent distribution. 

3) From these synthetic series the power of the test is estimated as: 

𝑟𝑒𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 =
𝑁𝑟𝑒𝑗

𝑁
 

where 𝑁𝑟𝑒𝑗 is the number of series for whom the null hypothesis is rejected, as in Yue et al. (2002a). 

 230 

The same procedure, with N = 10000, was used in order to check the actual significance level of test, which is the probability 

of first type error i.e. the probability of rejecting the null hypothesis of stationarity when it is true. The task was performed by 

following the above steps from 1 to 3 while replacing 𝜽𝑛𝑠 with 𝜽𝒔𝒕 at step 1), in such a case the rejection rate 𝑁𝑟𝑒𝑗 𝑁⁄  represents 

the actual level of significance 𝛼. 

We used a reduced number of generations (N = 2000) for the evaluation of power as good compromise between quality of 235 

results and computational time and, also in analogy with Yue et al. (2002a). 

 

3 Sensitivity analysis, results and discussion 

A comparative evaluation of the tests’ performance was carried out for all the GEV parameter sets 𝜽𝑛𝑠  obtained considering 

three values of ε (-0.4, 0, 0.4) and three values of σ (10, 15, 20). The position parameter was kept always constant and equal 240 

to 𝜁0 = 40. Then, for any possible couple of σ and ε, we considered 𝜁1 ranging from -1 to 1 with step 0.1. Such a range of 

parameters represents a wide domain in the hydrologically feasible parameters space of annual maximum daily rainfall. Upper 

bounded (𝜀 = −0.4), EV1 (𝜀 = 0), and heavy tailed (𝜀 = +0.4) cases are included. Moreover, for each of these parameter sets  

𝜽𝑛𝑠 , N samples of different size (30, 50 and 70) were generated. 

For a clear exposition of results, this section is divided into four subsections. In the first one we focus on the opportunity of 245 

using AIC or 𝐴𝐼𝐶𝑐 for the evaluation of 𝐴𝐼𝐶𝑅, in the second one the comparison of test power and its sensitivity analysis to 

parent distribution parameters and sample size is shown. In the third one, the evaluation of the level of significance for all tests 

and in particular the validity of the  𝜒2 approximation for the D statistic is discussed. In the fourth subsection the numerical 

investigation on the sample variability of parameters is reported. 

3.1 Evaluation of 𝑨𝑰𝑪𝑹,  with AIC or 𝑨𝑰𝑪𝒄 250 

Considering the non-stationary GEV four-parameters model, in order to satisfy the relation 𝐿/𝑘𝑚𝑎𝑥 < 40 suggested by 

Burnham e Anderson (2004), a time series with a record length not less than 160 should be available. Following this simple 

reasoning the AIC should be considered de facto not-applicable to any annual maximum series showing a changing point in 
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the ’70-80s (e.g. Kiely, 1999). In our numerical experiment, the second-order bias correction of Sugiura (1978) should be 

always used because for the maximum sample length, L = 70, we have 𝐿/𝑘𝑚𝑎𝑥 = 70/4 = 17.5 for the non-stationary GEV. 255 

Nevertheless, we checked if using AIC or 𝐴𝐼𝐶𝑐  is important in such a use of the ratio 𝐴𝐼𝐶𝑅.may affect results. To this purpose 

we evaluated from synthetic series the percentage differences between the power of 𝐴𝐼𝐶𝑅,  evaluated  obtained by means of 

AIC and 𝐴𝐼𝐶𝑐. In Fig. 2 the empirical probability density functions of such percentage differences, grouped according to sample 

length, are plotted for generations with ε = 0.4 and different values of σ. It is interesting to note that only for L = 70 the error 

distribution shows a regular and unbiased bell-shaped distribution. Then we observe for L = 50 a small negative bias (about -260 

0.02%), while for L = 30 a bias of -0.08 with a multi-peak and negatively skewed pdf. The latter pdf also has a higher variance 

than the others. The purpose of this figure is to show that the difference between the power obtained with AIC and the power 

obtained with 𝐴𝐼𝐶𝑐 is negligible. Different peaks in one curve (L = 30) can be explained by the merge of sample errors obtained 

for different values of 𝜎. Similar results were obtained for all values of ε, providing a general amount of differences always 

very low always very low differences and allowing to conclude that the use of AIC or 𝐴𝐼𝐶𝑐 does not significantly affect the 265 

power of 𝐴𝐼𝐶𝑅 for the cases examined. This follows the combined effect of the sample size (whose minimum value considered 

here is 30) and the limited difference in the number of parameters in the selected models. In the following we will refer and 

show only the plots obtained for the 𝐴𝐼𝐶𝑅 in Eq. (6) with AIC evaluated as in Eq. (4).  

3.2 Dependence of power on parent distribution parameters and sample size 

The effect of parent distribution parameters and sample size on the numerical evaluation of power and significance level of 270 

MK, LR and 𝐴𝐼𝐶𝑅 for different values of 𝜀, 𝜎 and 𝜁1 is shown in Fig. 3. The curves represent both significance level which is 

shown for 𝜁1 = 0 (true parent is the stationary GEV) and power for all other values 𝜁1 ≠ 0 (true parent is the non-stationary 

GEV). Each subplot in Fig. 3 shows the dependence on the trend coefficient of power and significance level of MK, LR and 

𝐴𝐼𝐶𝑅 for one set of parameter values and different sample sizes. In all subplots the test power strongly depends on trend 

coefficient and sample size. This dependence is also affected by parent parameter values. In all cases the power reaches 1 for 275 

strong trend and approaches 0.05 (the chosen level of significance) for weak trend (𝜁1 close to 0). In all combinations of the 

shape and scale parameters, and expecially especially for short samples, for a wide range of trend values the power hasexhibits 

values well below the conventional value 0.8. The curves’ slope between 0.05 and 1 is sharp for long samples and slow for 

short samples. It also depends on the parameter set, being such a slope generally slower for higher values of the scale (𝜎) and 

shape (𝜀) parameters of the parent distribution. Significant difference of power between MK, LR and 𝐴𝐼𝐶𝑅 is observable when 280 

the sample size is smaller and still more when the parent is heavy tailed (𝜀 = +0.4).  

In particular, for 𝜀 = 0, -0.4 and 𝐿 = 50, 70 it is possible to report a slightly larger power of LR with respect to 𝐴𝐼𝐶𝑅 and MK, 

but values are very close to each other. Interesting is the reciprocal position of MK and 𝐴𝐼𝐶𝑅 power curves: in fact, the 𝐴𝐼𝐶𝑅 

power is always larger than the MK one, except when 𝜀 = −0.4, without sensible influence of the scale parameter. 
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Higher difference is found for heavy tailed parent distribution (𝜀 = +0.4). While LR keeps having the largest power, the 285 

difference with respect to 𝐴𝐼𝐶𝑅 remains small while the MK’s power almost collapses to values always smaller than 0.5.  

Practical consequences of such patterns are very important and are discussed in the concludingsion section. 

3.3 Sensitivity and evaluation of the actual significance level 

We evaluated the threshold values (corresponding to a significance level of 0.05) for accepting/rejecting the null hypothesis 

of stationarity according to the methodologies recalled in subsections 2.1 and 2.2 for MK and LR tests and introduced in section 290 

2.3 for 𝐴𝐼𝐶𝑅. Based on such thresholds we exploited the generation of series from a stationary model series (𝜁1 = 0) in order 

to numerically evaluate the rate of rejection of the null-hypothesis, i.e. the actual significance level of the tests considered in 

the numerical experiment, following the procedure described in subsection 2.5. 

Table 1 shows the numerical values of the actual level of significance, obtained numerically, to be compared to the theoretical 

value 0.05 for all the considered sets of parameters and sample size. Among the three measures for trend detection the LR 295 

shows the worst performance. Results in Table 1 show that the rejection rate of the (true) null hypothesis is systematically 

higher than it should be, and it is also dependent on parent parameter values. Such effect is exalted when the parent distribution 

is upper bounded (𝜀 = −0.4) and for shorter series (𝐿 = 30)higher values of the scale parameter. In practice this implies that 

when using the LR test, as described in subsection 2.2, one actually has a probability of rejecting the true null hypothesis of 

stationarity quite higher than he knows there is a quite higher probability of rejecting the null hypothesis of stationarity (if it 300 

is true) than expected or designed.  

On the other hand, the performances of MK with respect to the designed level of significance are less biased and independent 

from the parameter set. Similar good performances are trivially obtained for the 𝐴𝐼𝐶𝑅, whose rejection threshold is numerically 

evaluated. 

The plot in Fig. 4 is displayed in order to focus on the actual value of the level of significance and in particular on the LR 305 

approximation 𝐷~𝜒𝑚
2  as a function of the sample length Ln. The difference between theoretical and numerical values of the 

significance level is represented by the distance between the bottom value of the curve (obtained for 𝜁1 = 0, i.e. the stationary 

GEV model) and the chosen level of significance 0.05 which is represented by the horizontal dotted line. In particular in Fig. 

4 results for the parameter set (𝜎 = 15, 𝜀 = −0.4) show that the actual rate of rejection is always higher than the theoretical 

one and changes significantly with the sample size, which means that the 𝜒𝑚
2  approximation leads to significantly 310 

underestimationng of the rejection threshold of the D statistic. Moreover, it seems that the entire curves of the LR power (in 

red) are upward translated as a consequence of the significance level overestimation, meaning that the LR test power is also 

overestimated because of the approximation 𝐷~𝜒𝑚
2 . These results suggest, for the LR test, the use of a numerical procedure 

(as the one introduced for 𝐴𝐼𝐶𝑅 in subsection 2.3) for evaluating the D distribution and the rejection threshold.  

Other considerations can be made on the use of 𝐴𝐼𝐶𝑅. As explained in subsection 2.3 we empirically evaluated by numerical 315 

generations the 𝐴𝐼𝐶𝑅,𝛼 threshold value with significance level 0.05 for each of the parameter sets and sample sizes considered. 
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Similar results were obtained using the 𝐴𝐼𝐶𝑐 which are not shown for brevity. We found a significative dependence of 𝐴𝐼𝐶𝑅,𝛼 

on the sample size. Fig. 5 shows curves of 𝐴𝐼𝐶𝑅,𝛼 obtained for each of the parameter sets vs sample size. It is also worth noting 

that all curves asymptotically trend to 1 as L increases. This property is due to the structure of AIC and peculiarity of the nested 

models used in this paper: while using a sample generated with weak non-stationarity (i.e. when  𝜁1 → 0 in Eq. (9)) the 320 

maximum likelihood of model (7), ℓ(�̂�𝑠𝑡), tends to ℓ(�̂�𝑛𝑠) of model (8) leaving only the bias correction in AIC to be 

discriminant for model selection. As a consequence, 𝐴𝐼𝐶𝑅,𝛼 shouldwill be always lower than 1, but, increasing sample size, 

also both the likelihood terms −2ℓ(�̂�𝑠𝑡) and −2ℓ (�̂�𝑛𝑠
̂ ) in Eq.  (4) will increase, pushing 𝐴𝐼𝐶𝑅 toward the limit 1. On the 

other hand, Fig. 5 shows that the threshold value 𝐴𝐼𝐶𝑅,𝛼 is significatively smaller than 1 up to L values well beyond the length 

usually available in this kind of analysis. Hence the numerical evaluation of the threshold has to be considered as a required 325 

task in order to provide an assigned significance level to model selection. On the other hand, the simple adoption of the 

selection criteria 𝐴𝐼𝐶𝑅 < 1 (i.e. 𝐴𝐼𝐶𝑅,𝛼 = 1), would correspond to an unknown significance level dependent on the parent 

distribution and sample size. In order to highlight this point, we evaluated the significance level 𝛼 corresponding to 𝐴𝐼𝐶𝑅,𝛼 =

1 following the procedure described in subsection 2.5 by generating N = 10000 synthetic series, from a stationary model, for 

any parameter set and sample length. Results, provided in Tab. 2, show that, in the explored GEV parameter domain, 𝛼 ranges 330 

between 0.16 and 0.26 mainly depending on the sample length and the shape parameter of the parent distribution.  

3.4 Sample variability of parent distribution parameters 

Results shown above, with regard to performances of parametric and non-parametric tests, are in our opinion quite surprising 

and important. It is provedn that the preference widely accorded to non-parametric tests, being their statistics allegedly 

independent from the parent distribution, is not well founded. On the other hand, the use of parametric procedures raises the 335 

problem of correctly estimating the parent distribution and, for the purpose of this paper, its parameters. Moreover, as being 

the trend coefficient 𝜁1 a parameter of the parent distribution in non-stationary condition, the proposed parametric approach 

provides a maximum likelihood-based estimation of the same trend coefficient which is hereafter called ML-𝜁1. For a 

comparison with non-parametric approaches we also evaluated the sample variability of the Sen’s slope measure () of the 

imposed linear trend. In order to provide insights into these issues, from the same sets of generations exploited above, we also 340 

analysed the sample variability of the maximum likelihood estimates ML-𝜀 ML-𝜎, for different parameter sets and sample 

length.  

We evaluated sample variability 𝑠[∙]s[.], as the standard deviation of the ML estimates of parameter values obtained from 

synthetic series. Results are shown in Figs. 6 and 9, for different parameter sets and sample size, vs true 𝜁1 values. In Fig 6, on 

the first subplots row we show s[ML-𝜁1] and on the second row the Sen’s slope median s[]. In the upper panels of Fig 6 we 345 

show s[ML-𝜁1] and the lower panels the Sen’s slope median 𝑠[𝛿].The sample variability of the linear trend is in both cases 

strongly dependent on sample size and independent from the true 𝜁1 value in the range examined [−1,1]. It reaches high values 
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for short samples and in such cases also its dependence on the scale and shape parent parameters is relevant. The ML estimation 

of the trend coefficient is always more efficient than Sen’s slope and this is observed in particular for heavy tailed distributions. 

In Figs. 7 and 8 we show the empirical distributions of the Sen’s slope  and ML-𝜁1 estimates obtained from samples of size 350 

𝐿 = 30 with parent distribution characterized by 𝜎 = 15 and 𝜀 = [−0.4,0,0.4], providing a visual information about the range 

of trend values that may result from a local evaluation. Similar results, characterized by smaller sample variability shown in 

Fig. 6, are obtained for 𝐿 = 50 and 𝐿 = 70 and are not shown for brevity.  

Fig. 89 shows the sample variability of ML-𝜀 and ML-𝜎, which is still independent from the true 𝜁1 for values of 𝜀 = 0 and 

0.4 while for upper bounded GEV distributions (𝜀 = −0.4) it shows a significant increase for higher values of 𝜎 and high trend 355 

coefficients (|𝜁1| > 0.5). Randomness of results for 𝐿 = 30 and 𝜎 = [15,20] is probably due to a reduced efficiency of the 

algorithm that maximizes the log-Likelihood function, for heavy tailed distributions. 

In order to better analyse such patterns, for the scale and shape parent parameters we report also the distribution of their 

empirical ML estimates for different parameter sets vs the true 𝜁1 value used in generation. The sample distribution of ML-𝜀 

for 𝜎 = 15 is shown in Fig. 910 for 𝐿 = 30 and Fig. 11 for 𝐿 = 70. The sample distribution of ML-𝜎 for 𝜎 = 15 is shown in 360 

Fig. 102 for 𝐿 = 30 and Fig. 13 for 𝐿 = 70. Subplots show that the presence of a strong trend coefficient may produce 

significant loss in the estimator efficiency probably due to deviation from normal distribution of the sample estimates also for 

long samples. This suggests the need of more robust estimation procedures which provides higher efficiency for estimates of 

𝜀𝜖 and 𝜎 in case of strong observed trend. It should be highlighted that efficiency in parameter estimation increases with 

sample size for 𝜀 = [0,0.4], while it decreases for both 𝜀 and 𝜎, in the case 𝜀 = −0.4, where the trend of the location parameter 365 

implies a shift in time of the distribution upper bound. 

4 Conclusions 

The results shown have important practical implications. The dependence of test power on the parent distribution parameters 

may significantly affect results of both parametric and non-parametric tests including the widely used Mann-Kendall.  

Considering the feasibility of numerical evaluation of power, allowed by the parametric approach, we observe that, while the 370 

awareness of the crucial role of type II error is growing in latest years in the hydrological literature, a common debate would 

deserve more development about which power values should be considered acceptable. Such an issue is much more enhanced 

in other scientific fields where the experimental design is traditionally required to estimate the appropriate sample size to 

adequately support results and conclusions. In psychological research, Cohen (1992) proposed 0.8 as a conventional value of 

power, to be used with level of significance 0.05 thus leading to a ratio 4 to 1 between the risk of type II and type 1 error. The 375 

conventional value proposed by Cohen (1992) has been taken as reference by thousands of papers in social and behavioural 

sciences. In pharmacological and medical research, depending on real implications and nature of the type II error, conventional 

values of power may be as high as 0.999. This is the value suggested by Liebher (1990), when testing a treatment for patients’ 
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blood pressure. He stated, while “guarding against cookbook application of statistical methods”, that “it should also be noted 

that, at times, type II error may be more important to an investigator then type I error”. 380 

We believe that, selecting between stationarity and non-stationarity models for extreme hydrological event prediction, a fair 

comparison between the null and the alternative hypotheses as α = β = 0.05 should be taken, which provides power = 0.95. In 

our discussion we considered 0.8 as minimum threshold for acceptable power values. 

For all the generation sets and tests conducted, under the null hypothesis of stationarity, the power has values ranging between 

the chosen significance level (0.05) and 1 for large (and larger) ranges of the trend coefficient. The test power always collapses 385 

to very low values for weak (but climatically important) trend values (in the case of annual maximum daily rainfall, 𝜁1 equal 

to 0.2 or 0.3 mm per year, for example). In presence of trend, the power is also affected by the scale and shape parameters of 

the GEV parent distribution. This observation can be made with reference to samples of all the lengths considered in this paper 

(from 30 to 70 years of observation) but the use of smaller samples significantly reduces the test power and dramatically 

extends the range of 𝜁1 values for which the power is below the conventional value 0.8. The use of this sample size is not rare 390 

considering that significative trends due to anthropic effects are typically investigated in periods following a changing point 

often observed in the ‘80s. 

These results also imply that in spatial fields where the alternative hypothesis of non-stationarity is true, but the parent’s 

parameters (including the trend coefficient) and the sample length are variable in space, the rate of rejection of the false null-

hypothesis may be highly variable from site to site and practically out of control. In other words, in such a case, the probability 395 

of recognizing the alternative hypothesis of non-stationarity as true from a single observed sample may unknowingly change 

(between 0.05 and 1) from place to place. For small samples (as 𝐿 = 30 in our analysis) and heavy tailed distributions, the 

power is always very low for all the investigated range of the trend coefficient. 

Hence, considering the high spatial variability of the parent distribution parameters and the relatively short period of reliable 

and continuous historical observations usually available, a regional assessment of trend non-stationarity may suffer from the 400 

different probability of rejection of the null hypothesis of stationarity (when it is false).  

These problems affect, in slightly different measures, both parametric and non-parametric tests. While these considerations 

are generally applicable to all the tests considered, differences also emerge between them. For heavy tailed parent distributions 

and smaller samples, the MK test power decreases more rapidly than for the other tests considered. Low values of power are 

already observable for 𝐿 = 50. The LR test slightly outperforms the 𝐴𝐼𝐶𝑅  for small sample size and higher absolute values of 405 

the shape parameter. Nevertheless, the higher value of the LR power seems to be overestimated as a consequence of the 𝜒𝑚
2  

approximation for the D statistic distribution (see section 3.3).   

Results also suggest that theoretical distribution of the LR test-statistic based on the null hypothesis of stationarity may lead to 

a significative increase of the rejection rate compared to the chosen level of significance i.e. an abnormal rate of rejection of 

the null hypothesis when it is true. In this case the use of numerical techniques, based on the use of synthetic generations 410 

performed by exploiting a known parent distribution, should be preferred.  
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By the light of these results we conclude that in trend detection on annual maximum series the assessment of the parent 

distribution and the choice of the null hypothesis should be considered as fundamental preliminary tasks. According to this 

remark, it is advisable to make use of parametric tests by numerically evaluating both the rejection threshold for the assigned 

significance level and the power corresponding to alternative hypotheses. This also requires developing robust techniques for 415 

individuation of selecting the parent distribution and estimatingon of its parameters. To this perspective, the use of a parametric 

measure such as the 𝐴𝐼𝐶𝑅, may take into account of different choices for the parent distribution and, even more importantly, 

allows one to set thea null hypothesis differently from the stationary case, based on a priori information. 

The need of robust procedures for assessing the parent distribution and its parameters is also proven by the numerical 

simulations we conducted. Sample variability of parameters (including the trend coefficient) may increase rapidly for series 420 

with L as low as 30 years of annual maxima. Moreover, we observed that, in case of highest trends, numerical instability and 

non-convergence of algorithms may affect the estimation procedure for upper bounded and heavy tailed distributions. 

Nevertheless, the sample variability of the ML trend estimator was found always smaller than the Sen’s slope sample 

variability. Finally, it is worth noting that also the non-parametric Sen’s slope method, applied to synthetic series, showed 

dependence on the parent distribution parameters with sample variability higher for heavy tailed distributions. 425 

This analysis shed lights onto important eventual flaws in the at-site analysis of climate change provided by non-parametric 

approaches. Both test power and trend evaluation are affected by the parent distribution as well as they are init is the case also 

in parametric methods. It is not a caseby chance, in our opinion, that many technical studies conducted in years around the 

world, provide inhomogeneous maps of positive/negative trends and large areas of stationarity characterized by weak trends 

that are considered not statistically significanytive. Analogous concerns about the use of statistical tests have been expressed 430 

by Serinaldi et al. (2018).  

As already said, an advantage of using parametric tests and numerical evaluation of the test-statistic distribution is given by 

the possibility of assuming a null hypothesis based on a preliminary assessment of the parent distribution including trend 

detection by evaluation of non-stationary parameters. This could lead to a regionally homogeneous and controlled assessment 

of both significance level and power in a fair mutual relationship. With respect to the estimation of parameters of the parent 435 

distribution, results suggest that at site analysis may provide highly biased results. More robust procedures are necessary like 

hierarchic estimation procedures (Fiorentino et al., 1987) providing estimates of 𝜀 and 𝜎 from detrended series (Strupczewski 

et al., 2016; Kochanek et al., 2013).  

Considering the high spatial variability of sample length, trend coefficient, scale and shape parameters we believe that the 

application of well-known and developed regional methods for selection and assessment of the parent distribution could be 440 

easily and profitably exploited in the context of non-stationarity and climate change detection in annual maximum series and 

will be tackled in future research.  

As a final remark, concerning real data analysis, in our numerical experiment we showed that, in some cases, a weak linear 

trend in the mean suffices to reduce power to unacceptable values. Yet we explored the simplest nonstationary working 

hypothesis by introducing a deterministic linear dependence on time of the location parameter of the parent distribution. 445 
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Obviously, when making inference from real observed data other sources of uncertainty may affect statistical inference (trend, 

heteroscedasticity, persistence, nonlinearity, etc), and moreover, if considering a nonstationary process with underlying 

deterministic dynamics, the process turns out to be non-ergodic, implying that statistic inference from sampled series is not 

representative of the process’s ensemble properties (Koutsoyiannis and Montanari, 2015).   

As a consequence, while considering a nonstationary stochastic process as produced by a combination of a deterministic 450 

function and a stationary stochastic process, other sources of information and deductive arguments should be exploited in order 

to identify the physical mechanism underlying such relationships. Even in such a case observed time series have a crucial role 

in order to calibrate and validate deterministic modeling or, in other words, for confirming or disproving the model hypotheses.  

In the field of frequency analysis of extreme hydrological events, considering the high spatial variability of sample length, 

trend coefficient, scale and shape parameters, etc, physically based probability distributions could be further developed and 455 

exploited for selection and assessment of the parent distribution in the context of non-stationarity and change detection. 

Physically based probability distributions we refer to are: (i) those arising from stochastic compound processes introduced by 

Todorovic and Zelenhasic (1970), which include also the GEV (see Madsen et al., 1997) and the TCEV (Rossi et al., 1984), 

and (ii) the theoretically derived distributions following Eagleson (1972) whose parameters are provided by clear physical 

meaning and are usually estimated with support of exogenous information in regional methods (e.g. Gioia et al., 2008; 460 

Iacobellis et al., 2011; see also for a more extensive overview Rosbjerg et al., 2013). 

Hence, we believe that “learning from data” (Sivapalan, 2003), will remain in future years a key task for hydrologists facing 

the challenge of consistently identifying both deterministic and stochastic components of change (Montanari et al., 2013). This 

involves crucial and interdisciplinary research to develop suitable methodological frameworks for enhancing physical 

knowledge and data exploitation, in order to reduce the overall uncertainty of prediction in a changing environment. 465 

Appendix 

Let us consider two different but consequent years, t and t + 1, setting 𝑧(𝑡) = 𝑧0 + 𝛼𝑡, for 𝜆1 there is: 

𝜆1(𝑡) =
1

𝐿
∑𝑧0 + 𝛼𝑡

𝐿

𝑗=1

=
1
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+
1

𝐿
∑𝛼𝑡

𝐿

𝑗=1

 

𝜆1(𝑡 + 1) =
1

𝐿
∑𝑧0 + 𝛼(𝑡 + 1)
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=
1
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+
1

𝐿
∑𝛼(𝑡 + 1) =

𝐿

𝑗=1

 

=
1

𝐿
∑𝑧0

𝐿

𝑗=1

+
1
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∑𝛼𝑡 +

1

𝐿
∑𝛼

𝐿

𝑗=1

𝐿

𝑗=1

 470 

Subtracting side by side: 
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𝜆1(𝑡 + 1) − 𝜆1(𝑡) =
1

𝐿
∑𝑧0

𝐿

𝑗=1

+
1

𝐿
∑𝛼𝑡 +

1

𝐿
∑𝛼

𝐿

𝑗=1

𝐿

𝑗=1

−
1

𝐿
∑𝑧0

𝐿

𝑗=1

−
1

𝐿
∑𝛼𝑡

𝐿

𝑗=1

=
1

𝐿
∑𝛼

𝐿

𝑗=1

 

Which proves that a trend in the mean value produces a related trend in  𝜆1.  

By using the same approach for 𝜆2, we observe that: 

𝜆2(𝑡) = 2∑
(𝐿 − 𝑗)(𝑧𝑗 + 𝛼𝑡)

𝐿(𝐿 − 1)

𝐿−1

𝑗=1

−
1

𝐿
∑(𝑧𝑗 + 𝛼𝑡)

𝐿

𝑗=1
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𝜆2(𝑡 + 1) = 2∑
(𝐿 − 𝑗)[𝑧𝑗 + 𝛼(𝑡 + 1)]

𝐿(𝐿 − 1)

𝐿−1
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−
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Subtracting side by side: 

𝜆2(𝑡 + 1) − 𝜆2(𝑡) = 2∑
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Which proves that a trend in the mean value does not affect 𝜆2.  
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Table 1: Actual level of significance of tests for different sample size, scale and shape parent parameters 

 L = 30 

 𝜀 = −0.4 𝜀 = 0 𝜀 = +0.4 

 𝜎 = 10 𝜎 = 15 𝜎 = 20 𝜎 = 10 𝜎 = 15 𝜎 = 20 𝜎 = 10 𝜎 = 15 𝜎 = 20 

MK 0.048 0.047 0.047 0.047 0.050 0.050 0.046 0.049 0.048 

𝐴𝐼𝐶𝑅 0.050 0.046 0.052 0.051 0.052 0.045 0.052 0.054 0.051 

LR 0.104 0.103 0.115 0.061 0.064 0.060 0.084 0.081 0.083 

 
         

 L = 50 
 𝜀 = −0.4 𝜀 = 0 𝜀 = +0.4 
 𝜎 = 10 𝜎 = 15 𝜎 = 20 𝜎 = 10 𝜎 = 15 𝜎 = 20 𝜎 = 10 𝜎 = 15 𝜎 = 20 

MK 0.050 0.047 0.046 0.044 0.047 0.050 0.049 0.044 0.048 

𝐴𝐼𝐶𝑅 0.053 0.053 0.046 0.051 0.051 0.057 0.050 0.050 0.053 

LR 0.079 0.078 0.074 0.060 0.063 0.063 0.070 0.069 0.070 

          

 L = 70 

 𝜀 = −0.4 𝜀 = 0 𝜀 = +0.4 

 𝜎 = 10 𝜎 = 15 𝜎 = 20 𝜎 = 10 𝜎 = 15 𝜎 = 20 𝜎 = 10 𝜎 = 15 𝜎 = 20 

MK 0.050 0.052 0.054 0.052 0.051 0.047 0.049 0.048 0.046 

𝐴𝐼𝐶𝑅 0.047 0.051 0.051 0.058 0.058 0.052 0.050 0.054 0.051 

LR 0.069 0.069 0.073 0.063 0.065 0.058 0.062 0.062 0.063 
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Table 2: Actual level of significance of 𝑨𝑰𝑪𝑹 test for 𝑨𝑰𝑪𝑹,𝜶 = 𝟏 

 𝜀 = −0.4 𝜀 = 0 𝜀 = +0.4 

 𝜎 = 10 𝜎 = 15 𝜎 = 20 𝜎 = 10 𝜎 = 15 𝜎 = 20 𝜎 = 10 𝜎 = 15 𝜎 = 20 

L = 30 0.246 0.254 0.261 0.188 0.191 0.181 0.220 0.221 0.215 

L = 50 0.213 0.209 0.206 0.171 0.175 0.170 0.188 0.207 0.195 

L = 70 0.192 0.192 0.201 0.168 0.169 0.173 0.184 0.204 0.184 
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Figure 1: Empirical distribution of 𝐀𝐈𝐂𝐑 and rejection threshold 𝑨𝑰𝑪𝑹,𝜶 of the null hypothesis (stationary GEV parent) 
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Figure 2: Distributions of the differences between power of 𝑨𝑰𝑪𝑹 evaluated with AIC and 𝑨𝑰𝑪𝒄 for 𝛆 = 𝟎. 𝟒 
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Figure 3: Dependence of test power on trend coefficient, sample size, scale and shape parent parameters. 
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Figure 4: Focus on the actual level of significance reported for 𝜁1 = 0. 
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Figure 5: 𝐴𝐼𝐶𝑅,𝛼 thresholds for different parameter sets vs sample size 
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Figure 6: Sample variability of ML-𝜻𝟏 and 𝜹 vs trend coefficient 𝜁1 
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Figure 7: Empirical distributions of 𝜹 and ML-𝜻𝟏 evaluated from samples with 𝑳 = 𝟑𝟎 𝐚𝐧𝐝 𝝈 = 𝟏𝟓 , 𝐯𝐬 𝐭𝐫𝐞𝐧𝐝 𝐜𝐨𝐞𝐟𝐟𝐢𝐜𝐢𝐞𝐧𝐭 𝜁1 

 

Figure 8: Empirical distributions of ML-𝜻𝟏 evaluated from samples with 𝑳 = 𝟑𝟎 vs trend coefficient 𝜁1 
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Figure 89: Sample variability of ML-𝜺 and ML-𝝈 vs trend coefficient 𝜁1 
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Figure 910: Empirical distributions of ML-𝜺 evaluated for 𝝈 = 𝟏𝟓 from samples with 𝑳 = 𝟑𝟎  and 𝑳 = 𝟕𝟎 vs trend coefficient 𝜁1   

 

Figure 11: Empirical distributions of ML-𝜺 evaluated from samples with 𝑳 = 𝟕𝟎 vs trend coefficient 𝜁1    
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Figure 1210: Empirical distributions of ML-𝝈 evaluated for 𝝈 = 𝟏𝟓  from samples with 𝑳 = 𝟑𝟎 and 𝑳 = 𝟕𝟎  vs trend coefficient 𝜁1  
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Figure 13: Empirical distribution of ML-𝝈 evaluated from samples with 𝑳 = 𝟕𝟎 

 


