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Abstract. Climate change has far-reaching implications in permafrost-underlain landscapes with 
respect to hydrology, ecosystems and the population’s traditional livelihoods. In the Lena River 
catchment, Eastern Siberia, changing climatic conditions and the associated impacts are already 
observed or expected. However, as climate change progresses the question remains as to how far we are 10 
along this track and when these changes will constitute a significant emergence from natural variability. 
Here we present an approach to investigate temperature and precipitation time series from observational 
records, reanalysis, and an ensemble of 65 climate model simulations forced by the RCP8.5 emission 
scenario. We focus on the Lena River catchment, where significant environmental changes are already 
apparent. We developed a novel non-parametric statistical method to identify the time of emergence 15 
(ToE) of climate change signals, i.e. the time when a climate signal permanently exceeds its natural 
variability. The method is based on the Hellinger distance metric that measures the similarity of 
probability density functions (PDFs) roughly corresponding to their geometrical overlap. Natural 
variability is estimated as PDF for the earliest period common to all datasets used in the study (1901-
1921) and is then compared to PDFs of target periods with moving windows of 21 years at annual and 20 
seasonal scale. The method yields dissimilarities or emergence levels ranging from 0 to 100% and the 
direction of change as continuous time series itself. For the Lena River catchment, on average, 
emergence of temperature has a strong onset in the 1970s with a monotonic increase thereafter for 
validated reanalysis data. At the end of the reanalysis dataset (2004), temperature distributions have 
emerged by 50-60%. Climate model projections suggest the same evolution on average and 90% 25 
emergence by 2040. For precipitation the analysis is less conclusive because of high uncertainties in 
existing reanalysis datasets that also impede an evaluation of the climate models. Model projections 
suggest hardly any emergence by 2000 but a strong emergence thereafter, reaching 60% by the end of 
the investigated period (2089). The presented ToE method provides more versatility than traditional 
parametric approaches and allows for a detailed temporal analysis of climate signal evolutions. An 30 
original strategy to select the most realistic model simulations based on the available observational data 
significantly reduces the uncertainties resulting from the spread in the 65 climate models used. The 
method comes as a toolbox available at https://github.com/pohleric/toe_tools.   
 

1 Introduction 35 

The high latitudes experience pronounced climate change, for example, in the form of warming air 
temperatures and precipitation regime shifts (Cohen et al., 2018). This manifests in far-reaching impacts 
on the livelihoods of permafrost communities (Crate et al., 2017), hydrological systems (Gautier et al., 
2018; Karlsson et al., 2012; Prowse et al., 2010; Vey et al., 2013; Walvoord and Striegl, 2007; Yang et 
al., 2002), the evolution of permafrost, including changes in landforms (Boike et al., 2016) and 40 
feedbacks with the global carbon cycle (Beermann et al., 2017; Hope and Schaefer, 2016; Schuur et al., 
2015). The Lena River catchment in Eastern Siberia is one of the largest watersheds in Siberia and 
provides a major contribution to the Arctic Ocean. It is a perfect example of a landscape that is prone to 
the impacts of climate change. Available air temperature and precipitation records in this region extend 
back more than a hundred years and provide a data basis to investigate local trends and variability in 45 
climate in more detail.  
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Despite a general warming trend, a strong spatial and temporal variability is apparent over northeastern 
Eurasia (Desyatkin et al., 2015; Fedorov et al., 2014b; Gorokhov and Fedorov, 2018), and in the high 
latitudes in general (Mahlstein et al., 2011). A few locations show no apparent trend over the available 
long-term records (Fedorov et al., 2014b). Gorokhov and Fedorov (2018) focus on the region of Yakutia 
(Sakha Republic) and find positive temperature and precipitation trends for the region as a whole for the 5 
period 1966-2016. However, spatial and temporal variability is apparent in the form of a stronger 
warming trend in winter compared to summer (0.4 to 1 ºC decade-1 compared to 0.1 to 0.4 ºC decade-1), 
and a negative precipitation trend in the northern region (-8 mm decade-1) in contrast to increasing 
positive trends towards the south (~16 mm decade-1). In addition, air and ground temperatures co-
evolve with strong spatial heterogeneity (Fedorov et al., 2014b; Romanovsky et al., 2010), potentially 10 
associated with changes in regional precipitation and snow cover dynamics (Romanovsky et al., 2010, 
and references therein).  
Such changes propel landscape transitions that are not necessarily linear. For instance, the interactions 
between meteorological forcing and the ground thermal regime in the permafrost-underlain region are 
complex due to thermal effects, including phase change in the freeze-thaw cycles and insulation effects 15 
of snow covers (Grenier et al., under review.; Walvoord and Kurylyk, 2016). The impacted 
hydrological cycle already shows a systematic shift towards an increase in the intensity and duration of 
floods, higher frequency of large floods, and disappearing small floods (Gautier et al., 2018). More 
changes in the hydrological regime can be expected in the future through geomorphological changes, 
especially the formation of thermokarst lakes (Fedorov et al., 2014a; Ulrich et al., 2017). Most 20 
thermokarst lakes are initiated endorheic but might aggregate and connect to the river network with 
increasing permafrost thaw.  
 
However, the spatiotemporal variability and heterogeneous evolution of different climate variables raise 
the question about the regional magnitude of climate change, and how much of the observed variability 25 
can be attributed to natural climate variability or to human activities. Additionally, it renders an 
overarching assessment of how permafrost will evolve under climate change and what this means for 
the climate system as a whole difficult. The individual analysis of the key variables temperature and 
precipitation constitutes a first step to approach this problem. The identification of how these variables 
have individually evolved with respect to their natural variability give insights into the complex, and 30 
direct and indirect interactions in the Earth system. Ultimately, this is needed for a comprehensive 
understanding of the system and an assessment of resulting implications under continuing climate 
change. It further constitutes a prerequisite for planning and execution of possible adaption and 
mitigation actions that are needed to cope with the environmental and socio-economic impacts in a 
timely manner. 35 
 
As a result, considerable effort has been put in the development of methods to investigate and identify 
when climate departs or emerges from its natural state or variability (time of emergence – ToE). ToE 
studies cover a wide spectrum of applications, from the most common climate variables like near 
surface air temperature and precipitation (Giorgi and Bi, 2009; King et al., 2015; Lehner et al., 2017; 40 
Mora et al., 2013), to climate extremes (King et al., 2015; Maraun, 2013; Scherer and Diffenbaugh, 
2014), to sea level rise (Lyu et al., 2014).  There are several methods to calculate ToE (e.g. Sui et al., 
2014, and references therein), depending on the available data sources and the specific purpose of the 
study. Two major aspects are at the frontline of research. The first concerns the methodology and the 
second one the data basis on which to perform the analysis. 45 

1.1 ToE approaches  

ToE is defined as the timing when a climate signal, such as temperature or precipitation, permanently 
exceeds its natural variability (e.g. Giorgi and Bi, 2009; Hawkins and Sutton, 2012). Several existing 
methods rely on separating signal S (climate change) and noise N (natural variability). Such approaches 
may require a high level of parameterization (Lehner et al., 2017; Sui et al., 2014), for example, to 50 
define natural variability, a threshold for the S/N ratio, or to separate signal from noise. Additionally, 
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some meta-parameters are needed, such as the size of moving windows or the selection of the period 
that is considered as reference time (e.g. preindustrial conditions). The variability of a variable within a 
reference period can be addressed by means of standard deviation (e.g. Hawkins and Sutton, 2012; 
Lehner et al., 2017; Mahlstein et al., 2011), or by the total observed range in values (e.g. Mora et al., 
2013). Signals tested for emergence are somehow filtered to eliminate decadal and lower frequency 5 
variability, e.g. by means of moving averages (e.g. Lehner et al., 2017), or polynomial fitting (e.g. 
Hawkins and Sutton, 2012), and are then compared to the derived reference period variability. Other 
approaches are based on statistical tests that compare, for example, the distributions between a reference 
and a target period (King et al., 2015; Mahlstein et al., 2011, 2012). Mahlstein et al. (2012) and King et 
al. (2015), for example, used the Kolmogorov-Smirnov test (KS-test) with a defined significance level 10 
to test the statistical similarity between reference and target period distributions.  
 
All existing ToE methods are by definition a test, either on the exceedance of a S/N ratio threshold or 
based on a statistical significance level. As such, they require a parameterization, which can be a 
drawback in terms of objectivity and transferability. For instance, dealing with a set of different climate 15 
variables may lead to different distribution models, where different dataset record lengths affect the 
behavior of statistical tests and filtering operations. The development of a non-parametric approach is 
appealing because results are not impeded by the choice of parameters as in the case of parametric 
approaches.  

1.2 Data basis for ToE studies 20 

The second major aspect of ToE research concerns the data basis. Observational datasets facilitate ToE 
studies that focus on already occurred changes. Direct observational data are the most accurate 
estimates but come with the downside of data gaps and limited spatial coverage. Reanalysis datasets 
assimilating observational data provide extended spatiotemporal coverage. Their continuous 
spatiotemporal coverage is an advantage over meteorological station data, but this comes at the cost of 25 
some biases with respect to the real observations (Khan et al., 2008; Serreze and Hurst, 2000). Possible 
ToE methods for these data types rely on a statistical analysis of their signal’s evolution over time. In 
some cases, including the present study, continuous time-series are compulsory which excludes data 
from meteorological stations with interrupted observations. 
Ensembles of climate model simulation (CS) provide estimates ranging from the past to the future and 30 
come with specific data structures. These structures are, in some cases, needed to address the effects of 
internal climate variability (Hawkins and Sutton, 2012; Lehner et al., 2017; Mora et al., 2013), or allow 
utilization of preindustrial control runs, i.e. a forcing corresponding to preindustrial conditions (e.g. 
Karoly and Wu, 2005). The difference between model runs with different anthropogenic forcing 
scenarios and the control runs can provide an estimate for the effect of anthropogenic forcing on the 35 
climate (e.g. King et al., 2015; Knutson et al., 2013; Lyu et al., 2014). However, sometimes large CS 
ensemble spreads (e.g. Knutson et al., 2013; Koven et al., 2013) introduce considerable uncertainties in 
ToE estimates (Deser et al., 2012; Hawkins et al., 2014; King et al., 2015). In order to reduce the model 
spread, a pre-selection of CS can be made based on a comparison between CS and observations, e.g. by 
means of how the variability of certain variables from observations compare to those in the CS in the 40 
region of interest (e.g. Mahlstein et al., 2011). Alternatively, weights can be given to individual CS 
based on how similar a model internal structure is and how well they represent observational data 
(Knutti et al., 2017). Identifying a robust and objective function for the selection of CS to reduce 
uncertainty is, however, difficult as it depends on available observational data and means to assess 
model similarity (e.g. Knutti et al., 2017; Leloup et al., 2008).  45 

1.3 Aims 

This study presents a novel ToE approach, allowing investigation of the actual evolution of emergence 
over time. This differs from other methods in form of a test that provide either the indication of 
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emergence or not. The approach is applied to near surface air temperature (T) and precipitation (P) in 
the Lena River catchment, where changes in landscape (Crate et al., 2017) and hydrological behavior 
(Gautier et al., 2018; Yang et al., 2002) are already apparent, and for the variables’ importance in the 
hydrological cycle and impact on permafrost evolution. The study is designed to utilize available 
observational data from meteorological stations, reanalysis data, and an ensemble of CS from the 5 
Coupled Model Intercomparison Project phase 5 (CMIP5; Taylor et al., 2012). This multi-step, multi-
source approach allows for comparison between obtained estimates from the most reliable (in situ) to 
the most uncertain (CS) data sources.  
 
We test how such an approach can reduce uncertainty of ToE estimates by introducing a non-parametric 10 
method based on an adapted Hellinger distance metric (Hellinger, 1909).  
The method does not constitute a test, but a continuous metric that describes how far a climate signal, in 
form of a time-series, has emerged from its natural variability.  
This approach is intentionally non-parametric by design in order to ensure transferability to other 
scientific fields, and to other variables that inherit any kind of value distribution. Because the metric is 15 
derived as a continuous signal, it gives insights into how climate signals emerge from natural variability 
over time. This provides potential added value to the general question of whether a signal has emerged 
or not based on a single test. Another strength of this approach is that it facilitates an in-depth analysis 
of how climate change emerges over time, and, in the process, allows for selecting CS that show an 
emergence consistent with real observations. Consequently, it allows selecting the most realistic CS. 20 
 
The succeeding sections present the method in detail, followed by the data sources and obtained results. 
We discuss the obtained results in the light of previous studies, as well as the unavoidable choices of 
meta-parameters in detail. The latter comprise the selection of a reference period, which are usually pre-
industrial conditions like 1881−1910 in Vautard et al. (2014), or 1860-1910 in King et al. (2015) to 25 
identify anthropogenic climate change, and the window width to filter out natural and decadal climate 
variability of the climate signal. Finally we present our conclusions on how the presented method 
provides a versatile tool for ToE studies and how it can reduce uncertainty by the incorporation of 
observational and reanalysis datasets. 

 30 
Figure 1: Lena River catchment (black outline) on topographic map (colour-code) and position of short-, and long-term 
meteorological stations used to test reanalysis and interpolated datasets. From the long-term stations, Kjusjur has the lowest 
temporal coverage (less than 10 years) in the reference period 1901-1921. 
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2 Methods 

In the following section we present the methods for ToE detection, sensitivity analysis, and data 
selection. Our ToE method is a non-parametric metric and thus differs from previous approaches that 
are parameterized tests for emergence. Our metric describes emergence by measuring how data 
distributions in continuous target periods have changed with respect to a reference period. Like other 5 
approaches, it requires meta-parameter choices, like the start and end point of a reference period and 
window widths for target periods, for which we will present a sensitivity approach. Finally, the 
availability of actual long-term observations in the Lena River catchment (Fig. 1) allows validating 
reanalysis and climate model simulation datasets for their potential to represent the same climate change 
evolution.  10 

 

Figure 2: Schematic of the ToE method based on the Hellinger distance (HD). Top – example of time-series evolution from climate 
simulations, a meteorological station, and a reanalysis dataset. Natural variability as PDF of the reference period, and two 
example target periods with a window width of 21 years for recent and future assessment with a sketch of the corresponding 
PDFs.  Bottom – The overlap between the PDFs of the reference and target periods (left), a sketch of PDF evolution over time 15 
(middle), and resulting HD as the dissimilarity of the target and subsequent reference PFDs (one minus the overlap). Exemplary 
determination of ToE for a threshold of 50% emergence, or emergence at a chosen time step, respectively (right). 

2.1 Time of Emergence (ToE) 

Our ToE method is based on a similarity metric between probability density functions (PDF) described 
by Hellinger (1909). This metric belongs to a family of distance metrics (Cha, 2007) and can be roughly 20 
understood as the geometrical overlap of two PDFs (Fig. 2) (Rust et al., 2010). The method has been 
used e.g. by Rust et al., (2010) to showcase similarities between distributions of circulation patterns 
obtained through different climate models. 
As we want to describe the dissimilarity, i.e. how far a distribution has emerged from a reference, we 
adjust the writing and call the metric Hellinger Distance (HD) according to: 25 

𝐻𝐷(𝑄, 𝑅) = )1 −	∫ .𝑄(𝑥)
0
1 ∗ 𝑅(𝑥)

0
1	3 𝑑𝑥,       (1) 

where Q(x) and R(x) are the PDFs of the target (Q) and reference (R) period, respectively. Finally, we 
calculate the numerical approximation according to: 

)5
6
∗ 	∑ 89𝑄: − 9𝑅:;

6<
:=5 ,          (2)  

where Qi and Ri are the densities of the PDFs at position i along a value range that corresponds to the 30 
minimum and maximum of the full time series of a variable, extended by the difference between these 
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extremes in both directions. We use d=200 steps, equally incremented. Tests with more steps and 
further extended minimum and maximum bounds resulted in insignificant changes (not shown). 
HD can take values ranging between 0 (equal distributions/full overlap) and 1 (fully emerged 
distributions with no overlap). The outline of the method is presented in the schematic (Fig. 2). A 
climate signal will show a specific data distribution at each time step within a given time window for 5 
which a PDF is calculated (Fig. 2). The HD will increase both if a PDF with a same shape is shifted to 
higher or lower values, and if its shape changes. The HD is calculated for each time step after the 
reference period stops. This results in a continuous time-series of HD or level of emergence.  This time-
series serves three purposes: 1) A level of emergence can be derived for any given time step, 2) ToE can 
then be inferred based on a posteriori applied thresholds, and 3) different competing datasets can be 10 
tested for consistency based on their HD evolution (Fig. 2).  
We additionally calculate the sign of change because emergence could also occur towards lower values 
(e.g. less precipitation). The sign (positive or negative) of change is calculated as: 

𝑠𝑖𝑔𝑛 = ∑ (𝑅: − 𝑄:) ∗ 𝑏𝑐:<
:=5 ,         (3)  

where bci are the actual values at the position i along the extended value range used in (2). We set the 15 
reference period to 1901-1921 and take values for the target periods in moving windows of 21 years 
too. We test different reference periods and number of years in a sensitivity analysis (see next section). 
The reference period contains the earliest 21 years commonly available for all datasets. The target 
periods are taken as a two-sided moving window around each year after the reference period stops, 
providing a distribution for each time step thereafter. The ToE method is applied independently to the 20 
reanalysis data and each individual CMIP5 CS. We follow previous studies by running our analysis not 
only at annual scale but also on the seasonal scale (winter – November to March, and summer – May to 
September) to highlight seasonal differences. Obtained ToE values are given as the year in the middle 
of the moving window (e.g. a ToE in 2000 corresponds to the target period 1990 to 2010 for a window 
width of 21 years). We finally test different reference periods and lengths of target periods in a 25 
sensitivity analysis (see next section). 

2.2 Sensitivity analysis 

Our method is non-parametric for the climate change detection but like other methods it requires a set 
of meta-parameters. These concern the reference period and the time window for the PDF computation. 
This is an important issue because climate variability in the high latitudes is particularly strong 30 
(Mahlstein et al., 2011). Thus, it makes sense to test the influence of choosing different reference 
periods and window widths on the outcome of ToE (Hawkins and Sutton, 2016). We test reference 
periods ending between 1915 and 1929, and different window widths ranging between 15 and 29 years. 
While choosing an earlier starting date makes the reference period more ‘pre-industrial’, it also removes 
the ability to sample multi-decadal and internal variability. The final choice is consequently a 35 
compromise between the two. Similarly, the choice of longer window widths to choose data 
distributions is limiting the ability to detect ToE at the end of the time-series. We will present all tested 
combinations and discuss so derived first-order approximations of uncertainty related to this 
unavoidable selection of meta-parameters in Sect. 5.2. 

2.3 Dataset selection 40 

In order to obtain the most reliable estimates for ToE, the best data choice would be measurements from 
long-term operating meteorological stations in the Lena River catchment. However, data gaps and a 
poor spatial coverage demand for alternative data sources to provide a spatially and temporally 
comprehensive analysis. We thus test three commonly used state-of-the-art reanalysis datasets for their 
actual representation of in situ temperature and precipitation records. In order to investigate the 45 
evolution of climate over the 21st century, we include a collection of CMIP5 climate simulations 
(Taylor et al., 2012) and test their performance by means of HD evolution (in the past) with respect to 
the reanalysis data. 
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The reanalysis datasets are tested against the records from the meteorological stations for near surface 
air temperature (T) and precipitation (P) using ordinary least square regression analysis. For each of the 
49 stations in the Lena River catchment (Fig. 1), the corresponding pixel-based time-series of either 
reanalysis dataset is extracted and the performance in terms of explained variance (r2) is evaluated. The 
best performing dataset is used in the subsequent steps. 5 
For the analysis of ToE in the future, we use both the whole set (n=65) of model simulations but also a 
subset (n=10). The subset is used to test whether it reduces uncertainty for ToE estimates compared to 
the use of the entire ensemble. The subset is chosen based on a comparison between HD of reanalysis 
and climate model simulations. By comparing the HD evolution (0-100%) instead of the actual values, 
we avoid possible bias issues in temperature and precipitation estimates within the CS. We use the 10 
Nash-Sutcliffe efficiency (Nash and Sutcliffe, 1970; Moriasi et al., 2007) as objective function for the 
selection. Different to the r2, NSE adds a penalty for offsets between HD evolutions, according to: 

𝑁𝑆𝐸 = 1 − G ∑ 8HI
JKHI

LM;
1N

IO0

∑ 8HI
JKHJPQRN;

1N
IO0

S ,          (4) 

where YiR is the ith HD value of the used reanalysis dataset, YiCS is the ith HD value of a climate model 
simulation and YRmean is the mean of the HD of the reanalysis dataset (Moriasi et al., 2007).   15 
As we will show in the results, we had to question the validity of reanalysis data in some cases. To 
ensure confidence in the data we made a further refinement by choosing 5 pixels within the Lena 
Catchment domain where meteorological stations provide long-term observations and allowed us to 
verify the quality of the reanalysis. Data records for these 5 stations reach back into the reference period 
1901-1921 and cover at least 10 years (see Fig. S1). The corresponding 5 pixels were used to calculate 20 
the HD both for the reanalysis and each of the CS. For the sake of completeness, however, we will 
present the HD evolution of the reanalysis data for the whole study area alongside.  

3 Data 

We focus on the two climate variables P and T for their importance in the hydrological cycle and for 
permafrost evolution, and for their relatively good data availability.  25 

3.1 Observational data 

For observational data we use the All-Russia Research Institute of Hydrometeorological Information - 
World Data Centre (RIHMI-WDC, http://meteo.ru/) dataset, compiled by Bulygina and Razuvaev, 
(2012). The dataset comprises 49 stations within the catchment area of the Lena River (Fig. 1). Data 
were obtained as daily values and averaged and summed to monthly values of T and P, respectively. 30 
The longest records are available for site Yakutsk starting in 1834. All stations within the dataset have 
record gaps. The dataset provides data only for the locations of the meteorological stations.  

3.2 Reanalysis data 

3.2.1 CRUNCEP v7 

The CRUNCEP v7 is a global forcing product (ds314.3; Viovy, 2018) used, for example, in the 35 
ORCHIDEE-MICT land surface model (Guimberteau et al., 2018). The dataset is derived through a 
combination of the annually updated CRU TS v3.24 monthly climate dataset (New et al., 2000) and 
NCEP reanalysis (Kalnay et al., 1996). The time coverage is from 1901-2016 in 6-hourly temporal and 
0.5º spatial resolution. The data was resampled to monthly averages and sums of 2m air temperature 
and precipitation, respectively, and to a spatial resolution of 2x2 degree to match other obtained 40 
datasets. 
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3.2.2 Twentieth Century Reanalysis (V2c) (20CR) 

The 20CR: Monthly Mean Single Level (Analyses and Forecasts) dataset (ds131.2; Compo et al., 2011) 
(http:/www.esrl.noaa.gov/psd/data/gridded/data.20thC_ReanV2c.html) contains objectively-analyzed 4-
dimensional weather maps and their uncertainty from the mid 19th century to 21st century. The dataset 
has a temporal coverage from 1851-2011 with a monthly temporal and a 2x2 degree spatial resolution. 5 

3.2.3 ERA-20C Reanalysis (ERA20) 

ERA-20C is a reanalysis product (ds626.0; ECMWF, 2014) of the European Center for Medium Range 
Weather Forecast (ECMWF) of the 20th century, from 1900-2011. It assimilates observations of surface 
pressure and surface marine winds only. A coupled atmosphere land surface and ocean wave model is 
used to reanalyse the weather, by assimilating surface observations. Data in monthly temporal 10 
resolution (monthly means of daily means) in 2x2 degree spatial resolution was obtained. 

3.3 Climate model data 

We use a set of global climate scenarios from the Coupled Model Intercomparison Project phase 5 
(CMIP5; Taylor et al., 2012), obtained through the R-package ‘esd’ (Benestad et al., 2015). The model 
predictions are biased-corrected through an empirical downscaling approach described in Benestad 15 
(2001). All models have historical natural and anthropogenic forcing, and land use for the period 1861-
2005, and the concentration pathway 8.5 (RCP8.5) thereafter until 2100. An overview of these model 
simulations is given in Table S1. 

 
Figure 3: Comparison of three reanalysis datasets with in situ records (RIHMI-WDC) for monthly values. Red solid line is the 1:1-20 
line; red dashed line is ±10mm for precipitation and ±10 ºC for temperatures. 
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Figure 4: Area-averaged T and P signal evolution, emergence as Hellinger Distance (HD), and the sign of emergence. Top - 
Evolution of summed annual precipitation (left) and mean annual temperature (right) over the entire catchment (red outline in 
Fig.1). Bottom – Evolution of HD with sign of emergence. Shading indicates the value range over all pixels in the study area. 
Dashed line for CRUNCEP shows HD evolution based only on the 5 pixels where meteorological stations cover more than 10 years 5 
in the reference period to eliminate data issues – see also text and Supplementary for data issues of CRUNCEP. The smoothed 
signal of the ensemble mean (top) results in a strong and early emergence (bottom) that is not seen in any of the individual models. 

4 Results 

4.1 Dataset selection 

The comparison of in situ data with CRUNCEP, 20CR, and ERA20 data shows large differences in the 10 
reanalysis datasets’ performances (Fig. 3). T estimates of either dataset explain more than 95% of 
variance, but only CRUNCEP’s P estimates show good agreement and limited bias with the 
observational data. Apart from the poor representation of the other datasets for P, 20CR also shows a 
systematic T under(over)-estimation in spring/autumn (summer/winter) (Fig. 3). CRUNCEP provides 
the best estimates from the tested datasets for both target variables and is used in the following. 15 
However, some artificial precipitation signals are apparent in the CRUNCEP dataset. These occur 
mainly in the northwestern part, where no stations with data records in the reference period exist (Fig. 1, 
Fig. S1). For this region, the CRUNCEP P data shows a strong artificial, annual repetitive pattern, with 
probable recycling of the same year, resulting in a very low inter-annual variability (Fig. S2). Here, HD 
rapidly emerges to more than 40% (Fig. 4, Fig. 5, Video2).  While the CRUNCEP T signals do not 20 
show a similar pattern that would be easy to identify, the inter-annual variability is also lower in the 
northeastern part compared to the rest of the study area (Fig. S2). Whether this implies an area-
extensive bias in the CRUNCEP dataset for T is difficult to assess. The resulting differences in the HD 
for CRUNCEP based on the full dataset vs. the reduced dataset (pixels with validated long-term 
observations) are displayed side by side in Fig. 4 and Fig. 5 as solid and dashed green lines, 25 
respectively; the identified 10 best performing model simulations based on either dataset are shown in 
Fig. S3 and Fig. S4, and the obtained NSE statistics derived from this analysis are shown in Table 1. 
The resulting HD differences are less than 10% emergence for T but partly more than 20% for P (Fig. 4, 
Fig. 5). 
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The obtained NSE are presented in Table 1 (the corresponding graphs for HD evolution are available in 
Fig. S5 and Fig. S6). The NSE for T attests a very good representation of the HD for some of the 
climate model simulations, contrasting a rather poor representation for P (Table 1). Based on this 
finding we derive the set of best models based on temperature alone and use the same set for the ToE 
analysis of precipitation.  5 

 

Figure 5: Same as Fig. 4, but for summer (top) and winter (bottom) HD evolution.  

4.2 Temporal evolution of temperature and precipitation emergence 

The evolutions of area-averaged annual T and P by means of CRUNCEP and the 65 CMIP5 CS, as well 
as the model ensemble mean are shown in Fig. 4. The CMIP5 ensemble mean temperature is in close 10 
agreement with CRUNCEP at annual scale. The ensemble mean for precipitation is overestimating the 
CRUNCEP signal, but some individual CS are close to the CRUNCEP P estimates.  
To highlight the effect of our sub-selection method for CS, we present the study area-averaged HD for 
the different data sources 1) CRUNCEP, 2) individual CS, 3) average of the HD of all individual CS, 4) 
ensemble mean, and 5) average of the HD of the 10 best CS (Fig. 4). Video1 and Video2 show the 15 
spatiotemporal evolution for each of the datasets and seasons, respectively. In particular the HD of the 
ensemble mean is progressing very differently compared to the other datasets and shows decades earlier 
emergence (Fig. 4; see Sect. 5.1 for discussion). In contrast, the HD differences for both T and P 
between the average of all individual CS and the average of the 10 best CS are the lowest and show a 
similar evolution. Individual CS may show a very different evolution and different regional patterns, 20 
which is also highlighted in Video1 and Video2. The videos include the single best performing CS to 
showcase the higher spatiotemporal variability of individual CS compared to the averaged ones.  
The T signals show the most prominent evolution and the most significant emergence. The emergence 
pattern for CRUNCEP and all individual CS is very similar (Fig. 4). The HD shows a continuous 
increase starting in the 1960s. For CRUNCEP this increase is preceded by an initial HD increase at the 25 
beginning of the target period and stagnation thereafter until the 1960s. In contrast, HD increase based 
on individual CS indicates little change (<30%) until the 1960s and 70s with respect to the reference 
period. The CRUNCEP signal emerges above 60% by 2004 (last data point). The average HD of 
individual CS and the 10 best CS reach 90% emergence in the 2040s, and near 100% emergence by the 
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end of the time series (2089). In stark contrast to that is the HD based on the ensemble mean, which 
shows a 100% emergence already by 2004. 
For P, the evolutions of the CRUNCEP signal and individual CS, as well as the corresponding HD 
show stronger uncertainties and a less determined picture (Fig. 4). The ensemble mean shows an 
emerging positive signal from 2000 onwards. The HD for CRUNCEP shows early strong emergence in 5 
the northeastern parts and to a lesser degree regionally across the entire domain (Video2), which is 
related to the before-mentioned data issues in the CRUNCEP dataset. The average HD of all individual 
CS, and of the 10 best CS show an almost identical evolution until the 2000s when the HD shows a 
distinct departure reaching around 60% emergence by 2089.  
The sign of change for both T and P is permanently positive once 40% and 30% emergence is reached, 10 
respectively. Before that, until the 1970s, around 60% to 80% of the pixels show a positive trend for T, 
and 50% to 60% for P (Fig. 5). 
The seasonal (summer and winter) evolutions show generally the same trend as the annual ones but 
some differences are apparent. Most striking is the stronger regional variability in HD for T in winter 
compared to summer (vertical shading in Fig. 5). For P, the seasonal difference is striking. An overall 15 
emergence of ~70% in winter compares to <40% in summer. The corresponding area-wide mean ToE 
and corresponding changes in T and P are summarized in Table 2. The biggest ToE differences between 
summer and winter are apparent for P (20-29 years), whereas for T there is only a maximum difference 
of 1 year. ToE of T for annual values is 11-15 years earlier compared to summer and winter. 
For P, the annual ToE is in between the winter (earliest) and summer ToE. 20 

 
Figure 6: Time of emergence for temperature according to 30% (top), 40%(middle), and 50%(bottom) emergence for annual 
(left), summer (middle), and winter (right) values. Values are the mean over all individually determined ToE for each of the 65 
climate simulations. 
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Figure 7: Time of emergence for precipitation according to 30% (top), 40%(middle), and 50%(bottom) emergence for annual 
(left), summer (middle), and winter (right) values. Values are the mean over all individually determined ToE for each of the 65 
climate simulations. Artefacts at 50% emergence in summer (earlier ToE than for 40%) due to limited number of model 
simulations with emergence. 5 

4.3 Spatial and seasonal variability 

The spatial variability in ToE over the study area (vertical shading in Fig. 4, and Fig. 5) is displayed as 
maps in Fig. 6 and Fig. 7 for three different emergence levels (30-50%) and the three temporally 
aggregated periods (annual, summer, winter). The corresponding changes in T and P for a ToE at a 
given emergence level are shown in Fig. 8 and Fig. 9. Due to the nearly identical evolution of ToE 10 
based on the mean HD of either all individual CS, or the 10 best CS (cf. Fig. 4, Fig. 5, Video1, Video2), 
we only display the results for the former.  
The annual and winter analyses for T show generally earlier ToE in the northeast compared to the 
southwest (Fig. 6). The summer pattern is almost reversed with earlier ToE in the south and later ToE in 
the north. 15 
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Figure 8: Temperature change (ºC) corresponding to 30% (top), 40%(middle), and 50%(bottom) emergence for annual (left), 
summer (middle), and winter (right) values. Values are the mean over all individually determined changes for each of the 65 
climate simulations. 
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Figure 9: Precipitation change (mm yr-1) corresponding to 30% (top), 40%(middle), and 50%(bottom) emergence for annual (left), 
summer (middle), and winter (right) values. Values are the mean over all individually determined changes for each of the 65 
climate simulations.  

 5 
The strongest variability in ToE for a given emergence level can be seen in the winter analysis, where 
the earliest and latest ToE can lie more than 30 years apart. Corresponding changes in T for a given ToE 
strongly depend on the spatial location and the season. For example, 50% emergence in the T signal 
corresponds to 1.2 ºC for the annual analysis in the south, contrasting 3.6 ºC for winter in the west (Fig. 
8). Based on the temporal aggregation, an up to two-fold difference in T change can be observed for a 10 
given emergence level (annual vs. winter) (Fig. 8, Table 2).  
For P, there is also a N-S gradient towards later ToE observable (Fig. 7). In addition to that, a 
pronounced later ToE along the eastern catchment boundary is visible in winter, whereas annual and 
summer ToE do not show such a pronounced feature. Most striking for P are the strong ToE differences 
between the seasons, with locally up to 50 years earlier ToE in winter compared to summer.   15 
Corresponding changes in P for a given ToE relate to the pronounced seasonality with the major 
moisture supply in summer. This results in an up to four-fold stronger increase in summer compared to 
winter, adding up to the roughly two-fold regional differences (Fig. 9). 
Comparison of the ToE between the two variables T and P shows strong differences that locally reach 
80 years (Fig. 6, Fig. 7). The area-averaged differences between 30% and 50% emergence correspond 20 
roughly to a doubling of change in T and P for any season (Table 2). 
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Figure 10: Impact of window width and split year on ToE for T (left two columns) and P (right two columns) as mean deviation 
from the mean over all combinations of window width and split year. Individual left columns for all 65 CS and individual right 
columns for the subset of 10 best CS. Rows – different emergence levels (30-50%). The average ToE and standard deviations are 
available in Fig. S7 and Fig. S8. 5 

4.3 Sensitivity Analysis 

Although the developed approach for ToE computation relies on PDFs and is basically non-parametric, 
the method requires two meta-parameters with a potential outcome on obtained emergence and ToE: 
target period (split year) and window width to calculate the PDFs of the reference and target periods 
(Fig. 10). The model simulations’ internal maximum deviations for the tested meta-parameter 10 
combinations of window width and the end of the target period (split year) are around ±4 years on 
average, for both for T and P. In contrast, the inter-model differences are up to 70 years at low 
emergence levels, which can be seen in Fig. 4, and Fig. 5. No particularly abrupt increase in ToE for a 
specific year or window width is apparent. The more dominant parameter on the outcome of ToE is the 
window width for P as can be seen in the horizontal gradient in Fig. 10. For T, a stronger variability 15 
between the simulations and at different emergence levels is present (not shown) and the resulting 
average sensitivity in Fig. 10 is less pronounced than for P. A slight change from a gradient with later 
ToE for a late split year and short window width at 30% emergence to generally later ToE mainly based 
on split year length can be seen. The latter is represented by the vertical gradient. No particular year or 
window width can be identified to have a significant impact on the ToE estimates for either variable. 20 
For both variables, the sensitivity to either meta-parameter based on all 65 CS or the 10 best CS is 
generally low. However, the standard deviation of ToE estimates is strongly reduced for the case of the 
10 best simulations (Fig. S7, Fig. S8). Derived ToE sensitivities for the full set of CS, and the subset are 
very similar and reflect the similarity presented in Fig. 4 and Fig. 5 (cf. Fig. S7, Fig. S8). The average 
patterns for both the 65 and 10 best CS also largely resemble the pattern for CRUNCEP (Fig. S9). 25 
However, a sharper contrast for CRUNCEP between split years and window widths, and a stronger 
impact on the range in ToE are apparent. ToE estimates for low emergence levels reach up to ±9 years 
for T, which is also the maximum range found amongst all individual CS for different emergence levels. 
In summary, the found maximum variability resulting from the meta-parameter choice is very low in 
comparison to the inter-model variability, and is well below commonly reported ToE bin sizes, i.e. time 30 
intervals (~20 years) to classify a regions’ ToE. 
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5 Discussion 

The results showcase a strong variability between the temporal evolution of emergence and derived ToE 
of the two tested climate variables T and P. Large differences also occur between the three temporal 
aggregations annual, winter, and summer. These differences highlight the complexity in the climate 
system and emphasize that there cannot be a single answer to the generalized questions whether and 5 
how much climate has emerged in Eastern Siberia.  

5.1 Method 

The ToE method applied in this study provides an innovative way to investigate climate change 
evolution and its emergence. Different from existing ToE methods that rely on tests, based either on 
exceedance of a S/N threshold (e.g. Hawkins and Sutton, 2012) or a statistical significance level (e.g. 10 
Mahlstein et al., 2011), it provides a continuous measure of emergence. This has advantages and 
disadvantages to previous methods. Striking benefits are that it facilitates comparison of the evolution 
for different datasets (Fig. 4, Fig. 5), allowing to rank and select climate simulations whose emergence 
signatures correspond the closest to observational data. This is a big difference with respect to pre-
selection procedures based on statistical comparison (e.g. Mahlstein et al., 2011), or on weighting 15 
schemes that compare model similarities and the ability of CS to represent observational data (Knutti et 
al., 2017). The expected downside of the developed method is the need to define an emergence level a 
posteriori in the present case. However, it should be kept in mind that other methods also require a 
threshold in form of a S/N ratio, or as a significance level for statistical tests. In our case, the 
information about the significance is directly provided by the value of emergence and allows answering 20 
questions like how a halfway-emerged climate looks like compared to initial conditions. The main 
difficulty might lie in finding a connection between the level of emergence of a climate variable under 
investigation and how it relates to possible environmental and socio-economic impacts. This certainly 
requires expert knowledge of already occurred or observed on-going changes that involve complex 
interactions in permafrost landscapes. 25 
A very surprising finding is that independent of whether we calculate the average HD of the subset of 
best models, or of all CS, the derived emergence and ToE estimates show only a few years difference, 
despite the huge variability in individual CS and their HD evolution (Fig. 4, Fig. 5). The strongest 
impact of the sub-selection on the results is the reduced ToE variability between individual HD 
evolutions (Fig. S7, Fig. S8). A rather low impact on ToE from choosing a preselected number of CS 30 
that best match the observations was also reported by Mahlstein et al. (2011). In stark contrast, applying 
the method on the ensemble mean yields significantly earlier and stronger emergence (Fig. 4), resulting 
from the extreme narrow value range of the filtered signal. This is similar to the muting of internal 
climate variability through having multiple model runs using the same climate model (e.g. Deser et al., 
2016). Resulting PDFs are very narrow and exceedence occurs more rapidly than we can observe in any 35 
of the individual signals, including the CRUNCEP (Fig. 4, Fig. 5). In the present case, this muting is 
inconclusive because it results from the averaging over different climate models with different internal 
variability. As our method is designed to specifically detect the change of a signal with respect to its 
natural variability, the presence of variability is a prerequisite. 
The development of our method was made with the intention to have a wide range of applications, 40 
including nearly all types of time-series data. Like the application of the KS-test (King et al., 2015; 
Mahlstein et al., 2012), PDFs can be obtained for any data distribution and their overlap as measure for 
emergence can easily be understood. The resulting emergence as a time-series provides the huge 
advantage over previous methods to investigate how a signal has emerged in detail. How different 
datasets and the utilization of different temporal resolutions (e.g. monthly data) affect the determination 45 
of ToE should be explored in more detail in the future. 
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5.2 Sensitivity 

The expected uncertainty from the needed meta-parameter selection of window widths and reference 
period (cf. Hawkins and Sutton, 2016) has a rather negligible impact on the overall outcome of ToE 
compared to the differences resulting from the spread between individual CS (Fig. 10): the study-area 
averaged variability of ±4 years across all meta-parameter combinations contrasts up to 70 years 5 
differences between individual CS. The analysis revealed some systematic patterns in the form of a 
dominant gradient in vertical direction for T, and a horizontal gradient for P (Fig. 10), providing 
insights into some important aspects related to the data and the method itself.  
A longer reference period and accompanied later ToE, as can be seen for temperatures (Fig. 10), 
indicates mainly that a trend towards increased values at the end of the reference period is present. 10 
Extending the reference period provides a wider PDF and higher values. The target periods will stay 
longer overlapping and ToE occurs later. A reverse situation with lower values towards the end is 
apparent in single cases only (not shown) so that the vertical gradient is reversed.  
The gradient towards later ToE for smaller window widths for precipitation (Fig. 10) is somewhat 
counter-intuitive as a small window size implies more variability. It results from local minima (low 15 
precipitation years) that strongly impact the PDFs in the target period. They can thus become again 
similar to the PDF of the reference period. Consequently, an earlier continuous exceedance is not 
treated as permanent and the finally obtained ToE is later for a small window width. Longer window 
widths will cause the extreme values to have a less significant impact on the PDF. The resulting 
dissimilarity stays above the threshold and the derived ToE is earlier even if the initial threshold was 20 
crossed later. The same reason seems to cause the earlier emergence for annual T and P values, where a 
single extreme month has a relatively low impact on the annual PDF compared to its stronger impact on 
the seasonal PDF (Table 2).  
In summary, the sensitivity analysis is a valuable and relatively easy to apply tool to explore how a 
specific dataset and a combination of meta-parameters influence ToE estimates.  25 

5.3 Data 

Our initial selection of reanalysis data through comparison with observational data has shown good 
agreements for T, but except for CRUNCEP a very weak representation for P. In combination with the 
systematic bias for warmest and coldest temperatures for 20CR (Fig. 3), this also demands for a 
cautious selection of CS based on observational data in the region. 30 
Interestingly, the selected best CS are from different models within the ensemble. That is despite some 
of the selected best CS belonging to models that are represented with several runs in the ensemble (cf. 
Fig. S4, Fig. S3, Table S1), meaning that internal climate variability within the models of the ensemble 
plays an important role for the here presented, and potentially many other ToE methods. It also stresses 
the benefit of ensembles to include multiple runs of a model, because it additionally helps other 35 
approaches to identify internal climate variability (Deser et al., 2016). While the HD comparison to 
select CS for T shows very good matches (Table 1, Fig. S5), the imperfect matches for P imply a high 
level of uncertainty that is difficult to assess (Fig. S6). The best indicator suggesting some reliability is 
the fact that the sensitivity for CRUNCEP (Fig. S9) shows similar patterns compared to the ensemble of 
CS (Fig. 10). This pattern match can be interpreted as both datasets having a similar variability and 40 
distribution of extreme values, as well as an overall similar trend, as discussed in Sect. 5.2. However, 
the presented results for P should be treated with caution. Climate model simulations and reanalysis 
data need to be improved to derive regionally reliable estimates, which in turn are needed to investigate 
the physical processes in the Earth system and that can aid decision making. 
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5.4 ToE 

Values are with respect to the reference period (1901-1921) and thus slightly later than otherwise 
chosen pre-industrial reference periods (e.g. 1881−1910 in Vautard et al., 2014, or 1860-1910 in King et 
al., 2015) but longer than in ToE studies focusing on observational data. There is no way to avoid this 
selection in the current study. The chosen period is the earliest possible one to have a basis for the 5 
comparison of the observational data and CMIP5 model simulations. 
Data issues are almost always due to the lack of data or data quality (e.g. Hawkins and Sutton, 2016). 
The sensitivity analysis (Fig. 10) shows that choices of reference periods between 1901-1915 up to 
1901-1929 have relatively small impact on the obtained ToE and that uncertainties from the spread in 
individual CS are order of magnitude higher. Since we report the emergence as a continuous signal, the 10 
question arises when this signal should be considered as significantly different with respect to the 
reference period. In other words, how strongly needs a PDF to change from its initial shape and position 
to indicate a significantly emerged climate. An obvious way is to compare obtained results with 
previous ToE studies and with reported changes in climatic variables.  
King et al. (2015) reported ToE for the region of the Lena River between 1980 and 2000 for summer 15 
temperatures, and between 1980 and 2000 and in a few occasions between 1960 and 1980 for winter 
temperatures. These ToE were obtained through a KS-test and using 1860-1910 as a reference period. 
The reported ToE correspond to the pronounced onset in the HD signal (Fig. 5) and an emergence level 
of around 30% (Fig. 6). King et al. (2015) further report ToE for winter precipitation between 2000 and 
2020 in the lowlands, and 20 to 40 years later in the east and southeast. The same spatial pattern is 20 
derived with our method. Again, the timing corresponds to an emergence level of around 30%. 
Mahlstein et al. (2011) reported temperatures corresponding to the statistically significant identified 
changes using the KS-test with a reference period of 1900-1929. A direct comparison is difficult as they 
report these temperatures for countries. However, their identified value of 1.1 ºC for summer 
temperatures for Russia corresponds to the 30% emerged signal in our study (Fig. 8). 25 
Comparisons with temperature (Desyatkin et al., 2015; Fedorov et al., 2014b) and precipitation trends 
(Gorokhov and Fedorov, 2018) are partly complicated due to different starting points of the datasets. 
Trends in Gorokhov and Fedorov (2018) are with respect to the 1966-2016 period. As indicated in Fig. 
4, the study-area wide precipitation signal shows relatively high values in the 1960s, with a positive 
emergence for CRUNCEP and a decline thereafter (Fig. 4, Fig. 5). The derived trends in Gorokhov and 30 
Fedorov (2018) start in this positive emergence and are consequently depicting a negative trend in the 
northern regions (~-8 mm decade-1), where precipitation changes according to the CS are lowest (Fig. 
9).  Gorokhov and Fedorov (2018) still find increasing positive trends towards the south (~16 mm 
decade-1). This north-south gradient is reflected by our results (Fig. 9) even though we cannot associate 
any trend value with a derived emergence level. 35 
Fedorov et al. (2014b) reported generally stronger positive trends for temperatures in the eastern and 
southern mountain regions in our study area; and lower trends in the lowlands and towards the east. 
Some general overlay of earlier ToE (Fig. 8) is visible for stronger trends, and vice versa. However, 
weaker trends in the most northern part and one of the strongest trends for Yakutsk in the lowland 
render a conclusive comparison difficult. Fedorov et al. (2014b) use a dataset with variable station 40 
record length, which might explain to some degree the discrepancies. In the end, such differences are 
expected given the variability in the CMIP5 model simulations and individual offsets to the CRUNCEP 
(Fig. 4). 
In relation with such evolutions in T and P, especially ground temperatures and hydrological conditions 
are impacted. Fedorov et al. (2014a) pointed out that in the 1950s high ground temperatures might have 45 
initiated thermokarst lake formations. Identification of periods in which a triggering event initiates a 
state change are not included in any ToE method, despite their potential for landscape changes, that in 
return have far-reaching impacts on permafrost evolution (Crate et al., 2017; Grenier et al., 2018; 
Walvoord and Kurylyk, 2016; Westermann et al., 2017). However, Fedorov et al. (2014a) also mention 
that despite the early initiation, the main progression of lake formation occurred in the 1990s, which 50 
represents the before mentioned time period where emergence levels reach 30%. 
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Warmer summer temperatures of 1 ºC to 2 ºC in the future in summer (Fig. 8) imply a strong impact on 
the hydrology by means of potential evapotranspiration increase, and the evolution of thermokarst 
lakes. It is, however, difficult to exactly identify how the co-emergence of T and P at different speeds 
(Fig. 6, Fig. 7) will affect the evolution of thermokarst lakes that are currently in equilibrium between 
precipitation and ground ice melt water input, and evapotranspiration output. Karlsson et al. (2012) 5 
point out that an increase in T would likely increase lake bodies due to the more important input from 
ground ice melt. This is in agreement with conclusions by Fedorov et al. (2014a) for the formation of 
new thermokarst lakes. However, old Alas lakes with reduced input from ground ice melt might 
undergo a reduction if evapotranspiration increases more than total precipitation influx. More recently, 
Ulrich et al. (2017) have shown through multiple regression analyses that, in particular, increasing 10 
winter precipitation and winter temperatures control lake area changes of young and old thermokarst 
lakes in Central Yakutia. As these two variables show the strongest emergence (Table 2), an increase in 
thermokarst lake area, and a resulting overall change in the hydrological system, should be expected. 
Discharge increase of the Lena River has at mean annual scale only strongly increased in the most 
recent 2006-2012 decade (Gautier et al., 2018). However, late spring discharges during the ice break up 15 
has experienced a strong increase already a decade earlier (1996-2005). These periods lag the ToE 
presented for T but precede the ToE for P at 30% emergence (Fig. 5). Taking into account the mutual 
interactions between temperatures and precipitation, which results in snow cover and ground thermal 
insulation as well as snow stocks for melt (Grenier et al., in review; Karlsson et al., 2011; Westermann 
et al., 2017),  systematic changes should occur as a result of the two. The onset of winter P emergence 20 
in the 1990s and more strongly thereafter would provide a possible explanation. It would also not 
contradict the strong positive emergence for P in the 1950s and 1960s (Fig. 5) that has not resulted in 
detectable flood events. The HD and the signal of change for the CRUNCEP data show that more 
precipitation (positive signal) occurred alongside more negative temperatures (negative signal), which 
would counteract strong melting events.  25 

The implied changes in T and P at different emergence levels will certainly have significant impact on 
various environmental and socio-economic aspects. How much these changes, at 50% emergence and 
more, and at different seasons will impact the complex hydrological system is difficult to assess and 
should be explored further in the future. Such assessments require, however, a continuation and 
advancing in the modeling of cryo-hydrological systems that allow for a better understanding of how 30 
the climate variables affect the involved processes (Grenier et al., under review.; Walvoord and 
Kurylyk, 2016). This, in turn, demands for the continuation of measurement efforts in the large, remote, 
and difficult to access arctic regions, where observational data is sparse.  

6 Conclusions 

We developed a novel method for the determination of climate change emergence. Its non-parametric 35 
character allows application on data with basically any type of distribution, which we showcased for T 
and P in the Lena River catchment. Unlike other ToE methods that rely on a threshold or statistical test, 
our method provides a continuous signal of emergence. This facilitates an extended analysis of the 
progression of climate change signals and provides a useful tool for comparing datasets regarding their 
similarity in describing climate change. It comes with the need of applying a threshold a posteriori. 40 
Comparison with ToE estimates from other studies indicates that an equivalent ToE occurs at an 
emergence level of around 30% for both T and P.  
A comparison of three commonly used state-of-the-art reanalysis datasets with observational data from 
meteorological stations has revealed a generally good agreement for T, but only the tested CRUNCEP 
data provided P estimates with little bias. Even within this dataset, we found artificial behavior in the 45 
time period 1901-1921 for the P estimates, probably due to the limited number of meteorological 
stations operating at that time. In combination with the P intensity bias of many of the CS, conclusions 
on the emergence of P are rendered uncertain. 
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Our method allowed us to compare the evolution of emergence of T and P from CRUNCEP with those 
of 65 climate model simulations taken from a CMIP5 ensemble. This provides an alternative to pre-
selection methods based on dataset statistics, or weighing schemes for climate models and simulations. 
We obtain surprisingly similar emergence times independent of using either the mean emergence of all 
simulations or from our sub-selection of the 10 best performing simulations. On the contrary, individual 5 
models show up to 70 years different estimates at low emergence levels. This provides confidence in 
using large enough ensembles rather than somehow chosen sub-selections to identify ToE if no or 
insufficient observational data is available. Nonetheless, the selection method presented here might 
provide means to discriminate the most reliable data sources in other more documented regions or 
contexts. The conclusion to include full climate ensembles rather than single simulations is supported 10 
by a consistent similarity between the full set and the subset of CS in all applied cases (T and P for 
annual, summer, winter). The differences in derived emergence for reanalysis and climate simulations, 
however, stress out the need for model improvements and an effort for continuous observational data, 
which can be comprehensively utilized in the presented approach. 
Finally, the methodology should be explored in the future to analyze further impacted variables (e.g. 15 
ground temperatures and hydrological conditions) in the complex cryo-hydrological system to identify 
spatiotemporal links. Ultimately, these are needed to derive an understanding of how and when climate 
change will impact the numerous aspects of this system. 

Code availability 

The main code to process and analyse the data is available in the scripting language python under the 20 
github repository https://github.com/pohleric/toe_tools. 

Data availability 

20th Century Reanalysis V2c data provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, 
from their website at http://www.esrl.noaa.gov/psd/. The CRUNCEP Version 7 data is available through 
registration following the website https://rda.ucar.edu/datasets/ds314.3/. ERA20 data are available from 25 
ECMWF Data Servers through the python module ‘ecmwfapi’ https://pypi.org/project/ecmwf-api-
client/. The RIHMI observational dataset used in this study can be obtained through the website 
https://cdiac.ess-dive.lbl.gov/ndps/russia_daily518.html. 
 

Video supplement 30 

Video1 – Spatiotemporal evolution of emergence for temperature in the Lena River catchment for the 
different data sources (by row): 1) CRUNCEP, 2) average emergence of all individual CS, 3) average of 
the HD of the 10 best CS, and 4) the single best performing model to showcase the higher variability of 
individual models compared to the averaged evolutions. Columns from left to right represent the 
different temporal analyses annual, summer, winter. Blue dots indicate a negative sign of the 35 
emergence. 
Video2 – Same as Video1 but for precipitation. 

Supplement 

The supplement is added as additional document and provides information about the spatiotemporal 
variability of datasets and gives a more detailed view on some statistics. 40 
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Table 1: Nash-Sutcliffe efficiency statistics of the 10 best climate simulations with respect to the CRUNCEP data for each pixel 
encompassing a meteorological station with records of more than 10 years in the 1901-1921 reference period. Positive NSE in bold. 

station Kirensk Olekminsk Ust'-Maja Viljujsk Yakutsk 
Temperature   
annual 
NSE_mean 0.58 0.58 0.61 0.43 0.62 
NSE_max 0.79 0.81 0.74 0.74 0.73 
NSE_min 0.44 0.43 0.53 0.26 0.53 
summer   
NSE_mean 0.27 0.35 -0.02 0.29 0.07 
NSE_max 0.55 0.49 0.22 0.70 0.30 
NSE_min 0.13 0.14 -0.13 0.01 -0.08 
winter   
NSE_mean 0.21 0.57 0.35 -0.04 0.38 
NSE_max 0.46 0.71 0.62 0.44 0.59 
NSE_min -0.08 0.47 0.19 -0.68 0.29 
Precipitation   
annual 
NSE_mean 0.10 -0.68 -1.32 -1.09 -0.89 
NSE_max 0.46 0.13 -0.48 0.00 -0.19 
NSE_min -0.12 -1.18 -1.80 -1.94 -1.58 
summer   
NSE_mean -0.20 -0.91 -0.50 -1.86 -1.18 
NSE_max 0.36 0.22 0.39 -0.25 0.24 
NSE_min -0.56 -1.66 -0.95 -3.37 -2.40 
winter   
NSE_mean -19.49 0.07 -16.88 -0.07 0.24 
NSE_max -1.36 0.40 -9.10 0.20 0.54 
NSE_min -31.83 -0.12 -20.60 -0.19 0.08 
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Table 2: Area-wide ToE based on the mean HD of all 65 CMIP5 model simulations and the corresponding change in temperature 
or precipitation at different emergence levels (HD) and seasons. 
 

ToE [year] Change [ºC(T) or mm(P)] 
Emergence level 30% 40% 50% 30% 40% 50% 
T (annual) 1981 1992 2001 0.75 1.11 1.48 
T (summer) 1992 2005 2016 0.83 1.19 1.57 
T (winter) 1991 2004 2015 1.48 2.12 2.77 
P (annual) 2034 2049 2061 49.08 73.38 98.27 
P (summer) 2055 2067 2073 46.16 66.80 87.99 
P (winter) 2026 2041 2053 14.77 21.68 28.99 
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