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Abstract:  28 

The temporal and spatial distribution of regional irrigation water productivity (RIWP) is crucial 29 

for making agricultural related decisions, especially in arid irrigated areas with complex cropping 30 

patterns. Thus, we developed a new RIWP model for an irrigated agricultural area with complex 31 

cropping patterns. The model couples the irrigation and drainage driven soil water and salinity 32 

dynamics and shallow groundwater movement, to quantify the temporal and spatial distributions 33 

of the target hydrological and biophysical variables. We divided the study area into 1 km×1km 34 

hydrological response units (HRUs). In each HRU, we considered four land-use types: sunflower 35 

fields, wheat fields, maize fields and uncultivated lands (merely bare soil). And we coupled the 36 

regional soil hydrological processes and groundwater flow by taking a weighted average of the 37 

water exchange between unsaturated soil and groundwater under different land-use types. The 38 

RIWP model was calibrated and validated using eight years of hydrological variables obtained 39 

from regional observation sites in a typical arid irrigation area of North China, Hetao Irrigation 40 

District. The model reasonably well simulated soil moisture and salinity, as well as groundwater 41 

table depths and salinity. Overestimations of groundwater discharge were detected in calibration 42 

and validation due to the assumption of well-operated condition of drainage ditches, and regional 43 

evapotranspiration (ET) were reasonably estimated while ET in uncultivated area was slightly 44 

underestimated in RIWP model. Sensitivity analysis indicates that soil evaporation coefficient and 45 

specific yield are the key parameters for RIWP simulation. The results showed that, from 2006 to 46 

2013, RIWP decreased from maize to sunflower to wheat. It was found that the maximum RIWP 47 

can be reached when groundwater table depth is in the range of 2 m to 4 m, regardless of irrigation 48 

water depths applied. This implies the importance of groundwater table control on RIWP. Overall, 49 

our distributed RIWP model can effectively simulate the temporal and spatial distribution of 50 

RIWP and provide critical water allocation suggestions for decision makers.  51 

Keywords: Arid irrigated area, regional water productivity model, shallow groundwater, irrigation 52 

process, drainage, cropping patterns 53 
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1. Introduction  54 

Under the increasing food demand of growing populations worldwide, water resources is limiting 55 

food production in many areas (Kijne et al., 2003; Fraiture and Wichelns, 2010). Especially, in arid 56 

and semi-arid regions of the world, where irrigated agriculture accounts for about 70 to 90% of the 57 

total water use (Jiang et al., 2015; Gao et al., 2017, Dubois, 2011), water deficit and related land 58 

salinity are the two major limitations to agricultural production (Williams, 1999; Xue et al., 2018). 59 

To maximize agricultural production, the improvement of irrigation water productivity (IWP) is 60 

vital (Bessembinder et al., 2005; Surendran et al., 2016). IWP is defined as the crop yield per cubic 61 

meter of irrigation water supplied, and the unit of IWP is kg/m3 (Singh et al., 2004). 62 

Furthermore, by changing hydrological processes, irrigation and drainage affect water and salt 63 

dynamics in crop root zone, groundwater, and, eventually, crop production (Morison et al., 2008; 64 

Bouman, 2007). Specifically, in arid region, irrigation-caused deep seepage is the mainly recharge 65 

of groundwater. Shallow groundwater can in turn go upward and contribute to crop water use by 66 

capillary action, which means the irrigation seepage can be reused by the crop growth to improve 67 

IWP. Thus, RIWP analysis requires the quantification of the complex agro-hydrological processes, 68 

including soil water and salt dynamics, groundwater movement, crop water use and crop production.  69 

Various methods have been used to evaluate IWP, such as field measurements (Talebnejad et al., 70 

2015; Gowing et al., 2009), remote sensing (Zwart and Bastiaanssen, 2007), and distributed 71 

hydrological models (Singh, 2005; Jiang et al., 2015; Steduto et al., 2009). Field experiments have 72 

been widely used to evaluate the effect of water management on IWP (Talebnejad et al., 2015; 73 

Gowing et al., 2009), but field experiments are expensive and time consuming, making it unsuitable 74 

for regional evaluation of IWP. Conveniently revealing temporal and spatial distributions of ET and 75 

crop yields, remote sensing is commonly used to quantify regional IWP (Thenkabail and Prasad, 76 

2008). However, remote sensing is looking at seeing the past IWP distribution, but cannot readily 77 

predict the impacts of water management practices on IWP.  78 

  Recently, distributed integrated crop and hydrologic models have been widely used to simulate 79 

the complex agro-hydrological processes coupled with salt dynamics and crop production (Aghdam 80 

et al., 2013; Noory et al., 2011; van Dam, 2008; Vanuytrecht et al., 2007). Taking advantages of 81 
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geographic information systems (GIS), distributed integrated crop and hydrologic models provide 82 

precise simulations of regional hydrological processes and crop growth, by incorporating the 83 

heterogeneity of soil moisture, salinity and texture, groundwater table depth and salinity, and 84 

cropping patterns (Amor et al., 2002; Bastiaanssen et al., 2003a; Jiang et al., 2015; Nazarifar et al., 85 

2012; Xue et al., 2017). 86 

There are two types of distributed hydrologic models that are used to monitor complex regional 87 

hydrological processes: numerical distributed models, such as SWAT and MODFLOW, and 88 

simplified distributed models, such as FARME (Kumar and Singh, 2003) and HEC-HMS (USACE, 89 

1999) based on water balance equations. Numerical, process-based models consider the entire 90 

complexity and heterogeneity of regional hydrological systems. MODFLOW is commonly used for 91 

groundwater dynamics simulation (Kim et al., 2008). But it is limited in well-monitored large 92 

irrigation areas, due to the large number of parameters and input data required. SWAT is used to 93 

simulate land surface hydrologic and crop growth processes. It relies on the digital elevation model 94 

(DEM) to delineate surface water flow pathways. However, many irrigation areas are quite flat, and 95 

surface water flow pathways are controlled by irrigation and drainage systems, instead of terrain 96 

elevation differences.  97 

Simplified distributed models often employ mass balance equations to describe the soil water and 98 

salt dynamics (Sharma, 1999; Sivapalan et al., 1996), which means less input parameters, and larger 99 

spatial grids and temporal steps. However, the large spatial grids poorly reflect the regional complex 100 

cropping pattern heterogeneity, and the large temporal steps cannot capture daily soil water and salt 101 

dynamics which is essential for crop growth simulation. SWAT alone does not describe the complex 102 

interactions between groundwater and soil water, which are fundamental in arid and semi-arid areas 103 

with shallow groundwater. 104 

After all, there are still two big challenges for developing a distributed integrated irrigation water 105 

productivity models in irrigated areas. First, the networks of irrigation canals and drainage ditches 106 

cause spatial heterogeneity in irrigation, drainage, deep percolation, canal seepage and groundwater 107 

table depth within the irrigation area. But previous studies have overlooked the important role of 108 

the networks of irrigation canals and drainage ditches in RIWP evaluations. Second, the multi-scale 109 

matching problem comes out when coupling unsaturated and saturated zone in irrigation areas with 110 
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complex cropping patterns, as the spatial heterogeneity of cropping patterns is much stronger than 111 

that of groundwater table depth. However, most of the existing distributed hydrological models 112 

simulated the hydrological processes within the same hydrological response unit (HRU) between 113 

unsaturated and saturated zones independently, but overlooked the lateral exchange of groundwater 114 

between adjacent HRUs. 115 

Therefore, the main objectives of our study are to (1) develop a RIWP model framework coupling 116 

the irrigation and drainage processes, soil water and salt dynamics, crop water and salt response 117 

processes, and lateral movement of groundwater and salt; and (2) analyze the distributed RIWP of 118 

the study area and find the effects of crop type, irrigation water depth applied and groundwater table 119 

depth on RIWP. 120 

2. Methods 121 

We will present a four-module integrated RIWP model, the coupling between the modules and one 122 

case study evaluating the model performance. 123 

2.1 Regional irrigation water productivity model  124 

General descriptions will be given for the four modules and their integration, as well as the division 125 

and connections of HRUs, and boundary conditions of the model. Then, detailed descriptions will 126 

be given for each of the four modules: irrigation system module, drainage system module, 127 

groundwater module, and field scale IWP module. 128 

2.1.1 General descriptions 129 

A four-module integrated RIWP model was developed, to simulate the complex system including 130 

water supply from irrigation open canals, field crop water consumption, groundwater drainage into 131 

open ditches, and groundwater lateral flow. 132 

(1) Four modules and their integration 133 

The developed RIWP model couples an irrigation system module, a drainage system module, a 134 

groundwater module and a field scale IWP evaluation module (Fig. 1). The irrigation system 135 

module simulates the water flow along canals and the canal seepage to groundwater (the recharge 136 
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of the groundwater module), and it provides the amount of water available for field scale 137 

irrigation. The drainage system module simulates the drainage to main drainage ditches from 138 

groundwater, and this is the discharge of the groundwater module. The groundwater module is 139 

used to simulate the groundwater lateral movement, the groundwater boundary for field scale 140 

water-salt balance processes, and the groundwater level dynamics for the drainage module. In the 141 

field scale IWP module, vertical movement of water and salt in soil profile is simulated, to obtain 142 

the soil moisture and salinity of the crop root zone, and to calculate field scale irrigation water 143 

productivity. This module provides deep percolation to the groundwater module and obtains 144 

capillary rise to soil from the groundwater module. The above mentioned four modules will be 145 

described comprehensively in 2.1.2 to 2.1.5.  146 

(2) Hydrological response units  147 

The irrigation area is spatially heterogeneous in terms of soil, land use, meteorology and 148 

groundwater. To include the spatial heterogeneities in the simulation of regional water and salt 149 

dynamics and its impact on crop growth, the irrigation district was divided into hydrological 150 

response units (HRUs) (Kalcic et al., 2015). The HRU is an abstract artefact created by 151 

hydrological developer and is like the smallest spatial unit of the model, which provides an efficient 152 

way to discretize large watersheds where simulation at the field scale may not be computationally 153 

feasible. In each HRU, soil texture and groundwater conditions are assumed to be homogeneous, 154 

but different cropping patterns can exist. For example, sunflower fields, wheat fields, maize fields 155 

and uncultivated lands. As the irrigation quota is different for different cropping patterns, the model 156 

first runs field IWP model for each cropping pattern independently in each HRU, to obtain the soil 157 

water and salt dynamics, IWP, and groundwater recharge. Then, the groundwater levels and salinity 158 

of each HRU can be updated according to the area proportions of different cropping patterns in 159 

each HRU. The groundwater flow is determined by pressure head gradient between adjacent HRUs.  160 

(3) Boundary conditions 161 

The upper boundary of the model is the atmospheric boundary layer above the plant canopy, which 162 

determines reference ET, and precipitation. The main irrigation canals and drainage ditches directly 163 

connect with groundwater and can be considered as the side boundaries in the model. With the 164 

canal conveyance water loss deducted from the gross water supplied, the amount of water diverted 165 



 

7 
 

into the field can be calculated as the actual amount of irrigation. The local irrigation schedules of 166 

different crops and the actual time of canal water supply are both considered to determine the actual 167 

irrigation time and irrigation amounts. The lower boundary is the confining bed at the bottom of 168 

phreatic layer. The phreatic layer is vitally important due to its vertical exchange with the 169 

unsaturated soil zone in each HRU and its lateral exchange with adjacent HRUs to bond the whole 170 

region together.  171 

2.1.2 Irrigation system module 172 

When irrigation water passes through canals, no matter lined or unlined, seepage loss occurs 173 

which recharges groundwater. In a large irrigation area, there are many main, sub-main, lateral, 174 

and field canals, which are categorized as the first-, second-, third-, and fourth-order canals, 175 

respectively. During the water allocation period, canal seepage loss from different levels of 176 

canals can be divided into two parts. One part is the seepage loss from the main and sub-main 177 

canals, which are permanently filled with water and recharge directly into groundwater along the 178 

route. The other part is the seepage loss from lateral and field canals, which are intermittently 179 

filled with water and only recharge the groundwater units within their control area. Each HRU 180 

has its corresponding groundwater unit, which is used when calculating lateral exchange of 181 

groundwater between adjacent HRUs. 182 

We calculated the decreasing water flow along canal, and water losses in main and sub-main canals 183 

as follows (Men 2000): 184 

𝜎 =
𝐴

100𝑄𝑚                                   (1) 185 

𝜎 =
𝑑𝑄

𝑄𝑑𝑙
                                     (2) 186 

where σ represents the water loss coefficient per unit length per unit flow in canal (m-1). A is the 187 

soil permeability coefficient of canal bed (m3m-1day-m), m is the soil permeability exponent of canal 188 

bed (-), and their values depend on the soil type of the canal bed (please refer to Guo (1997) for 189 

the values). Q represents the daily net flow in canal (m3day-1), and dQ represents the daily flow 190 

loss of the water conveyance within dl distance in canal (m3day-1).  191 

Thus, Eq. (1) is equal to Eq. (2), and they can be transformed into: 192 
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𝑄𝑚−1𝑑𝑄 = 𝐴𝑑𝑙                              (3) 193 

Integrations of both sides of Eq. (3) gives: 194 

∫ 𝑄
𝑄𝑔

𝑄𝐿

𝑚−1
𝑑𝑄 = ∫ 𝐴

𝐿

0
𝑑𝑙                          (4) 195 

𝑄𝐿 = (𝑄𝑔
𝑚 − 𝐴𝐿𝑚)1/𝑚                         (5) 196 

where Qg is the daily gross flow in the head of canal (m3day-1), and QL is the daily net flow in 197 

canal at L distance away from canal head (m3day-1). Thus, flow loss in water conveyance process 198 

can be calculated as follows: 199 

𝑄𝐿𝑠 =
𝐴

100
(𝑄𝑔

𝑚 − 𝐴𝐿𝑚)(1−𝑚)/𝑚                     (6) 200 

𝑊𝑙𝑠 = 𝑄𝑙𝑠/(𝑛1 × 𝐴𝑠𝑢)                           (7) 201 

where QLs is the daily groundwater recharge due to water conveyance loss in main and sub-main 202 

canals (m3day-1), Wls is the daily groundwater recharge per unit area due to water conveyance loss 203 

in main and sub-main canals (mday-1). n represents the total number of HRUs along selected main 204 

and sub-main canals (-), and AHRU is the area of each HRU (m2).  205 

Lateral and field canals are densely distributed in the irrigated area, and they are intermittently 206 

filled with low water flow. Thus, it is assumed that seepage from these canals uniformly 207 

recharges groundwater units within their control area. The canal seepage is estimated by an 208 

empirical formula: 209 

𝑊𝑎𝑠 = 𝐼𝑛 ∗ 𝜂𝑚𝑐 ∗ (1 − 𝜂𝑠𝑏𝑚𝑐) + 𝐼𝑛 ∗ 𝜂𝑚𝑐 ∗ 𝜂𝑠𝑏𝑚𝑐 ∗ (1 − 𝜂𝑙𝑐) + 𝐼𝑛 ∗ 𝜂𝑚𝑐 ∗ 𝜂𝑠𝑏𝑚𝑐 ∗ 𝜂𝑙𝑐 ∗ (1 −210 

𝜂𝑓𝑐)                               (8) 211 

where Was represents daily groundwater recharge per unit area due to water conveyance loss in 212 

lateral and field canals (mday-1), and In is daily irrigation water depth applied per unit area (mday-213 

1). ηmc, ηsbmc, ηlc and ηfc are the utilization coefficient of main, sub-main, lateral and field canals, 214 

respectively (-). 215 

2.1.3 Drainage system module 216 

In the drainage system module, only the groundwater draining into ditches is considered. Because 217 

the precipitation directly on ditches is negligible in arid and semi-arid area. The drainage processes 218 

are simulated based on the spatial distributions of main, sub-main, and lateral ditches, which are 219 
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grouped into the first-, second-, and third-order ditches, respectively. Drainage is estimated by 220 

comparing local groundwater levels and ditch bottom elevation. According to Tang et al. (2007), 221 

the groundwater drainage was calculated by: 222 

𝐷𝑔 = {
𝛾𝑑 × (ℎ𝑑𝑏 − ℎ𝑔) ；ℎ𝑑𝑏 > ℎ𝑔

        0      ;  ℎ𝑑𝑏 < ℎ𝑔

                         (9) 223 

where Dg is daily groundwater drainage per unit area (mday-1). γd is drainage coefficient (-), which 224 

describes the groundwater table decline caused by the elevation difference between groundwater 225 

table and the streambed of the drainage ditch. And it depends on the underlying soil conductivity 226 

and the average distance between the drainage ditches. hg represents the daily groundwater table 227 

depth (mday-1), and hdb is the daily streambed depth of drainage ditch (mday-1).  228 

2.1.4 Groundwater module 229 

For a plain irrigation area, usually groundwater levels are relatively flat on a large scale. In our 230 

model, it is assumed that groundwater lateral flow exists between one HRU and its four adjacent 231 

HRUs (Fig. 2). Using water table gradient, groundwater flow between current HRU and its adjacent 232 

HRUs can be calculated by: 233 

𝑊𝑔𝑟 = (𝐾 × ℎ × 𝐵
𝐿𝑔𝑎−𝐿𝑔

𝐷
)/B2                        (10) 234 

where Wgr is the daily groundwater inflow of the current HRU from adjacent HRUs (mday-1), and 235 

K is the daily permeability coefficient of unconfined aquifers in the current HRU (mday-1). h 236 

represents the thickness of unconfined aquifers, which is the difference between water table and 237 

upper confined bed and varies with water table changes (m). B is the length of groundwater unit 238 

(m) and here the value is 1km. Lga and Lg represents the water table level of adjacent HRUs and 239 

the current HRU, respectively (m). D is the distance between the center of the current HRU and 240 

the centers of its adjacent HRUs (m). There are three types of groundwater boundary conditions: 241 

river head (when the boundary HRU including irrigation canal and the daily river flux equals to 242 

the daily canal flux), river flux (when the boundary HRU including drainage ditches and the water 243 

heads in ditches are assumed constant and equal to the river head) and constant flux (when the 244 

boundary HRU is mainly barren area and no irrigation is applied, thus in our study 0 flux is 245 

assumed). 246 
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Based on the field scale simulation, groundwater lateral exchange, canal seepage and groundwater 247 

drainage are added in the daily water and salt balance calculations of each groundwater unit at 248 

regional scale: 249 

ℎ𝑔𝑖 = ℎ𝑔𝑖−1 − (1/𝑆𝑦)(𝑃𝑤𝑔𝑖−1 − 𝐺𝑤𝑔𝑖−1 − 𝑒𝑥𝑡𝑖−1 + 𝑊𝑔𝑟𝑢𝑝𝑖−1 + 𝑊𝑔𝑟𝑑𝑜𝑤𝑛𝑖−1 + 𝑊𝑔𝑟𝑙𝑒𝑓𝑡𝑖−1 +250 

𝑊𝑔𝑟𝑟𝑖𝑔ℎ𝑡𝑖−1 + 𝑊𝑙𝑠𝑖−1 + 𝑊𝑎𝑠𝑖−1 − 𝐷𝑔𝑖−1)                     (11) 251 

𝑆𝐶𝑎𝑖 = 𝑍𝑎 × 𝑆𝑎𝑖−1 + W𝑔𝑟𝑢𝑝𝑖−1 × 𝑆𝑎𝑢𝑝𝑖−1 + W𝑔𝑟𝑑𝑜𝑤𝑛𝑖−1 × 𝑆𝑎𝑑𝑜𝑤𝑛𝑖−1 + W𝑔𝑟left𝑖−1 ×252 

𝑆𝑎𝑙𝑒𝑓𝑡𝑖−1 + W𝑔𝑟𝑟𝑖𝑔ℎ𝑡𝑖−1 × 𝑆𝑎𝑟𝑖𝑔ℎ𝑡𝑖−1 + (W𝑙𝑠𝑖−1 + W𝑎𝑠𝑖−1) × 𝐼𝑠i−1 − 𝐷𝑔𝑖−1 × 𝑆𝑎i−1 +253 

𝑃𝑠𝑔𝑖−1−𝐺𝑠𝑔𝑖−1     (12) 254 

where Wgrup, Wgrdown, Wgrleft and Wgrright are the daily groundwater lateral runoff per unit area into 255 

the current groundwater unit from up and down or left and right adjacent groundwater unit, 256 

respectively (mday-1). SCa is the daily soluble salt content in the saturated zone below the 257 

transmission soil profile (mg m-2day-1). Za is the thickness of the saturated zone which is the 258 

difference between the groundwater table depth and the depth that groundwater table fluctuations 259 

largely cannot reach (m). Za only affect the soluble salt concentration in the groundwater salt balance, 260 

while it has no effect on the water balance and groundwater fluctuation simulation. Sa, Saup, Sadown, 261 

Saleft and Saright is the salt concentration of the current groundwater unit and its up and down or left 262 

and right adjacent groundwater units, respectively (mg m-3). Is is the salt concentration of the 263 

irrigation water (mg m-3). Sy represents the specific yield (-), which is the ratio of the volume of 264 

water that can be drained by gravity to the total volume of the saturated soil/aquifer. ext is the daily 265 

groundwater extraction per unit area (mday-1). Pwg is the daily percolation water depth to 266 

groundwater from the potential root zone (mday-1), and Gwg is the daily water depth supplied to the 267 

potential root zone from shallow groundwater due to the rising capillary action (mday-1). Psg and 268 

Gsg are the quantity of soluble salt in Pwg and Gwg, respectively (mg m-2day-1). The detailed 269 

calculations of the water and salt exchange components between unsaturated soil and groundwater, 270 

such as Pwg and Gwg, were described in our previously developed water productivity model at field 271 

scale (Xue et al., 2018). 272 

2.1.5 Field scale irrigation water productivity module 273 

Cropping patterns are complex for each HRU and sometimes HRUs include uncultivated land, forest 274 
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land and other non-agricultural land. In our model, with high resolution land use map, different 275 

cropping patterns can be separated to simulate soil water and salt processes, and the responses of 276 

ET and crop yields to water and salt content of root zone. Here, we employed our previously 277 

developed field IWP model to simulate field water, salt, ET and crop yield under shallow 278 

groundwater condition (Xue et al., 2018). The soil profile is vertically divided into four soil zones: 279 

the current root zone, the potential root zone, the transmission zone, and the saturated zone. In each 280 

HRU, the soil water and salt balance processes, and water productivity are independently simulated 281 

for each cropping pattern under its corresponding groundwater unit condition. For uncultivated 282 

lands, only water and salt balance are simulated, and its IWP is 0. Then, the water and salt exchange 283 

between unsaturated soil and groundwater of different cropping patterns are weighted averaged by 284 

area proportion. Finally, the weighted averages are used to update daily groundwater table and 285 

salinity (Fig. 3). 286 

2.2 Modules coupling and calculating flowchart 287 

The simulation was by daily temporal step and by HRU spatial step. The irrigation system module 288 

simulates the canal seepage to groundwater and the field irrigation water amount. And the canal 289 

seepage to groundwater is the recharge of the groundwater module, while the field irrigation water 290 

amount is the input of the field IWP module. The drainage system module simulates the 291 

groundwater drainage to drainage ditches, which is the discharge of the groundwater module. The 292 

groundwater module is used to simulate the groundwater table depth, which is the input of the field 293 

IWP module and also the input of the drainage module. In the field scale IWP module, the deep 294 

percolation to groundwater under different cropping patterns are simulated independently and their 295 

weighted average is the recharge of the groundwater module. The salt exchange is simulated 296 

together with water exchange. The groundwater module is used to simulate the groundwater lateral 297 

movement between the current HRU and its adjacent HRUs to update the groundwater level at next 298 

time step. By coupling the irrigation system module, drainage system module and groundwater 299 

module with the field IWP model, this RIWP model simulates the temporal and spatial distribution 300 

of IWP in the whole irrigation area from the beginning to the end of the growing season.  301 

The model was implemented in a combination of ArcGIS, MATLAB, and Microsoft Excel (Fig. 4). 302 
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The HRUs was created in ArcGIS as fishnet, with each grid numbered. In MATLAB, the HRUs 303 

were represented by a matrix and the daily time step was represented by a vector. At each time step, 304 

all the HRUs were traversed by a nested loop. Then the updated information for the current time 305 

step was used to calculate the next time step.  Microsoft Excel stored ArcGIS vector layer and its 306 

attribute data for MATLAB modeling, and also stored MATLAB output results for ArcGIS analysis 307 

and visualization. 308 

Considering the high spatial heterogeneity, meteorological data need to be collected from all the 309 

weather stations within or close to the study area. Distribution of soil physical properties, moisture 310 

and salinity in unsaturated soil, groundwater table depth and salinity, need to be collected from 311 

many observation sites, which are uniformly or randomly spread over the study area. Then, each 312 

data set can be interpolated in ArcGIS by inverse distance weight to obtain a spatial distribution 313 

vector layer. For each layer, the average value in each HRU are calculated by ArcGIS using 314 

geometric division statistics. The vector layer of irrigation control zones and the vector layer of 315 

drainage control zones is respectively overlaid with the HRU division layer in ArcGIS, to obtain the 316 

HRU numbers controlled by each irrigation control zone and each drainage control zone. The HRU 317 

numbers controlled by the same zone are stored in the same matrix for batch simulation in MATLAB. 318 

In MATLAB, soil water and salt balances and field scale IWP for main crops are simulated 319 

simultaneously for each HRU; whereas, groundwater lateral exchange are simulated between 320 

adjacent HRUs. At the end of the model simulation, soil moisture and salinity, groundwater table 321 

depth and salinity, ET, crop yield and IWP for different land use types in each HRU can be obtained. 322 

Then, the area proportion weighted average in each HRU can be imported into ArcGIS to visualize 323 

the spatial distribution. 324 

2.3 Model evaluation 325 

We will provide a case study using the above developed new RIWP model, to test its applicability, 326 

and to provide sensitivity analysis of the parameters. 327 

2.3.1 Description of study area and data 328 

As a typical sub-district of the Hetao Irrigation District, the Jiefangzha Irrigation District (JFID) is 329 
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a typical arid irrigated area with shallow groundwater, resulted from its arid-continental climate, 330 

over years of flood irrigation, and poor drainage systems (Fig. 5). Located in the Hetao Plain, the 331 

JFID is very flat with an average slope of 0.02% from southeast to northwest (Xu et al., 2011). The 332 

mean annual precipitation is only 155 mm, of which 70% occurs between July to September; while 333 

the mean annual potential evaporation is 1938 mm. The mean annual temperature is 7℃, with the 334 

lowest and highest monthly average being -10.1℃ and 23.8℃ in January and July, respectively. 335 

The JFID covers an area of 0.22 Mha, of which 66% is irrigated farmland area. Wheat, maize and 336 

sunflower as the main crops in this region, taking up more than 90% of the irrigated farmland area. 337 

The 12×108 m3 annual irrigation water is diverted from the Yellow River. Due to the poor 338 

maintenance of drainage ditches, it is quite common in this area to have poor drainage situations. 339 

Therefore, the annual average groundwater table depth ranges from 1.5 to 3.0 m during the crop 340 

growing season. Soils in the JFID are spatially heterogeneous and primarily composed of silt loam 341 

in the northern region and sandy loam in the southern region. Shallow groundwater table and strong 342 

evaporation makes soil salinization a very serious problem in this area, which is becoming the main 343 

constraint of crop production. 344 

An irrigation and drainage network include four main irrigation canals, sixteen sub-main irrigation 345 

canals, five main drainage ditches, and twelve sub-main drainage ditches are controlling the water 346 

movement in the JFID (Fig. 5). The streambed depths of the regional main, sub-main and lateral 347 

ditches were collected by a regional survey in 2016. Daily water flow data in the main and sub-main 348 

irrigation canals and monthly data of the five main drainage ditches were obtained from the local 349 

Irrigation Administration Bureau. A total of 55 groundwater observation wells are installed in the 350 

JFID (Fig. 5). Groundwater level was measured on the 1st, 6th, 11th, 16th, 21th and 26th of each month, 351 

and groundwater salinity was measured 3 times each month. Near the groundwater observation wells, 352 

soil moisture was measured four times, and soil electrical conductivity was measured once before 353 

wheat sowing and once before autumn irrigation. Due to the spatially homogeneous climate in JFID, 354 

daily meteorological data (air temperature, humidity, wind speed and precipitation) was obtained 355 

from Hangjinghouqi weather station for the calculation of regional reference ET.  356 

HJ-1A, HJ-1B and Landsat NDVI images with 30 m resolution during the period of 2006-2013 were 357 

downloaded from the official website of China Centre for Resources Satellite Data and Application 358 
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(2013) and USGS (2013), to determine the annual cropping pattern distributions. Due to the lack of 359 

measured ET, the ET estimated by SEBAL model using MODIS images from NASA (2013) was 360 

used as a reference to compare with simulated ET values (Bastiaanssen et al., 2003b). 361 

2.3.2 Parameterization of distributed RIWP model 362 

The JFID was divided into 2485 1km×1km HRUs (Fig. S1a in the supplementary material). In 363 

terms of boundary conditions, the upper Quaternary 4 aquifer layer was regarded as the phreatic 364 

layer in the model. It was modeled as an aquitard with loamy soil. From north to south, the thickness 365 

of aquifer in JFID varies from 2 to 20m with an average of 7.4m (Bai et al., 2008). Thus, the initial 366 

value of the average thickness of unconfined aquifer is set as 7.4m. The water level contour maps 367 

of JFID during 1997-2002 by Bai (200) were used to determine the direction of water flow near the 368 

groundwater boundary. Based on the topography conditions, land-use types, locations of main 369 

canals and ditches, and directions of water flow, the regional phreatic layer was divided into 5 zones 370 

with river, drainage and impervious boundary conditions (Fig. S1b).  371 

The JFID was divided into four irrigation control sections and five drainage control sections, each 372 

section was controlled by one main irrigation canal or one main drainage ditch. These sections were 373 

further divided into 48 irrigation control sub-areas and 17 drainage control sub-areas, each sub-area 374 

was controlled by one sub-main irrigation canal or one sub-main drainage ditch (Fig. S2). The 375 

sunflower fields, wheat fields, maize fields and uncultivated lands are the four cropping patterns, 376 

i.e., land-use types, in the RIWP model. In many other researches about distributed hydrological 377 

models, when considering the applied irrigation schedule the sowing and irrigations of a particular 378 

crop were just set as on the same day over the whole study area, which may be a simplification of 379 

actual conditions (Singh, 2005). In our study, the irrigation time and irrigation water amount of each 380 

HRU were co-determined by both the local irrigation schedule of the three main crops, and the 381 

actual water amount flowing into the fields.  382 

The simulation period was from April 1st to September 20th, which covers the growing seasons of 383 

all the three main crops. The initial crop parameters were set as the default values suggested for 384 

sunflower, wheat, and maize by Allen et al. (1998). The empirical values of regional canal 385 

utilization and ditch drainage coefficient were obtained from Jiefangzha administration. 386 
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2.3.3 Model calibration and validation 387 

To comprehensively evaluate the accuracy and reliability of the model, the data in years 2010-2013 388 

and in years 2006-2009 was respectively used as calibration and validation dataset. The daily 389 

measured soil moisture content of crop root zone (θ), electrical conductivity of soil water (EC), 390 

groundwater table depth (hg) and groundwater salinity, were calibrated with measured data from 391 

the 22 soil water and salt observation sites and 55 groundwater observation sites (Fig. 5), which 392 

were mentioned in section 2.3.1. The RIWP simulated regional ET for each HRU was calibrated 393 

by the remote sensing based ET images obtained once per 8 days. The regional drainage processes 394 

was calibrated by the monthly groundwater drainage data from main ditches, in which the 395 

simulated drainage of each main ditch was the sum of drainage of its controlling HRUs. Overall, 396 

the soil hydraulic parameters, the crop water productivity related coefficient, and the canal 397 

conveyance and ditch drainage parameters were all calibrated with observed data in years 2010-398 

2013, and then validated with observed data in years 2006-2009.  399 

To quantify the model performance, the root mean square error (RMSE), the Nash and Sutcliffe 400 

model efficiency (NSE) and the coefficient of determination (R2) were used as the indicators. 401 

RMSE was used to measure the deviation of simulated values from the measured ones, NSE was 402 

commonly used to verify the credibility of the hydrological model, and R2 represented the degree 403 

of linear correlation. The indicators were calculated as follows: 404 

  𝑅𝑀𝑆𝐸 = [
∑ (𝑂𝑢𝑡𝑝𝑢𝑡𝑠−𝑂𝑢𝑡𝑝𝑢𝑡𝑜)2𝑛

𝑖=1

𝑛
]

0.5

                          (13) 405 

𝑁𝑆𝐸 = 1 −
∑ (𝑂𝑢𝑡𝑝𝑢𝑡𝑠−𝑂𝑢𝑡𝑝𝑢𝑡𝑜)𝑛

𝑖=1
2

∑ (𝑂𝑢𝑡𝑝𝑢𝑡𝑜−𝑂𝑢𝑡𝑝𝑢𝑡𝑚)𝑛
𝑖=1

2                           (14) 406 

  𝑅2 = 1 −
∑ (𝑂𝑢𝑡𝑝𝑢𝑡𝑜−𝑂𝑢𝑡𝑝𝑢𝑡𝑜̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )𝑛

𝑖=1 (𝑂𝑢𝑡𝑝𝑢𝑡𝑠−𝑂𝑢𝑡𝑝𝑢𝑡𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

√∑ (𝑂𝑢𝑡𝑝𝑢𝑡𝑜−𝑂𝑢𝑡𝑝𝑢𝑡𝑜̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )𝑛
𝑖=1

2√∑ (𝑂𝑢𝑡𝑝𝑢𝑡𝑠−𝑂𝑢𝑡𝑝𝑢𝑡𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )𝑛
𝑖=1

2
           (15) 407 

where n is the number of simulations; Outputs and Outputo are simulated and observed values of 408 

model outputs, respectively; 𝑂𝑢𝑡𝑝𝑢𝑡𝑠
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ and 𝑂𝑢𝑡𝑝𝑢𝑡𝑜

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ are the average values of simulated and 409 

observed model outputs, respectively. The RMSE indicates a perfect match between observation 410 

and simulation when it equals 0, and increasing RMSE values indicate an increasingly poor match. 411 

Singh et al. (2005) stated that RMSE values less than 50% of the standard deviation of the 412 
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observed data could be considered low enough as an indicator of a good model prediction. 413 

Ranging between −∞ and 1, the NSE indicates a perfect match between observed and predicted 414 

values when it equals to 1. Values between 0 and 1 are generally considered as acceptable levels 415 

of performance, whereas values less than 0.0 indicate that the simulation is worse than taking an 416 

average of observation, which indicates unacceptable performance. The R2 ranging between 0 and 417 

1 describes the proportion of the variance in the observed data, in which higher values indicating 418 

less error variance. Typically, R2 > 0.5 is considered acceptable (Santhi et al., 2001). 419 

2.3.4 Global sensitivity analysis 420 

To find the key parameters significantly impacting the model output, a global sensitivity analysis 421 

was conducted. The analysis related the changes in three output variables—RIWP, groundwater 422 

table depth and groundwater salinity—to eight parameters in the RIWP model. The Latin Hypercube 423 

Sampling (LHS) (please see Mckay, 1979; Muleta et al., 2005; Wang et al., 2008 for detailed 424 

descriptions of the sampling method), a typical sampling method for sensitivity and uncertainty 425 

analysis, was used to sample the parameter space. According to Dai (2011), to ensure that the test 426 

points were evenly distributed in space and to guarantee the accuracy of the test, the test number 427 

was set as 20, more than double of the parameter number which was 8. For uniform distributions, 428 

the parameter range was subdivided into 20 equal intervals. Each interval was sampled only once to 429 

generate random values of the possible parameter sets. The possible parameter value ranges referred 430 

to the local measurements, survey data and relevant research papers. Additionally, considering the 431 

spatial heterogeneity of the three output variables, 22 evenly distributed groundwater observation 432 

sites in JFID were selected for the global sensitivity analysis. Based on the LHS method, 20 groups 433 

of parameter combinations were obtained and the simulation was run for 20 times. Finally, the 434 

sensitivity of the three output variables to the eight parameters were determined in SPSS Statistics. 435 

The absolute values of the obtained Standardized Regression Coefficients (SRCs) quantified the 436 

significance of each parameter to each output variable (Table 1) (Cheng et al., 2018; Cannavó, 437 

2012). And the plus or minus sign of the SRCs indicated the positive or negative correlations 438 

between the corresponding parameter and output variable pairs.  439 
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3. Results and Discussion 440 

3.1 Model performance 441 

Good agreements were obtained by RIWP model in simulating IWP and hydrological components 442 

during the calibration and validation periods. Table 2 tabulated the calibrated parameters describing 443 

crop growth and water usage, and Table 3 tabulated the possible variation ranges and calibrated 444 

values of the parameters describing soil hydraulic characteristics and irrigation and drainage system. 445 

The agreement between the observed and simulated soil moisture content in crop root zone both in 446 

calibration (Fig. 6a, RMSE=2.867 cm3 cm-3, NSE=0.330, R2=0.502) and validation (Fig. 6b, 447 

RMSE=2.989 cm3 cm-3, NSE=0.232, R2=0.548) indicates the reasonable performance of the RIWP 448 

model. The good performance of the RIWP model was also indicated by the simulation of the soil 449 

salt content both in calibration (Fig. 6c, RMSE=1.108 dS m-1, NSE=0.612, R2=0.657) and validation 450 

(Fig. 6d, RMSE=1.205 dS m-1, NSE=0.525, R2=0.590). The simulated and observed groundwater 451 

table depth (Fig. 6e, RMSE=0.786m, NSE=0.424 and R2=0.509 in calibration; Fig. 6f, 452 

RMSE=0.667m, NSE=0.637 and R2=0.504 in validation) and groundwater salinity (Fig. 6g, 453 

RMSE<10%, NSE=0.813 and R2=0.815 in calibration; Fig. 6h, RMSE<10%, NSE=0.604 and 454 

R2=0.730 in validation) at 55 observation sites are in good agreement as well. 455 

The model did not perform very well on simulating groundwater drainage. The overestimated 456 

drainage (Fig. 6i-j) was due to the different operating conditions of the drainage ditches of the 457 

different order. Remember that we classified the main, sub-main and lateral drainage ditches into 458 

the first-, second- and third-order ditches, respectively. In the model, for each year, we adopt same 459 

drainage coefficient for all the ditches of the different orders, assuming a well operated condition. 460 

However, the actual operating conditions of the ditches of the different orders cannot be the same, 461 

resulting in the simulation discrepancy. 462 

The ET simulated by the RIWP model (ETIWP) and the ET estimated by the SEBAL model using 463 

MODIS images (ETRS) agrees well both in calibration (RMSE=1.918mm, NSE=0.274 and R2 = 464 

0.561) and in validation (RMSE=2.132mm, NSE =0.189 and R2 =0.498) (Fig. 6l). Furthermore, the 465 

comparison of the spatial distribution of cumulative ETIWP and ETRS during crop growth season 466 

showed that ETIWP was lower than ETRS in uncultivated area, while they agreed well in farmland 467 

(Fig. S3). The uncultivated area, merely bare soil, accounted for about 34% of the JFID, and the 468 
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ETIWP of uncultivated area was merely soil evaporation. This, resulted in the underestimation of 469 

actual ET in uncultivated area compared to the ET acquired by remote sensing images, which was 470 

consistent with previous studies (Singh, 2005; Tian et al., 2015). Besides, the cumulative ETRS was 471 

taken by the 8 times of daily ET on satellite acquisition date, thus using the non-representative ETRS 472 

above the average daily value may also result in the underestimation of ETIWP.  473 

To test the model performances under different cropping patterns, one representative site was 474 

selected for each cropping pattern to compare the observed and simulated time series of groundwater 475 

table depth (Fig.7). Results indicated that the model can adequately capture the groundwater 476 

dynamics at the four representative sites. Occasionally, the simulated groundwater table depth 477 

declines fast, while the observed value rises. This is most likely due to the fact that we ignored the 478 

time lag between groundwater recharge from soil and deep percolation. In the uncultivated area 479 

(Fig.7a), simulated groundwater table level presented a slower and more flat decreasing trend than 480 

measured value. By assuming a completely non-vegetation coverage condition of uncultivated area 481 

while it is not actually the case, estimated groundwater evapotranspiration driven by capillarity will 482 

become smaller than its actual value, in which small vegetation will transpires amounts of water 483 

from soil and soil moisture is relatively low thus groundwater evapotranspiration is higher. 484 

3.2 Global sensitivity analysis 485 

Recall that the global sensitivity analysis was to determine the sensitivity of the three output 486 

variables to eight parameters. The three output variables were RIWP, groundwater table depth, and 487 

groundwater salinity; while, the eight parameters were those parameters describing soil hydraulic 488 

characteristics and irrigation and drainage system, tabulated in Table 3. Specific yield (Sy), followed 489 

by soil evaporation coefficient (Ke), are the two key parameters influencing the RIWP (Fig. 8a). The 490 

specific yield indicated the readily available soil moisture released to crop root zone from shallow 491 

aquifer under capillary action for crop consumption. Thus, its significant positive influence on 492 

RIWP was explained. The soil evaporation coefficient indicated the proportion of water that 493 

transferred into the atmosphere but was not used by crops. Therefore, its significant negative impact 494 

on RIWP was expected. We concluded that for shallow groundwater buried area like JFID, 495 

sometimes the effect of groundwater contribution on IWP would be greater than that of irrigation 496 
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water depth applied. Applying lots of shallow irrigation to the crops may reduce the deep percolation 497 

and decrease the non-beneficial water use in evaporation. Applying fewer and deeper irrigation 498 

water applied will result in deeper percolation meanwhile greater groundwater contribution to 499 

beneficial crop water use. Thus, compared with lots of shallow irrigation applied, applying fewer 500 

deeper irrigation schedule may have greater affect on IWP in arid regions with shallow groundwater. 501 

And for both groundwater table depth (Fig. 8b) and groundwater salinity (Fig. 8c), specific yield 502 

was the only key parameter. Canal seepage was expected to cause the variation of groundwater table 503 

depth around the canal at the local scale. However, the results indicated that the variation of 504 

groundwater table depth would be more susceptible to the local groundwater properties, i.e., specific 505 

yield, than to canal seepage at the regional scale. We speculate that the lateral groundwater 506 

movement might compensate the variation of groundwater table depth caused by the canal seepage. 507 

Salt moves with water. Thus, the variation of groundwater salinity was also dominated by the 508 

specific yield. Due to the high sensitivity of IWP, groundwater table depth and salinity to the specific 509 

yield, it is highly recommended to use spatially variable values of specific yield rather than a 510 

constant one as a model input if it is available, which could greatly enhance the evaluation accuracy 511 

of the RIWP model. Also, it is indicated that the permeability coefficient of unconfined aquifers (K) 512 

did not significantly affect the IWP, groundwater table depth and salinity. Due to the lack of 513 

measurement data in our study, we adopted a unified K value for the whole study area, which also 514 

make the model simulations reasonable for their insensitive to this parameter.  515 

3.3 Regional irrigation water productivity 516 

3.3.1 Spatial distribution of irrigation water productivity 517 

Validated by the measured soil moisture and salinity, groundwater table depth and salinity, drainage 518 

water depth and ET, especially, the year 2006-2013 time series of groundwater table depth under 519 

the four cropping patterns, the developed RIWP model can be used to estimate the spatial 520 

distribution of IWP for the three main crops over the period of 2006-2013 (Fig. 9). Note that these 521 

IWP values were based on the simulated water balance and crop yields of individual HRU, which 522 

may deviate to a certain extent from the real values. It can still represent the utilization of water 523 
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resources at the regional scale. We could see there are “red HRUs” in Figure 9 changing with time 524 

and space due to different irrigation water depth applied under different groundwater conditions. 525 

Even different crop species can result in big difference in IWP. As we mentioned before, the spatial 526 

distribution of these three crops is very complex in JFID and field plot is small, thus we use remote 527 

sensing data to obtain cropping pattern map with resolution of 30m*30m. Every HRU has these 528 

three crops, thus we can simulate IWP for each main crop in every HRU. The RIWP of the three 529 

main crops showed a trend of decline during the period of 2006-2010 (Fig. 9a-e).This was mainly 530 

attributed to the increasing irrigation quota, as the excess water lowered the IWP. Whereas, during 531 

the period of 2011-2013 (Fig. 9f-h), the RIWP of the three main crops showed an increasing trend. 532 

This was because that the irrigation quota was reduced over this period, and the contribution of 533 

groundwater compensated the crop yield losses. With less irrigation water applied, the number of 534 

“red HRUs” will increase along with it. 535 

Under a given irrigation water distribution, the spatial distribution of ET was the key factor 536 

controlling the RIWP distribution. And the spatial distribution of ET was fundamentally determined 537 

by the solar energy, and the water and salt dynamics of soil. Recall that the climate and, therefore, 538 

the solar energy, was homogeneous in JFID. Then, the spatial heterogeneity of RIWP must be 539 

attributed to the water and salt heterogeneity caused by the spatial heterogeneity of the cropping 540 

pattern, groundwater table depth, and irrigation and drainage networks. Particularly, when the 541 

farmlands had limited supply of irrigation water, the groundwater table depth and salinity played an 542 

important role on IWP. Through the drainage ditches, groundwater could drain both water and salt 543 

out of the field, thus the groundwater table level declines and the soluble salt content going upward 544 

along with groundwater evapotranspiration to crop root zone decreases. Despite the negative effect 545 

of draining water on IWP, the positive effect of draining salt out of the field will positively affect 546 

IWP. As we can see in Fig. 9, the simulated IWP values for three crops were lower in the south, west, 547 

north and north-west of the JFID than in the other regions. The south of the JFID is the main canal 548 

for water diversion, which provide higher irrigation quota than other regions, in which results in a 549 

lower IWP. For the west of JFID, it is mainly uncultivated area, thus the IWP is lower than other 550 

regions. In the north-west of the JFID, main drainage ditch received the drainage water with high 551 

saline content from four sub-main ditches and drained all the way to the north of JFID. Ditch seepage 552 
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water with high salinity resulted in the severe soil salinization in the north and north-west of JFID, 553 

which will restrict the crop growth and lower the IWP. Thus, properly groundwater drainage 554 

management and dealing with salt accumulation at the end of main drainage ditches in an irrigated 555 

area is also a pressing and unsolved problem for increasing the “red HRUs”, which needs to be 556 

figured out by irrigation managers. 557 

As the major food-producing region of China, improving water productivity means producing 558 

greater amounts of food crops with less amount of water, based on local or regional potential. With 559 

declining access to water resources, farmers will need to grow different crops to maintain or increase 560 

crop production profitability in the future. The comparison between the RIWP of different crops 561 

(comparing the three columns in Fig. 9) showed that maize had the highest IWP, wheat had the 562 

lowest IWP, and the IWP of sunflower was in the middle. Therefore, modestly increasing the 563 

planting area of maize will improve the crop production per unit irrigation water amount. In addition, 564 

the RIWP of sunflower is a little higher than that of wheat, and the benefit and the salt tolerance of 565 

sunflower are both much higher than those of wheat. Thus, planting sunflowers should be promoted 566 

in the JFID when available irrigation water resources is declining in the future, and this practice will 567 

definitely increase the “red HRUs”.   568 

3.2.2 The impact of irrigation water depth applied and groundwater table depth 569 

on irrigation water productivity 570 

In arid shallow groundwater area, irrigation water productivity (IWP) is affected by irrigation 571 

water depth (IWD) applied and groundwater table depth (hg). In all the four simulated hg ranges, 572 

IWP decreased when IWD increased (Fig. 10a), which was consistent with Huang et al. (2005). 573 

Moreover, the magnitude of IWP decrease per unit increase of IWD was different under different 574 

hg ranges. The magnitude of IWP decrease under shallower hg was smaller than that under deeper 575 

hg. This effect of increasing hg on the relationship between IWP and IWD was consistent with Gao 576 

et al. (2017). The above results indicate that when irrigation water is insufficient, groundwater can 577 

compensate the crop water demand. However, when irrigation water is excessive, a large 578 

proportion will eventually drain through the drainage ditches, and the IWP drops. Additionally, 579 

among the four hg ranges, the highest IWP was obtained in the range of 2-3m (Fig. 10b), which 580 
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was consistent with Xue et al. (2018). This indicates that a hg deeper than that provides insufficient 581 

water for crop growth; whereas, a hg shallower than that will increase root zone soil salinity and 582 

salt stress of crops. The negative effect of shallow groundwater salinity can also be found in Fig. 583 

10a when hg is less than 2m, and it indicates that when irrigation applied decreased from 584 

300<IWD<400mm to 200<IWD<300mm it leads to decreases in IWP, which is caused by faster 585 

reduction of ET than irrigation applied. Shallow buried groundwater contribution will make up for 586 

ET reduction when smaller irrigation water applied, thus there exists another reason accelerate the 587 

reduction of ET. We deduced that less irrigation water will weaken the role of irrigation on salt 588 

leaching and result in more severe salinization in crop root zone. The negative effect of salt stress 589 

on crop water use is greater than the positive effect of shallow groundwater contribution on crop 590 

water use at this situation. Thus, keeping the groundwater table depth in the optimal range and 591 

sustainable is of great importance to reach higher crop IWP at the regional scale, irrigation 592 

managers may need to reasonably determine the irrigation quota and constantly maintain the 593 

drainage system. Groundwater sustainability includes spacing withdrawals to avoid excessive 594 

depletion and taking measures to safeguard or improve groundwater quality. To achieve this, 595 

regional irrigation managers may need to take monitoring efforts to establish historic and current 596 

conditions, research to model groundwater systems, forecast future variation, and policy to 597 

manage activities influencing groundwater table and quality. 598 

4. Conclusions  599 

In view of the heterogeneous conditions of irrigated areas, taking fully consideration of the supply, 600 

consumption and drainage processes of irrigation water and groundwater, a distributed RIWP 601 

model was developed to couple the irrigation water flow processes along main canals and drainage 602 

processes, water and salt transport processes in soil profile, groundwater water and salt lateral 603 

transport, and agricultural water productivity module. Especially, a new method was designed and 604 

incorporated to couple regional soil hydrology process and groundwater flow, with the spatial 605 

difference of cropping pattern. Taking advantages of remote sensing and GIS tools, the 606 

quantitative distributed RIWP model needs fewer soil and groundwater hydraulic parameters and 607 

crop growing parameters and only readily available data of several observation sites at the 608 
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regional scale, and regional water and salt process can be simulated on a daily time step. Despite 609 

the simplifications involved, the proposed methods of irrigation canal and drainage ditches 610 

digitization and groundwater-runoff lateral exchange simulation between grids make the spatial 611 

IWP simulation in a real distributed way, instead of using a field scale model applied in a 612 

distributed mode to simulate all simulation units independently. The calibration and validation 613 

results indicates a good performance of RIWP model applied in this typic study area, and spatial 614 

distribution of IWP for different crops can be produced.  615 

Programmed in Matlab (Mathworks Inc., 2015), RIWP model can be run on different operating 616 

systems. Furthermore, the model includes capability for parallelization of simulations to reduce 617 

batch run times when conducting simulations over large areas, conditions, and/or time periods. In 618 

the nearly future, enabling the code to be linked quickly with other disciplinary models to support 619 

integrated water resource management could be a great improvement of RIWP model. Also, we 620 

are going to develop a website used for long-term distribution of the RIWP model and associated 621 

documentation. Finally, RIWP model could improve knowledge of best practices to enhance water 622 

productivity for key irrigation decision-makers. The simplicity of RIWP model in its required 623 

minimum input data, which are readily available or can easily be collected, makes it user-friendly. 624 

It is also a very useful model for scenario simulations and for planning purposes, which can be 625 

used by economists, water administrators and managers working in the arid irrigated area with 626 

shallow groundwater. 627 
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 Table Captions 781 

Table 1. The significance level of the input parameter to the model output variables 782 

Table 2. Calibrated crop parameters of wheat, sunflower and maize for regional irrigation water 783 

productivity model 784 

Table 3. The collected possible parameter variation ranges and calibrated values of the parameters 785 

describing soil hydraulic characteristics (Ke, Sy, K) and irrigation and drainage system (ηlc, ηfc, γd, 786 

A, m).  787 
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Table 1. The significance level of the input parameter to the model output variables 810 

SRC value Significance level 

  0.8≤|SRC|≤1 Very important 

0.5≤|SRC|≤0.8 Important 

0.3≤|SRC|≤0.5 Unimportant 

 0≤|SRC|≤0.3 Irrelevant 

 811 

Table 2. Calibrated crop parameters of wheat, sunflower and maize for regional irrigation water 812 

productivity model 813 

Parameters 
Calibrated value 

Wheat Sunflower Maize 

Rate of yield decrease per unit of excess salts, b 

(%/(ds/m)) 
7.1 12 12 

Average fraction of TAW that can be depleted from 

the root zone before moisture stress, p (-) 
0.55 0.45 0.55 

Crop coefficient at crop initial stage, kc1 (-) 0.3 0.3 0.3 

Crop coefficient at crop development stage, kc2 (-) 0.73 0.8 0.75 

Crop coefficient at mid-season stage, kc3 (-) 1.15 1 1.2 

Crop coefficient at last season stage, kc4 (-) 0.4 0.7 0.6 

Yield response factor, Ky (-) 1.15 0.95 1.25 

Electrical conductivity of the saturation extract at the 

threshold of ECe when crop yield firstly reduces 

below Ym at last season stage, ECet (dS/m) 

5 1.7 2 
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Table 3. The collected possible parameter variation ranges and calibrated values of the 828 

parameters describing soil hydraulic characteristics (Ke, Sy, K) and irrigation and drainage system 829 

(ηlc, ηfc, γd, A, m).  830 

Parameters Description 
Value range Calibrated 

value Min Max 

Ke Soil evaporation coefficient, (-) 0.1 0.35 0.25 

ηlc 
Water utilization coefficient of 

lateral canal, (-) 
0.81 0.91 0.88 

ηfc 
Water utilization coefficient of 

field canal, (-) 
0.81 0.86 0.89 

Sy Specific yield, (-) 0.02 0.15 0.15 

γd Drainage coefficient, (-) 0.02 0.06 0.03 

K 
Permeability coefficient of 

unconfined aquifers, (mm/day) 
731 12701 1150 

A 
Soil water permeability 

coefficient, (-) 
0.7 3.4 3.4 

m 
Soil water permeability exponent, 

(-) 
0.3 0.5 0.5 

Note: The parameter value ranges were collected from local measurements, survey data and relevant research 831 

results. Soil texture of canal bed was silty sandy loam for 0-1 and 2-3 m depth below the ground, and sandy loam 832 

for 1-2 m. For silty sandy loam soil, the bulk density and saturated soil water conductivity are 502.3 mm d-1 and 833 

1.42gcm-3, respectively. For sandy loam soil, the bulk density and saturated soil water conductivity are 1.49g cm-3 834 

and 592.6 mm d-1, respectively. There were fine sand and sandy soil in the phreatic layer. 835 
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Figure Captions 850 

Fig.1. Schematic diagram of the conceptual RIWP model and the coupling between its sub-851 

modules. 852 

Fig.2. Schematic diagram of groundwater lateral runoff exchange between HRUs.  853 

Fig.3. Schematic diagram of coupling soil water and salt dynamics, and groundwater level and 854 

salinity. And the IWP evaluation in each HRU.  855 

Fig.4. Procedure chart of regional irrigation water productivity simulation. 856 

Fig.5. Location of the Jiefangzha Irrigation District. 857 

Fig.6. Relationship between the simulated and measured values during the crop growing season in 858 

calibration and validation period.  859 

Fig.7. The comparison of the simulated and measured groundwater table depth for 4 typical sites 860 

during the crop growing season in the years of 2006-2013. (Note: a- uncultivated area during the 861 

years of 2006-2013; b- uncultivated area from 2006-2008, and sunflower field and maize field 862 

from 2009-2013; c, d- sunflower, wheat and maize field in the years of 2006-2013) 863 

Fig.8. Parameter sensitivity analysis results of model for the three output variables: (a) irrigation 864 

water productivity, (b) groundwater table depth and (c) groundwater salinity. 865 

Fig.9. Spatial distribution of irrigation water productivity for the three main crops during the 866 

period of 2006-2013. Each line shows the RIWP for each year by ascending order. The left, middle 867 

and right column shows the RIWP of wheat, sunflower and maize, respectively.   868 

Fig.10. (a) Simulated regional irrigation water productivity under various groundwater table depth 869 

(hg) conditions with different irrigation water amount (In) applied, and (b) its statistical analysis 870 

results. In Fig.10a, W, S and M represents wheat, sunflower and maize, respectively 871 
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 878 

Fig.1. Schematic diagram of the conceptual RIWP model and the coupling between its sub-879 

modules.  880 

 881 

 882 

Fig.2. Schematic diagram of groundwater lateral exchange between adjacent HRUs.  883 

 884 

Fig.3. Schematic diagram of coupling soil water and salt dynamics, and groundwater level and 885 

salinity. And the IWP evaluation in each HRU.  886 
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 887 

Fig.4. Procedure chart of regional irrigation water productivity simulation. 888 
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Fig.5. Location of the Jiefangzha Irrigation District. 892 
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 902 

Fig.6. Relationship between the simulated and measured values during the crop growing season in 903 

calibration and validation period.  904 
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907 

 908 

Fig.7. The comparison of the simulated and measured groundwater table depth for 4 typical sites 909 

during the crop growing season in the years of 2006-2013. (Note: a- uncultivated area during the 910 

years of 2006-2013; b- uncultivated area from 2006-2008, and sunflower field and maize field 911 

from 2009-2013; c, d- sunflower, wheat and maize field in the years of 2006-2013) 912 
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913 

914 

 915 
Fig.8. Parameter sensitivity analysis results of model for the three output variables: (a) irrigation 916 

water productivity, (b) groundwater table depth and (c) groundwater salinity. 917 
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 932 

(h) 933 

Fig.9. Spatial distribution of irrigation water productivity for the three main crops during the 934 

period of 2006-2013. Each line shows the RIWP for each year by ascending order. The left, middle 935 

and right column shows the RIWP of wheat, sunflower and maize, respectively.   936 
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 955 

 956 

Fig.10. (a) Simulated regional irrigation water productivity under various groundwater table depth 957 

(hg) conditions with different irrigation water amount (In) applied, and (b) its statistical analysis 958 

results. In Fig.10a, W, S and M represents wheat, sunflower and maize, respectively. 959 
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