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Reviewer #2: 

 

GENERAL COMMENTS. 

In my opinion, essentially this paper only adds “noise” to the existing Literature: the 

techniques used have already been published in other works, the only novelty (clearly, 

not a methodological one) could be the case study, but any new case study must 

represent a newness over previous ones (otherwise it would be a replica). Most 

importantly, the work is in general statistically weak, and affected and flawed by fatal 

errors: the conclusions of the Authors may not be supported by the analyses they carried 

out. Apparently, the Authors (incorrectly) interpret the results according to their 

convenience, in order to prove what they want to prove, as shown below. In addition, 

referencing is often imprecise and/or improper and/or missing: always give credits to 

whom deserve credits. My recommendation is: REJECTION. 

 

Response to Reviewer 2: 

Great appreciation for this comment! 

 

We have taken the review’s suggestions into consideration. Firstly, a nonstationary and 

stationary GOF tests were implemented for marginal distribution and copula models. 

In addition, we implement the log likelihood ratio (LR) statistics to check the trend in 

parameters of distribution, which is more rigorous trend detection method than Mann-

Kendall tests (Coles, 2001). We considered more extreme series from more stations in 

the study area. Because of the insignificant trend denoted by reviewer #1 in the original 
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manuscript, we changed the original 95-th percentile threshold for Ps to 0.90. After 

above modification of extreme values, the significant trend and change point at 5% 

significance level could be detected in 3 stations by nonparametric tests. Here, we 

proposed the LR tests to detect the trend in parameter after the Mann-Kendall tests. 

Some interesting findings are captured. A detailed point-by-point reply has been made 

as follows. 

 

SPECIFIC COMMENTS. 

Line(s) 49–54. 

Authors. Copulas, a useful tool for modelling the structure of dependence between 

hydrological variables regardless of the types of marginal distributions, have been 

widely used for multivariate frequency analysis + references... 

Referee. Historically, the paper by Salvadori and De Michele (2004) was the first one 

to deal with (copula) multivariate frequency analysis—later works are copies or small 

variants: this paper is not cited. Please, always give credits to whom deserve credits. 

Response: We have added this reference to the revised manuscript.  

 

Line(s) 75–ff. 

Authors. There are three kinds of joint return period methods... 

Referee. NO. In Literature there are, at least, four kinds of joint return periods. The 

references given are incorrect. In Salvadori and De Michele (2004) the OR, AND and 

Kendall cases were first introduced. In Salvadori et al. (2013) a further survival-Kendall 
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approach (not mentioned by the Authors) was outlined. Referencing is often imprecise, 

almost random: for instance, why citing Jiang et al. (2015) here? It has nothing to do 

with the original formalization of the four return periods mentioned above. Incidentally, 

the reference “Salvadori and Michele, 2010” is “Salvadori and De Michele, 2010” (it 

seems that the Authors wrote the references by hand, instead of using some suitable 

software...). 

Response: we have modified the above statement about the joint return period. And 

give credits to whom deserve credits at right places. Lines 315-325 in revised 

manuscript. 

 

 

Line(s) 95–97. 

Authors. Note that following the idea of Rootzén and Katz (2013) we regard the term 

hydrological risk as the possibility of a certain extreme event occurring and not as a 

quantification of expected losses. 

Referee. Then, probabilistically and statistically speaking (and hydrologically as well!), 

you should better use the term “hazard” instead of “risk”. 

Response: We take the advice by reviewer. And we modified this statement. And also 

we have changed the title to “Time-varying copula and average annual reliability-based 

nonstationary hazard assessment of extreme rainfall events.” 

 

Line(s) 126. 
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Authors. Detailed information about copulas can be found in Nelson (2007). 

Referee. NO. It is Nelsen (2006), not Nelson. For an engineering approach, you may 

also cite Salvadori et al. (2007). As a strong suggestion, the Authors should carefully 

check the correctness of all the references (it is easy to do it on the Internet), and add 

the missing ones. 

Response: we have revised the quotation of this reference. Add Salvadori et al. (2007) 

to revised manuscript as follows: “Detailed information of theoretical derivation about copulas 

can be found in Nelsen (2006). For the practical guidelines from hydrological point of view, it is 

recommended to refer to Salvadori et al. (2007).” 

 

Line(s) 138–139. 

Authors. ... 𝜃𝐶
𝑡  is the dynamic copula parameter which is a linear function of time. 

Referee. The Authors must justify this choice. Please do not reply that “the model was 

taken from this or that paper”: it is not a scientific reason, for a model must be validated 

on the available data. Also, the results of suitable Goodness-of-Fit statistical tests must 

be shown. 

Response: 𝜃𝐶
𝑡  is set as follows in the revised manuscript: 

       𝜃𝐶
𝑡 = {

constant
𝜃0 + 𝜃1𝑡

𝜃0 + 𝜃1𝑡 + 𝜃2𝑡2
                                           

As shown above, both the linear and quadratic models are assumed as the possible 

function relation between parameter and time, which would consider the linear and 

nonlinear trend for parameter. We implemented the goodness of fit test for copulas 

based on Rosenblatt’s transformation (Rosenblatt, 1952). 
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Lines 271-283: “Rosenblatt’s transformation (RT) of the time-varying marginal 

distribution 𝑈 = 𝐹𝑋(𝑥|𝜃𝑋
𝑡 ) and V = 𝐹𝑌(y|𝜃𝑌

𝑡 ) of bivariate copula can be defined as 

follows: 

{
𝑅𝑇1 = 𝑢 =  𝐹𝑋(𝑥|𝜃𝑋

𝑡 )

𝑅𝑇2 = 𝐶(𝑣|𝑢, |𝜃𝐶
𝑡 ) = 𝐶[𝐹𝑌(y|𝜃𝑌

𝑡 )|𝐹𝑋(𝑥|𝜃𝑋
𝑡 ), |𝜃𝐶

𝑡 ]
               (5) 

Where 𝐶(𝑢|𝑣, |𝜃𝐶
𝑡 )  is just the conditional distribution function of v given by 

u=𝐹𝑋(𝑥|𝜃𝑋
𝑡 ).  

According to Rosenblatt, the random variable 𝑅𝑇1 and 𝑅𝑇2 is independent and 

uniformly in the interval [0,1]. In order to check this assumption, it is convenient to 

calculate: 

𝑆𝑖 = [Φ−1(𝐹𝑋(𝑥𝑖|𝜃𝑋
𝑡 ))]2 + [Φ−1(𝐶[𝐹𝑌(𝑦𝑖|𝜃𝑌

𝑡 )|𝐹𝑋(𝑥𝑖|𝜃𝑋
𝑡 ), |𝜃𝐶

𝑡 ])]2  𝑖 = 1, … , 𝑛 (6) 

Here, n is just the length of the data; and in this study we let time t be equal to 1,2,…,n. 

If the random sample {𝑆𝑖}  comes from a 𝜒2
2  distribution, it can accept the NULL 

hypothesis (ℋ0:  dependence structure between  𝑋  and 𝑌  obey the time-varying 

copula 𝐶(𝑢, 𝑣|𝜃𝐶
𝑡 ) ). Then the Anderson–Darling goodness-of-fit test based on RT 

(𝐴𝐷𝑅𝑇) should be used for the above assumption.” According to the analysis results, the 

assumed linear and nonlinear trends of copula parameter can pass the GOF tests based 

on Rosenblatt’s transformation.   

 

Line(s) 143–144. 

Authors. It is however possible that the nonstationary behavior may exist in both the 

marginal and joint distribution function. 

Referee. Such an issue was already clearly pointed out and discussed in Salvadori et al. 
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(2018), where a similar case study was investigated, and a thorough statistical analysis 

was carried out. The Authors must mention this fact, and follow the (proper statistical) 

guidelines outlined in that paper. 

Response: We have revised this statement. And we mentioned this fact as: 

Lines 134-160. “According to Vezzoli et al. (2017) and Salvadori et al. (2018), a 

comprehensive statistical analysis which can check the presence of trend and change 

point should be carried out before we incorporate the nonstationarity into the 

multivariate hazard assessment. Following the study of Salvadori et al. (2018), the non-

parametric change-point statistical tests were implemented to check that whether the 

marginal or joint distributions are sensitive to changes. These tests can be manipulated 

in the R package npcp (Kojadinovic, 2017).”   

 

 

 

Line(s) 158-Figure 1.  

The flow-chart shown in Figure 1 provides wrong indications (see also later comments). 

In fact, the Authors confuse GoF tests with selection criteria. The flow-chart must be 

rewritten. 

Response: we have revised the flowchart of this study (Figure 1) as follows: 
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Figure 1. Flowchart of this study 

Line(s) 161–164.  

Authors. In this part, the Generalized Extreme Value (GEV) distribution was used to... 

(Cheng and AghaKouchak, 2014). 

Referee. This reference makes little sense: the features of the GEV have already been 

stated and described since decades in other (seminal) works. Please use proper 

references. 

Response: In revised manuscript, five kinds of marginal distribution have been used as 

candidate distribution. For space limitations, we have deleted the above statement of 

GEV features.  
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Line(s) 166–ff. 

Authors. The GEV distribution consists of three control parameters... 

Referee. The GEV distribution is well known to hydrologists, there is no need to tell 

again a story that everybody knows.  

Response: we deleted this statement in revised manuscript. 

 

 

 

 

 

Line(s) 176–179. 

Authors. In this study, two kinds of nonstationary GEV models (GEVns-1 and GEVns-

2) are developed with the shape parameter being constant. It should be emphasized that 

modelling the time variance in shape parameter needs long-term observations, which 

are often not available in practice (Cheng et al., 2014). 

Referee. I recently rejected a paper very similar to the present one, where the GEV 

shape parameter was kept constant. The shape parameter is the most important one, for 

it rules the generation of extremes. The assumption adopted is definitely questionable: 

what (extreme) climate change could you really hope to model with a constant shape 

parameter? Practically, you are trying to model climate changes where the statistics of 

the extremes do not change with time: it makes little sense. In addition (see also later 

comments), some estimates of the GEV shape parameter are positive and other negative 
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(Table 3). This entails that, in some cases, the corresponding GEV law is upper-bounded, 

i.e. unable to model an extreme behavior: this is a well known feature of the GEV. I 

agree that the GEV is the right distribution to be used in your analysis (Block Maxima), 

but the question is: how can you claim that the phenomenon you are modeling is an 

extreme one when upper-bounded GEV’s are involved? The statistical results seem to 

tell another story... 

Response: Thanks a lot for this suggestion. We have consider the trend in shape 

parameter. For all the three parameter (location, scale, shape), three kinds of forms are 

considered. Here we take the location parameter as an example: 

𝜇𝑡 = {

 constant
𝜇0 + 𝜇1𝑡

𝜇0 + 𝜇1𝑡 + 𝜇2𝑡2
                          (2) 

As stated by reviewer, the GEV can be defined as follows:  

G(𝑥) = exp [− {1 + 𝜅 (
𝑥−𝜇

𝜎
)}

+

−
1

𝜅
]                 (3)  

where 𝑍+ =max{z,0},  𝜎  0 and 𝜇  & 𝜅  ϵ (−∞, ∞).  When 𝜅 < 0 , it recommends 

the upper-bounded GEV distribution. We have checked the shape parameter of the best 

fitted GEV models is always positive (station 2,3,6 in Table 4(a)-(b)).  
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S1(a). Patterns of the time-varying models for 3-parameter marginal distribution (GEV 

in this study) 

Model 𝜇 𝜎 𝜅 

GEV0 constant constant constant 

GEV1 𝜇 = 𝜇0 + 𝜇1𝑡 constant constant 

GEV2 𝜇 = 𝜇0 + 𝜇1𝑡 + 𝜇2𝑡2 constant constant 

GEV3 constant 𝑙𝑛𝜎 = 𝜎0 + 𝜎1𝑡 constant 

GEV4 constant 𝑙𝑛𝜎 = 𝜎0 + 𝜎1𝑡 + 𝜎2𝑡2 constant 

GEV5 constant constant 𝜅 = 𝜅0 + 𝜅1𝑡 

GEV6 constant constant 𝜅 = 𝜅0 + 𝜅1𝑡 + 𝜅2𝑡2 

GEV7 𝜇 = 𝜇0 + 𝜇1𝑡 𝑙𝑛𝜎 = 𝜎0 + 𝜎1𝑡 constant 

GEV8 𝜇 = 𝜇0 + 𝜇1𝑡 constant 𝜅 = 𝜅0 + 𝜅1𝑡 

GEV9 constant 𝑙𝑛𝜎 = 𝜎0 + 𝜎1𝑡 𝜅 = 𝜅0 + 𝜅1𝑡 

GEV10 𝜇 = 𝜇0 + 𝜇1𝑡 + 𝜇2𝑡2 𝑙𝑛𝜎 = 𝜎0 + 𝜎1𝑡 + 𝜎2𝑡2 constant 

GEV11 constant 𝑙𝑛𝜎 = 𝜎0 + 𝜎1𝑡 + 𝜎2𝑡2 𝜅 = 𝜅0 + 𝜅1𝑡 + 𝜅2𝑡2 

GEV12 𝜇 = 𝜇0 + 𝜇1𝑡 + 𝜇2𝑡2 constant 𝜅 = 𝜅0 + 𝜅1𝑡 + 𝜅2𝑡2 

GEV13 𝜇 = 𝜇0 + 𝜇1𝑡 𝑙𝑛𝜎 = 𝜎0 + 𝜎1𝑡 + 𝜎2𝑡2 constant 

GEV14 constant 𝑙𝑛𝜎 = 𝜎0 + 𝜎1𝑡 𝜅 = 𝜅0 + 𝜅1𝑡 + 𝜅2𝑡2 

GEV15 𝜇 = 𝜇0 + 𝜇1𝑡 constant 𝜅 = 𝜅0 + 𝜅1𝑡 + 𝜅2𝑡2 

GEV16 𝜇 = 𝜇0 + 𝜇1𝑡 + 𝜇2𝑡2 𝑙𝑛𝜎 = 𝜎0 + 𝜎1𝑡 constant 

GEV17 constant 𝑙𝑛𝜎 = 𝜎0 + 𝜎1𝑡 + 𝜎2𝑡2 𝜅 = 𝜅0 + 𝜅1𝑡 

GEV18 𝜇 = 𝜇0 + 𝜇1𝑡 + 𝜇2𝑡2 constant 𝜅 = 𝜅0 + 𝜅1𝑡 

GEV19 𝜇 = 𝜇0 + 𝜇1𝑡 + 𝜇2𝑡2 𝑙𝑛𝜎 = 𝜎0 + 𝜎1𝑡 𝜅 = 𝜅0 + 𝜅1𝑡 + 𝜅2𝑡2 

GEV20 𝜇 = 𝜇0 + 𝜇1𝑡 + 𝜇2𝑡2 𝑙𝑛𝜎 = 𝜎0 + 𝜎1𝑡 + 𝜎2𝑡2 𝜅 = 𝜅0 + 𝜅1𝑡 

GEV21 𝜇 = 𝜇0 + 𝜇1𝑡 𝑙𝑛𝜎 = 𝜎0 + 𝜎1𝑡 + 𝜎2𝑡2 𝜅 = 𝜅0 + 𝜅1𝑡 + 𝜅2𝑡2 

GEV22 𝜇 = 𝜇0 + 𝜇1𝑡 𝑙𝑛𝜎 = 𝜎0 + 𝜎1𝑡 𝜅 = 𝜅0 + 𝜅1𝑡 + 𝜅2𝑡2 

GEV23 𝜇 = 𝜇0 + 𝜇1𝑡 + 𝜇2𝑡2 𝑙𝑛𝜎 = 𝜎0 + 𝜎1𝑡 𝜅 = 𝜅0 + 𝜅1𝑡 

GEV24 𝜇 = 𝜇0 + 𝜇1𝑡 𝑙𝑛𝜎 = 𝜎0 + 𝜎1𝑡 + 𝜎2𝑡2 𝜅 = 𝜅0 + 𝜅1𝑡 

GEV25 𝜇 = 𝜇0 + 𝜇1𝑡 𝑙𝑛𝜎 = 𝜎0 + 𝜎1𝑡 𝜅 = 𝜅0 + 𝜅1𝑡 

GEV26 𝜇 = 𝜇0 + 𝜇1𝑡 + 𝜇2𝑡2 𝑙𝑛𝜎 = 𝜎0 + 𝜎1𝑡 + 𝜎2𝑡2 𝜅 = 𝜅0 + 𝜅1𝑡 + 𝜅2𝑡2 
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S1(b). Patterns of the time-varying models for 3-parameter marginal distribution (PIII 

in this study) 

Model 𝜇 𝜎 𝜅 

PIII0 constant constant constant 

PIII1 𝜇 = 𝑀 ∗ sin (𝜇0 + 𝜇1𝑡) constant constant 

PIII2 𝜇 = 𝑀 ∗ sin (𝜇0 + 𝜇1𝑡 + 𝜇2𝑡2) constant constant 

PIII3 constant 𝜎 = 𝜎0 + 𝜎1𝑡 constant 

PIII4 constant 𝜎 = 𝜎0 + 𝜎1𝑡 + 𝜎2𝑡2 constant 

PIII5 constant constant 𝑙𝑛𝜅 = 𝜅0 + 𝜅1𝑡 

PIII6 constant constant 𝑙𝑛𝜅 = 𝜅0 + 𝜅1𝑡 + 𝜅2𝑡2 

PIII7 𝜇 = 𝑀 ∗ sin (𝜇0 + 𝜇1𝑡) 𝜎 = 𝜎0 + 𝜎1𝑡 constant 

PIII8 𝜇 = 𝑀 ∗ sin (𝜇0 + 𝜇1𝑡) constant 𝑙𝑛𝜅 = 𝜅0 + 𝜅1𝑡 

PIII9 constant 𝜎 = 𝜎0 + 𝜎1𝑡 𝑙𝑛𝜅 = 𝜅0 + 𝜅1𝑡 

PIII10 𝜇 = 𝑀 ∗ sin (𝜇0 + 𝜇1𝑡 + 𝜇2𝑡2) 𝜎 = 𝜎0 + 𝜎1𝑡 + 𝜎2𝑡2 constant 

PIII11 constant 𝜎 = 𝜎0 + 𝜎1𝑡 + 𝜎2𝑡2 𝑙𝑛𝜅 = 𝜅0 + 𝜅1𝑡 + 𝜅2𝑡2 

PIII12 𝜇 = 𝑀 ∗ 𝑠𝑖𝑛(𝜇0 + 𝜇1𝑡 + 𝜇2𝑡2) constant 𝑙𝑛𝜅 = 𝜅0 + 𝜅1𝑡 + 𝜅2𝑡2 

PIII13 𝜇 = 𝑀 ∗ sin (𝜇0 + 𝜇1𝑡) 𝜎 = 𝜎0 + 𝜎1𝑡 + 𝜎2𝑡2 constant 

PIII14 constant 𝜎 = 𝜎0 + 𝜎1𝑡 𝑙𝑛𝜅 = 𝜅0 + 𝜅1𝑡 + 𝜅2𝑡2 

PIII15 𝜇 = 𝑀 ∗ sin (𝜇0 + 𝜇1𝑡) constant 𝑙𝑛𝜅 = 𝜅0 + 𝜅1𝑡 + 𝜅2𝑡2 

PIII16 𝜇 = 𝑀 ∗ sin (𝜇0 + 𝜇1𝑡 + 𝜇2𝑡2) 𝜎 = 𝜎0 + 𝜎1𝑡 constant 

PIII17 constant 𝜎 = 𝜎0 + 𝜎1𝑡 + 𝜎2𝑡2 𝑙𝑛𝜅 = 𝜅0 + 𝜅1𝑡 

PIII18 𝜇 = 𝑀 ∗ 𝑠𝑖𝑛(𝜇0 + 𝜇1𝑡 + 𝜇2𝑡2) constant 𝑙𝑛𝜅 = 𝜅0 + 𝜅1𝑡 

PIII19 𝜇 = 𝑀 ∗ sin (𝜇0 + 𝜇1𝑡 + 𝜇2𝑡2) 𝜎 = 𝜎0 + 𝜎1𝑡 𝑙𝑛𝜅 = 𝜅0 + 𝜅1𝑡 + 𝜅2𝑡2 

PIII20 𝜇 = 𝑀 ∗ 𝑠𝑖𝑛(𝜇0 + 𝜇1𝑡 + 𝜇2𝑡2) 𝜎 = 𝜎0 + 𝜎1𝑡 + 𝜎2𝑡2 𝑙𝑛𝜅 = 𝜅0 + 𝜅1𝑡 

PIII21 𝜇 = 𝑀 ∗ 𝑠𝑖𝑛(𝜇0 + 𝜇1𝑡) 𝜎 = 𝜎0 + 𝜎1𝑡 + 𝜎2𝑡2 𝑙𝑛𝜅 = 𝜅0 + 𝜅1𝑡 + 𝜅2𝑡2 

PIII22 𝜇 = 𝑀 ∗ 𝑠𝑖𝑛(𝜇0 + 𝜇1𝑡) 𝜎 = 𝜎0 + 𝜎1𝑡 𝑙𝑛𝜅 = 𝜅0 + 𝜅1𝑡 + 𝜅2𝑡2 

PIII23 𝜇 = 𝑀 ∗ sin (𝜇0 + 𝜇1𝑡 + 𝜇2𝑡2) 𝜎 = 𝜎0 + 𝜎1𝑡 𝑙𝑛𝜅 = 𝜅0 + 𝜅1𝑡 

PIII24 𝜇 = 𝑀 ∗ sin (𝜇0 + 𝜇1𝑡) 𝜎 = 𝜎0 + 𝜎1𝑡 + 𝜎2𝑡2 𝑙𝑛𝜅 = 𝜅0 + 𝜅1𝑡 

PIII25 𝜇 = 𝑀 ∗ sin (𝜇0 + 𝜇1𝑡) 𝜎 = 𝜎0 + 𝜎1𝑡 𝑙𝑛𝜅 = 𝜅0 + 𝜅1𝑡 

PIII26 𝜇 = 𝑀 ∗ sin (𝜇0 + 𝜇1𝑡 + 𝜇2𝑡2) 𝜎 = 𝜎0 + 𝜎1𝑡 + 𝜎2𝑡2 𝑙𝑛𝜅 = 𝜅0 + 𝜅1𝑡 + 𝜅2𝑡2 

Note: M represents the minimum value of the observed time series. 
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S1(c). Patterns of the time-varying models for 2-parameter marginal distribution 

containing scale and shape parameter (Weibull, Gamma in this study). 

Model 𝜎 𝜅 

WE0/GA0 constant constant 

WE1/GA1 𝑙𝑛𝜎 = 𝜎0 + 𝜎1𝑡 constant 

WE2/GA2 𝑙𝑛𝜎 = 𝜎0 + 𝜎1𝑡 + 𝜎2𝑡2 constant 

WE3/GA3 constant 𝑙𝑛𝜅 = 𝜅0 + 𝜅1𝑡 

WE4/GA4 constant 𝑙𝑛𝜅 = 𝜅0 + 𝜅1𝑡 + 𝜅2𝑡2 

WE5/GA5 𝑙𝑛𝜎 = 𝜎0 + 𝜎1𝑡 𝑙𝑛𝜅 = 𝜅0 + 𝜅1𝑡 

WE6/GA6 𝑙𝑛𝜎 = 𝜎0 + 𝜎1𝑡 𝑙𝑛𝜅 = 𝜅0 + 𝜅1𝑡 + 𝜅2𝑡2 

WE7/GA7 𝑙𝑛𝜎 = 𝜎0 + 𝜎1𝑡 + 𝜎2𝑡2 𝑙𝑛𝜅 = 𝜅0 + 𝜅1𝑡 

WE8/GA8 𝑙𝑛𝜎 = 𝜎0 + 𝜎1𝑡 + 𝜎2𝑡2 𝑙𝑛𝜅 = 𝜅0 + 𝜅1𝑡 + 𝜅2𝑡2 

 

 

S1(d). Patterns of the time-varying models for 2-parameter marginal distribution 

containing location and scale parameter (Lognormal function in this study). 

Model 𝜇 𝜎 

LOGN0 constant constant 

LOGN1 𝜇 = 𝜇0 + 𝜇1𝑡 constant 

LOGN2 𝜇 = 𝜇0 + 𝜇1𝑡 + 𝜇2𝑡2 constant 

LOGN3 constant 𝑙𝑛𝜎 = 𝜎0 + 𝜎1𝑡 

LOGN4 constant 𝑙𝑛𝜎 = 𝜎0 + 𝜎1𝑡 + 𝜎2𝑡2 

LOGN5 𝜇 = 𝜇0 + 𝜇1𝑡 𝑙𝑛𝜎 = 𝜎0 + 𝜎1𝑡 

LOGN6 𝜇 = 𝜇0 + 𝜇1𝑡 𝑙𝑛𝜎 = 𝜎0 + 𝜎1𝑡 + 𝜎2𝑡2 

LOGN7 𝜇 = 𝜇0 + 𝜇1𝑡 + 𝜇2𝑡2 𝑙𝑛𝜎 = 𝜎0 + 𝜎1𝑡 

LOGN8 𝜇 = 𝜇0 + 𝜇1𝑡 + 𝜇2𝑡2 𝑛𝜎 = 𝜎0 + 𝜎1𝑡 + 𝜎2𝑡2 
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Line(s) 184–186, Eq.s (3)–(4). 

You must justify the assumptions/relations implicit in these equations. Why should the 

position and scale parameters change according to Eq.s(3)–(4)? Did you carry out any 

valuable/reliable fit? What are the p-Values? And, again, why should the shape 

parameter be constant instead? Incidentally, these are the same equations used in the 

paper I recently rejected. 

Response: We have taken this advice by considering trend in shape parameters as 

shown in the former response. Also we have taken the nonstationary K-S tests on the 

assumed linear and nonlinear trend (Table 4(a)-(b)).  

 

Line(s) 191–194. 

Authors. Simultaneously, the Deviance Information Criterion (DIC) and Bayes factors 

(BF) for different stationary and nonstationary models were calculated to select the best 

fitted marginal model. The minimum DIC value yielded the best performance, while 

BF smaller than 1 indicated the best fitting. 

Referee. This is a typical fatal error of practitioners. These are only selection criteria, 

not Goodness-of-Fit tests. You must first use (non-stationary) GoF tests to check 

whether a model is admissible! Otherwise, without first checking the models via 

suitable GoF tests, you may end up choosing non-admissible ones. This work has no 

statistical bases. 

Response: We have taken this advice by investigating the univariate and bivariate GOF 

tests as presented in (lines 225-233 and lines 267- 283). 
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Line(s) 191–194. 

Authors. In multivariate hydrological frequency analysis, two kinds of copulas, named 

elliptical and Archimedean copulas are widely used in hydrological applications. 

Referee. So what? The fact that these copulas were used in other works is not, and 

cannot be, a scientific justification. This is the usual approach of practitioners that use 

the copulas provided by Matlab. Given my experience, I do not really think that Nature 

(especially considering the generation of Extremes) gets stick to just these dependence 

structures—see also later comments. And, worst of all, you did not even check these 

copula models via suitable multivariate GoF tests (which are available in Literature, 

and some certified software is even for free—see below): this work has no statistical 

bases. 

Response: In the revised manuscript, we firstly enrich the kinds of candidate copulas: 

five kinds of 1-parameter copula (Joe, Frank, Gumbel, Clayton and Gaussian) and five kinds of 2-

parameter copulas (Clayton-Gumbel (BB1), Student t, Joe-Gumbel (BB6), Joe-Clayton (BB7) and 

Joe-Frank (BB8)). In addition, each copula can be rotated at 90, 180 (Survival Copula), 270 

degrees. For this study, the rotated copula at 90 and 270 degrees are not considered because of the 

Kendall’s tau values corresponding to each dependence structure of Ps and Im for each stations are 

positive (Table 5(a)). Considering the trend forms for parameter, almost 100 kinds of copula models 

are considered. In particular, the BB1, BB6, BB7 and BB8 Copula parameter are set in different 

parameter intervals of the corresponding copula because of numerically instabilities for large 

parameters in the R package CDVine (Brechmann and Schepsmeier, 2013). Take the BB1 copula as 

an example, the parameter interval for two parameters are (0, ∞) and [1,∞) as usual while in the 
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CDVine package the parameter interval would be (0,7) and [1,7]. As a result, it is necessary to add 

constraint functions (3.5 + 3.5sin (𝜃0 + 𝜃1𝑡) for 𝜃𝐶
𝑡  and 4 + 3𝑠𝑖𝑛(𝛽0 + 𝛽1𝑡) for 𝛽𝐶

𝑡). 

 

 

S2(a) Patterns of the time-varying models for 1-parameter bivariate copula model 

considering different parameter ranges for different copulas 

Model 𝜃 

GAU0 constant 

GAU1 𝜃 = sin (𝜃0 + 𝜃1𝑡) 

GAU2 𝜃 = sin (𝜃0 + 𝜃1𝑡 + 𝜃2𝑡2) 

GU0/J0/SGU0/SJ0 constant 

GU1/J1/SGU1/SJ1 𝜃 = 1 + exp (𝜃0 + 𝜃1𝑡) 

GU2/J2/SGU2/SJ2 𝜃 = 1 + exp (𝜃0 + 𝜃1𝑡 + 𝜃2𝑡2) 

CL0/SCL0 constant 

CL1/SCL1 𝜃 = exp (𝜃0 + 𝜃1𝑡) 

CL2/SCL2 𝜃 = exp (𝜃0 + 𝜃1𝑡 + 𝜃2𝑡2) 

FR0 constant 

FR1 𝜃 = 𝜃0 + 𝜃1𝑡 

FR2 𝜃 = 𝜃0 + 𝜃1𝑡 + 𝜃2𝑡2 

GAU: Gaussian copula; GU: Gumbel copula; J: Joe copula; SGU: survival Gumbel 

copula; SJ: survival Joe copula; CL: Clayton copula; SCL: survival Clayton copula; FR: 

Frank copula;  

 

S2(b) Patterns of the time-varying models for 2-parameter student t copula  

Model 𝜃 𝛽 

ST0 constant constant 

ST1 𝜃 = sin (𝜃0 + 𝜃1𝑡) constant 

ST2 𝜃 = sin (𝜃0 + 𝜃1𝑡 + 𝜃2𝑡2) constant 

ST3 constant 𝛽 = 2 + exp (𝛽0 + 𝛽1𝑡) 

ST4 constant 𝛽 = 2 + exp (𝛽0 + 𝛽1𝑡 + 𝛽2𝑡2) 

ST5 𝜃 = sin(𝜃0 + 𝜃1𝑡) 𝛽 = 2 + exp (𝛽0 + 𝛽1𝑡) 

ST6 𝜃 = sin(𝜃0 + 𝜃1𝑡) 𝛽 = 2 + exp (𝛽0 + 𝛽1𝑡 + 𝛽2𝑡2) 

ST7 𝜃 = sin(𝜃0 + 𝜃1𝑡 + 𝜃2𝑡2) 𝛽 = 2 + exp (𝛽0 + 𝛽1𝑡) 

ST8 𝜃 = sin (𝜃0 + 𝜃1𝑡 + 𝜃2𝑡2) 𝛽 = 2 + exp (𝛽0 + 𝛽1𝑡 + 𝛽2𝑡2) 

CG: Clayton-Gumbel copula; SCG: survival Clayton-Gumbel copula; 

 

 

 

 

 

 

 



``` 

S2(c) Patterns of the time-varying models for 2-parameter (survival) Clayton-Gumbel 

copula (BB1 copula)  

Model 𝜃 𝛽 

CG0/SCGO constant constant 

CG1/SCG1 𝜃 = 3.5 + 3.5sin (𝜃0 + 𝜃1𝑡) constant 

CG2/SCG2 𝜃 = 3.5 + 3.5sin  (𝜃0 + 𝜃1𝑡 + 𝜃2𝑡2) constant 

CG3/SCG3 constant 𝛽 = 4 + 3𝑠𝑖𝑛(𝛽0 + 𝛽1𝑡) 

CG4/SCG4 constant 𝛽 = 4 + 3𝑠𝑖𝑛 (𝛽0 + 𝛽1𝑡 + 𝛽2𝑡2) 

CG5/SCG5 𝜃 = 3.5 + 3.5sin (𝜃0 + 𝜃1𝑡) 𝛽 = 4 + 3𝑠𝑖𝑛 (𝛽0 + 𝛽1𝑡) 

CG6/SCG6 𝜃 = 3.5 + 3.5sin (𝜃0 + 𝜃1𝑡) 𝛽 = 4 + 3𝑠𝑖𝑛 (𝛽0 + 𝛽1𝑡 + 𝛽2𝑡2) 

CG7/SCG7 𝜃 = 3.5 + 3.5sin  (𝜃0 + 𝜃1𝑡 + 𝜃2𝑡2) 𝛽 = 4 + 3𝑠𝑖𝑛 (𝛽0 + 𝛽1𝑡) 

CG8/SCG8 𝜃 = 3.5 + 3.5sin  (𝜃0 + 𝜃1𝑡 + 𝜃2𝑡2) 𝛽 = 4 + 3𝑠𝑖𝑛 (𝛽0 + 𝛽1𝑡 + 𝛽2𝑡2) 

CG: Clayton-Gumbel copula; SCG: survival Clayton-Gumbel copula; 

 

 

S3(d). Patterns of the time-varying models for 2-parameter (survival) Joe-Gumbel 

copula (BB6 copula)  

Model 𝜃 𝛽 

JG0/SJGO constant constant 

JG1/SJG1 𝜃 = 3.5 + 2.5𝑠𝑖𝑛 (𝜃0 + 𝜃1𝑡) constant 

JG2/SJG2 𝜃 = 3.5 + 2.5𝑠𝑖𝑛 (𝜃0 + 𝜃1𝑡 + 𝜃2𝑡2) constant 

JG3/SJG3 constant 𝛽 = 4.5 + 3.5 ∗ 𝑠𝑖𝑛 (𝛽0 + 𝛽1𝑡) 

JG4/SJG4 constant 𝛽 = 4.5 + 3.5 ∗ 𝑠𝑖𝑛(𝛽0 + 𝛽1𝑡 + 𝛽2𝑡2) 

JG5/SJG5 𝜃 = 3.5 + 2.5𝑠𝑖𝑛 (𝜃0 + 𝜃1𝑡) 𝛽 = 4.5 + 3.5 ∗ 𝑠𝑖𝑛 (𝛽0 + 𝛽1𝑡) 

JG6/SJG6 𝜃 = 3.5 + 2.5𝑠𝑖𝑛 (𝜃0 + 𝜃1𝑡) 𝛽 = 4.5 + 3.5 ∗ 𝑠𝑖𝑛(𝛽0 + 𝛽1𝑡 + 𝛽2𝑡2) 

JG7/SJG7 𝜃 = 3.5 + 2.5𝑠𝑖𝑛(𝜃0 + 𝜃1𝑡 + 𝜃2𝑡2) 𝛽 = 4.5 + 3.5 ∗ 𝑠𝑖𝑛 (𝛽0 + 𝛽1𝑡) 

JG8/SJG8 𝜃 = 3.5 + 2.5𝑠𝑖𝑛(𝜃0 + 𝜃1𝑡 + 𝜃2𝑡2) 𝛽 = 4.5 + 3.5 ∗ 𝑠𝑖𝑛(𝛽0 + 𝛽1𝑡 + 𝛽2𝑡2) 

JG: Joe-Gumbel copula; SJG: survival Joe-Gumbel copula; 

 

S3(e). Patterns of the time-varying models for 2-parameter (survival) Joe-Clayton 

copula (BB7copula)  

Model 𝜃 𝛽 

JC0/SJC0 constant constant 

JC1/SJC1 𝜃 = 3.5 + 2.5𝑠𝑖𝑛(𝜃0 + 𝜃1𝑡) constant 

JC2/SJC2 𝜃 = 3.5 + 2.5𝑠𝑖𝑛(𝜃0 + 𝜃1𝑡 + 𝜃2𝑡2) constant 

JC3/SJC3 constant 𝛽 = 37.5 + 37.5𝑠𝑖𝑛 (𝛽0 + 𝛽1𝑡) 

JC4/SJC4 constant 𝛽 = 37.5 + 37.5𝑠𝑖𝑛  (𝛽0 + 𝛽1𝑡 + 𝛽2𝑡2) 

JC5/SJC5 𝜃 = 3.5 + 2.5𝑠𝑖𝑛 (𝜃0 + 𝜃1𝑡) 𝛽 = 37.5 + 37.5𝑠𝑖𝑛  (𝛽0 + 𝛽1𝑡) 

JC6/SJC6 𝜃 = 3.5 + 2.5𝑠𝑖𝑛 (𝜃0 + 𝜃1𝑡) 𝛽 = 37.5 + 37.5𝑠𝑖𝑛 (𝛽0 + 𝛽1𝑡 + 𝛽2𝑡2) 

JC7/SJC7 𝜃 = 3.5 + 2.5𝑠𝑖𝑛 (𝜃0 + 𝜃1𝑡 + 𝜃2𝑡2) 𝛽 = 37.5 + 37.5𝑠𝑖𝑛  (𝛽0 + 𝛽1𝑡) 

JC8/SJC8 𝜃 = 3.5 + 2.5𝑠𝑖𝑛 (𝜃0 + 𝜃1𝑡 + 𝜃2𝑡2) 𝛽 = 37.5 + 37.5𝑠𝑖𝑛  (𝛽0 + 𝛽1𝑡 + 𝛽2𝑡2) 

JC: Joe-Clayton copula; SJC: survival Joe-Clayton copula;
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S3(f). Patterns of the time-varying models for 2-parameter (survival) Joe-Frank copula 

(BB8 copula)  

Model 𝜃 𝛽 

JF0/SJF0 constant constant 

JF1/SJF1 𝜃 = 4.5 + 3.5𝑠𝑖𝑛  (𝜃0 + 𝜃1𝑡) constant 

JF2/SJF2 𝜃 = 4.5 + 3.5𝑠𝑖𝑛  (𝜃0 + 𝜃1𝑡 + 𝜃2𝑡2) constant 

JF3/SJF3 
constant 𝛽 =

1 + 1𝑒 − 4
2

+
1 − 1𝑒 − 4

2
sin(𝛽0 + 𝛽1𝑡) 

JF4/SJF4 
constant 𝛽 =

1 + 1𝑒 − 4
2

+
1 − 1𝑒 − 4

2
𝑠𝑖 𝑛(𝛽0 + 𝛽1𝑡 + 𝛽2𝑡2) 

JF5/SJF5 
𝜃 = 4.5 + 3.5𝑠𝑖𝑛  (𝜃0 + 𝜃1𝑡) 𝛽 =

1 + 1𝑒 − 4
2

+
1 − 1𝑒 − 4

2
sin(𝛽0 + 𝛽1𝑡) 

JF6/SJF6 
𝜃 = 4.5 + 3.5𝑠𝑖𝑛 (𝜃0 + 𝜃1𝑡) 𝛽 =

1 + 1𝑒 − 4
2

+
1 − 1𝑒 − 4

2
𝑠𝑖 𝑛(𝛽0 + 𝛽1𝑡 + 𝛽2𝑡2) 

JF7/SJF7 𝜃 = 4.5 + 3.5𝑠𝑖𝑛 (𝜃0 + 𝜃1𝑡 + 𝜃2𝑡2) 
𝛽 =

1 + 1𝑒 − 4
2

+
1 − 1𝑒 − 4

2
sin(𝛽0 + 𝛽1𝑡)) 

JF8/SJF8 
𝜃 = 4.5 + 3.5𝑠𝑖𝑛 (𝜃0 + 𝜃1𝑡 + 𝜃2𝑡2) 𝛽 =

1 + 1𝑒 − 4
2

+
1 − 1𝑒 − 4

2
𝑠𝑖 𝑛(𝛽0 + 𝛽1𝑡 + 𝛽2𝑡2) 

JF: Joe-Frank copula; SJF: survival Joe-Frank copula; 

   

Line(s) 203–205. 

Authors. The Gaussian copula was not used in this study because of its deficiency in 

describing dependencies of extremes (Renard and Lang, 2007). 

Referee. The Authors are clearly considering the concept of Tail Dependence. Well, 

also the Frank family has no tail dependence, while the Clayton family only has lower 

tail dependence (possibly, of no interest here), the Gumbel family only has upper tail 

dependence, and the Student family has both lower and upper tail dependence (but they 

must be equal, and, most of all, they both must exist at the same time!). There are more 

suitable families of copulas for modeling extremes: again, the ones used by the Authors 

are simply those provided by Matlab, as (unfortunately, too) many practitioners do, 

preventing a reliable/valuable investigation and modeling of the phenomenon of 
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interest. 

Response: As shown in the former response, we have enriched the kinds of candidate 

copulas.  

 

Line(s) 208, Eq. (5). 

Again, as above, you must justify the assumptions/relations shown in this equation. 

Why should the copula parameter change according to Eq. (5)? Did you carry out any 

investigation? What are the p-Values? 

Response: We implemented the goodness of fit test for copulas based on Rosenblatt’s 

transformation (Rosenblatt, 1952). 

 

Line(s) 212–214. 

Authors. The Corrected Akaike Information Criterion (AICc; Hurvich and Tsai, 1989) 

was employed to make a goodness-of-fit... 

Referee. NO.This a typical fatal error of practitioners. The AIC (corrected or not) is 

only a selection criterion, not a GoF procedure. You must first show that a copula is 

statistically admissible, e.g. via suitable Monte Carlo Cramer-von Mises or 

Kolmogorov-Smirnov tests, as in the R package“copula”. Then, and only then, you 

may compare (only) the admissible copulas (if any) and select the “best” one according 

to some suitable criterion (e.g., the AICc, the BIC, the NLL, etc...). 

Response: We implemented the goodness of fit test for copulas based on Rosenblatt’s 

transformation which can also be used to implement GOF tests for nonstationary copula.  
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Line(s) 214–216. 

Authors. Obviously, the presence of nonstationarity in the copula parameter was 

determined by comparison of the AICc value.  

Referee. This sentence is obscure. Are you saying that, since the non-stationary model 

performs better, then the phenomenon is non-stationary? If so, this makes no statistical 

and philosophical sense. It looks like you are using your models to “decide” how the 

real world should work: this is contrary to every scientific principle. This work is also 

bugged from an epistemological perspective. 

Response: We make the LR tests which is a statistical test to check whether the trend 

in the parameter. If value of the LR tests is smaller than 5%, it recommends the trend 

existed in the parameter at 5% significance level. And then AICc criterion is used as 

model selection criterion.  

 

Line(s) 217–ff., Sec. 2.3. 

Authors. “2.3. Joint return period and risk analysis based on KEN’s and AND’s 

methods” 

Referee. Multivariate failure probabilities have been well mathematically formalized 

in Salvadori et al. (2016), by originally defining and exploiting suitable Hazard 

Scenarios and copulas’ relations. The Authors must take this work into serious account, 

and mention it. 

Response: we have made multivariate hazard assessment based on the Average Annual 

Reliability (AAR) in the revised manuscript. And we also added the reference Salvadori 
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et al. (2016) when we wanted to use the joint exceedance probability under AND 

scenario.   

 

Line(s) 241, Eq. (7). 

See the more general approach and discussion in (Salvadori et al., 2016, Eq.s (33)-(35)). 

Response: we have made multivariate hazard assessment based on the Average Annual 

Reliability (AAR) in the revised manuscript. So this formula has been deleted. 

 

Line(s) 262, Eq. (11). 

Why in Eq. (11) the parameters of the marginals FX ,FY, used as arguments in the copula 

C, do not vary with time? 

Response: it is an error of formula definition. We have taken this suggestion.  

 

Line(s) 268–269. 

Authors. The most likely event at the T 0 -year level can be calculated as (Graler et al., 

2013)... 

Referee. NO. The Most Likely technique was first introduced in Salvadori et al. (2011): 

always give credits to whom deserve credits. In addition, it is not the only possible one, 

as shown in the same paper (viz., the Component-wise Excess method). Moreover, 

further approaches are outlined in Corbella and Stretch (2012) and Salvadori et al. 

(2014). Why was the Most Likely approach chosen in this work? 

Response: We have added the suggested reference to the manuscript. In order to 



``` 

simplify the process of generating the extreme rainfall quantiles at each ARR level, the 

most-likely technique was implemented by choosing a certain quantile pair which has 

the largest joint probability than other combinations at the same level (Salvadori et al., 

2011). And we proposed the algorithm to capture the numeric solution for the bivariate 

quantiles (shown in 332-349). 

 

Line(s) 289, Eq. (17). 

In Eq. (17), why is the modulus used? Obviously ∆R will always be positive. And even 

in this latter case, there is no quantification of any “scale” on which ∆R should be 

evaluated (when is it large? when is it small?). Such a number tells nothing to me.  

Response: we deleted the formula because of adopting the ARR-based quantile 

estimation from hydrologic design. 

 

Line(s) 330–331. 

Authors. As shown in Figure 3, concurrences of univariate and bivariate trends, the 

nonstationarities in rainfall extremes can be detected at several stations... 

Referee. This is simply because you use a 10% critical α-level, entailing a large 

probability of rejecting the Null Hypothesis of non-stationarity. For instance, at a 

standard 5% level, no one of the Univariate and Multivariate MK tests would fail, only 

two (at most three) out of 12 of the Univariate Pettitt tests would fail, and only one out 

of 6 of the Multivariate Pettitt tests would fail. In turn, the conclusions of the Authors 

are definitely questionable: in my opinion, in general, there is no clear statistical 
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evidence of non-stationarity (not to say if the standard 1% level were used, for in this 

case stationarity would be fully supported). Apparently, the Authors manipulate 

statistics according to their convenience, in order to show what they want to show. 

Response: We considered more extreme series from more stations in the study area. 

Because of the insignificant trend denoted by reviewer #1 in the original manuscript, 

we changed the original 95-th percentile threshold for Ps to 0.90. After above 

modification of extreme values, the significant trend and change point at 5% 

significance level could be detected in 3 stations by nonparametric tests. And there is 

no station which can exhibit concurrences of univariate and bivariate trends, the 

nonstationarities according to the results in revised manuscript. The significance level 

of 5% is just the minimum standard. And it is not right and statistical objective to 

manipulate statistics according to our convenience, in order to show what we want to 

show. We have deeply realized the seriousness of the problem and corrected it in revised 

manuscript. 

 

Line(s) 353–354. 

Authors. The location parameter (µ) and scale parameter (σ) are regarded as time 

variant, while the shape parameter κ is time invariant... 

Referee. As above, it is a dream to try and model time-variation of extremes using a 

constant shape parameter: it is the only one that matters in these kind of analyses. In 

addition, why should the other parameters vary according to Eq.s (3)–(5)? Simply 

because the same relations were used in other papers (again, without justification)? This 
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paper has no scientific objective grounds.   

Response: as shown above, we have incorporate the potential trends into shape 

parameter. And K-S based GOF tests were conducted to verify its rationality. 

 

Line(s) 356–358. 

Authors. Despite the exception of Im for station 4, the shape parameter κ for most fitted 

models was in the interval of [-0.3,0.3]... 

Referee. Tables 3 provide little statistical information, for no suitable confidence 

intervals are shown: this may have considerable consequences regarding the 

conclusions drawn by the Authors in later sections. In fact, they did not carry out any 

Monte Carlo analysis, and hence their results do not take into account the estimates’ 

uncertainties (as if the Authors were stating the absolute Truth). To be clear, no 

confidence bands are plotted in later figures. This is not a scientific way of proceeding: 

the Authors must provide plots such as the ones shown in Salvadori et al. (2018), which 

may give an idea of the uncertainties at play (which may be huge, especially when a 

GEV is used, and may completely change the interpretation of the results, as I suspect). 

In addition, as above, some of the fitted values of the shape parameter would imply that 

the corresponding GEV is Upper Bounded, entailing that the corresponding variable 

cannot be an Extreme one. Furthermore, the fact that the range of the shape parameter 

is “in accordance with previous studies” is not significant and relevant at all (also given 

the fact that the range is quite large). 

Response: The parametric bootstrap (Efron and Tibshirani, 1993) method was 



``` 

implemented for parameter estimation and quantile estimation based on ARR level. It 

can provide a confidence bands (90% in this study) of parameter or the quantile 

estimation. 

 

Line(s) 359–360. 

Authors. The best fitted model was selected by performing the minimum DIC criterion 

combined with the Bayes factor (BF) test. 

Referee. Again, you did not show that it is an admissible one! This work has no 

statistical bases. Line(s) 380–382. 

Authors. Table 4(a)-(b) illustrates the results of best fitted copula, based on the 

minimum AICc and maximum logllikelihood value (LL). 

Referee. Again, AIC and LL are not GoF criteria: the chosen models can be non-

admissible! This work has no statistical bases. 

Response: These two comments are replied by taking K-S based GOF tests for 

marginal distribution and A-D with Rosenblatt’s transformation for copula models.  

 

 

Line(s) 433–435. 

Authors. Although the copula model for station 5 was stationary, it was regarded as a 

nonstationary model because of the marginal nonstationary GEVns-2 model for Ps or 

Im, which existed at other stations. 

Referee. This makes no sense. The Authors do not understand the basic fact that the 



``` 

dependence structure is independent of the marginals (as stated by Sklar’s 

representation Theorem): even if the marginals are non-stationary, the copula may be 

stationary. The introduction of non-stationary copulas is arbitrary, without any 

justification: you cannot manipulate the results in this way! 

Response: we have deleted this nonsense statement as suggestion. 

 

Line(s) 440–ff. 

Authors. Figure 5 shows isolines of Kendall return period and AND-based return 

period... 

Referee. Given the uncertainties mentioned above (not considered by the Authors), I 

strongly suspect that the interpretation of the results shown in Figure 5 could be quite 

different if suitable confidence bands were plotted. This work lacks of elementary 

statistical bases. 

Response: The parametric bootstrap (Efron and Tibshirani, 1993) method was 

implemented for parameter estimation and quantile estimation based on ARR level. It 

can provide a confidence bands (90% in this study) of parameter or the quantile 

estimation. 

 

 

Line(s) 537–ff., Sec. 4.6. 

In the light of the objections given above, the “Further discussion” section (4.6) makes 

no sense. 



``` 

Response: we have modified the further discussion after we revised the manuscript as 

reviewer 2 suggested. 

 


