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Abstract. The thermal-based Two-Source Energy Balance (TSEB) model has accurately simulated energy fluxes in a wide 

range of landscapes. However, tree-grass ecosystems (TGE) have notably complex heterogenous vegetation mixtures and 20 

dynamic phenological characteristics presenting clear challenges to earth observation and modeling methods. The TSEB 

model was tested in a TGE ecosystem and an adaptation was proposed to consider spatial and temporal complexity. This was 

based on sensitivity analyses (SA) conducted on both primary remote sensing inputs (local SA) and model parameters 

(global SA). The model was subsequently modified taking into account phenological dynamics (TSEB-2S) and evaluated 

against eddy covariance (EC) flux measurements and lysimeters over a TGE experimental site in central Spain. TSEB-2S 25 

vastly improved over the default TSEB performance decreasing the mean bias and RMSD of LE from 34 and 77 W m
-2

 to 0 

and 59 W m
-2

, respectively during 2015. TSEB-2S was further validated for two other EC towers and for different years 

(2015, 2016 and 2017) obtaining similar error statistics with RMSE of LE ranging between 51 and 63 W m
-2

. The results 

presented here demonstrate the important role that vegetation, through its structure and phenology, has in controlling 

ecosystem level energy fluxes, which become important considerations for the modeling procedure. Additionally, TSEB was 30 

shown to be most sensitive to parameters related to radiation partitioning between canopy and soil, such as characterizing 

vegetation clumping, and parameters related to vegetation structure involved in quantifying the resistance to turbulent flow. 
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List of Acronyms  

Variable Description Units 

    Priestley Taylor coefficient for potential transpiration  - 

b Soil-surface resistance (Rs) constant  - 

  Constant  in soil-surface resistance (Rs)  m s
-1 

K
-1/3

 

C’ Constant in total boundary resistance (Rx) s
1/2 

m
-1

 

   Equivalent drag coefficient of the foliage elements - 

   Fractional cover  - 

   Fraction of vegetation that is green  - 

G Soil heat flux  W m
-2

 

   Canopy height  m 

H Sensible heat flux  W m
-2

 

Hc Sensible heat flux from canopy source W m
-2

 

Hs Sensible heat flux from soil source W m
-2

 

    Beam extinction coefficient - 

LAI Leaf Area Index m
2 
m

-2 

LE Latent heat flux W m
-2

 

LEc Latent heat flux from the canopy source W m
-2

 

LEs Latent heat flux from the soil source W m
-2

 

LElys Latent heat flux from the understory measured by the lysimeter W m
-2

 

LST Radiometric Land Surface Temperature K 

   Average/effective leaf width  m 

NDVI Normalized difference vegetation index - 

   Aerodynamic resistance to heat transfer  s m
-1

 

Rn Net radiation flux W m
-2

 

Rn,c Net radiation flux at canopy source W m
-2

 

Rn,s Net radiation flux at soil source W m
-2

 

   
resistance to heat transfer in the boundary layer above soil 

layer 
s m

-1
 

   the bulk canopy resistance to heat transfer s m
-1

 

    Air temperature in the canopy space K 

   Vegetation canopy temperature K 

   Soil surface temperature K 

   Canopy width to height ratio  - 

     Campbell 1990 leaf inclination distribution function chi 

parameter  
- 

       Bare soil aerodynamic roughness length m 
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1.  Introduction  

Land surface models, mathematical representations of surface-atmospheric exchanges, are important tools to understand 

fluxes of energy and mass, which drive climatic and Earth system processes (Bonan and Doney, 2018). Heterogeneous 

vegetated surface layers, where different structural and physiological characteristics must be integrated in both space and 40 

time, add important complexities to these models, due to their substantial impact on energy budget partitioning. Horizontal 

and vertical complexities of vegetated components, along with temporal and phenological dynamics, present notable 

challenges for Earth observation techniques to model and monitor ecosystem functional properties. Knowledge of these 

processes are crucial to understand the response of ecosystems to climate and environmental changes, and Earth system 

dynamics (Krinner et al., 2005; Richardson et al., 2013). Latent heat flux (LE), the aggregated water flux consisting of 45 

evaporation from the soil and other wet surfaces (LEs) and plant transpiration (LEc), has recently been the subject of 

extensive research (Stoy et al., 2019). It is a key process that interlinks the water and energy budget along with carbon 

cycling through the processes of transpiration and photosynthesis (Jasechko et al., 2013). Surface energy balance models, 

which exploit radiometric land surface temperature (LST) as a key boundary condition, are often used to estimate LE using 

remote sensing data (e.g. Kalma et al., 2008; Kustas and Anderson, 2009). The two-source energy balance (TSEB) model 50 

(Kustas and Norman, 1999; Norman et al., 1995) is such a model that has been widely applied in a variety of landscapes (e.g. 

Andreu et al., 2018; Gonzalez-Dugo et al., 2009; Guzinski et al., 2013; Kustas et al., 2016; Nieto et al., 2019), which 

explicitly separates the temperature and energy exchange considering two distinct layers: vegetation and soil. 

 

Surface energy balance models have different degrees of complexities related to the modeling procedure and 55 

parameterization. Sensitivity analyses (SA) are instrumental to understand model dynamics by providing insight in how 

parameters affect model outputs (Song et al., 2015). Model uncertainty stems from three main sources: 1) errors associated 

with input data, 2) imperfection of model structure, and 3) uncertainty in model´s parameters (Jin et al., 2010; Migliavacca et 

al., 2012). This is particularly important in over-parameterized models that are unnecessarily complex with large 

uncertainties in parameters, which is a well-described issue (Beven, 1989; van Griensven et al., 2006). Different SA methods 60 

exist which are often distinguished between local and global techniques (van Griensven et al., 2006). Local methods 

compute the main response (1
st
 order) of the model with respect to changes in single parameter values while keeping other 

parameters constant (i.e. one-at-a-time). Global methods evaluate the whole parameter space simultaneously and, thus, 

compute both the main effect (1
st
 order) and the interactions between parameters (2

nd
 and higher orders) to obtain the total 

parameter contribution (total order) to variability in model output. Local SA techniques are unsuitable for complex non-65 

linear models since there are often strong and significant parameter interactions (Pianosi et al., 2017; Rosolem et al., 2012). 

While other studies have investigated the sensitivity of specific parameters or inputs within TSEB (e.g. Alfieri et al., 2019; 

Andreu et al., 2018; Gan and Gao, 2015; Li et al., 2005) or performed a SA to optimize TSEB (e.g. Diarra et al., 2017), a 

comprehensive SA for TSEB has not been discussed in the literature, especially for complex ecosystems, such as tree-grass 
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ecosystems (TGE), where surface heterogeneity may potentially lead to increases in parameterization and complexities.  70 

 

TSEB was originally developed for homogeneous cover types, however, adaptations to the model framework have been 

implemented to better depict partial canopy cover. These include the addition of vegetation clumping index for radiation 

interception and transmission (Kustas and Norman, 1999) (section 2.2.1) and a more physically based within-canopy wind 

attenuation scheme, incorporating the effect of canopy structure, as proposed by Massman et al. (2017) (e.g. Nieto et al., 75 

2019). However, as Andreu et al. (2018) demonstrated, further adaptations to model structure and parameters may be 

necessary to simulate fluxes over complex land surfaces such as TGEs. Since TSEB treats the vegetated layer as a single ´big 

leaf’, the parameterization and application of this model poses greater difficulty in a TGE landscape where multiple, 

different and structurally complex vegetation covers are present. Additionally, in these ecosystems, the degree in which each 

type of vegetation (i.e. tree and grass) influence land-surface interactions changes throughout the year depending on their 80 

differentiated phenological stages (Luo et al., 2018). During the growing season, trees and the grass understory, along with 

underlying soil, all interact to contribute to the radiative transfer and turbulent exchanges (Baldocchi et al., 2004). However, 

during the dry summer periods, the grass layer senesces due to meteorological conditions (i.e. water availability, air 

temperature, vapor pressure deficit), converting the system into (nearly) bare, rather rough, soil with scattered trees, 

substantially changing land-atmospheric dynamics (Perez-Priego et al., 2018). To account for these spatial and temporal 85 

complexities, TSEB was adapted to consider different modeling periods assuming a dominant vegetation type is present for 

different seasonal periods. The model simulations were divided considering the two major phenological periods, based on 

when the grass layer is active during the growing season and not active (i.e. senesced) during the dry summer period.   

 

The main objective of this work is to assess whether this relatively simple adaptation to TSEB, by considering two distinct 90 

modeling periods throughout the year and avoiding additional parameters or changes to the basic model structure, was able 

to reproduce reliable estimations of turbulent energy fluxes for a spatially and temporally complex TGE.  To achieve this and 

to better understand model dynamics, SAs were performed on both model parameters and inputs to quantify and pinpoint the 

different sources of uncertainties within the modeling procedure. The Sobol’ global SA (Saltelli et al., 2010; Sobol′, 2001) 

method was used on the main parameters within TSEB combined with a local SA of the two main remote sensing based 95 

inputs: LST and leaf area index (LAI). The modified model results were evaluated against three independent eddy 

covariance (EC) systems, including partitioned LE (Perez-Priego et al., 2018), and lysimeter measurements located within 

the Majadas de Tiétar experimental site (Perez-Priego et al., 2017). 
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2.  Materials and Methods 100 

2.1 Study Site 

The TSEB model was applied to estimate energy fluxes in a TGE located in Majadas de Tiétar (39°56′24.68″N, 

5°46′28.70″W) in central Spain (Casals et al., 2009; El-Madany et al., 2018). TGE ecosystems are prevalent, covering 

nearly 15% of the total Earth surface (Friedl et al., 2010), and are notably valuable in both an economic (i.e. livestock 

grazing) and ecological (i.e. biodiversity and carbon sequestration) sense. Majadas de Tiétar is a well-established 105 

experimental site where scattered oak trees, mostly Holm Oak (Quercus ilex L.), mix with an herbaceous vegetation 

understory or grass layer. Holm Oak trees cover roughly 20% of the total land surface at the study site and stand at a mean 

height of 8 m (El-Madany et al., 2018). The site is a managed semi-natural agroforest (Spanish ‘dehesa’) with low-intensity 

grazing from livestock (< 0.3 cows ha
-1

). It lies within a continental Mediterranean climate region with mean annual 

temperature of 16.7 ºC and annual precipitation of about 650 mm (with significant inter-annual variability) (Luo et al., 110 

2018). The area is characterized by very hot and dry summer periods (June to September), with grass rapidly drying and 

senescing during these periods. The average grass LAI ranges roughly between 0.3 – 3.0 m
2
m

-2
 throughout the year and can 

present high variability in spring period (between 0.5 - 2.5 m
2
m

-2
) due to its spatial heterogeneity (El-Madany et al., 2018; 

Migliavacca et al., 2017). Trees have developed extensive root systems enabling them to survive during long drought periods 

and, thus, have less temporal variability (mean tree LAI ranging between 1.39 - 1.75 m
2 

m
-2

). As such, the distinct survival 115 

strategies between grass and tree species allow for coexistence. Three EC towers are present within this experimental site 

and provided input data for this study. They are located relatively close to each other (< 650 m, Fig. 1) with similar 

properties within their footprint, but belong to a large scale manipulation experiment, where nitrogen was added to the 

northern tower (NT), nitrogen and phosphorus were added to the southern tower (NPT) and the central tower kept as a 

control (CT) (El-Madany et al., 2018.; Luo et al., 2018). This nutrient manipulation experiment was shown to have caused 120 

differences in surface biophysical properties and energy partitioning between the three tower footprints (El-Madany et al., 

2018; El-Madany et al., in review), making it interesting to evaluate the model runs using these different towers, which have 

a certain degree of spatial variability in ecosystem functioning. 
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Figure 1. Majadas experimental site and location of the three EC towers indicated by red points, with respective footprints (60% iso-lines 125 
for the period of March 2014 until January 2017 and estimated according to Kljun et al.,2015) in early spring (lower left) and summer 

(lower right). Selected MODIS 500m pixels for LAI estimations (section 2.3.2) are highlighted in orange. The upper left panel reference 

map was created using ArcMap 10.3 online basemaps (ESRI. ´National Geographic’, 
http://www.arcgis.com/home/item.html?id=30e5fe3149c34df1ba922e6f5bbf808f, 13 December 2011) 

2.2 TSEB Model Overview 130 

The TSEB model was first proposed in Norman et al. (1995), with important adjustments described in Kustas and Norman 

(1999). Its main inputs are LST, derived from thermal infrared (TIR) radiation, vegetation structural properties (e.g LAI, 

canopy height) and meteorological forcing (irradiance, air temperature and wind speed). The principle source of uncertainty 

within TSEB lies in the estimation of the sensible heat flux (H), which is calculated through the heat transport equation (eq. 

1).  135 

 

   
          

  
 

(1) 

where H is sensible heat flux (W m
-2

);     is the volumetric heat capacity of air (J m
-3 

K
-1

);    is the aerodynamic 

temperature of the surface (K);    is the air temperature at a reference/measurement height (K); and    is the aerodynamic 

resistance to heat transport (s m
-1

). The heat transport equation is satisfied when using aerodynamic surface temperature (i.e. 140 

surface temperature at the canopy source-sink height), however, LST obtained from TIR remote sensing (i.e. skin 

radiometric surface temperature) can differ up to several degrees compared to the aerodynamic surface temperature (Norman 

et al., 1995), and their relationship is not well established (i.e. Colaizzi et al., 2004). TSEB, thus, tackles this by assuming 

that the total blackbody thermal radiance that is emitted by the bulk surface is weighted by the fraction of vegetation 

http://www.arcgis.com/home/item.html?id=30e5fe3149c34df1ba922e6f5bbf808f
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observed by the sensor and the emission of both soil and vegetation surfaces, as expressed in eq. 2 taken from Norman et al. 145 

(1995): 

              
            

  
   
   

(2) 

where      is the fraction of vegetation observed by the TIR sensor at an angle   and is mainly a function of LAI;    is the 

vegetation canopy temperature (K); and    is the soil surface temperature (K). Using this scheme, TSEB avoids the use of an 

empirical method to link radiometric and aerodynamic surface temperature, such as the use of excess resistance in SEBS (Su, 150 

2002) or the use of hot and cold end member pixels as in METRIC (Allen et al., 2007) or SEBAL (Bastiaanssen et al., 1998). 

Using this two-layer approach, the energy balance is formulated in TSEB for each of the layers separately as follows:  

 

            

              
(3) 

where    is the net radiation (W m
-2

); LE is latent heat flux (W m
-2

);   is the soil heat flux (W m
-2

); and subscript   and   155 

refer to soil and vegetation canopy layers, respectively. Note that horizontal heat advection, canopy heat storage as well as 

the energy used for CO2 fixation are neglected in eq.3. Radiative transfer and absorption through the canopy (     and      ) 

are simulated through an exponential radiation extinction function as described in chapter 15 of Campbell and Norman 

(1998), considering spectral differences in shortwave and longwave radiation and direct and diffuse radiation as incorporated 

in Kustas and Norman (1999). H is derived using an in ‘series’ resistance network (Norman et al., 1995) (Fig. 2), and 160 

applying eq. 4 to 6, which allows for heat turbulent interchange between the canopy and soil layers:   

 

 

Figure 2. TSEB Sensible Heat model scheme (adapted from Kustas and Anderson, 2009) 
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 165 

    
           

  
 

(4) 

    
           

  
 

(5) 

         
           

  
 

(6) 

where Tac is the air temperature in the canopy space (K) and is equivalent to the aerodynamic temperature (T0);    is the 

resistance to heat transfer in the boundary layer above soil layer (s m
-1

);    is the bulk canopy resistance to heat transfer (s 170 

m
-1

);    is the aerodynamic resistance to heat transfer based on the Monin-Obukhov similarity theory. Refer to appendix A 

of Norman et al. (1995) for details on the series resistance scheme.  

Since eq. 2 has two unknowns (Tc and Ts), the canopy layer is assumed, as a first estimate, to be initially transpiring at a 

potential rate (    ) using, in this case, the Priestley-Taylor formulation: 

           
 

   
      

(7) 175 

where      is the initial canopy transpiration estimate (W m
-2

);     is the Priestley-Taylor coefficient (default is 1.26), 

defined in this case only for the canopy component (Kustas and Anderson, 2009) (-);    is the fraction of vegetation that is 

green and hence actively transpiring (-);    is the slope of the saturation vapor pressure curve at air temperature    (kPa K
-1

); 

and   is the psychrometric constant (kPa K
-1

). This initial assumption, where the canopy is transpiring without water stress, 

permits to solve all the systems of equations presented above (eq. 2 to 7). However, if the vegetation is stressed, the 180 

Priestley-Taylor formulation will overestimate the transpiration of the canopy, which, in order to conserve the total surface 

temperature and energy balance in eqs. 2 and 3, will result in unrealistic soil condensation (i.e. negative fluxes). As it is 

assumed that condensation does not occur during daytime convective conditions, an iteration procedure is applied that 

reduces     until realistic soil fluxes area achieved (i.e.       ). A more complete discussion on conditions that reduces 

    is given in Anderson et al. (2005) and Li et al. (2005). For more implementation details, the reader is referred to the 185 

source code (https://github.com/hectornieto/pyTSEB) and Norman et al. (1995).     

2.2.1 Radiation transmission in sparse vegetation  

The structure and distribution of foliage in the vegetative layer has a significant impact on the dynamics of radiation 

interception and transmission through the canopy (Anderson et al., 2005; García et al., 2015; Kustas and Norman, 1999). 

https://github.com/hectornieto/pyTSEB
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This in turn has a very important implication for radiometric temperature partitioning between the soil and vegetation 190 

components and their resulting contribution to heat fluxes (Anderson et al., 2005). The original TSEB radiative transfer 

equations assume a randomly distributed homogenous (non-clumped) canopy (Norman et al., 1995). However, sparse 

vegetation is generally clumped and tends to intercept less radiation for the same LAI compared to vegetation randomly 

dispersed over the surface (Campbell and Norman, 1998; Kustas and Norman, 1999). As such, the clumping index (Ω) 

quantifies the spatial distribution of foliage to account for non-randomness in vegetated structures. LAI is multiplied by the 195 

clumping factor to obtain effective LAI (ΩLAI). As incorporated in Kustas and Norman (1999), TSEB estimates Ω as a 

function of the difference between the canopy gap fraction compared to a homogenous case using eq. 8 (section 2 in Kustas 

and Norman, 1999) and estimating the beam extinction coefficient assuming an ellipsoidal leaf angle distribution (LAD) 

with eq. 9 (section 15.2 in Campbell and Norman, 1998).  

 200 

      
                        

    
 

(8) 

     
     

         

                            
 

(9) 

Where Ω    is the clumping index when the vegetation canopy is viewed at nadir (-);     is the beam extinction coefficient 

(-) based on a ellipsoidal LAD (Campbell and Norman, 1998);    is the vegetation fractional cover (-); F is the local LAI 

(LAI/  ); and      is the leaf inclination distribution function chi parameter (-) (Campbell and Norman, 1998). Ω is also 205 

dependent on the solar zenith angle (  ) and is estimated using eq. 10 as described in section 15.13 of Campbell and Norman 

(1998). 

       
    

                         
  

 

(10) 

where            
 

  
); and    is the vegetation´s width to height ratio (-).  

2.2.2 Resistances within and below canopy 210 

 The semi-empirical derivations of    and   , as introduced in Norman et al. (1995) and Kustas and Norman (1999), are 

dependent on wind speeds below and within the vegetative canopy, respectively (eq. 11-12).  

    
 

        
       

 

(11) 
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(12) 

where    is the wind speed just above the surface where the impact of soil roughness is minimal (i.e. .        ) (ms
-1

); 215 

        is the wind speed within the canopy-air interspace at the height of momentum source/sink (ms
-1

);    is the effective 

leaf width size (m); and c (m s
-1

 K
-1/3

), b (-) and C’ (s
1/2

 m
-1

) are coefficients taken from Kustas and Norman (1999) and 

Norman et al. (1995), based on the works of Sauer and Norman (1995), Kondo and Ishida (1997) and McNaughton and Van 

Den Hurk (1995)  (default values are 0.0025 m s
-1

 K
-1/3

, 0.012 and 90 s
1/2

 m
-1

  respectively).    and         in eq. 11 and 12 

are both derived from an observed wind speed above the canopy that is extrapolated through and below the canopy based on 220 

the exponential wind attenuation law (Goudriaan, 1977). TSEB determines the two key roughness parameters, the zero-plane 

displacement height (d0) and the aerodynamic roughness length for momentum transfer (   ), from the vegetation structure. 

When considering the grass canopy layer, the traditional fixed ratio to canopy height method is used to estimate d0 and 

    (Campbell and Norman, 1998). In the case of the tree canopy layer, a different approach is used, which additionally 

considers the canopy shape and density´s effect on the roughness parameters.  This study follows the procedure described 225 

in Schaudt and Dickinson (2000), which stems from the work of  Raupach (1994) and Lindroth (1993), and is generally 

viewed as more suitable for tall wooded vegetation. These methods do not apply corrections associated to the roughness 

sub-layer (e.g. Weligepolage et al., 2012). However, Alfieri et al (2019) found that the TSEB modeled fluxes were largely 

insensitive to differences in estimated d0 and     obtained from various methods.  

2.3 Data 230 

2.3.1 Eddy covariance and bio-meteorological measurements  

The three EC towers (CT - FLUXNET identifier ES-LMa, NT – FLUXNET ID ES-LM1, and NPT – FLUXNET ID ES-

LM2), simultaneously operating within the Majadas study site, provided all necessary inputs to run TSEB (table 1), except 

for continuous vegetation LAI estimates (section 2.3.2). H and LE estimations from the EC system served to benchmark 

model performance. Details on the data processing are found in El-Madany et al. (2018). Data were obtained between the 235 

period of 2015-01-01 and 2017-12-31. Since TSEB closes the energy balance by definition, energy balance closure of the EC 

flux measurements was ensured by allocating the residuals to the observed LE, assuming that errors in LE are larger than H 

due to issues related to the instrumentation (Foken et al., 2011), as in previous studies (Guzinski et al. 2014 and Kustas et al. 

2012). Measurements from 2015 of the CT tower were selected as the ‘main’ simulation site/period. It was used to perform 

the SA (section 2.4.3) and to adapt the model for seasonality (section 2.4.4). Other towers (NT and NPT) and years (2016 240 

and 2017) provided independent evaluations of model performance (section 2.4.5). 

While TSEB has used different methods to estimate ground heat flux (G) (Norman et al., 1995; Santanello and Friedl, 2003), 

this study directly forced in situ G measurements as a model input to limit uncertainty and noise in turbulent flux estimations 
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associated with errors in G. The weighted average of 8 soil heat flux plates represented G at the ecosystem level. They were 

located both in open grass and below tree canopy and weighted to consider shadow effects throughout the day.  Note that 245 

corrections related to heat storage above the soil heat flux plates were not applied and, as such, G is likely slightly 

underestimated. The radiometric LST was estimated using longwave radiation measurements from the 4-component 

radiometer CNR4 (Kipp & Zonen, Delft, Netherlands) as follows: 

 

      
                 

      
 

 
  

 

                         

(13) 250 

where      and     are upwelling and downwelling longwave radiance;   is the Stephan-Boltzman constant;       is the 

surface emissivity; and    is the vegetation fractional cover. The values of 0.99 and 0.94 in eq. 13 correspond to the 

broadband emissivity for vegetation and bare soil respectively (Sobrino et al., 2005).  

 

 255 

 

 

 

 

 260 

 

 

 

 

 265 

 

 

 

 

 270 
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Table 1. Data used to parameterize and evaluate the TSEB model 

Parameter/Variable Description Source Purpose 

LST Land surface temperature (K) estimated 

from longwave radiation using eq.13 
4-component radiometer (CNR4, Kipp & Zonen, Delft, Netherlands) Model input 

LAI Leaf area index (m2/m2) based on NDVI 

(appendix A) 

MODIS/Terra and Aqua Nadir BRDF-adjusted Reflectance Daily L3 

500m v006 (MCD43A4) product 
Model input 

Ta Air temperature (K) measured at 15m Hygro.Thermo transmitter Input forcing 

RH Relative humidity (%) measured at 15m Hygro.Thermo transmitter Input forcing 

u Wind speed (m/s) measured at 15m Sonic anemometer (Gill R3-50, Lymington UK) Input forcing 

P Atmospheric pressure (mb) Barometric pressure sensor Input forcing 

Sdn Incoming shortwave irradiance (W m-2)  4-component radiometer (CNR4, Kipp & Zonen, Delft, Netherlands) Input forcing 

G Soil heat flux (W m-2) Soil heat flux plates Input forcing 

Lin Incoming longwave irradiance (W m-2)  4-component radiometer (CNR4, Kipp & Zonen, Delft, Netherlands) 

Estimate LST and 

input forcing 

Lout Outgoing longwave irradiance (W m-2)  4-component radiometer (CNR4, Kipp & Zonen, Delft, Netherlands) Estimate LST 

     
Priestley Taylor coefficient for canopy 

potential transpiration (-) Default value (Norman et al., 1995; Kustas and Norman, 1999) Model parameter 

   
Fraction of vegetation that is green (-) Study site information (El-Madany et al., 2018) Model parameter 

   Fractional cover (-) Study site information (El-Madany et al., 2018) Model parameter 

    Canopy width to height ratio (-) Default value  (Campbell and Norman, 1998) Model parameter 

      Campbell 1990 leaf inclination distribution 

function chi parameter (-) Default value  (Campbell and Norman, 1998) Model parameter 

    Canopy height (m) Study site information (El-Madany et al., 2018) 
Model parameter 

        
Bare soil aerodynamic roughness length 

(m) Default value (Norman et al., 1995) Model parameter 

   
Average/effective leaf width (m) Default value (Norman et al., 1995) Model parameter 

b  Soil-surface resistance (Rs) constant (-) 
Default value (Kustas and Norman, 1999; Sauer and Norman, 1995) Model parameter 

  Soil-surface resistance (Rs) constant  (m s-

1 K-1/3) Default value (Kondo and Ishida, 1997; Kustas and Norman, 1999) Model parameter 

C’  

Constant in total boundary resistance (Rx) 

(s1/2 m-1) 

Default value (McNaughton and Van Den Hurk, 1995; Kustas and 

Norman, 1999) Model parameter 

 

H Sensible heat flux (W m-2) 3D sonic anemometer (Gill R3-50 , Lymington UK) Model evaluation 

LE Latent heat flux (W m-2) 
IRGA (Li-7200, Licor, Lincoln Nebraska, USA) and 3D sonic 

anemometer (Gill R3-50, Lymington UK) 
Model evaluation 

LElys 
Latent heat flux from the understory 

measured by lysimeters (W m-2) 
Weighing-lysimeters (Perez-Priego et al., 2017) Model evaluation 

LEc,PP 

 

Canopy transpiration flux estimated (W m-

2) as in Perez-Priego et al. 2018 
Perez-Priego et al., 2018 Model evaluation 
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 275 

2.3.2 Vegetation biophysical measurements   

In situ grass LAI measurements were acquired in the context of the FLUXPEC project 

(http://www.lineas.cchs.csic.es/fluxpec/) at eleven plots (25mx25m) randomly placed around the CT  in nineteen field 

campaigns between 2013-10-31 and 2016-11-16 (Mendiguren et al., 2015). Destructive samples were collected in two 

25cmx25cm quadrants within each plot and LAI was derived using gravitational methods, where green and non-green 280 

elements were separated to compute both total and green LAI (and hence   ). Time series of reflectance factors from the 

MODIS/Terra and Aqua Nadir BRDF-adjusted Reflectance Daily L3 500m v006 (MCD43A4) product were acquired for 

pixels centered in each of the three towers (Fig. 1). The 500m by 500m pixel size was deemed adequate to characterize the 

tower footprint (Pacheco-Labrador et al., 2017). The normalized difference vegetation index (NDVI) was derived using band 

1 (red: 620nm-670nm) and band 2 (NIR: 841nm-876nm) as follows: 285 

      
                      

                      
 

(14) 

An empirical relationship between NDVI and in-situ destructive grass LAI measurements was developed specifically for the 

Majadas experimental site (Appendix A, Fig.A1). In order to obtain the ecosystem LAI adjusted for the tree canopy effect 

within the tower footprint, in-situ tree LAI measurements were incorporated to achieve a weighted average between tree 

(20%) and grass (80%). The average tree LAI acquired using the LAI-2200 plant canopy analyzer (LAI-2200) (LICOR 290 

Bioscience USA, 2011) during five field campaigns at different seasonal periods between 2017-2018 was used as a reference 

year. Local tree LAI ranges between 1.39 and 1.75 m
2 

m
-2

 (about 0.3 m
2 

m
-2

 effective/landscape LAI) and has low inter-

annual variability (Luo et al., 2018). Linear interpolation between sampling dates was performed to obtain a continuous daily 

time series. Refer to figure 3 for the ecosystem LAI time series for the different towers and years and to figure 4 for grass, 

tree and ecosystem LAI time series used for the main modeling site/period (i.e. 2015 at CT tower).  295 
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Figure 3 Annual time series of half-hourly LST (red), daily mean LST (black) and ecosystem LAI for CT (green), NT (purple) and NPT 

(blue) for years 2015, 2016 and 2017. Vertical dashed lines indicate transition dates used for TSEB-2S (section 2.4.4) 

 

Figure 4. Grass, tree and ecosystem LAI time series for at the CT tower for 2015. Note that tree LAI shown here refers to the effective 300 
(landscape) LAI meaning that the tree based measurement was weighted by its fractional cover (i.e. 0.2)   
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2.4 Model Simulations and Evaluation 

Prior to conducting the simulations with TSEB, global and local SAs were performed on the main parameters and inputs, 

respectively. Both SAs were conducted using the default TSEB model (section 2.4.1). In addition, two end member 305 

simulations, where either a pure grassland or broadleaf forest was assumed for the entire year, were performed to better 

understand the effect of the vegetation canopy on simulated fluxes for extreme cases (section 2.4.3). The model was then 

adapted considering two distinct seasonal periods, each having a dominating vegetation layer (section 2.4.4). Parameters 

found to have large influence through the SA (section 2.4.2) were adapted for each period in order to characterize the 

assumed prominent vegetation (i.e. either as tree or grass). All simulations were evaluated for daytime fluxes (i.e. when Sdn > 310 

50 Wm
-2

) since TSEB is designed to model fluxes for daytime conditions with remote sensing data.  

2.4.1 Default TSEB model configuration 

In this default configuration (hereafter as TSEB-DF), the vegetated layer was parameterized attempting to depict the mix 

between tree and grass observed over tower footprint, where the vegetation cover was dominated by grass but the turbulent 

resistances were assumed to be largely affected by the sparse tree layer (El-Madany et al., 2018). As such, ecosystem LAI 315 

(weighted average of grass and tree LAI, Fig. 3 and 4) was used as input and vegetation resistance and roughness were 

configured using the weighted average of grass and tree canopy height (   = 0.8*0.5 m+0.2*8 m= 2m). Table 2 summarizes 

the parameter values used for this default model configuration. The green fraction (    was set to 0.7 being roughly the 

average value observed from grass field measurements. The model simulations were performed at the sub-hourly (30-mins) 

time step for 2015 over the CT EC footprint and benchmarked against EC derived LE and H.  320 

Table 2. Parameter values of the TSEB-DF model configuration 

Parameters TSEB-DF Source 

    (-) 1.26 Norman et al., 1995; Kustas and Norman, 1999 

   (-) 
0.7 Study site information (El-Madany et al., 2018) 

   (-) 1 Study site information (El-Madany et al., 2018) 

   (-) 1 Campbell and Norman, 1998 

     (-) 
1 Campbell and Norman, 1998 

   (m) 
2 Study site information (El-Madany et al., 2018) 

       (m) 
0.01 Norman et al., 1995 

   (m) 
0.01 Norman et al., 1995 

b (-) 
0.012 Kustas and Norman, 1999; Sauer and Norman, 1995 

  (m s-1 K-1/3) 
0.0025 Kondo and Ishida, 1997; Kustas and Norman, 1999 

C’ (s1/2 m-1) 90 McNaughton and Van Den Hurk, 1995; Kustas and Norman, 1999 
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2.4.2 Sensitivity Analysis 

Sobol´ Global Parameter Sensitivity Analysis 

Variance-based SA methods are now more prominently used (Rosolem et al., 2012). They decompose the total variance 

between simulated and observed data into various parts determining the contribution of the different parameters and their 325 

combined interactions on total output variance. Multiple model simulations are required with different parameter sets to 

quantify the model output variance in regard to the variation in the parameter space.  

The Sobol’ SA method was used as it is able to compute the 1
st
, 2

nd
 and total order sensitivity indices. The main 

disadvantage of the Sobol’ method is the high computational cost, where many simulations are required to obtain robust 

results within a sufficient confidence level. To apply this methodology, a selection of model parameters and their respective 330 

bounds were configured. Based on this, parameters sets for n simulations were generated using the Sobol sequence (Saltelli 

et al., 2010; Sobol′, 2001), a quasi-random method with quasi-Monte-Carlo integration, which typically samples bounded 

space more uniformly than completely random sequences (Zhang et al., 2015). 

 

                       
(15) 335 

where   is an indicator of the model performance and              } is the model parameter set which controls the model 

behavior and, thus, its performance,  . The Sobol’ approach decomposes the variance observed in   through the variance in 

all   factors by separating parameters into terms of increasing dimensionality, with each successive dimension representing 

greater interaction of parameters, represented as: 

           
 

      
    

           

(16) 340 

where        is the total output variance;    is the portion of variance contributed by parameter    (also known as the first 

order variance or main effect); and     is the portion of variance attributed through the interaction between    and    and so 

on. The formula of eq.16 holds if all the parameter factors are independent (Saltelli et al., 2010), which is the case for this 

study. Parameter values do not correlate and are independently assigned over a uniform distribution between the specified 

bounds (table 3).  345 

The first-order sensitivity (Si), second-order sensitivity (Sij) and total order sensitivity (STi) indices are calculated using 

equations 17 to 19 as:  
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(17) 

     
   

      
 

(18) 

      
   

      
 

(19) 350 

where      is the average variance depicted when all parameters except for    vary (i.e.    is kept fixed);     represents the 

contribution of both the direct (1
st
 order) and indirect (sum of 2

nd
 order) effects of    on the total variance,      .   

Model variance was calculated based on H since LE is computed through the residual of the energy balance in TSEB, where 

errors in H are transposed into LE. Root-Mean-Square Deviation (RMSD) was used as the objective function to quantify 

model output variance for the entire simulation year, where tower-based EC H provided the observed time series.  355 

       
                           

 

 
 

(20) 

where              is modeled H at a 30 minutes time step;           is the observed EC H; and N is the total number of 

observations used. The SA was undertaken with TSEB-DF, considering the 11 parameters within TSEB, which are used in 

the sub-modules of radiation transfer between vegetation and soil, roughness and resistance scheme, and the initial canopy 

transpiration estimate from the Priestly-Taylor formulation; and their respective bounds were based on literature or the 360 

physical limits of the parameter in question (table 3). A total of 45,500 simulations were used for this SA. The Python 

package SALib (Sensitivity Analysis Library in Python) (Herman and Usher, 2017) was integrated with the Python 

implementation of TSEB (pyTSEB, https://github.com/hectornieto/pyTSEB) to perform these analyses. 

 

 365 

 

 

 

 

https://github.com/hectornieto/pyTSEB
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Table 3. Parameters bounds for the Sobol’ global SA 370 

Parameter 
Lower 

bound 

Upper 

bound 
Sub module within TSEB         Reference 

    1.26 2 Initial canopy transpiration estimate  Kustas and Norman, 1999 

   0.01 1 Initial canopy transpiration estimate   

   0.1 1 Radiation transfer through canopy   

   0.5 3 Radiation transfer through canopy   

     0.5 3 Radiation transfer through canopy  Campbell and Norman, 1998 

   0.1 20 Aerodynamic resistances (Ra, Rs, Rx)   

       0.005 0.2 Aerodynamic resistances (Rs)  Norman et al., 1995 

   0.005 0.1 Aerodynamic resistances (Rs, Rx)   

  0.012 0.087 Aerodynamic resistances (Rs)  Sauer and Norman, 1995 

  0.0011 0.0038 Aerodynamic resistances (Rs)  Kondo and Ishida, 1997 

C‘ 50 150 Aerodynamic resistances (Rx)  McNaughton and Van Den Hurk, 1995 

 

Input Local Sensitivity Analysis 

Errors associated to the remote sensing derived input data (i.e. LST and LAI) are another important source to the total output 

uncertainty. Since input data is fluctuating at every time step, a different method was needed compared to the method used 

for the static parameters described above. Random white noise, mimicking potential errors, over a uniform distribution of +-375 

3K and +- 0.4 m
2
 m

-2 
were added to the ‘observed’ LST and LAI, respectively. The range of errors in LST was chosen to fit 

within the typical uncertainties associated with remote sensing based LST retrievals over vegetation (e.g. Sobrino et al., 

2006). The range in LAI perturbation was based on the errors associated with the LAI empirical model used in this study 

(appendix A). The Sensitivity indices (SI) were then computed based on the partial derivative of the output result with 

respect to change in input caused by the implemented random noise, using eq. 21 adapted from van Griensven et al. (2006). 380 

    

                            

             

   
  

 

(21) 

where M is model output;   refers to the different model inputs;     refers to the pertubation of the input caused by artificial 

noise. The SI is based on the change observed for modeled H.  

The input SA was implemented for 365 days (during 2015) with a 30-min time step. Since TSEB incorporates LAI at the 

daily time scale, the SI is derived based on the daily aggregated absolute change in H in relation to the absolute change in 385 
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LAI for that day.  For the LST analysis, the effect of a deviation in LST on the resulting H will likely be impacted by the 

hour in which the deviation occurs (i.e. a perturbation in LST during morning time will likely impact H differently compared 

to a midday perturbation). To normalize the time of perturbation, for each simulation day, only the mean net perturbation of 

LST during midday (between 11:00 and 13:00 UTC) was used to analyze the net effect on H during that same time period. 

Hence, SIs for both LAI and LST were derived for each daily time step using the absolute change in inputs with the resulting 390 

absolute change in output (i.e. H).  

2.4.3 End Member Simulations 

In addition to the TSEB-DF simulations, two ‘end member’ scenarios were conducted as limiting case studies. The first case 

assumes a pure grassland, ignoring the tree components, for the entire year (hereafter as TSEBgrass). The second case ignores 

the grass layer, simulating the vegetated component as a scattered evergreen broadleaf forest (hereafter as TSEB tree). The 395 

estimation of the roughness characteristics differed for each scenario as described in section 2.2.2 and the most influential 

parameters (as derived from the SA) were changed to characterize the assumed dominant vegetation. In addition, instead of 

ecosystem LAI, each end member scenario uses the LAI corresponding to the assumed vegetation layer (i.e. grass or tree 

LAI as shown in Fig. 4). These scenarios were performed on the CT tower during 2015. These type of ‘end member’ 

configurations are typical for models applied at the global scale, which often assign model parameter values based on 400 

specific or assumed land/vegetation type, where errors in land classifications, which are common for TGEs, causes for a less 

accurate parameterization/depiction of surface conditions (e.g. Jung et al., 2006) 

2.4.4 Two-Season modeling approach 

We propose here an adaptation of the TSEB-DF by using a two-season modeling approach (hereafter as TSEB-2S) that 

divides the annual simulation into two main phenological periods:  a grass dominated growing period (i.e. grass-soil system) 405 

and a tree dominated summer/dry period (i.e. tree-soil system). This modeling scheme attempts to depict the considerable 

changes observed within the different seasonal periods due to phenology. Phenological processes are highly dynamic in this 

ecosystem (Luo et al., 2018) and these changes in vegetation cover alter the turbulent conditions (i.e. roughness), radiation 

transmission and, hence, the surface energy balance (Baldocchi et al., 2004). During the summer period, the understory 

transforms into a dry and rough layer with minimal transpiration from vegetation. Therefore, the TSEB-2S separates the 410 

simulation period for these two major conditions observed: 1) the grass is active and transpiring (growing season) and 2) the 

grass species are senesced and not transpiring (summer). The seasonal transition dates were estimated using an asymmetric 

gaussian filter over the MODIS-NDVI time series, where the dry period was assumed to begin when vegetation (i.e. NDVI) 

begins to decay (downward inflection point) and the dry period ends when vegetation (i.e. NDVI) begins to re-green (upward 

inflection point). For instance, for the simulation year of 2015, the dry period begins on May 13
th

 and ends on October 24
th 

415 

(refer to Fig. 3 for all transitions dates used).  
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In TSEB-2S, the dry period was parameterized as a tree-soil system, assuming the grass has senesced and the understory is a 

rough soil. As such, the model was parameterized as the TSEBtree configuration and using tree LAI as input (Fig. 4). By 

contrast, the growing period was parameterized ignoring the tree canopy and assuming a grass-soil system using the 

TSEBgrass parameterization for this period and grass LAI (Fig. 4). This assumption was supported by the evidence that the 420 

understory layer dominates LE in this site (Perez-Priego et al., 2018, 2017).  

2.4.5 Model evaluation  

TSEB-2S was evaluated using independent model simulations for different spatial (three tower sites) and temporal (three 

different years) characteristics. To validate and benchmark model performance, the seasonally adapted TSEB-2S was 

independently tested on three EC towers within the study site (CT, NT and NPT). The towers are located relatively close to 425 

each other but have gone through a nutrient manipulation experiment, which was shown to cause differences in surface 

biophysical properties and energy partitioning between the three tower footprints (El-Madany et al., 2018; El-Madany et al., 

in review). The model was also benchmarked for different years (2015, 2016 and 2017) with different intra-annual dynamics 

(Fig. 3). Model performance was evaluated against the observed EC tower measurements in question and quantified with 

RMSD (eq. 20), mean bias (eq.22) and the Pearson´s correlation coefficient (r).   430 

      
                           

 
 

(22) 

Additionally, an evaluation of the modelled LE partitioning, between LEc and LEs, was performed. Since TSEB-2S makes 

the assumption of a different and unique vegetation structure and cover for different seasonal periods, it was interesting to 

evaluate if the model can also obtain reliable estimates of the LE partitioning along with the bulk fluxes. Modelled LEs was 

evaluated against independent lysimeter LE measurements (LElys) of the understory during the dry summer periods at CT, 435 

when the grass is senesced and, thus, LElys is assumed to be equivalent to soil evaporation (i.e. LEs). For a detailed 

description of the lysimeter set-up in the Majadas experimental site, refer to Perez-Priego et al. (2017). In addition, the 

TSEB-2S simulated LEc was benchmarked against that derived from a physiologically-based water flux partitioning 

approach, which allows for the separation of LE measured by EC into transpiration and evaporation components. The 

method was developed and validated in the same study site (Perez-Priego et al., 2018).  440 
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3.  Results 

3.1 TSEB-DF sensitivity analysis  

3.1.1 Sobol´ parameter SA  

The parameter global SA showed that    had the largest impact on model results, both as the main effect (Si) and through its 

interactions with other parameters (ST) (Fig. 5). In general, parameters related to vegetated structure (  ) and cover (   445 

and   ) demonstrated the largest sensitivity. Notably, many parameters had low first order sensitivities (close to 0) but 

relatively important total order sensitivities, indicative of large interactions between parameters. The b parameter, used in the 

computation of RS, was the only more empirically derived parameter that demonstrated a relatively high influence on 

modelled output.  

 450 

 

 

Figure 5. First (Si) and total (ST) order SI for the main parameters in TSEB-DF 

 

3.1.2 Input local SA   455 

Uncertainties related to LST and LAI showed important impacts on model results (Fig. 6). Simulated H is particularly 

sensitive to deviations in LST, where differences of a unit change of LST (∆ 1K) is associated to a median 17.3% change in 
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modelled H. The uncertainty in LAI demonstrated, compared to LST, relatively less influence on H. A 0.1 m
2
/m

2
 change in 

LAI is associated with a 2.9% change in simulated H with TSEB-DF.  

 460 

Figure 6.Scatter plots of the absolute percent change in daily aggregated H (y-axis) with the associated absolute perturbation of the daily 

aggregated input (x-axis): LST (left) and LAI (right) using TSEB-DF 

  

 3.2 TSEBgrass, TSEBtree and TSEB-2S model configuration 

The global SA results illustrated in Fig. 5 showed that parameters related to the vegetation cover (i.e.    and   ) and structure 465 

(i.e   ) had the most influence on model performance. Since these are physical and measureable parameters, these were set 

for each end-member scenario (section 2.4.3) according to the assumed dominant vegetation as described in table 4.  The    

was set to 0.7 for the grass configuration according average field observations, while it was set to 0.9 for the evergreen tree 

cover to account for the presence of non-photosynthetic material such as branches. The    for the tree layer was set to 8m 

according to the mean height of trees within the study site (El-Madany et al., 2018) and the    was set 0.2, this being about 470 

the average tree canopy fraction observed for the tower footprints (El-Madany et al., 2018). Additionally, the    was 

increased to 0.05m for the tree cover to better represent the larger leaves of the oak species within the study site. The 

resistance b coefficient, used in the formulation of Rs, was increased for the scattered tree cover, as was successfully tested 

and implemented in Kustas et al. (2016) to better simulate rough surfaces and partially vegetated surfaces. The b parameter 

was given a value of 0.034 for the tree-soil summer period, based on the range reported in Sauer et al. (1995) for partial 475 

vegetation conditions (Kustas et al. 2016; Sauer et al., 1995). Other parameters, such as     , which is presumably different 

between grasses and trees, were not modified since they showed little sensitivity (Fig. 5) 

To improve the seasonal depiction and related changes to the ecosystem, the TSEB model was adapted using a two-season 

modeling approach (TSEB-2S) as proposed in section 2.4.4. The simulation period was divided into two main phenological 

periods where a dominant vegetation is assumed in each case and TSEB is parameterized according to the respective end-480 

member parameter values shown in table 4 (i.e. TSEBgrass during the growing season and TSEBtree during the dry summer) 



23 

 

 

 

Table 4. TSEBgrass and TSEBtree model configurations based on global SA 

Parameters End-Member 

 TSEBgrass TSEBtree 

    (-) 1.26 1.26 

   (-) 0.7 0.9 

   (-) 1 0.2 

   (-) 1 1 

     (-) 1 1 

   (m) 0.5 8 

       (m) 0.01 0.01 

   (m) 0.01 0.05 

b (-) 0.012 0.034 

  (m s-1 K-1/3) 0.0025 0.0025 

C’ (s1/2 m-1) 90 90 

 485 

3.3 Model evaluations for main simulation period (2015 CT) 

Fig 7 shows the modeled vs. observed half hourly turbulent fluxes as well as the annual trend of daytime average sensible 

heat flux, both modeled and observed. Model results of TSEB-DF vastly underestimate H (bias: -39 W m
-2

) and, 

consequently, overestimate LE (bias: 34 W m
-2

) as compared with observed EC data. As shown in Fig. 7 (left panel), high 

errors are observed throughout (RMSD of H: 76 W m
-2

) but errors stem particularly from the very large underestimations of 490 

H during the hot and dry summer period (Fig.7, right panel). 
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Figure 7. Observed vs modeled daytime half-hourly H (red) and LE (blue) density scatterplot (left) and time series of simulated (red) and 

observed (black) daytime daily mean H  (right) for TSEBG-DF in 2015 at CT 

 495 

The end member simulations demonstrate the ‘boundary conditions’ when the simulations completely ignore one of the 

vegetation layers throughout the year (Fig. 8). Predictably, TSEBgrass overestimates LE even more than TSEB-DF (bias: 48 

W m
-2

), while, by contrast, LE is largely underestimated in TSEBtree (bias:-23 W m
-2

), with large errors (RMSD: 82 W m
-2

) 

 

Figure 8. Observed vs modeled half-hourly daytime H (red) and LE (blue) density scatterplot for TSEBgrass (left) and TSEBtree (right) for 500 
2015 at CT 

The performance of the proposed TSEB-2S parameterization is shown in Fig. 9 where the simulation of LE and H for 2015 

improved considerably when using TSEB-2S compared to TSEB-DF. By comparing Fig.7 and Fig.9, errors with TSEB-2S 

decrease substantially (decrease in RMSD from 77 W m
-2

 and 76 W m
-2

 to 59 W m
-2

 and 56 W m
-2

 for LE and H, 

respectively) and the seasonal average daily H is much improved, particularly during the summer/dry period (RMSD of daily 505 
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mean H decreased from 54 W m
-2

 to 28 W m
-2

). However, the winter-autumn period (roughly between DOY 25 and 125) 

showed a slight systematic H underestimation with TSEB-2S.  

 

Figure 9. Observed vs modeled daytime half-hourly H (red) and LE (blue) density scatterplot (left) and time series of simulated (red) and 

observed (black) daytime daily mean H (right) for TSEB-2S simulations of 2015 at CT  510 
 

3.4 TSEB-2S Validation 

3.4.1 Independent spatial and temporal evaluation  

TSEB-2S was additionally tested for all EC towers (CT, NT and NPT) in 2016 and 2017. The results from the other towers 

and years (Fig. 10) were within similar error ranges to the benchmark TSEB-2S 2015 simulation at the CT. RMSD for LE 515 

ranges between 51 and 63 W m
-2

 for all the different simulations. In general, results for the year 2016 had a slightly greater 

overestimation of LE (bias between 6 and 17 W m
-2

) while the bias in the 2017 simulations were much more aligned to the 

observed data (between 0 and -3 W m
-2

).  



26 

 

 

Figure 10. Observed vs modelled daytime half-hourly H (red) and LE (blue) density scatterplot for TSEB-2S for CT, NT and NPT; and 520 
years 2016 (left column) and 2017 (right column). 

 3.4.2 LE partitioning  

The LE partitioning in TSEB-2S was evaluated against independent estimates from the lysimeter at the CT footprint during 

the summer drought, when there is no grass transpiration and, thus, LE measured by the lysimeter (LE lys) corresponds to soil 

evaporation (Perez-Priego et al., 2018, 2017). It was additionally compared against an EC LE partitioning method (Perez-525 

Priego et al., 2018). Results indicate a systematic LEs underestimation during the dry period for the three years analyzed 

(Fig. 9). The LEs underestimation was largest for 2017 (bias: -22 W m
-2

). Errors (i.e RMSD) were largest for 2016 due 

mostly to greater variability, or short term fluctuations, observed in modeled results compared to the relatively stable 
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lysimeter measurements. As shown in Fig. 11, TSEB-2S showed largest underestimation during the dry down period 

(roughly DOY170-185) but was able to capture the evaporation peaks relatively well caused by the rare summer 530 

precipitation events in 2016 and 2017.  

 

Figure 11.Time series of simulated (blue) and observed (black) daytime daily mean LEs at CT during the peak summer in 2015, 2016 and 

2017 using TSEB-2S. LE measured by the lysimeter is assumed to be equivalent to LEs during the summer period due to grass senescence 

 535 
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The LEs underestimation, and thus LEc overestimation, was also supported when comparing canopy transpiration estimates 

from TSEB-2S with transpiration estimates based on Perez-Priego et al. (2018) (LEc,PP) (Fig. 12). Throughout most of the 

year, modeled LEc had a very important positive bias compared to LEc,PP. However, during the dry period, LEc from TSEB-

2S was more closely in line with LEc,PP although a bias maintained noticeable (Fig. 12). Since LEc,PP contained both tree and 540 

grass contribution, the LEc,PP peak was more sustained than LEc from TSEB-2S. This is explained by the successive 

influence of the grass (DOY~90) followed by the trees in late-May/early-June (DOY~150), then a gradual decline during the 

dry-down as modulated by water stress. By contrast, TSEB-2S modeled LEc peaks earlier, around late-April, and proceeds to 

decline very rapidly when summer begins, coinciding with the change in model configuration between the grass-soil to the 

tree-soil system. LEc from TSEB-2S also showed an important increase in the re-greening phase (~ September to late-545 

October; DOY~250 to DOY~300), which was less pronounced in LEc,PP. It should be noted that is merely a comparison and 

not an evaluation/validation, as LEc,PP is not an observed data series, but an transpiration estimation based on the method of 

Perez-Priego et al. (2018) 

 
Figure 12. Annual time series of daytime daily mean TSEB-2S simulated LEc (blue) and estimated LEc,PP  (black) at CT in years 2015, 550 
2016 and 2017 
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4. Discussion  

The proposed TSEB-2S vastly improved model performance in simulating LE and H compared to the default TSEB 

configuration (RMSD and bias of modeled H decreases from 76 and -39 W m
-2

 to 56 and -9 W m
-2

, respectively). The simple 

assumption of two separate phenological and modeling periods, one dominated by a grass-soil system and the other 555 

dominated by a tree-soil system, allowed for a two-layer model to accurately simulate turbulent energy fluxes in an 

essentially three (soil-grass-tree) layer ecosystem. The results also demonstrate that large changes to the vegetated surface 

have a considerable influence on the surface energy balance. This confirms the importance of vegetation characteristics in 

controlling and mediating ecosystem level energy fluxes, where seasonal dynamics and phenology of vegetation are key 

considerations for land-atmospheric modeling. The TSEB-2S model demonstrated robustness, being able to accurately 560 

simulate different intra-annual dynamics for various years and towers with differing surface conditions from the nutrient 

fertilization experiment (Fig. 10).  The relatively simple and automatic separation of seasons from a MODIS-NDVI time 

series can easily be extrapolated to other TGEs or similar temporally dynamic sites, as these data are globally available. 

Results and the associated magnitudes of errors for all TSEB-2S model runs are similar to the error bounds found in other 

energy balance model studies (e.g. Andreu et al., 2018; Boulet et al., 2015; Gan and Gao, 2015; Gonzalez-Dugo et al., 2009; 565 

Guzinski et al., 2014; Kustas et al., 2016; Kustas and Norman, 1999; Timmermans et al., 2007) and close to the typical 

uncertainty of surface turbulent flux measurement systems (i.e. ~50 W m
-2

; Kustas and Norman, 2000). For instance, RMSD 

of LE between 62 and 70 W m
-2

 were achieved in Timmermans et al. (2007), who compared the use of TSEB against a one-

source energy balance model for a sparsely vegetated grassland and rangeland. In Boulet et al. (2015), different dual-source 

model schemes were tested and obtained an RMSD between 53 and 73 W m
-2

 for midday instantaneous LE for both irrigated 570 

and rainfed wheat fields. Therefore, results presented here, are in line with past studies related to LE retrievals with energy 

balance models, with these considering much more homogeneous land cover types. Andreu et al. (2018) applied various 

modified versions of TSEB, notably with different wind profiles and roughness schemes, in similarly complex TGEs and 

reported errors between 44 and 60 W m
-2

 for simulated LE. These are comparable to the error bounds presented here even 

though quite different approaches were used for these complex TGEs. In this study, the basic TSEB model structure was not 575 

modified, instead opting to alter the model parameterization depending on the phenological period using typical land cover 

characteristics (i.e. grasslands and evergreen broadleaved trees). This way, the approach applied here is less local and may be 

applicable for different sites and ecosystems with similar heterogeneous features and phenology. As such, the findings here 

may complement the methods used in Andreu et al. (2018), who also reported largest errors during the dry, summer period. 

The global SA demonstrated that TSEB was most sensitive to   . This is largely due to    being a key input to estimate the Ω 580 

(Kustas and Norman, 1999), which in turn affects the radiation interception and partitioning between the mixed vegetated 

and soil surfaces. The estimation of Ω is mostly based on the transmission through the vegetated layer where    is used to 

obtain a local LAI (LAI/  ) and as an important weighting factor for the gap fraction estimation (section 2.2.1). These results 

are largely in line with results from Li et al. (2005), who found that the Ω uncertainties had a large impact on flux outputs 
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from TSEB. They tested incremental     values, between 0.1 and 1, that resulted in sharp H changes, particularly between 585 

higher    values, an indication of a high sensitivity for this parameter. The    was found to be more sensitive compared to 

    even though both parameters are part of the initial canopy transpiration estimate from the Priestly-Taylor formulation 

(eq. 7). This is the case since the latter is merely an initial value and is iteratively changed through the modeling scheme, if 

the resulting soil evaporation flux is unrealistic. The b coefficient was the only more empirically derived parameter that 

demonstrated relatively large influence. In addition, the input SA showed that uncertainties in LST and LAI both translate 590 

into uncertainties in modeled H. Gan and Gao (2015) also found TSEB to be sensitive to biases in LST, where a 1K change 

is associated with median daily ~12 - 25 W m
-2

 bias. A local LAI SA in Li et al. (2005) added +-20% deviation to LAI and 

investigated the associated relative H change in TSEB. Their associated ~3-8% bias in modeled H is similar to the results 

presented here, with a 20% change in LAI being associated with a median H bias of 6.1% with TSEB-DF. As such, the more 

comprehensive SA analysis presented here, taking into account parameter interaction in the global SA combined with a local 595 

input SA, were largely in line with results presented in different local and parameter specific SAs from the literature. This is 

indicative that these results will be useful for future studies, as we quantified the different sources of uncertainty and relative 

influence of the different modeling components in TSEB, which may also be useful for other similar thermal-based energy 

balance models.   

As shown, bulk (soil + vegetation) fluxes were well modeled in TSEB-2S for different years and towers. However, the 600 

partitioning of LE, between LEs and LEc, had greater uncertainty, with biases observed compared to the lysimeter 

measurements (Fig. 11) and compared to a physiologically-based EC partitioning method (Fig. 12). Since total LE was well 

modeled, this indicates errors associated with the partitioning itself. The partition of LE is largely controlled through LAI 

within TSEB (Kustas et al., 2019), as evident in how the LEc time series (Fig. 9) roughly follows the trend of the LAI input 

time series shown in Fig. 4. The rapid decrease in LAI as the summer begins results in a rapid change in TSEB-2S derived 605 

LEc, in contrast to the gradual decrease of LEc,PP. This can also be attributed to TSEB-2S´s sudden change in model 

configuration (i.e. from grass to tree dominated). The transition periods between the two modeling periods had the largest 

biases (roughly around DOY 120 and DOY 300) as the model configuration does not consider gradual changes to    or other 

parameters, while the summer period, when the model considers only the tree-soil system, produced the best simulated LE 

partitions. The poor performance in the LE partitioning may be linked to the assumed vegetation cover of the two different 610 

seasons not properly depicting the complex vegetation characteristics observed, notably during the growing season when the 

tree layer is neglected. TSEB’s relatively poor performance in partitioning LE was also observed over a vineyard in Kustas 

et al. (2019). However, Xu et al. (2016) reported a relatively good performance of TSEB’s midday LE partitioning over an 

irrigated cropland against observations using the isotope approach. Colaizzi et al. (2014) demonstrated that using the 

Penman-Monteith equation to derive initial canopy transpiration in TSEB resulted in a better agreement with LEs and LEc 615 

compared to the Priestley-Taylor approach. Colaizzi et al. (2014) also reported the strong influence of vapour pressure 

deficit over LEc in an irrigated cotton field within an advective, semi-arid climate, which was captured most successfully 
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using the Penman-Monteith approach. As stated in Kustas et al. (2019), more studies need to evaluate whether the poor 

partitioning is linked to uncertainties in input values (i.e LAI) or biases caused by the modeling structure itself (i.e. initial 

potential canopy transpiration, radiation transfer).  620 

As demonstrated, a simple adaptation to the modeling scheme within TSEB, depicting the seasonal changes in the 

ecosystem, were able to successfully simulate LE and H in a complex ecosystem. However, certain limitations are still 

present including the slight systematic underestimation of H during the grass growing season, particularly visible in the 2015 

daily H time series (Fig. 9). This is likely due to the modeling scheme in this period ignoring the effect of the tree canopy 

layer on the turbulent transport and hence on the calculation of the aerodynamic resistances. Compared to grasslands, tree 625 

canopies are more aerodynamically coupled to the atmosphere and hence their aerodynamic resistance is lower, resulting in 

that trees can dissipate heat more efficiently (El-Madany et al., 2018). As discussed in El-Madany et al. (2018), tree canopies 

in the Majadas experimental site were an additional H source, even though they tend to have a lower LST than the grass 

layer. As such, ignoring the tree canopy during the growing periods may not adequately represent the turbulent transport 

characteristics of the ecosystem resulting in H underestimations, in some cases. Neglecting the tree canopy during the 630 

growing season is also a reason for the greater bias in LE partitioning during the growing season (Fig. 12), as 

underestimations in H translate into greater available energy for LE residual. Further adaptations to the TSEB model may be 

needed for the more operational and larger scale use of this model, notably for similarly complex ecosystems such as TGEs. 

The differences between soil, grass and tree layers should inherently be integrated within the modeling structure to robustly 

consider their different geometric, physical and phenological properties and their resulting effect on energy fluxes. This was 635 

also hinted in Andreu et al. (2018), who incorporated different layers in a modified Goudriaan (1977) wind speed profile 

scheme to consider differences between tree and grass canopy layers for TGEs.  

5. Conclusions 

When accounting for different phenological periods, the TSEB model provided robust LE and H estimations for a three-

layered heterogeneous and semi-arid TGE. This confirms the important role that vegetation characteristics, notably its 640 

structure (i.e.   ) and cover (i.e.    and   ), have on ecosystem level energy fluxes. The    was the single most influential 

parameter on model performance, largely due to its role in characterizing vegetation clumping and how this, in turn, interacts 

significantly with other parameters. In addition, the uncertainties related to the traditionally remotely sensed derived inputs, 

notably LST, showed an important influence on output uncertainties.  

The LE partitioning, between canopy and soil, showed larger bias compared to the bulk fluxes, particularly during the 645 

transition towards the grass senescence period and the prominent contribution of the tree layer. Based on this, further 

research should focus on the understanding of the radiation partitioning between the canopy and soil layers, and, particularly, 



32 

 

inherently accounting for the important differences between soil, grass and tree layers of TGEs within the modeling 

structure.  
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Figure A1. Empirical model between MODIS (MCD43A4) NDVI and in-situ destructive grass LAI measurements developed for Majadas 

experimental site. 
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