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We thank the editor and reviewers for the comments to improve the quality of 
our manuscript. We have carefully addressed the comments with point-by-
point replies to the editor and reviewers (in blue) and revised our manuscript 
accordingly. Attached is a marked-up version of the manuscript. 

Reply to editor comments: 

Editor comments to the author: 
When revision your manuscript, please pay particular attention to the following 
aspects: 
- Both referees comment on the use of snow depth of SWE. This is a critical issue. It 
is important to realize and recognize that snow depth is not a conservative quantity, 
and that there is a risk for bias when comparing snow depth observations between 
places with different microclimate conditions. This does not mean that there is no 
value in making a model based on snow depth observations, but the right arguments 
should be used to motivate this choice. This is not to reduce "any potential error 
when converting measured HS values to SWE." as is stated in the manuscript. The 
real reason (I guess) is that SWE observations are not available because they 
require more effort in sampling. But that does not make them less relevant. So 
please be clear in motivating the choices, and acknowledge any potential limitation 
and the fact that all models will use SWE and not snow depth. 

You are right. We chose to parameterize snow depth over SWE because snow depth 
was spatially measured on the ground and not SWE. We could have applied an 
empirical new snow parameterization to derive spatial SWE based on e.g. 
interpolated air temperatures (as e.g. in Moeser et al., 2015b). This would however 
have introduced more uncertainty in an interception model since this is determined 
by the applied empirical density parameterization, measurement errors in air 
temperatures as well as by the spatial interpolation of temperatures. Converting snow 
depth to/from SWE with a density parameterization and its connected uncertainties 
thus remain controlled by the snow module (as part of a complex model) and these 
uncertainties will not be linked with the presented snow interception model. 

We made the reasons why we chose snow depth over SWE for our interception 
models more clear (Section “Subgrid parameterization for forest canopy 
interception”).  
 
- The choice for the functional relationships that are fitted to be data need to be 
motivated, and if possible evaluated against alternative models. There should be 
some objective criteria behind the choice for a particular functional form. 

All parameterizations were empirically developed using the Swiss development data 
set. The existence of varying previously observed functional relationships (base 
functions) were mentioned in the introduction (Line 44-66) and were considered here. 
In the results section (276-279 and Line 283-291) we explain the reasoning for our 
functional relationship. In the discussion (Line 363-382) we largely discuss our choice 
compared to previously published base functions.  
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To specify the robustness of our regression coefficients we now included the 
confidence interval of the coefficients. Clearly, more spatial snow depth interception 
data sets would be advantageous. However, our empirical parameterizations are 
based on a development data set that is currently probably the most extensive 
existing data set available for spatial snow depth interception. This and the overall 
good performance of the parameterizations for the validation data set are reassuring 
that the models can be applied by various model applications. This is newly 
mentioned in the discussion. 
 
- Please pay particular attention to the writing. If possible, let the manuscript be proof-
read by a native speaker/colleague.  
The manuscript was carefully read by several native English speakers from the 
USGS. The language was thus carefully checked before submission. Nevertheless, 
we went carefully through the manuscript again, and made the wording and structure 
more concise where appropriate.  
 

Additional introduced changes by the authors: 

1) For the revised manuscript, we decided to use the latest version of our code for 
computing the sky view factors, as this includes an improved visibility algorithm. This 
and the change that we now use σz in cm in all equations to be conform with the 
applied units for snow depth resulted in some changes in the regression coefficients. 
However, only very minor changes result in the figures and the performance table. 

2) Furthermore, to avoid infinity for an extreme value of σz=0 in the parameterization 
of the standard deviation of snow interception (Eq. (4)) but keeping the functional 
form we introduced σHS=f(1/(1+σz)). This slight change in the functional form has 
almost no impact on modeled interception values and also changed performances 
only slightly.  
  

The overall outcome of our work was not affected by these additional changes. 
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Reply to reviewer1 comments : 

 
We thank the reviewer for their encouraging and constructive comments. Their 
comments (in italics) are addressed below. Answers to the reviewer are given 
in blue. 
 
Major comments: 
 
Throughout the paper forest structure is parameterized from a Digital Surface Model 
(DSM). If I am reading this correctly this is a DSM that is normalized to terrain to give 
a DSM in terms of vegetation height? (Z-axiz of Figure 2)? To be consistent with 
literature this should rather be termed a canopy height model (CHM) rather than a 
DSM. https://www.earthdatascience.org/courses/earth-analytics-python/lidar-
rasterdata/lidar-chm-dem-dsm/ 
 
We parameterize forest structure from a Digital Surface Model (DSM) which is the top 
of the surface (as defined in the short course definition in 
https://www.earthdatascience.org/courses/earth-analytics-python/lidar-raster-
data/lidar-chm-dem-dsm/), i.e. CHM+DTM.  
You are right the caption of Figure 2 was unclear. We changed that and also stress in 
the introduction that canopy structure metrics are derived from DSM’s. 
 
Can you clarify the type of model you are presenting in context of the existing 
models? There was much discussion of other existing models and a clear 
compare/contrast of what you are presenting would be beneficial. This is simple 
empirical relationship with 1 or two input variables rather than a physical/mechanistic 
parameterization. This is critical to clarify so that future users can determine how to 
use this moving forward. 
We agree that it is important to characterize the type of model.  We added “empirical” 
when we refer to model throughout the manuscript to make this more clear: e.g. in 
the abstract: “We present two novel empirical models …”, in the discussion: “We 
proposed two empirical models for..” resp. “We have derived just one empirical model 
for the standard deviation of snow interception.-..” and in the conclusion: “The 
empirical models integrate forest parameters..”.  
 
A clearer description of what was being measured at the various sites is needed. It 
was not immediately apparent that all of this was based on snow depth difference 
only and ignored density. The assumption that density of new snow accumulation is 
the same between open and forested areas is critical. Is it reasonable to assume that 
the standard error of 9.31 kg/m2 of new snow estimates is greater than observed 
snow density differences between open and forested? Even immediately after 
snowfall events there will be differences in density associated with 
unloading/compaction on the dripline of tree crowns versus the influence of blowing 
snow redistribution/erosion or not in clearings? At these locations is it reasonable to 
assume snowfall is the same between forest and clearing locations – any preferential 
deposition patterns evident? Variable blowing snow deposition/erosion in clearings 
versus forests? In the end do you have any observations that you could 
demonstrated that density differences are negligible or provide these values in terms 
of SWE? Any errors in density differences could lead to relatively large errors in 
interception ratios, especially for small events, and this needs to be clarified. 
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We agree that snow densities can be quite different between open and forested sites, 
especially with compaction and redistribution of snow by wind. Therefore we chose to 
parameterize snow depth and not snow water equivalent (SWE), which would require 
empirical parameterizations for the snow density itself (see Section 3.2 Subgrid 
parameterization for forest canopy interception). Until now we do not have available 
spatial, reliable SWE measurements comparable to the data set used in this study.  
 
Note that the Swiss data was immediately acquired following a new snow fall event 
such that the influence of unloading, compaction and an eventual wind impact on the 
snowpack can be assumed reasonably small (see Moeser et al, 2015b).  
In France, snow depth data was collected within a few days after the snow fall. The 
operational flat field site in France shows low wind speed and has therefore only very 
limited snow drift. Average hourly wind speed (at 10m height) is 1.2m/s over a period 
of 1993-2011 (Morin et al., 2012). 
The open field site in the US may have been influenced by wind redistribution and 
compacting that might have created differences in the snowpack.  
 
However, the data set from France and the US were only used as independent 
validation data sets, and the results are promising. 
 
We improved the data description where we make clear that we used observed snow 
depth differences, i.e. independent measurements.  
 
The transferability of this model is tested by applying the Swiss parametrization to 
French and US sites. While results are promising for between these sites I would 
temper some of the speculation (339-353). Relative to the large range of climatic 
conditions of cold-regions forests globally these sites represent relatively warm 
locations. As expressed elsewhere there has been variability in interception model 
performances between maritime and continental locations not to mention more 
temperature cold regions versus cold arctic treeline/tundra locations. Before 
recommending this for universal and widespread applications this model should be 
tested if possible at other locations that represent more end members. 
While we agree that the novel models should be tested for a broad range of climatic 
conditions including extreme climate conditions and at various geographic sites we 
believe that the three sites already cover substantial variability (as shown by mean 
air temperatures and precipitation sums). We therefore believe that the novel models 
could perform sufficiently well in other climate conditions (though of course extremes 
have to be investigated). At the moment we do not have more snow interception data 
sets available that would allow an extended evaluation.  
 
Note however, that we also point out the limitations of the models when applied for a 
deciduous forest. This was discussed in line 441-454. 
 
We rephrased the section which now also more clearly mentions the limitations to 
soften our recommendation (395-415).  
 
The approach implemented is to parameterize an empirical relationship. This will not 
work perfectly for all scenarios/locations obviously. Is it possible to quantify the 
uncertainty of the parameters and how they may vary between sites / vegetation 
types? How stable are these parameters? 
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Yes, our approach is to parameterize an empirical relationship. This model was then 
validated with independent data sets at different locations and for one different 
vegetation type, suggesting that it is also applicable in different climates/forests. 
Nevertheless, it is clear that more data is required to confirm this. To specify the 
robustness of our fitted parameters we included the confidence interval of the 
estimates. 
  
Specific comments: 
First sentence on abstract and line 19-21 are a little contradictory. 
This was modified.  
 
26-33: Transition to discussing surface albedo is abrupt. While snow 
interception/albedo is a critical feedback it is not extensively discussed hereafter? 
Can this section be simplified? 
We agree and we rephrased the transition.  
 
41-42: Awkward sentence 
Agreed, we rephrased this sentence. 
 
102: define more clearly what indirect interception measurements are. 
Indirect interception measurements were introduced in line 36-38 in the introduction.  
We expanded the explanation in the data section as well.  
 
151-154: what may the influence of different point cloud densities be upon the CHM 
derivation? Are there any recommendations you could make on what should be 
collected in future for proper a parameterization of your models? 
In general the higher the point cloud, the greater the potential detail of the model.  
Specifically, if multi-return LiDAR is being integrated, then the higher the density of 
the last returns, the higher the potential detail of the DSM. This translates into a 
higher resolution CHM as well, since this data is subtracted from the raw data to 
create canopy heights from elevations. 
 
1-m resolution DSMs computed from points clouds above 5 returns/m2 are usually 
quite consistent, and are generally considered as suitable from automated tree 
detection. Local artifacts (NA or low pixels) can be expected due to heterogeneous 
scanning pattern on the ground, and to canopy penetration variability depending on 
forest type and beam intensity and divergence. But the description of the canopy at 1 
m resolution is quite robust for such densities. Higher densities are probably required 
in the case of deciduous species with LiDAR data acquired in leaf-off conditions. 
Ten years ago, country-wide acquisitions would be typically between 0.5 to 2 
returns/m2. Current available or scheduled country-wide datasets are now around 1-5 
returns/m2 (e.g., Denmark 5 returns/m2, North-Rhine Westphalia in Germany 4 
returns/m2, Spain 1 return/m2, France 2 to 5 returns/m2).  
We can expect that thanks to technical improvements in LiDAR sensors, the density 
of 5 returns/m2 will be exceeded in most countrywide campaigns in the next decade. 
Besides, acquisitions over smaller areas (municipalities…) have usually higher 
densities. 
 
205: how are you getting from SP at a point to mean sky view factor. How is the 
space being discretized? Are you computing SP on a fine scale grid and averaging 
values over a coarser scale of interest? 
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Here, we derive the sky view factor Fsky using Eq. (1) for each fine-scale grid cell in 
a DSM. A spatial mean is obtained by averaging all fine-scale grid cells within a 
coarse-scale grid cell. The spacing thus depends on the available fine-scale grid cell 
resolution of the DSM. We do not use Fsky derived from SP. We made this clear in 
line 211-219.  
 
248-250: can you clarify this reversed response? 
Deriving the sky view factor Fsky using Eq. (1) for a fine-scale grid cell in a DSM 
implies a calculation on the DSM. Deriving Fsky from HP or SP allows a view from 
below canopy. Since we do not use HP derived Fsky and to avoid confusion we 
removed the second part of the explanation. 
 
279: Why do we want to know the standard deviation of snow interception. Can you 
articulate a broader reason to calculate this? 
While we had some explanations at the end of the introduction we added some at the 
beginning of Section 3.2. 
  
286-287: As canopy gets to be more homogeneous the spatial variability of 
interception increases? How? 
The larger σz the more trees are in a field area (50x50m2 plot), i.e. the denser the 

coverage:  
 
 

 
Based on our data set larger σz implies larger spatial mean interception, but lower 
spatial variability of interception. Lower σz implies lower spatial mean interception, but 
larger spatial variability of interception: 
 

  
 
We will rephrase the explanation in line 320-323.  
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To avoid infinity for an extreme value of σz=0 but keeping the functional form we 
introduced σHS=f(1/(1+σz)). This new form changes modeled interception values and 
performances only slightly. We changed this in the revised manuscript. 
 
322-324: Could a global product (between 51.6_ N and 51.6_ S at least) for these 
metrics 
be derived from the GEDI platform? https://gedi.umd.edu/ 
Thanks a lot for pointing us towards the GEDI platform. This is a very promising 
mission. A GEDI product exists with 25 m grid resolution for ground elevation and 
canopy top height (L1A-2A). We assume a product like thus could be used to 
compute Fsky spatially (Eq. (1)).  
 
However, a 25 m fine-scale DSM is much coarser than the resolutions used here for 
developing a snow interception model. This might need a scale-dependent 
investigation. 
 
365: Typo “ASifferences” 
Corrected. 
 
381-383: Deciduous will have very different behavior than coniferous vegetation. 
Could you reoptimise your model for deciduous specific sites? Would be interesting 
to know if the same scaling laws were applicable to know if a separate deciduous 
scaling parameterization is needed or not. 
We agree that snow interception models should be verified for different vegetation 
species. As discussed in line 266- 270 Huerta et al. (2019) showed very recently that 
current interception models developed for coniferous vegetation required 
recalibrating of fit parameters to be applicable in deciduous forests. However, the 
same scaling laws were applicable. 
Our models were developed and validated for coniferous vegetation. We further 
validated the models with indirect interception measurements from two measurement 
campaigns conducted in a deciduous forest in the US. Larger biases resulted. 
However, we could not perform a solid validation of our models with this data set 
since the LiDAR point cloud was acquired during leaves-on conditions, which led to 
overestimations in modeled interception.  
To develop empirical interception models for deciduous forests measurement 
campaigns and a LiDAR acquired during leaves-off conditions are required. 
 
386-388. Why? Can you justify this a bit more? 
Unfortunately, it is not fully clear to us what your question is. 
The novel interception models presented here, use forest structure metrics which can 
be derived spatially on a DSM without tedious field measurements. The accuracy of 
the derived metrics is dictated by the resolution of the DSM. In contrast a more 
accurate presentation of forest structure metrics might be achieved using field 
measurements (e.g. HP) but then a spatial coverage is not feasible. 
 
412-416: The full summary of the various interception efficiencies would be better 
presented in the results rather than in the conclusion for the first time. 
We prefer having this summary in the conclusions. It is not really a result, but rather 
characterizes observed snow interception in general compared to our datasets. It 
further confirms previously observed annual snow interception fractions which were 
mentioned at the beginning of the introduction. 
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423-425: long challenging sentence 
We rephrased this sentence.  
 
Figure 1: Can scale bars and north arrows be consistently sized and located on edge 
of orthophotos? Where snow depth measurement setups the same for each point in 
the respective sites? 
Yes, the snow depth measurement setups were the same for each point in the 
respective sites. We made Figure 1 more consistent. 
 
Figure 2: what is grid resolution of DSM (aka CHM)? What UTM zone is applicable 
for the respective easting/northing? Correct sig figs on the easting northing? 
The coordinates of Figure 2 are displayed in the Swiss reference system CH1903+. It 
is metric similar to UTM. Grid resolution of the CHM’s is 1 m as for the DSM’s. This 
information was added to the caption. 
 
Figure 4-6: ”Parametrized“ or “Modelled” interception on y-axis label 
We changed the labels to “Modeled interception”.  
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Reply to reviewer2 comments : 

 
We thank the reviewer for their encouraging and constructive comments. Their 
comments (in italics) are addressed below. Answers to the reviewer are given 
in blue. 
  
Major comments: 
 
The language needs to be improved to be more concise. Just as one example: 
P1L17: Would snow in another season not be intercepted? Both in this sentence and 
the next one I assume the authors mean that in a coniferous forest 60% may be 
intercepted. As it reads now, 60% of some total are intercepted in coniferous forests 
and 24% are intercepted in deciduous forests in the Andes, i.e. 84% are retained in 
total. I agree that this is a minor detail and one can guess what the authors mean, but 
in a scientific paper these things should be formulated as clearly as possible. 
The manuscript was carefully read by all co-authors and additionally by several 
native English speakers from the USGS. The language was carefully checked before 
the submission. Nevertheless, to we carefully went through the manuscript once 
more, and made the wording and structure more concise where appropriate.  
 
Central parts of the methods are described first in the result section. 
Unfortunately we do not fully understand which parts you mean. All methods are 
described in the methods section. The result section is structured as follows: 
 
4.1. Grid cell mean snow interception 
4.1.1 Parameterization 
4.1.2 Validation 
 
4.2 Grid cell standard deviation of snow interception 
4.2.1 Parameterization 
4.2.2 Validation 
 
The resulting parameterizations should not be part of the methods section, they were 
newly developed in this study using the data given in the data section, the forest 
structure metrics and the method that are both described in the methods section (3.1 
and 3.2). As such the parameterizations (i.e. 4.1.1. and 4.2.1) are part of the results. 
The validation sections (within in the results) describe how modeled interception 
compares to observed interception for the development and the validation data sets 
(i.e. 4.1.2. and 4.2.2). 
While we do not see that parts of the results should be moved to the methods we 
agree that the headings could be more concise and we changed them to make the 
overall structure more clear. 
 
The field observations need to be described in more detail. I honestly do not 
understand what has been measured how. It also sounds as if some data were 
selected from a larger set, the reasons for this are not entirely clear. 
Unfortunately, we do not understand which data you think were selected from a 
larger set. However, we carefully went through the data section and clarified the 
description of the measurement methods where necessary. 
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The two central equations suddenly pop up in the result section. How were these two 
types of equations derived? Is there any physical reasoning for certain functional 
relationships like the exp or power function? How exact can the coefficients be 
determined? Uncertainty? Sensibility?  
In the methods section  
3.2 Subgrid parameterization for forest canopy interception 
we describe that the empirical parameterizations are derived using the Swiss data 
set. 
 
All parameterizations were empirically developed using the Swiss development data 
set. The existence of varying previously observed functional relationships (base 
functions) were mentioned in the introduction (Line 44-50) and were considered here. 
In the results section (268-269, 275-279 and 283-291) we explain the reasoning for 
our functional relationship. In the discussion (Line 363-388) we largely discuss our 
choice compared to previously published base functions.  
 
To specify the robustness of our coefficients we now included the confidence interval 
of the regression coefficients and clearly discuss the need for more data in the 
discussion. 
 
Furthermore, I do not understand what the stdev of the DSM is. Variation of ground 
surface? But this would not have anything to do with the trees. Variation of vegetation 
heights? But then DSM is the wrong term. 
Forest structure is parameterized here from the Digital Surface Model (DSM) which is 
the top of the surface, i.e. surface elevation + vegetation height (DTM+CHM). DSM is 
a standard abbreviation for the surface height (e.g. 
https://www.earthdatascience.org/courses/earth-analytics-python/lidar-raster-
data/lidar-chm-dem-dsm/). The abbreviation DSM was introduced in line 92. 

The standard deviation of DSM σz describes the variation of vegetation altitude by 
integrating both the variability of the canopy height and of terrain elevation. Using σz 
seems more realistic because gaps and spaces between trees are influenced by 
local topography. The standard deviation of DSM σz was introduced in the methods 
section as our second forest structure metric (3 Methods / 3.1 Forest structure 
metrics last section).   

We further investigated using the standard deviation of the CHM. For our data sets 
this didn’t change the overall functional relationship. Furthermore, correlation 
coefficients were larger between mean snow interception and σz derived from DSM 
than between mean snow interception and σz derived from CHM. Since all data used 
in this study was however collected in rather flat field sites, this may have to be 
verified in steeper terrain. This is now discussed. 

My major concern regarding usability is the choice to express everything as snow 
height rather than SWE. When used as part of a larger model, I would assume one is 
most often interested in SWE rather than heights. Also conceptually I am not sure 
what the height of intercepted snow implies? Height on branches? Probably rather 
height as the snow would be if being on the ground? But then at which density, that 
of the other snow on the ground or that of the intercepted snow? Sorry, but I find this 
very confusing and limiting. Thus, I would prefer to see the interception etc expressed 
in SWE. 
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We deliberately chose to parameterize snow depth over SWE because snow depth 
was spatially measured on the ground and not SWE.  
We could have applied an empirical new snow parameterization to derive spatial 
SWE based on e.g. interpolated air temperatures (as e.g. in Moeser et al., 2015b). 
This would however have introduced a lot of uncertainty in an interception model 
since this is determined by the applied empirical density parameterization, 
measurement errors in air temperatures as well as by the spatial interpolation of 
temperatures. This was discussed in Section 3.2. 
We therefore decided to derive spatial snow depth interception estimates from snow 
depth observations within and outside of the forest. Converting snow depth to/from 
SWE with a density parameterization and its connected uncertainties thus remain 
controlled by the snow module (as part of a complex model) and these uncertainties 
will not be linked with the presented snow interception model. 

We largely expanded our explanation in Section 3.2.  
 
 
As the two equations are derived from data for ideal situations (no prior snow …) I 
am not sure how these should be used for the real case, where there is often a 
history of prior snow on the trees. It seems here one might run into the problem that a 
simple empirical equation is not really a model after all.  
You are right our parameterizations were developed on a data set that had no prior 
snow on tree branches when the precipitation event started. Nevertheless, both 
validation data sets did not have this prerequisite but still compared well to modeled 
interception using the novel empirically derived parameterizations. Especially the 
interception data set from the US often integrated snow interception over several 
storms due to longer time periods between data collection. Thus, the trees weren’t 
necessarily snow free for a following snowstorm. Instead these measurements may 
have been influenced by snow settling, wind redistribution, sublimation, unloading 
and melt.  
This was discussed in Line 424-426. 
 
For a ‘model’ I would expect some canopy storage accounting, which is an aspect 
that is missed here. 
We have focused on improvements of an interception model rather than multiple 
related processes. Modeling forest canopy involves several processes, each of which 
are described with separate models. This includes, unloading, melt and drip (some 
models), and sublimation. These models use the interception model to dictate how 
much snow is in the branches at any point in time. If there is still snow in the 
branches, then it is depleted by the unloading, melt and drip and sublimation models. 
Thus, canopy storage is dictated by the interplay of each individual model.   

We discussed that we present a model for one forest process. To make this more 
clear we rephrased the explanation (Line 427-431). Furthermore, we made this clear 
in the method section: “3.2 Subgrid parameterization for forest canopy interception”. 
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Abstract. Snow interception by forest canopy drives the
::::::
controls spatial heterogeneity of subcanopy snow accumulation lead-

ing to significant differences between forested and non-forested areas
::::
sites at a variety of scales. Snow intercepted by forest

canopy can also drastically change the surface albedo. As such, accuratelly modelling
::::::::
accurately

::::::::
modeling snow interception

is of importance for various model applications such as hydrological, weather and climate predictions. Due to difficulties in

direct measurements of snow interception, previous empirical snow interception models were developed at just the point scale.5

The lack of spatially extensive data sets has hindered validation of snow interception models in different snow climates, for-

est types and at various spatial scales and has reduced accurate representation of snow interception in coarse-scale models.

We present two novel
::::::::
empirical models for the spatial mean and one for the standard deviation of snow interception derived

from an extensive snow interception data set collected in a spruce
::::::::
coniferous

:
forest in the Swiss Alps. Besides open area snow

fall
::
site

::::::::
snowfall, subgrid model input parameters include the standard deviation of the DSM (digital surface models) and

::::::
model)10

:::::
and/or

:
the sky view factor, both of which can be easily pre-computed. Validation of both models was performed with snow

interception data sets acquired in geographically different locations under disparate weather conditions. Snow interception

data sets from the Rocky Mountains, U.S.,
:

and the French Alps compared well to modelled
:::::::
modeled snow interception with

a NRMSE
:::::::::
Normalized

::::::::::::::::
Root-Mean-Square

:::::
Error

:::::::::
(NRMSE)

:
for the spatial mean of ≤ 10 %

::
for

::::
both

::::::
models

:
and NRMSE of

the standard deviation of ≤ 13 %. Our results suggest
:::::::
indicate that the proposed snow interception models can be applied in15

coarse land surface model grid cells provided that a sufficiently fine-scale DSM of the forest is available to derive subgrid

forest parameters.

1



1 Introduction

Snow interception is the amount of snow captured in the forest canopy. In winter as much as 60 % of the cumulative snowfall

may be retained in conifer forests (Pomeroy and Schmidt, 1993; Pomeroy et al., 1998; Storck and Lettenmaier, 2002) and20

as much as 24 % of total annual snowfall
:::
may

:::
be

:::::::
retained

:
in deciduous forests in the Southern

:::::::
southern

:
Andes (Huerta

et al., 2019). Due to the sublimation of intercepted snow, a large portion of this snow never reaches the ground (Essery et al.,

2003) and the interplay of interception and sublimation creates significant below forest
::::::::::
below-forest

:
heterogeneity in snow

accumulation. Rutter et al. (2009) estimated that 20 % of the seasonal snow cover within
::
in

:
the Northern Hemisphere is

located within forested areas. As such, the mass balance of solid precipitation in forested regions, characterized by strong25

spatial variability of snow accumulation, is a large contributor to the global water budget. Accurately modeling the spatial

distribution of snow water equivalent in forested regions is thus necessary for climate and water resource modeling over a

variety of scales (see Essery et al., 2009; Rutter et al., 2009). Surface albedo is a significant driver of the global surface energy

balance and precise albedo estimations are critical for a range of model applications such as climate scenarios (Hall, 2004)

. However
::::::::::
Furthermore, intercepted snow can drastically change surface albedo values in forested regions. Previous studies30

observed large albedo differences (a range of 30 %) between snow-free and snow-covered forest stands (e.g. Roesch et al., 2001;

Bartlett and Verseghy, 2015; Webster and Jonas, 2018). Thus, in mountainous areas where forested and alpine regions coexist,

accurate estimates of forest albedo play a key role in correctly modeling the surface energy balance. Due to the connectivity

between interception and albedo, formulations of surface albedo over forested areas necessitate estimates of intercepted snow

(e.g. Roesch et al., 2001; Roesch and Roeckner, 2006; Essery, 2013; Bartlett and Verseghy, 2015).35

So far, direct snow interception measurements have only been retrieved from weighing trees. These measurements are limited

to the point scale, are resource intensive sampling and only allow for analysis of small to medium size trees, or tree elements

(Schmidt and Gluns, 1991; Hedstrom and Pomeroy, 1998; Bründl et al., 1999; Storck and Lettenmaier, 2002; Knowles et al.,

2006; Suzuki and Nakai, 2008). However, there are indirect techniques which
:::
that allow for estimations of interception over

larger spatial scales. Indirect measurements that compare snow accumulation between open and forest sites allow for a larger40

spatial samplingbut can
:
,
:::
but

::::
may be affected by other snow forest processes, such as by snow unloading. As such, sample tim-

ing of snow storm conditions needs to be evaluated (e.g. Satterlund and Haupt, 1967; Schmidt and Gluns, 1991; Hedstrom and Pomeroy, 1998; Moeser et al., 2015b)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Satterlund and Haupt, 1967; Schmidt and Gluns, 1991; Hedstrom and Pomeroy, 1998; Moeser et al., 2015b; Vincent et al., 2018)

. Until recently, snow interception could not be spatially acquired over spatial
::::::::::
characterized

::::
over

::::::
length

:
scales on the or-

der of several tens of metersat which
:
.
::::::::
However,

::
at

:::::
these

:::::
scales

:
snow interception can spatially vary due to canopy hetero-45

geneity.
:::
The

::::::::
extensive

::::
data

:::
set

:::
of

:::::::
indirect

::::
snow

:::::::::::
interception

::::::::::::
measurements

::
in

:::::::::
coniferous

::::::
forests

:::
in

::::::
eastern

::::::::::
Switzerland

:::
of

::::::::::::::::::
Moeser et al. (2015b)

:
is

::::::::
probably

:::
the

:::
first

::::
data

:::
set

:::
that

::::::
allows

:
a
::::::::
thorough

::::::
spatial

:::::::
analysis

::
of

:::::
snow

::::::::::
interception.

:

Several statistical parameterizations
:::::
models

:
for forest interception snow depth (IHS) and snow

::
of

:::::
snow water equivalent

(ISWE) have been suggested using a variety of canopy metrics and functional dependencies for the rate and amount of storm

snowfall (e.g. Satterlund and Haupt, 1967; Schmidt and Gluns, 1991; Hedstrom and Pomeroy, 1998; Hellström, 2000; Lund-50

berg et al., 2004; Andreadis et al., 2009; Moeser et al., 2015b; Huerta et al., 2019; Roth and Nolin, 2019). Though these
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parameterizations
:::::
models

:
have been demonstrated to perform well, they often rely on detailed forest canopy density and struc-

ture metrics which
:::
that are either not readily available or cannot easily be upscaledto larger scales, limiting functionality in

models where the mean of model grid cells over several hundreds of meters to a few kilometers is required, i.e. potentially

reducing validity in large scale modeling efforts.55

Traditional forest metrics
:::
used

:
to parameterize snow interception include leaf area index (LAI), canopy closure (CC)

and canopy gap fraction (GF ) or sky view. These are mainly derived from hemispheric photographs (HP ) taken from the

forest floor looking upwards. However, these indices can also be estimated from synthetic hemispheric photographs (SP ). SP

images mimic HP images
::
but

:::
are

:::::::::
generated from aerial LiDAR (light detection and ranging) data. This requires the inversion

of LiDAR to a ground perspective and conversion from a Cartesian to a polar coordinate system (Moeser et al., 2014). Prior60

work has also used return density ratios of LiDAR, which is computationally faster but less accurate than SP images (Morsdorf

et al., 2006). Canopy structure, or the position of a canopy element relative to the surrounding forest canopy, have
:::
has also been

used to model snow interception. However, as pointed out by Moeser et al. (2015b), some forest structure metrics such as LAI

and CC are highly cross-correlated. Varhola et al. (2012) reviewed most of the currently employed forest canopy structure and

density metrics. Moeser et al. (2015b, 2016) expanded on prior interception models, which mostly rely on the highly cross-65

correlated traditional forest density parameters LAI and CC by introducing uncorrelated
:
, novel forest structure metrics. Their

empirical interception model utilizes total open area, mean distance to canopy and CC. While the latter parameter was derived

from SP (Moeser et al., 2014), the first two parameters were directly computed from a DSM
:::::
digital

::::::
surface

::::::
model

::::::
(DSM). Total

open area is defined as the total open area in the canopy around a point
:
, and mean distance to canopy defines how far away

the edge of the canopy is from a point. Very recently (Roth and Nolin, 2019)
:::::::
Recently

::::::::::::::::::::
Roth and Nolin (2019) extended mean70

distance to canopy vertically, by deriving it for 1 m horizontal slices that were normalized with the corresponding elevation

above the ground.

Due to the difficulties in measuring snow interception, previous empirical snow interception models were not validated in

different snow climates, forest types or at varying spatial scales. During SNOWMIP2 (Essery et al., 2009; Rutter et al., 2009),

where 33 snow models were validated at single
::::::::
individual

:
forested as well as open sites, many models used the snow inter-75

ception parameterization from Hedstrom and Pomeroy (1998). This interception model was one of the first that used canopy

metrics (LAI and CC). Though, ,
::::::::
although a snow interception model for larger scales also requires the greater canopy struc-

ture. Overall, SNOWMIP2 showed that maximum snow accumulation predictions varied among the
:::
had

::::
large

:::::
errors

:::::::::
compared

::
to

:::::::
observed

::::::
values

::
in

::::
most

:
models but snow cover duration was well estimated. Furthermore, a universal best model could not

be found since
::::::
because

:
model performances at forest sites varied. This may explain why there is still no common ground with80

several snow-related variables in land surface models (Dirmeyer et al., 2006)
:
, which led to the current Earth System Model-

Snow Model Intercomparison Project (ESM-SNOWMIP) showing overall larger errors
:
in

:::::::::
simulated

::::
snow

:::::
depth

:
on forest sites

than on open sites (Krinner et al., 2018). Recently Huerta et al. (2019) validated three previous snow interception models de-

veloped for coniferous forests with observed point snow interception values in a deciduous
::::::
southern

::::::
beech-

:
(Nothofagus-forest

of the Southern
:
-)
::::::
forest

::
of

:::
the

:::::::
southern

:
Andes. All three empirical models required recalibration, with the recalibrated Hed-85

strom and Pomeroy (1998) model showing the overall best performance. Similarly, model simulations of Vincent et al. (2018)
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largely overestimated observed accumulated snow depth in a spruce forest at Col de Porte in the Southeastern
::::::::::
southeastern

French Alps. They attribute this to errors in the processes linked to the snow interception model based on Hedstrom and

Pomeroy (1998) due to an underestimation of the melt of intercepted snow. Previous snow interception models also failed to

accurately model snow interception from
::
in a maritime climate Roth and Nolin (2019)

::::::::::::::::::
(Roth and Nolin, 2019). While Roth and90

Nolin (2019) successfully modelled snow interception by including air temperature
:::::::
modeled

::::
snow

::::::::::
interception

:
in a maritime

climate, their model consistently underestimates
::::::::::::
underestimated

:
snow interception in a continental climate forest. Overall, this

demonstrates the need for more robust parameterizations of the processes affecting snow under forest
:
, which is an important

challenge for global snow modelling
::::::::
modeling.

When modeling at resolutions greater than the point scale, accurate implementation of forest snow processes necessitates95

not just the mean of a grid cell but the standard deviation within a grid cell or model domain. However, to our knowledge,

the standard deviation of snow interception has not yet been quantified. In this paper, we propose empirical parameterizations

for the spatial mean and standard deviation of snow depth interception
::::
(IHS::::

and
:::::
σIHS

)
:

derived from indirect interception

measurements at sites with length scales on the order of several tens of meters. We analyzed an extensive data set consisting

of several thousand interception measurements collected immediately after storm events in a discontinuous coniferous forest100

stand in the Eastern Swiss Alps (Moeser et al., 2014, 2015a, b, 2016)
::::::
eastern

:::::
Swiss

::::
Alps

:::::::::::::::::::::::::
(Moeser et al., 2014, 2015a, b). From

a LiDAR digital surface model (DSM )
::::
DSM with elevations z (Moeser et al., 2014), we derived two canopy structure metrics:

(1) the standard deviation of the DSM (σz) in order to represent the spatial heterogeneity of canopy
::::::
surface height in a

:::::::
forested

model domain and (2) spatial mean sky view factor (Fsky),
:
which roughly represents the spatial mean canopy openness but

is derived here on the Cartesian DSM from geometric quantities that describe the received radiative flux fraction emitted105

by another visible surface patch (i.e. canopy patches) (Helbig et al., 2009). These two metrics were correlated to spatial

means
:::
and

:::::::
standard

::::::::
deviation

:
of the indirect interception measurements. We validated the novel parameterizations

::::::
models

with new indirect snow interception measurements from one site located in the Rocky Mountains of Northern Utah, United

States
:::::::
northern

:::::
Utah,

::::
U.S. and from one site located at Col de Porte in the Southeastern

::::::::::
southeastern

:
French Alps.

2 Data110

::
In

:::
this

:::::
study

:::
we

:::::
solely

::::
used

::::::
indirect

:::::
snow

:::::
depth

::::::::::
interception

::::::::::::
measurements.

:::::::
Indirect

:::::
snow

::::::::::
interception

::::
data

:::
was

:::::::
obtained

:::::
from

:::::::::
comparing

:::
new

:::::
snow

:::::
depth

:::::::::::
accumulation

:::::::
between

::::
open

::::
and

:::::
forest

::::
sites.

::::
This

:::::::
indirect

::::::::
technique

::::::
allows

::
for

::
a

::::::::
collection

::
of

:::::
snow

::::::::::
interception

:::
data

::::
over

::
a
:::::
larger

::::
area

:::
and

::::::
finally

::::
also

::
to

:::::::::
investigate

:::
the

:::::
spatial

:::::
snow

::::::::::
interception

:::::::::
variability.

:::
We

:::::
used

::::
three

:::::
snow

::::::::::
interception

::::
data

::::
sets:

::::
One,

:::::
from

:::
the

::::::
eastern

::::::
Swiss

:::::
Alps,

:::
for

:::
the

:::::::::::
development

::
of

:::::
snow

::::::::::
interception

::::::
models

::::
and

::::
two

:::
for

:::
the

::::::::::
independent

::::::::
validation

::
of

:::
the

:::::::::
developed

::::
snow

::::::::::
interception

:::::::
models

::::
from

:::
the

::::::
Rocky

:::::::::
Mountains

::
of

:::::::
northern

::::
Utah

::
in
:::
the

::::
U.S.

::::
and115

::::
from

:::
the

::::::::::
southeastern

::::::
French

:::::
Alps.

::
In

::::
each

::::
data

:::
set

:::::
snow

::::::::::
interception

:::
was

:::::::
derived

::::::
slightly

::::::::
different.

:
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2.1 Eastern Swiss Alps

Indirect interception measurements were collected in seven discontinuous coniferous forest stands near Davos, Switzerland at

elevations between 1511 m and 1900 m
:::::
above

:::
sea

:::::
level

:::::
(a.s.l.)

:
consisting of primarily Norway spruce (Picea abies) (Fig. 1a).

Mean annual air temperature in Davos (1594 m
::::
a.s.l.) is approximately 3.5 ◦C and the average solid precipitation is 469 cm per120

year (climate normal 1981-2010, MeteoSwiss
:::::::::::::::::::::::::::
https://www.meteoswiss.admin.ch). The field sites are maintained and operated

by the Snow Hydrology group of the WSL Institute for Snow and Avalanche research SLF in Davos, Switzerland. The sites

were chosen to limit influence of slope and topographic shading while capturing as much diversity as possible in elevation,

canopy density and canopy structure (
:::
see

::::::
canopy

::::::
height

::::::
models

::::::
(CHM)

:::
of

:::
two

:::::
field

::::
sites

::
in

:
Fig. 2). Each of the seven field

areas
::
All

:::::
seven

::::
field

::::
sites were equipped in the same manner and consisted of 276 marked and georectified measurement points125

(about ±50 cm) over a 250 m2 surface area (
::::::
yellow

:::
inlet

::
in
:
Fig. 1a

:::::::::
corresponds

::
to
::::
each

::::::
yellow

:::
dot). Two non-forested

::::::::
reference

::::
sites (open field area) reference siteswere also equipped

::::
sites)

::::
(see

::::
blue

::::
dots

::
in

::::
Fig.

:::
1a)

::::
were

::::::::
equipped

::::
with

:::
50

::::::::::::
measurements

:::::
points

::::
each

:
to derive the indirect snow interception measurements

::::::
average

::::
open

::::
site

:::::::
snowfall

:::::::::::
(accumulated

::::::::
snowfall).

During the winters of 2012/2013 and 2013/2014, snow depth was measured at all field points, immediately after every storm

with greater than 15 cm of open area
:::::
depth

::
of

::::
open

::::
site snowfall. In total, nine storm events met the

::::::::
following

:
pre-storm and130

storm conditions that allowed for indirect interception measurements: (1) no snow in canopy prior to a storm event, (2) defined

crust on the underlying snow, and (3) minimal wind redistribution during the storm cycle. New snow was measured down to the

prior snow layers crust to
::::
layer

::::
crust

::::
from

:
the top of the newly fallen snow layer to represent total snow fall-snow interception.

Total snow fall
::::::
snowfall

:
was measured at the open field areas.

::::
sites.

:::::
Snow

::::::::::
interception

::::
was

:::::::
obtained

:::
by

::::::::::
subtracting

:::
the

::::
total

:::::::
snowfall

::::::::
measured

::
in

:::
the

:::::
forest

::::
from

:::
the

::::
total

:::::::
snowfall

::::::::
measured

::
at

:::
the

::::
open

::::
field

::::
site. The extensive measurement data set used135

in this study was previously published
:
is
::::::::
described

:
in high detail in Moeser et al. (2014, 2015a, b, 2016). For this study, 13994

of the individual measurements were used to compute
::::::::::::::::::::::::
Moeser et al. (2014, 2015a, b)

:
.
::::::::::::
Pre-processing

:::::::
resulted

::
in

::::::
13’994

::::::
usable

::::::::
individual

::::::::::::
measurements

::::
from

::::::
which 60 site based mean and standard deviation values of snow interception , which

::::
could

:::
be

::::::::
computed.

::::::
These

::
60

::::::
values were then utilized to develop the interception parameterizations. For all individual measurements, a

mean snow interception efficiency (interception / new snowfall open) of 42 % was measured with values ranging from 0 to 100140

%. The probability distribution function (pdf ) of all snow interception data can be fitted with a normal distribution
:::::::
(positive

::::
part) with a Root-Mean-Square Error (RMSE) of the quantiles between both distributions of 0.6 cm and a Pearson correlation r

of 0.99 for the quantiles (Fig. 3). Average storm values of air temperatures covered cold (-12.1 ◦C) to mild (-1.9 ◦C) conditions.

A 1 m2
::::
1-m

::::::::
resolution

:::::::
gridded LiDAR DSM was generated from a flyover in the summer of 2010 and encompasses all field

areas (
::::::
eastern

:::::
Swiss

::::
Alps

::::
field

:::::
sites

:::
(see

:
Fig. 1a

::
for

:::
the

:::::
extent). The initial point cloud had an average density of 36 points/m2145

:::
(all

::::::
returns)

:
and a shot density of 19 points/m2 (last return

:::::
returns

::::
only). The 1 m

:::
1-m2

::::::::
resolution LiDAR DSM is used for the

derivation of the canopy structure metrics, the standard deviation of the DSM (σz) and the spatial mean sky view factor (Fsky)

over each 50x50m2 field site.
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2.2 Rocky Mountains of Northern
:::::::
northern

:
Utahin the United States,

::::
U.S.

For the first validation data set, indirect interception measurements were collected at Utah State University’s T.W. Daniel Ex-150

perimental Forest (TWDEF; 41.86°N, 111.50°W) that is located at ∼2700 m a.s.l. in the Rocky Mountains of Northern
:::::::
northern

Utah (Fig. 1b). The forest stand is predominantly coniferous and is composed of Engelman spruce (Picea engelmannii) and

subalpine fir (Abies lasiocarpa). However, there are deciduous
::::::::
deciduous

:::::::
quaking

:
aspen (Populus tremuloides) forest stands

present. Modelled mean
::
are

::::
also

:::::::
present.

:::::
Mean annual air temperature is approximately 4◦C and mean annual precipitation is

approximately 1080
::::
1’080

:
mm (PRISM Climate Group, 2012). On average 80 % of the precipitation falls as snow. Similar to155

the sites in the Eastern
::::::
eastern

:
Swiss Alps, two forested sites and one non-forested site were chosen to limit influence of slope

and topographic shading while capturing diversity in canopy density and canopy structure.

At one forested site, total snow depth
::
At

::::
both

:::::::
forested

::::
sites,

:
measurements were taken

:::::
along

::::
20-m

:::::::
forested

::::::::
transects

:::::
every

:::
0.5

:
m
:
before and after two storm eventsduring winter 2015/2016 along four parallel 20-m forested transects every

:::::
storm

::::::
events.

:::
The

::::
after

::::::
storm

::::
event

:::::::
transect

::::
was

:::::::
parallel

::
to

:::
the

::::::
before

:::::
storm

:::::
event

::::::
transect

::::
but

::::::::
displaced

::
by

:
0.5 m (

:
to
:::::

avoid
:::::::

impacts
:::::
from160

::
the

::::::
before

:::::
storm

:::::
event

:::::::
transect

::::::
(yellow

:::::
inlet

::
in Fig. 1b ) as well as at a

:::::::::
corresponds

:::
to

::::
each

::::::
yellow

::::
dot).

:::
At

:::
one

:
non-forested

meadow location (open site). At the second forested site , only one snow storm was captured by pre- and post-storm total snow

depth measurements along two parallel 20-m transects. Since
:::::::
reference

::::
site

:::::
(open

::::
field

::::
site)

::::
(see

::::
blue

::::
dots

::
in

:::
Fig.

::::
1b)

::::::
several

::::::::
disordered

::::::::::::
measurements

:::::
were

:::::::::
conducted

:::::
within

::
a

::::::
fenced

:::::::
meadow

:::
site

::::::
(20x20

::::
m2)

::::
(see

::::
blue

:::
dot

::
in

::::
Fig.

:::
1b).

:::::::::::
Additionally,

:::
an

::::::::
automatic

:::::::
weather

::::::
station

::::::
nearby

::::::::
provided

:::::::::
continuous

::::::::::::
measurements

:::::
(Usu

::::
Doc

::::::
Daniel

::::::::
SNOTEL

::::
site)

::::::
(purple

::::
dot

::
in

::::::
Figure165

:::
1b).

:::::::
Because

:
the purpose of the Utah measurement campaigns was not to measure snow interception but rather to investigate

spatial variability of snow characteristics below different forest canopies (Teich et al., 2019), the derivation of snow interception

differed
::::::
slightly from the Swiss sites. Interception was

:::::::::::
Accumulated

:::::::
snowfall

::::
was

:::
first

:
estimated as the difference between pre-

and post-storm
::::
total

:
snow depth.

::::
Then

:::::
snow

::::::::::
interception

:::
was

:::::::::
calculated

::
by

::::::::::
subtracting

:::
the

::::
total

:::::::
snowfall

:::::::
derived

::
in

:::
the

:::::
forest

::::
from

:::
the

::::
total

:::::::
snowfall

:::::::
derived

::
at

:::
the

::::
open

::::
field

::::
site.170

::::::
During

:::::
winter

:::::::::
2015/2016

::::::
several

::::::::::::
measurement

:::::::::
campaigns

::::
took

:::::
place.

:::
We

:::::::
selected

:::::
those

:::::::::
campaigns

:::
that

:::::::
allowed

::
to

:::::::
reliably

:::::
derive

:::::
snow

::::::::::
interception

:::::
from

::::
total

:::::
snow

:::::
depth

:::::::::::::
measurements

:::::
before

::::
and

::::
after

::::::
storm

::::::
events.

:::
At

::::
one

::
of

:::
the

:::::::
forested

:::::
sites

::
we

:::::
used

::::
four

:::::::
parallel

::::
20-m

::::::::
transects

::::
(i.e.

::::
two

:::::
storm

::::::
events)

::::
and

::
at

::
a
::::::
second

:::::::
forested

::::
site

:::
two

:::::::
parallel

:::::
20-m

::::::::
transects

::::
(i.e.

:::
one

:::::
storm

::::::
event).

::::::
Every

::::
time

:::::
total

::::
snow

::::::
depth

:::
was

::::
also

:::::::::
measured

::
at

:::
the

:::::::::::
non-forested

::::::::
meadow

:::::::
location

:::::
(open

:::::
site).

:
Post-

storm measurements were taken
::::
made

:
anywhere between approximately one to three

:
1

::
to

::
3 days after a recent snowfall

:::
but175

::
the

:::::
total

::::
time

::::::
period

:::::::
between

:::::
every

::::
first

::::
and

::::::
second

::::::::
campaign

::::::
lasted

::::::
several

::::
days

:::::::::
including

:::::::
multiple

::::::::
snowfalls. The storm

events were also temporally close, so that all the trees were not
::::
trees

::::
may

:::
not

:::::
have

::::
been

:
snow free prior to new snowfall.

As such, unloading and snow settling may have influenced these measurements. After parsing the data to further reduce such

influences, 95 individual interception measurements remained, resulting in three site means and three standard deviations to

validate parameterizations developed from the Swiss data set
:::::
based

:::::
mean

::::
and

:::::::
standard

::::::::
deviation

::::::
values. For all individual180

measurements, a mean snow interception efficiency of 33 % was measured with values ranging from 2 to 93 %. The pdf of

all individual snow interception data can be similarly well fitted with a normal distribution
:::::::
(positive

::::
part)

:
with a RMSE of the

6



quantiles between both distributions of 1.3 cm and a Pearson correlation r of 0.98 for the quantiles (Fig. 3). Average storm

values of air temperatures covered cold (-7.33 ◦C) to mild (-1.4 ◦C) conditions.

A 1 m2
:::
1-m

::::::::
resolution

:::::::
gridded LiDAR DSM was generated from a flyover in July of 2009 and encompasses all field areas185

(Mahat and Tarboton, 2012; Teich and Tarboton, 2016) (
::::
sites

:::::::::::::::::::::::::::::::::::::::::::::
(Mahat and Tarboton, 2012; Teich and Tarboton, 2016)

:::
(see

:
Fig.

1b
::
for

:::
the

::::::
extent). The initial point cloud had on average 7 returns/m2 and 5 last returns/m2 (shot density). The 1 m

:::
1-m2

::::::::
resolution

:
LiDAR DSM is used for the derivation of the canopy structure metrics σz and Fsky over each 20-m transect (field

site).

2.3 Southeastern French Alps190

For the second validation data set, indirect interception measurements were collected in a coniferous forest stand next to the

mid-altitude experimental site Col de Porte (45.30◦N, 5.77◦E) at 1325 m a.s.l. in the Chartreuse mountain range in the French

Alps (more site details in Morin et al. (2012); Lejeune et al. (2019)). The dominant forest stand is
:::::::::
dominated

::
by

:
Norway spruce

(Picea abies), with young silver fir (Abies alba) in the understory. Small deciduous trees are present along the north-west

::::::::
northwest border of the experimental site. Mean annual air temperature is 6◦C and the average solid precipitation at Col de195

Porte is 644 kg/m2
:::
mm per year.

New
:::
All snow depth measurements were collected in one forested field area during pre- and post-storm events

::::
taken

:
by the

Snow Research Center (Centre d’Etude de la Neige (CEN)) ) in Grenoble, France as part of the Labex SNOUF project (SNow

Under Forest)
:::::::::::::::::
(Vincent et al., 2018) (Fig. 1c)next to the Col de Porte experimental site (Vincent et al., 2018). There were three

8-m transects, each consisting of eight 1 m
:::
1-m

:
x 0.39m

::
-m wooden boxes that were aligned along the North, South and West200

:::::
north,

:::::
south

:::
and

::::
west

:
axes of the field area

:::
site. New snow depth was measured inside each box after a storm event and was

then cleared of snow. Open area
::
site

:
new snow depth measurements were obtained from snow board measurements from the

Col de Porte
:
at

:::
the experimental site. The boards were cleaned after each precipitation event. Interception was then derived as

the difference between the open area
:::
site and under-canopy

:::
new

:
snow box measurements.

::::::
During

::::::
winter

:::::::::
2017/2018

::::::
several

::::::::::::
measurement

:::::::::
campaigns

:::::
were

:::::::::
conducted.

::::
Four

:::::
snow

::::::
storm

:::::
events

:::::
were

:::::::
selected

:::::
after205

:::::
which

::::
new

:::::
snow

:::::
depth

:::
was

:::::::::
measured

::
in

::
all

::::::
boxes.

:
Snow depth was collected after a major storm event took place. Unload-

ing was controlled visually and from webcams . As such, unloading
:::::::
visually

::::::::
observed

::::
from

::::::::
webcams

::::
and

:
had a minimal

influence on the measurements. Four snow storm events during 2018 were selected for a
:
A

:
total of 96 individual interception

measurements (4x24 measurements) and resulted in four site means
:::::
based

:::::
mean and standard deviation valuesfor the second

independent validation data set. For the individual measurements, a mean snow interception efficiency of 66 % was measured210

with values ranging from 1 to 94 %. The pdf of all snow interception data can be roughly fitted with a normal distribution

:::::::
(positive

::::
part)

:
with a RMSE of the quantiles between both distributions of 1.1 cm and a Pearson correlation r of 0.96 for the

quantiles (Fig. 3). Average storm values of air temperatures covered mild (-0.9 ◦C) to warm (1.7 ◦C) conditions.

A 1 m2
:::
1-m

:::::::::
resolution

::::::
gridded

:
LiDAR DSM was generated from a flyover

::::::
flyovers

:
between 30 August and 2 September

2016 and encompasses
:::::::::::
encompassing

:
the entire Col de Porte experimental site (IRSTEA, Grenoble (

:::
see Fig. 1c)). The initial215

LiDAR point cloud had an average density of 24 points /m2 and a shot density of 17 points/ m2 (last return). The initial point
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cloud right at the transects had an average density of 42 points /m2 and a shot density of 25 points/ m2 (last return). The

1 m
:::
1-m2

::::::::
resolution

:
LiDAR DSM is used for the derivation of the canopy structure metrics σz and Fsky over the three 8-m

transects.

3 Methods220

Subgrid parameterizations were derived for site means and standard deviation of snow interception using forest structure

metrics and open area
:::
site snowfall. We parameterize mean and spatial variability of snow interception for a model grid cell by

accounting for the unresolved underlying forest structure (subgrid parameterization).
:::::
Forest

::::::::
structure

::::::
metrics

:::
are

::::::
derived

:::::
from

::::::
DSM’s

::
to

:::::::
integrate

::::
both

:::
the

::::::
terrain

::::::::
elevation

:::
and

:::::::::
vegetation

::::::
height.

3.1 Forest structure metrics225

The sky view factor Fsky describes the proportion of a radiative flux received by an inclined surface patch from the visible

part of the sky to that obtained from an unobstructed hemisphere (Helbig et al., 2009). Fsky is a commonly applied model

parameter when computing surface radiation balances and can be easily computed for large areas from DSM’s. Fsky integrates

previously applied forest structure metrics, such as total open area and mean distance to canopy, since
:::::::
because this parameter

is able to account for distance, size and orientation of individual surface (or canopy) patches (Helbig et al., 2009). We therefore230

selected Fsky to parameterize the site mean and standard deviation of snow interception (IHS , σHS). Here, we compute Fsky

from view factors which are geometrically derived quantities. They can be computed by numerical methods described within

the radiosity approach for the shortwave (SW) radiation balance over complex topography (Helbig et al., 2009) and were

originally introduced to describe the radiant energy exchange between surfaces in thermal engineering (Siegel and Howell,

1978). Thereby, Helbig et al. (2009) solve the double area integral using uniform but adaptive area subdivision for surface235

patches AI , AJ . Fsky for each surface patch AI is one minus the sum over all N view factors FIJ by assuming the sky as one

large surface patch
:
.
:::
Fsky::

is
:::::::::
computed

::
for

:::::
each

::::::::
fine-scale

:::
grid

::::
cell

::
of

:::
the

:::::
DSM:

FI,sky = 1−
N∑

J=1

FIJ = 1−
N∑

J=1

1

AI

∫
AI

∫
AJ

cosϑI cosϑJ
π r2IJ

dAI dAJ . (1)

Deriving Fsky via Eq. (1) can account for holes in the surface, i.e. small gaps between leaves and branches in forest canopy,

provided the DSM is of a high enough resolution to capture this. In this study, the employed DSM’s did not resolve small gaps240

between branches. Common methods to derive Fsky for forested regions is from sine and cosine weighted proportions of sky

pixels of HP or SP as suggested e.g. by Essery et al. (2008) or from LAI (e.g. Roesch et al., 2001). However, compared to

computing Fsky on DSM’s these methods rely on extensive field work.

The main advantage in deriving Fsky on DSM’s is that Fsky can be derived spatially
::
by

::::::::
averaging

:::
all

::::::::
fine-scale

::::
Fsky :::::

within
::
a

:::::
coarse

::::
grid

:::
cell. Here, we use the spatial mean of the sky view factor Fsky :::

Eq.
:::
(1) over a field site which is comparable to the245

spatial mean canopy openness.
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The second forest structure metric selected was the standard deviation of the DSM σz of a field area
:::
site. Though not totally

uncorrelated from the spatial mean Fsky (Pearson r=-0.41
::::
-0.48), we selected σz to serve in coarse-scale models that are not

able to rely on computational expensive pre-computations of Fsky on fine scales, such as land surface models covering regions

of several hundreds to thousands of kilometers. σz is thought to represent the spatial heterogeneity
::::::::
variability of canopy height250

:::
and

::::::
terrain

:::::::
elevation

:
of the field site (or model domain).

3.2 Subgrid parameterization for forest canopy interception

Parameterizations for
::::::::
Modeling

:::::
forest

::::::
canopy

:::::::
involves

:::::::
several

::::::::
processes

::::
such

::
as

:::::::::::
interception,

:::::::::
unloading,

::::
melt

::::
and

::::
drip,

::::
and

::::::::::
sublimation.

:::::
Here,

::
we

:::::::
present

::::
novel

:::::::
models

::
for

:::
the

::::::
spatial

::::
mean

::::
and

:::::::
standard

::::::::
deviation

::
of

::::
snow

:::::::::::
interception.

::::::::
Modeling

:::
not

::::
only

::
the

:::::
mean

:::
but

:::
the

:::::::
standard

::::::::
deviation

::
of

:::::
snow

::::::::::
interception

:::::
within

::
a
:::
grid

::::
cell

::
or

:::::
model

:::::::
domain

:::::
opens

::::
new

::::::::::
possibilities

::
to

:::::::
describe255

::
the

::::::::
spatially

::::::
varying

:::::
snow

:::::
cover

::
in

:::::
large

:::
grid

:::::
cells.

::::::::
Empirical

:::::::::::::::
parameterizations

:::
for

:
site mean and standard deviation of snow

interception were
::
are

:
derived from the 60 measured mean and standard deviation values from the Swiss data set. Estimates

derived using the new parameterizations
::::::
models were validated from a comparison to the mean and standard deviation values

from the French and U.S. field sites. However, snow

:::::
Snow interception I was modeled as snow depth HS, i.e. IHS , and not as snow water equivalent SWEto remove

:
,
:::
i.e.260

::::::
ISWE .

::::
Snow

:::::::::::
interception

::::::
models

:::
for

:::::
SWE

::::::
would

::
be

:::::::::::
advantageous

:::
for

::::::
model

::::::::::
applications

::::::
because

::::
this

:::::::
removes

:::::::::::
uncertainties

::
of

:::
the

:::::::::
consequent

::::::::
empirical

:::::
snow

::::::
density

::::::::::::::
parameterization

::
in

::::
each

::::::
model

::::::::::
application.

::::::::
However,

::
at

:::
the

:::::::
moment

::::::
similar

::::::
spatial

:::::
SWE

::::::::::
interception

::::::::::::
measurements

::::::::::
comparable

::
to

:::
the

:::::::::
extensive,

::::::
spatial

::::
snow

:::::
depth

::::::::::
interception

::::
data

:::
set

:::::
from

::::::::::
Switzerland

:::
are

:::
not

::::::::
available.

:::
The

::::::
reason

::::::
similar

::::::
SWE

::::
data

:::
sets

:::
do

:::
not

::::
exist

::
is

::::::::
probably

:::
that

::::::
SWE

::::::::::::
measurements

::::::
require

:::::
much

:::::
more

:::::
effort

:::
and

:::
are

:::::
more

::::::::::::::
time-consuming.

:::
We

::::::
further

::::::::
refrained

::::
from

::::::::
deriving

:
a
::::::
spatial

::::::
SWE

::::
data

::
set

:::::
from

:::
the

::::::
spatial

::::
HS

::::::::::
interception265

:::
data

:::
set

:::
to

:::::
avoid

:
any potential error when

::::::::
introduced

:::::
when

::::::::::
empirically

:
converting measured HS values to SWE.

:::::
Thus,

:::
any

:::::
future

:::::
snow

:::::::
density

:::::
model

::::::::::::
developments

::::::
should

:::
not

:::::
affect

::::
our

::::
snow

:::::::::::
interception

::::::
models.

:
Previous interception models

(Hedstrom and Pomeroy, 1998; Schmidt and Gluns, 1991; Moeser et al., 2015b)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Hedstrom and Pomeroy, 1998; Moeser et al., 2015b; Roth and Nolin, 2019; Huerta et al., 2019, e.g.)

estimated new snow density to convert HS into SWE. Models of new snow density typically rely on average storm tempera-

ture. This introduces a bias and prior
::::
Thus,

:::::::::
converting

::::
HS

:::::::::
empirically

::
to

::::::
SWE

:::
and

::::
then

:::::::::
developing

:::
an

::::::::
empirical

::::::::::
interception270

:::::
model

:::::::::
introduces

::::::::
additional

::::::::::
uncertainty.

::::
Prior

:
work has shown a standard error of 9.31 kg/m−3 when using estimates of density

(Hedstrom and Pomeroy, 1998). As such, the snow interception parameterizations developed here are for HS.

From here on, all references will be to site values (mean and standard deviation) without explicitly mentioning the ‘mean’,

unless otherwise stated.

3.3 Performance measures275

We use a variety of measures to validate the parameterizations: the Root-Mean-Square Error (RMSE)
:::::
RMSE, Normalized Root-

Mean-Square Error (NRMSE) (,
:
normalized by the range of data), Mean-Absolute Error (MAE), the Mean Percentage Error

(MPE) (Bias ,
::::
bias

:
with measured-parameterized normalized with measurements) and the Pearson correlation coefficient r as

a measure for correlation. Finally, we evaluate the performance of our parameterizations by analyzing the pdf ’s. We use the
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two-sample Kolmogorov-Smirnov test (K-S test) statistic values D
::::::::::::
(Yakir, 2013) for the pdf ’s (nonparametric method) and280

compute the NRMSE for Quantile-Quantile plots (NRMSEquant) for probabilities with values in [0.1,0.9].

4 Results

4.1 Grid cell mean snow interception

4.1.1 Parameterization
:::::
Model

:::
for

::::
grid

::::
cell

:::::
mean

::::::::::
intercepted

:::::
snow

:::::
depth

We parameterized grid cell mean intercepted snow depth (IHS) by scaling open area
:::
site accumulated snowfall PHS using the285

forest structure metrics Fsky and σz . From these three variables, the interception measurements of the development data set

correlated best with PHS (r = 0.70). Snow interception efficiency (IHS/PHS) correlations were slightly stronger for σz (r =

0.71) than for Fsky (r = -0.63
::::
-0.69).

Based on observed relationships and
::
the

:::::::::
previously

:::::::::
presented

:::::::::::
relationships

:::
and

::::::::
observed

:
correlations we developed two

statistical parameterizations for IHS using two different base functions to scale PHS with either Fsky and σz (Eq. (2)) or with290

only σz (Eq. (3):

IHS = P a
HS

(1−F b
sky)σ

c
z

1 + exp(−d(PHS − f))
b

(1−Fsky)
cσc

z

1 + exp(−d(PHS − f))
:::::::::::::::::::::

(2)

with constant parameters: a= 0.6417, b= 1.0868, c= 0.7063, d= 0.1597 and f= 6.6884
:::::
= 0.09

::::::::
(±1.08),

:::::::
b= 0.19

::::::::
(±0.79),

::::::
c= 0.72

::::::::
(±0.11),

:::::::
d= 0.13

:::::::
(±0.04)

:::
and

::::::::
f= 16.44

::::::::
(±16.33) and

IHS = P a?
HS b?σc?

z (3)

with constant parameters: a? = 0.8199, b? = 0.1424 and c? = 0.8002
:::::::

? = 0.82
::::::::
(±0.12),

::::::::::
b? = 0.0035

:::::::::
(±0.0036)

:::
and

:::::::::
c? = 0.80

::::::
(±0.14). The constant parameters resulted

::::
result

:
from fitting non-linear regression models by robust M-estimators using iter-295

ated reweighed least squares (see R v3.2.3 statistical programming language robustbase v0.92-5 package (Rousseeuw et al.,

2015)).
:::
The

:::
90

::
%

:::::::::
confidence

::::::::
intervals

::
of

:::
the

:::::::::
parameters

:::
are

:::::
given

::
in

::::::::::
parentheses.

::
In

::::
both

:::::::::
equations

::::
PHS:::

and
:::
σz:::

are
::
in

:::
cm.

:

The accuracy of a derived model between IHS and PHS depended upon the forest structure metrics and the underlying

function applied in the potential models. The
:::::
While

:::
we

::::::::::
investigated

:::::::::
previously

:::::::::
suggested

:::::::::
functional

:::::::::::
dependencies

::::
for

:::
the

::::::
amount

::
of

:::::
storm

::::::::
snowfall

:::
the best performances were seen when the base function between IHS and PHS was either a power300

law or a combination of a power law with an exponential dependencesimilar to the one suggested by Moeser et al. (2015b)

:
.
::::::
Similar

::::
base

:::::::::
functions

::::
were

::::::::
obtained

:::
for

::::::::
fine-scale

::::::
ISWE::::::

models
:::

by
:::::::::::::::::::
Moeser et al. (2015b)

::::::::::
(exponential)

::::
and

:::::::
recently

:::
by

:::::::::::::::::::
Roth and Nolin (2019)

:::::
(power

::::
law).

Estimated IHS-values from Eq. (2) or (3) increase with increasing PHS , increasing σz or decreasing Fsky. This implies that

with decreasing
::::::::
increasing

:
forest density (i.e. more canopy surface is exposed

::::
larger

:::
σz), IHS increases faster with increasing305

PHS . Note that here, a lower Fsky value denotes more pronounced forest gaps since it is derived from aerial LiDAR DSMin

contrast to ground based HP acquired below canopy. where this relationship is reversed. .
:
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Eq. (2) and (3) differ in two ways. First, Eq. (2) incorporates the functional dependency for increasing PHS that snow inter-

ception efficiency (interception/snowfall) increases with increasing precipitation due to snow bridging between branches until

a maximum is reached after that
:::::
which

:
it decreases due to bending of branches under the load (sigmoid curve as suggested310

by Moeser et al. (2015b)
:::::::::::::::::::::::::::::::::::::::::
Satterlund and Haupt (1967); Moeser et al. (2015b)). Additionally, a power law dependency for accu-

mulated open area
:::
site

:
storm snowfall is applied to force the sigmoid distribution to zero at very small snowfall events. The

sigmoid curve alone is not able to reach zero, potentially breaking the mass balance. In contrast, Eq. (3) solely employs the

power law dependency between IHS and accumulated open area
::
site

:
storm snowfall PHS . The second difference between both

equations is that Eq. (2) uses both forest structure metrics (Fsky and σz), whereas Eq. (3) only uses σz . Eq. (2) is thus more315

’complex,’
:
’, and necessitates more time to derive both forest structure parameters whereas Eq. (3) has a more ’compact’ form

and solely necessitates estimation of σz .

4.1.2 Validation
::
of

::::::
model

:::
for

::::
grid

:::
cell

:::::
mean

::::::::::
intercepted

:::::
snow

::::::
depth

Performances of both newly developed snow interception IHS models (Eq. (2) and (3)) were compared to the IHS measure-

ments from the development data set (Switzerland), as well as the IHS measurements from the combined two geographically320

and climatological
:::::::::::::
climatologically different validation data sets (France and United States

:::
U.S.). In Fig. s

::::
Figs.

:
4 to 6 we

differentiate the validation data set from the development data set by using a black outline around the symbols (validation)

instead of colored circles (development). Squares represent the data set from the U.S. and diamonds represent the data set from

France.

Fig. 4 displays that, for both models, there is a good agreement for IHS to measured interception at all sites. Overall error325

statistics show good performances for the development and the validation data sets with low absolute errors (e.g. all MAE≤1.2

cm), strong correlations (all r ≥0.9
::::
0.89) and low distribution errors (e.g. all NRMSEquantlower 10

::
<8 %) (Table 1). In contrast

to the validation data set,s
:::
sets performance statistics for the development data set are slightly reduced for the more compact

model (Eq. (3)) compared to the more complex model (Eq. (2)).

Fig. 5 reveals overall similar performances for both parameterizations as a function of accumulated snow fall
:::
new

:::::::
snowfall.330

However, small differences between both parameterizations are visible in the extremes, i.e. for very low and very large IHS

and PHS . The bias for the largest PHS (U.S. data set) is slightly larger for the more complex
:::::::
compact parameterization

(Eq. (2
:
3)) whereas for the smallest PHS (data set from France) the bias is

::::::
slightly

:
larger for the more compact

:::::::
complex

parameterization (Eq. (3
:
2)). The bias is more pronounced with regard to the corresponding interception efficiencies, shown in

Fig. 5d-f, the largest bias for the smallest PHS for the compact
::::::
complex

:
parameterization (Eq. (3

:
2)) is -0.23 compared to 0.09335

::::
-0.24

:::::::::
compared

::
to

::::
0.21 for the more complex

:::::::
compact parameterization (Eq. (2

:
3)).
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4.2 Grid cell standard deviation of snow interception

4.2.1 Parameterization
:::::
Model

:::
for

::::::::
standard

:::::::::
deviation

::
of

:::::
snow

:::::
depth

:::::::::::
interception

We parameterized the standard deviation of snow depth interception σIHS
by scaling PHS using the forest structure metric

σz . σIHS
of the development data set correlated best with PHS (r = 0.82). The correlation with

::::
mean

:::::
snow

::::::::::
interception IHS340

was less pronounced (r = 0.33). σIHS
normalized with PHS correlated much better with σz (r = -0.68) than with Fsky (r =

0.1
:::

0.13).

Building upon the observed power law functional dependency between mean snow interception IHS and PHS and the

observed relationships and correlations for σIHS
we scaled a power law function for PHS with the standard deviation of the

DSM σz in order to parameterize σIHS
:345

σIHS
= P g

HS hσj
z

h

1+σj
z

:::::

. (4)

Constant parameters g= 0.7821, h= 1.0826 and j=−0.5175
::::::
= 0.78

::::::::
(±0.10),

::::::::
h= 13.40

::::::::
(±11.64)

:::
and

:::::::
j= 0.53

:::::::
(±0.12) result

from fitting a non-linear regression model, similar to the derivation of IHS from Eq. (2) and (3).
:::
The

::
90

::
%

:::::::::
confidence

::::::::
intervals

::
of

:::
the

:::::::::
parameters

:::
are

:::::
given

::
in

::::::::::
parentheses.

::
In

:::
Eq.

:::
(4)

:::::
PHS :::

and
:::
σz :::

are
::
in

:::
cm.

:

σIHS
derived from Eq. (4) increases with increasing PHS or decreasing σz . This implies that as canopy height becomes

more homogeneous
:::
with

:::::::::
decreasing

:::
σz::::::::::

(decreasing
:::::
forest

:::::::
density), the spatial variability in snow interception increases faster350

with increasing PHS .
:::
The

:::::::
opposite

:::::::::
correlation

::::
was

:::::
found

::::::::
between

::
σz::::

and
:::::
mean

::::
snow

::::::::::
interception

:::::
IHS .

:::
For

::
a

::
σz::::::::::

converging

::
to

::::
zero,

:::::::
modeled

:::::
σIHS:::

via
:::
Eq.

:::
(4)

::::::::::
approaches

:
a
:::::::
constant

:::::::
fraction

::
of

:::::::::::
precipitation.

:

4.2.2 Validation
::
of

::::::
model

:::
for

::::::::
standard

::::::::
deviation

::
of

:::::
snow

::::::
depth

::::::::::
interception

Overall, modeled and measured σIHS
agree well (Fig. 6). Error statistics show good performances for the development and the

validation data set with low absolute errors (e.g. all MAE≤0.64
:::
0.63

:
cm), strong correlations (all r ≥0.92) and low distribution355

errors (e.g. NRMSEquantlower
:
<10 %) (Table 1). However, performances are less accurate for the validation data set than for

the development data set (e.g. MAE of 0.64
:::
0.63

:
cm as opposed to 0.45 cm and NRMSEquant of 10 % as opposed to 4 %).

This was caused by a potential outlier in the validation data set from the U.S. . During one measurement campaign, an open

area
:::
site accumulated storm snowfall PHS was not available at the same date as the under canopy measurements. Therefore,

this value was estimated from a local automatic weather station (Usu Doc Daniel SNOTEL site
:
;
:::::
purple

::::
dot

::
in

::::::
Figure

:::
1b).360

Additional measurement uncertainty (at the Utah site) was also introduced, since interception estimates were integrated values

over several snow storms that occurred during the 13 days between pre- and post- snow fall
:::::::
snowfall

:
measurement campaigns.

When this outlier is removed from the validation data set, performance statistics improve considerably converging towards the

errors of the development data set, cf. MAE decreases to 0.35 cm and the NRMSEquant to 5 %.

To compare modeled and
:::
(Eq.

:::
(2)

:::
and

::::
Eq.

:::
(4))

::::
and measured data set mean values from each geographic location (Switzer-365

land, US
:::
U.S., France), we averaged all site values to derive

::
an

:
overall mean of IHS , and σIHS

for each location. The coefficient
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of variation (description of variability) (CVIHS
=σIHS

/IHS) was also calculated for each of the three geographic locations. For

the Swiss development data set, the same overall meanand standard deviation
:
,
:::::::
standard

::::::::
deviation

:::
and

::::
CV

:
for measured and

modeled snow interception was calculated (mean of 4.5 cmand
::
9.4

::::
cm, standard deviation of 9.4 cm ), and the

:::
4.5

:::
cm

:::
and

:
CV

was almost equivalent (
:
of

:
0.51versus 0.50). For the validation data sets we obtained slightly larger values for modeled IHS (9.4370

:::
9.3 cm), modeled σIHS

(3.7 cm) and modeled CVIHS
(0.40

::::
0.38) than measured IHS (9.2 cm), measured σIHS

(3.2 cm) and

measured CVIHS
(0.35). If the potential outlying data point from Utah is removed, the same overall modeled and measured

mean CVIHS
(0.31

::::
0.32) is found along with very close values of modeled and measured mean IHS (10.1

:::
9.8 cm versus 9.9

cm) and modeled and measured σIHS
values (3.4 cm versus 3.3 cm).

5 Discussion375

We proposed two
:::::::
empirical

:
models for spatial mean interception IHS to be employed in hydrological, climate and weather

applications. One model is a more compact model, Eq. (3). This model uses a power law dependency between IHS and

accumulated storm precipitation PHS that is scaled by one forest structure metric: the standard deviation of the DSM σz . The

other model, Eq. (2), integrates a more complex parameterization by using a combination of a power law with an exponential

dependence similar to the one suggested by Moeser et al. (2015b) for PHS and is scaled by two forest metrics: the sky380

view factor Fsky in combination with σz . For both IHS models, interception increases faster with increasing snowfall when

forest density decreases
:::::::
increases

:
(i.e. more canopy is exposed

:::::
larger

::
σz). In the more complex model decreasing

::::::::
increasing

forest density is implemented by increasing σz and decreasing Fsky. Though Fsky can be pre-computed and is temporally

valid for many years (unless the forest structure changes due to logging, fires, insect infestations or other forest disturbances),

computing Fsky over large scales and/or with fine resolutions is more computationally demanding than for σz (Helbig et al.,385

2009). A subgrid parameterization for the sky view factor of coarse-scale DSM’s over forest canopy would eliminate the pre-

computation of sky view factors on fine-scale DSM’s. Such a subgrid parameterization for sky view factors over forest canopy

could be similarly set up as previously done for alpine topography and
:::::
would lead us towards a global map of sky view factors

(cf. Helbig and Löwe, 2014).

In general, more differences between the compact and more complex modeling approaches only displayed at the ex-390

tremes. For instance, for small storm precipitation values (PHS =3 cm), the more complex parameterization performs
:::::::
compact

:::::::::::::
parameterization

::::::::
performs

:::::::
slightly

:
better whereas for very large storms (PHS =43 cm), the more compact

:::::::
complex

:
model

displayed improved performance. The choice for
::
of

:
one of these two models thus depends on field area characteristics, desired

accuracy
::
the

:::::
focus

:::::
range

::
of

:::::::::::
precipitation

:::::
values

:
and available computational cost and storage.

:::::::::
resources.

:::
Our

::::::
choice

:::
for

:::
the

:::::::::
functional

::::
form

::
of

:::::
PHS::::::

differs
::::
from

::::::::
previous

::::::::::::::
parameterizations

:::
for

:::::
snow

::::::::::
interception

::::::
solely

:::::
using

:::
the395

::::::
sigmoid

::::::
growth

::::::::::::::::::::::::
∼ 1/(1+ exp(−k(P −P0))):::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(e.g. Satterlund and Haupt, 1967; Schmidt and Gluns, 1991; Moeser et al., 2015b)

::
or

::
an

::::::::::
exponential

::::
form

::::::::::::::::::::::
∼ (1− exp(−k(P −P0)))::::::::::::::::::::::::::::::::::::::::

(e.g. Aston, 1993; Hedstrom and Pomeroy, 1998)
::::
with

::::::::
increasing

:::::::::::
precipitation.

:::::
While

:::
the

::::
base

:::::::
function

::
of

:::::::::::::::::::::::
Satterlund and Haupt (1967)

::::::
worked

:::::
better

:::
for

::::::::::::::::::
Moeser et al. (2015b),

:
a
:::::::::
drawback

::
of

:::
this

::::::::::
relationship

:
is
::::
that

::::::::::
interception

::::
does

:::
not

::::::
become

::::::
exactly

::::
zero

:::
for

:
a
::::
zero

:::::::
snowfall

:::::::
amount.

::
To

:::::::
account

:::
for

::::
this,

::
the

::::::
model

:::::::
becomes

::::::::::
complicated
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::::
when

:::::::
applied

::
to
::::::::

discrete
:::::
model

:::::
time

:::::
steps

:::::::::::::::::
(Moeser et al., 2016)

:
.
:::
For

::::
this

:::::::
reason,

:::::::::::::::::::::::
Mahat and Tarboton (2014)

::::::
selected

::::
the400

:::::::::
relationship

::::::::
proposed

:::
by

:::::::::::::::::::::::::
Hedstrom and Pomeroy (1998)

:::
for

::::
their

:::::::::::::
parameterization

::
of
:::::
snow

::::::::::
interception.

::::::::
However,

:::
the

:::::::::
functional

::::
form

::
of

::::
the

::::::::::::::::::::::::::
Hedstrom and Pomeroy (1998)

:::::
model

::::
does

::::
not

:::::::
account

:::
for

:::::
snow

::::::::
bridging

::
or

::::::
branch

::::::::
bending,

::::
thus

:::::::::
modeling

::::::::::
interception

::::::::
efficiency

::
as

:::::::::
decreasing

:::::::
through

::::
time.

:::
We

::::
also

::::::::
compared

::::::
means

:::
and

:::::::
standard

:::::::::
deviations

::::
over

::
all

::::
sites

::
as

::
a

:::::::
function

::
of

:::::
forest

::::::
metrics

::::
and

:::::
found

:::
that

:::
the

:::
use

:::
of

:::::
storm

:::::
means

::::
can

::::::::
introduce

::::::::::
precipitation

::::::::::::
dependencies

:::
that

:::::
might

::::::::
originate

::::
from

:::
an

:::::::::
insufficient

:::::::
number

::
of

::::
sites

:::::::
showing

:::::::
similar

:::::
forest

::::::
canopy

::::::::
structure

::::::::
parameter

::::::
values

:::
for

:
a
:::::
given

:::::::::::
precipitation

:::
(cf.

:::::
black

::::
line405

::::::::
compared

::
to

::::::
colored

::::
dots

::
in

:::
Fig.

::::
(5)).

::::::
Based

::
on

:::
the

::::::::
functional

::::::::::::
dependencies

:::::::
revealed

::
by

::::::::
analyzing

:::
our

::::
data

::
as

:
a
:::::::
function

::
of
:::::
PHS

:::
and

:::::
forest

::::::::
structure

::::::
metrics,

::
a
::::::
simple

:::::
power

::::
law

:::
was

::::
able

::
to

::::::::
describe

:::
the

:::::
spatial

:::::
mean

:::::
PHS ::::::::::

dependency
::
of

:::::
snow

::::::::::
interception

:::
(cf.

:::
Eq.

::::
(3)).

:::
The

::::::::
equation

::::::::
displayed

:::
that

::::
with

:::::::::
increasing

:::::
PHS ,

:::
IHS:::::::::

increases.
::::
This

:
is
::::
less

::::::::::
pronounced

::::
with

::::::
smaller

:::
σz ::

or
:::::
larger

:::
Fsky::::::

values
::::
(Fig.

:::::
(5)).

::::
Very

::::::::
recently,

:
a
:::::
storm

:::::
event

::::::
power

:::
law

::::::::::
dependency

::::
was

::::
also

:::::
found

::
to
::::

best
::::::::

describe
::::::::
fine-scale

::::::
SWE

::::::::::
interception

::
in

:
a
::::::::

maritime
:::::
snow

:::::::
climate

:::::::::::::::::::
(Roth and Nolin, 2019).

::::
Our

:::::
base

::::::::
functions

:::
for

:::
site

::::::
means

:::
and

::::::::
standard

:::::::::
deviations410

:::
thus

::::
bear

:::::
some

::::::::
similarity

:::
to

:::::::::
previously

::::::::
developed

:::::::::
fine-scale

::::
snow

::::::::::
interception

:::::::
models.

:::::::
Despite

:::
an

:::::::
ongoing

::::::
debate

::::::::
regarding

::
the

::::::
proper

::::::::::::
representation

::
of

:::::::::::
interception,

:::
we

::::::
believe

::::
that

:::
the

::::::::::
interception

::::::
models

::::::::
presented

::::
here

:::::
have

:::
the

::::::::
advantage

::::
that

::::
they

::::
could

:::
be

::::::
applied

::
in

:::::::
various

:::::
model

::::::::::
applications

:::
for

:::::::::
horizontal

:::
grid

::::
cell

:::::::::
resolutions

:::::
larger

::::
than

:
a
::::
few

::::
tenth

:::
of

::::::
meters.

::::
Due

::
to

:::
the

:::
lack

::
of
::::::::::::
measurements

::::
over

::::::
larger

:::::
scales

:
a
:::::::::
validation

:::::::
remains

:::::::
however

::
at

:::
the

:::::::
moment

:::::::::
impossible.

:

We have derived just one
:::::::
empirical

:
model for the standard deviation of snow interception σIHS

that uses a power law415

dependency on accumulated storm precipitation PHS scaled by one forest structure metric: the standard deviation of the DSM

σz . We also tested a more complex model for σIHS
using both forest metrics (Fsky and σz) that also integrates a power law

dependency of PHS . However, model performances for the validation data set did not differ considerably from the ones for the

more compact model. Therefore, we propose the more compact parameterization for σIHS
(Eq. (4)) to facilitate broad model

applications.420

By using Fsky and σz derived from DSM’s as forest structure metrics we focused on the overall shape of the forest. This

simplification is similar to the assumption by Sicart et al. (2004) for solar transmissivity in forests under cloudless sky condi-

tions. They assumed the fraction of solar radiation blocked by the canopy was equal to 1-V ff with Vf therein being defined as

the fraction of the sky visible from beneath the canopy. Our simplification is also in line with previous suggestions. Primarily,

to reliably describe interception by forest canopy over larger areas, the larger-scale canopy structure needs to be taken into425

account instead of only using point based canopy structure parameters (e.g. Varhola et al., 2010; Moeser et al., 2016).
:::
We

:::::::
proposed

::
to
::::::::

calculate
::::
Fsky::::

and
::
σz:::

on
::::::
DSM’s

:::::
rather

::::
than

:::
on

:::::::
CHM’s

::
to

:::::::
account

::
for

::::::
terrain

::::
and

:::::::::
vegetation

::::::
height.

::::
This

::::::
results

::::
from

:::
our

:::::::::
correlation

:::::::
analysis

:::
for

:::::::::::
measurement

::::
data

::::::::
collected

::
in

:::::
rather

::::
flat

::::
field

:::::
forest

::::
sites

:::::::
(Section

::
2)

::::
and

::::::
should

::
be

:::::::
verified

::::
once

:::::
spatial

:::::
snow

::::::::::
interception

::::::::::::
measurements

:::::::
become

::::::::
available

::
in

::::::
steeper

:::::
terrain

::::
and

::::
over

:::::
larger

:::::
length

::::::
scales.

:

The models for IHS and σIHS
were statistically derived from measured snow interception data gathered in the Eastern430

::::::
eastern Swiss Alps. We displayed

::::::::
Naturally,

:::::::::
empirically

:::::::
derived

:::::::::::::::
parameterizations

:::
can

::::
only

:::::::
describe

::::
data

:::::::::
variability

:::::::
covered

::
by

:::
the

::::
data

:::
set.

::::::::
However,

::::
even

::::::
though

:::
the

:::::::::::::::
parameterizations

::::
were

:::::::::
developed

::::::::::
empirically,

:::
we

:::::
could

::::::
display

:
that the parameter-

izations perform well for two disparate
:
,
::::::::::
independent

:
snow interception data sets collected in geographically different regions,

different snow climates,
:::::::::
coniferous

:
tree species and prevailing weather conditions during collection of the validation data
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sets (French Alps and Rocky Mountains,
::::
U.S.). For instance, in the French Alps, rather warm to mild winter weather condi-435

tions predominated whereas rather mild to cold weather prevailed during the campaigns in the Rocky Mountains of Northern

:::::::
northern Utah in the U.S. . Though snow cohesion and adhesion are clearly temperature dependent, we did not observe de-

creases in overall performances under these differing weather conditions for our two IHS models, which do not include air

temperature. In contrast, in a maritime (warm) snow climate correlations between air temperature and snow interception were

recently found Roth and Nolin (2019). Our ranges of interception and
::
by

:::::::::::::::::::
Roth and Nolin (2019).

::
In

::::::::
addition

::
to

:::
the

::::::
spread

::
in440

:::::::
observed

::::::::::
temperature

::::::::::
conditions,

:::
our

::::::
ranges

::
of

:
accumulated snow storm PHS values of the development data set are fairly

broad (e.g. PHS between 10 cm and 40 cm). The measurements of the validation data set are well within the range of the

development data set values, with the exception of
::
but

::::
also

:::::
cover

::::::::
extremes,

::::
such

::
as

:
one very small (PHS= 3 cm) and one very

large snow fall
::::::
snowfall

:
(PHS= 43 cm) (cf. Fig. 3). Given the large development data set(Moeser et al., 2015b) and the

:
It

::
is

:::
thus

:::::::::
reassuring

::::
that

:::
our

:::::::
models,

:::::::
perform

:::::::::
sufficiently

::::
well

::
in
:::::::
varying

:::::::
climate

::::::
regions

::::::
though

::::::
clearly

:::::
more

::::::::
validation

::::
data

::::
sets445

:::::
would

::
be

::::::::::::
advantageous

::::::::
especially

::
in
:::::::
regions

:::::::::::
experiencing

:::::::
extreme

:::::::
climates

::::
such

::
as

:::
the

::::
cold

:::::
arctic

::
or
::::::

warm
:::::::
maritime

:::::::
forests.

::::::
Despite

:::
the

:::::::
existing

:::::::::
variability

::
in

:::
the

::::
data

::::
set,

::::
more

::::::
spatial

:::::
snow

::::::::::
interception

::::::::::::
measurements

::::::
would

::::::
clearly

::::
help

:::
to

:::::::
increase

::
the

:::::::::
robustness

:::
of

:::
our

::::::::
empirical

::::::::::::::::
parameterizations.

::::::::
However,

::::
with

:::
the

:
overall good performance of the parameterizations for

the validation data set, it is reassuring that our models, perform sufficiently well in varying climate regions. This lends
:::
sets

:::
and

:::
the

:::::::::::
development

:::
data

:::
set

::
of

:::::::::::::::::::
Moeser et al. (2015b)

:::::::
currently

:::::
being

:::::::
probably

:::
the

:::::
most

::::::::
extensive

:::::::
existing

:::
data

:::
set

:::
for

::::::
spatial450

::::
snow

:::::::::::
interception,

:::
our

::::::
results

::::
lend

:
validity to the models for a range of coarse-scale model applications such as in climate,

hydrologic (watershed and snow), and meteorological models.

Despite the overall good performance of the models, we observed differences between the two validation data sets. The

data set collected in France shows improved error statistics for snow interception IHS (e.g. for Eq. (3):
::::::::::
RMSE=0.35

::::
cm,

NRMSE=4 %, MAE=0.28 cm, r= 1 and NRMSEquant= 3 %
:::
0.26

:::
cm) as compared to the data set collected in the U.S. (e.g.455

for Eq. (3):
::::::::::
RMSE=1.52

:::
cm,

:
NRMSE=14 %, MAE=1.5 cm, r= 0.95 and NRMSEquant= 12 %

::
1.4

:::
cm). In France, intercepted

snow storm depth was measured as the difference of new snow depth in wooden boxes below trees and open area
:::
site new

snow storm depth. This was done in relatively short time intervals after a snow storm. In the U.S., intercepted snow was

inferred from absolute snow depth differences
:::
total

:::::
snow

:::::
depth

:
before and after a snow storm event within forests and in

an open area
::
site. Derived snow interception was often integrated over several storm events due to longer periods between460

the measurement campaigns. Thus, these measurements were influenced by
:::::::::
potentially

:::::::::
influenced

::
by

:::::
other

:::::
snow

::::
and

:::::
forest

processes such as snow settling, wind redistribution, sublimation, unloadingand melt,
::::

and
::::
melt

::::
and

::::
drip. Our interception

models do not account for such effects. We
:::::::
however

:::::
only

:::::::
calculate

:::::
how

:::::
much

:::::
snow

::
is

::::::::::
intercepted

::
at

::::
any

:::::
point

::
in

:::::
time,

:::::
which

::::::::
provides

:::
the

:::::
input

:::
for

:::::
other

::::::
forest

:::::
snow

::::::
process

:::::::
models

:::::
such

::
as

:::
for

::::::::::
unloading,

::::::::::
sublimation

:::
as

::::
well

:::
as

::::
melt

::::
and

::::
drip.

:::
We

::::
thus

:
assume that these processes will be addressed separately, as in all prior interception models (Roesch et al.,465

2001). Our approach also does not define a maximum interception capacity, i.e. the maximum possible load on forest canopy

(e.g. Schmidt and Gluns, 1991; Hedstrom and Pomeroy, 1998; Roesch et al., 2001; Essery, 2013; Moeser et al., 2015a).Another

reason for the differences in model performances could
::::::
Despite

:::::
some

:::::::::::
uncertainties

::
in

:::
the

:::::::::
validation

::::
data

::
set

:::::
from

:::
the

::::
U.S.

::
it
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::::::
allowed

:::
for

:::::::::
validation

::
in

::
a
:::::::
different

:::::
snow

:::::::
climate

::::
than

:::
the

::::::
French

:::::
Alps

::::
and

:::
also

:::::::
covered

::
a
:::::
large

::::::
spread

::
in

:::::
storm

::::::::
snowfall

:::::::
amounts

::::
(Fig.

:::
4).470

:::::::::
Differences

::
in

::::::
model

:::::::::::
performances

:::::::
between

:::
the

::::
two

::::::::
validation

::::
data

::::
sets

:::::
could

:::
also

:
be attributed to the more accurate forest

structure metrics for the French data set because of a higher resolution LiDAR DSM (higher point density of 24 /m2 returns

and 17 /m2 last returns) compared to the LiDAR flyover from the U.S. (on average 7 returns/m2 and 5 last returns/m2). Despite

some uncertainties in the validation data set from the U. S. it allowed for validation in a different snow climate than the

French Alps and also covered a large spread in storm snowfall amounts (Fig. 4).
:::::
While

::
it

::
is

::::
clear

::::
that

:::
the

::::::
higher

:::
the

:::::
point475

::::
cloud

:::::::
density,

:::
the

:::::::
greater

:::
the

:::::::
potential

::::::
detail

::
of

:::::::
derived

::::::
DSM’s,

::::
1-m

:::::::::
resolution

::::::
DSM’s

:::::::::
computed

:::::
from

::::
point

::::::
clouds

::::::
above

:
5
:::::::::
returns/m2

:::
are

:::::::
usually

:::::
quite

:::::::::
consistent,

:::
and

::::
are

::::::
suitable

:::
to

:::::
derive

:::::::::
coniferous

:::::::
canopy

::::::
models

::::::::
allowing

::::::::
tree-level

::::::::
analyses

:::::::::::::::::::::::::::::::::
(Kaartinen et al., 2012; Eysn et al., 2015)

:
.
::::::
Current

::::::::
available

::
or

::::::::
scheduled

:::::::::::
country-wide

::::
data

:::
sets

:::
are

::::
now

::::::
around

:::
1-5

:::::::::
returns/m2

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Federal Office of Topography Swisstopo, last access: 22 November 2019; Danish Geodata Agency, last access: 22 November 2019; Latvian Geospatial Information Agency, last access: 22 November 2019)

:::
and

:::::
these

:::::::
densities

::::
can

::
be

::::::::
expected

::
to

:::::::
increase

::::::
thanks

::
to

::::::::
technical

::::::::::::
improvements

::
in

::::::
LiDAR

:::::::
sensors.

:::::
Since

::::::::
fine-scale

:::::::
DSM’s480

::
are

::::
the

::::
only

::::
input

::::::::
required

::
to

::::::
derive

:::
the

:::::
forest

::::::::
structure

::::::
metrics

::::
Fsky::::

and
::
σz::

a
:::::
global

:::::::::::
applicability

::
of

::::
our

:::::
snow

::::::::::
interception

::::::
models

:::
for

:::::::::
coniferous

:::::
forest

:::::
would

::
be

::::::::
possible

::::
with

:::::::
minimal

:::::::
required

::::::::::
information.

:

To understand if the models would also work in other forest types or in disturbed forests, e.g. due to logging, fires or

insect infestations, more snow interception measurements in different, deciduous and mixed as well as in disturbed forests

are required. Very recently Huerta et al. (2019) showed that previously published snow interception models developed for485

coniferous forests from Hedstrom and Pomeroy (1998); Lundberg et al. (2004); Moeser et al. (2016) required recalibration

to match observed point snow interception observations in a deciduous
:::::::
southern

:::::
beech

:
Nothofagus stand of the Southern

:::::::
southern Andes. We also investigated the model performance

::::::::::
investigated

::
the

:::::::::::
performance

::
of

:::
our

::::::
models

:
for two measurement

campaigns in a deciduous
::::::
quaking

:
aspen (Populous tremuloides) forest in our U.S. field site. The measurement setup (20-

m transects) was identical to the ones in the coniferous forest at this location (see Section 2.2). Though overall the models490

compared well with the measurements, the model performance was not as good as for the coniferous forest. Since
:::::::
Because the

LiDAR DSM was acquired in the summer, i.e. with leaves on the trees, the models naturally overestimated IHS and σIHS
. For

instance, using the more complex model for IHS (Eq. (2)) we obtained a mean bias of -5.6 cm, respectively
::
-6

::::
cm,

:::::::
whereas

when using the more compact model for IHS (Eq. (3)) we obtained a mean bias of -8.2
::
-8 cm. For σIHS

, the performance was

overall slightly better with a mean bias of -3.2
:
-3

:
cm (Eq. (4)). While this shows that the performance is clearly lower in such495

sites, we assume that the performance would be improved when the LiDAR is acquired in leaf-off conditions.

The LiDAR derived
::::::::::::
LiDAR-derived

:
DSM sky view factors do not account for small spaces between leaves or branches

:
,

which are well accounted for when sky view factors are derived from HP or LAI . In principle, sky view factors that are

computed on DSM’s represent, depending on the return signal used to create the DSM, a coarser view on the underlying forest

canopy. While this increases fine scale
::
the

::::::
overall

::::::::
fine-scale

:
error, we feel that the ability to calculate

::::
both

:::
our

:
canopy structure500

metrics in the Cartesian DSM spacefar outweighs fine scale ,
::::::
which

:::::
allows

:::
an

::::
easy

:::::
model

::::::::::
application,

:::
far

:::::::::
outweighs

::::::::
fine-scale

resolution losses.
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Our choice for the functional form of PHS differs from previous parameterizations for interception solely using the sigmoid

growth ∼ 1/(1+ exp(−k(P −P0))) (e.g. Satterlund and Haupt, 1967; Schmidt and Gluns, 1991; Moeser et al., 2015b) or an

exponential form ∼ (1− exp(−k(P −P0))) (e.g. Aston, 1993; Hedstrom and Pomeroy, 1998) with increasing precipitation505

and P0 as the accumulated storm snow depth at the time of maximum interception efficiency. While the functional form

of Satterlund and Haupt (1967) worked better for Moeser et al. (2015b), a drawback of this relationship is that interception

does not become exactly zero for a zero snowfall amount. To account for this, the model becomes complicated when applied to

discrete model time steps (Moeser et al., 2016). For this reason, Mahat and Tarboton (2014) selected the relationship proposed

by Hedstrom and Pomeroy (1998) for their parameterization of snow interception. However, this model does not account for510

snow bridging or branch bending, thus modeling interception efficiency as a decrease through time. We also compared site

means and standard deviations as a function of forest metrics and found that the use of storm means can introduce precipitation

dependencies which might originate from an insufficient number of sites showing similar forest canopy structure parameter

values for a given precipitation (cf. black line compared to colored dots in Fig. (5)). Based on the functional dependencies

revealed by analyzing our data as a function of PHS and forest structure metrics, a simple power law was able to describe the515

PHS dependency of snow interception (cf. Eq. (3)). The equation displayed that with increasing PHS , IHS increases. This is

less pronounced with smaller σz or larger Fsky values (Fig. (5)). Despite an ongoing debate regarding the proper representation

of interception, we believe that the interception models presented here can be applied in various model applications for larger

spatial scales.

6 Conclusion and Outlook520

The statistical models for spatial mean and standard deviation of snow interception presented here are a first step towards a

more robust consideration of snow interception for various coarse-scale model applications. They were built upon a very large

dataset and validated by two other datasets from different geographic regions and snow climates, and performed well for all

three sites and under differing weather conditions. For spatial mean interception all NRMSE’s were ≤10 % and for the standard

deviation of interception all NRMSE’s were ≤13 %.525

In our observed snow interception datasets, as much as 68 % and on average 43 % of the cumulative snowfall was retained by

coniferous forests (interception efficiency of site means) and as much as 14 % and on average 11 % of the cumulative snowfall

was retained by deciduous forests. Thus, these
:::::
These

:
values compare well to previously observed snow interception in conifer-

ous trees reaching up to 60 % of cumulative snowfall
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Pomeroy and Schmidt, 1993; Pomeroy et al., 1998; Storck and Lettenmaier, 2002)

and to 24 % of total annual snowfall in a deciduous forest in the Southern Andes
:::::::
southern

:::::
Andes

:::::::::::::::::
(Huerta et al., 2019).530

The
:::::::
empirical

:
models integrate forest parameters that can be derived from fine-scale DSM’s,

:
which can be pre-generated and

stored for large regions. One of the presented interception models only relies on the standard deviation of the fine-scale DSM,

which is a very efficient way to integrate snow interception in coarse-scale models such as land surface models. This could

greatly improve current forest albedo estimates and the subsequent surface energy balance for various model applications such

as hydrological, weather and climate predictions.535
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However, the presented parameterizations were developed and validated for spatial means and standard deviations over hori-

zontal length scales of a few tens of meters. We can only hypothesize that the parameterizations are also valid at coarser length

scales due to the use of non-local forest structure parametersprovided
:
.
::::::::::::
Representative

::::::::
non-local

::::::
forest

:::::::
structure

::::::::::
parameters

::::::
require that a DSM of high enough resolution is available to represent subgrid variability of forest structure in the coarse-scale

model grid cell. However, there was and probably is, to-date
::
to

::::
date, no validation data available at large spatial scales. The540

investigated length scale matches current satellite resolutions (e.g. Sentinel and Landsat),
:
which opens further cross-validation

and deployment opportunities with satellite-derived parameters such as surface albedos and fractional-snow covered area.

With parameterizations for both , the mean and standard deviation of snow interception by forest canopy, the distribution of

intercepted snow depth in forests can now be derived whenever a sufficiently high-resolution DSM is available.
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Figure 1. Extent of lidar
:::::
LiDAR derived tree DSM’s

:::::
canopy

:::::
height

::::
model

::::::
(CHM) with locations of open (blue points) ,

::
and

:
forested field sites

(yellow points),
:
and SNOTEL site (purple point): (a) close to Davos in the Eastern

:::::
eastern Swiss Alps (∼90 km2

:
;
::::::::::
46.78945°N,

::::::::
9.79632°E),

(b) in the Rocky Mountains of Northern
::::::
northern

:
Utah, U.S. (∼13km

::
13

:::
km2;

::::::::::
41.85046°N,

:::::::::::
111.52751°W), and (c) in the Southeastern

:::::::::
southeastern

:
French Alps at Col de Porte (∼0.01 km2

:
;
:::::::::
45.29463°N,

:::::::::
5.76597°E). The yellow framed inlets show the respective snow depth

measurement setup at the forested field sites. Underlying orthophotos
::::
were

:::::::
provided for the French site were provided by IGN (France) and

for the Swiss site by Swisstopo (JA100118). For the site in the U.S. © Google Earth imagery was used.
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Figure 2. Tree DSM’s
:::::
Canopy

:::::
height

::::::
models

::::::
(CHM) for two 50 x 50 m2 field sites in

:
1
::
m
::::
grid

:::::::
resolution

::
in

:
the Eastern

:::::
eastern

:
Swiss Alps

with (a) high canopy coverage and (b) low canopy coverage (for detailed site descriptions see Moeser et al., 2014).
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Figure 3. Probability density functions (pdf ’s) of all individual snow depth interception measurements used for the development (Swiss

(CH) data set) and for the validation of the parameterizations (French (F) and
:::
U.S.

::
(US)

:
data sets).

:
The dashed lines indicate a theoretical

normal pdf for the corresponding data set.
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Figure 4. Measured and parameterized site means of intercepted snow depth, i.e. spatially averaged over each site and for each storm date.

Parameterized using a) Eq. (2) and b) Eq. (3) as a function of site means of standard deviation of the lidar
:::::
LiDAR

:
DSM σz (in color) as well

as open area
::
site

:
snow storm precipitation (size of symbols). Circles represent the development data set from Switzerland, symbols with a

black border represent the validation data sets with squares for that from the U.S. and diamonds for that from France.
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Figure 5. Snow depth interception IHS (a,b,c) and interception efficiency IHS/PHS (d,e,f) as a function of accumulated open area
:::
site snow

storm precipitation PHS and standard deviation of the lidar
:::::
LiDAR

:
DSM σz (in color). The y-axis of the first column shows measured data,

the second column shows model output with Eq. (2) and the third model output with Eq. (3). Site means for each storm event are depicted

with colored circles for the development data set from Switzerland and symbols with a black border depict the validation data sets, with

squares for that from the U.S. and diamonds for that from France. Storm means (in PHS bins) are shown in black.

26



0 2 4 6 8 10

measured  
I
HS

  [cm]

0

2

4

6

8

10
m

o
d

e
le

d
  

I H
S

  
[c

m
]

5

6

7

8

9

10

11

12

z
 [m]

10 cm

20 cm

30 cm

40 cm

precipitation

Figure 6. Measured and parameterized standard deviation of snow depth interception σIHS at each site and for each storm date. Parameterized

using Eq. (4) as a function of site means of standard deviation of the lidar
::::::
LiDAR DSM σz (in color) as well as open area

:::
site snow storm

precipitation (size of symbols). Circles represent the development data set from Switzerland, symbols with a black border represent the

validation data sets with squares for that from the U.S. and diamonds for that from France.
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Table 1. Performance measures between measurement and parameterization of spatial-mean snow depth interception IHS with (a) Eq. (2),

(b) with Eq. (3)), and (c) standard deviation of snow depth interception σIHS with Eq. (4). Statistics are shown for the development data set

from the Eastern
::::::
eastern Swiss Alps (CH) and for the combined validation data set (U.S.&F).

NRMSE RMSE MPE MAE r K-S NRMSEquant

[
:
%] [

::
cm] [

:
%] [

::
cm] [

:
%]

a) IHS (Eq. (2))

CH 9.0
:::
8.7 1.37

:::
1.33 -2.0

::::
-1.97 1.02

:::
1.01 0.92 8.610−2 2.2

::
2.5

U.S.&F 9.4
:::
8.2 1.28

:::
1.12 -10.43

:::::
-10.61 1.11

:::
0.92 0.99

:::
0.97 4.310−1

::::::
1.410−1

:
9.9

::
7.8

b) IHS (Eq. (3))

CH 10.2 1.55 -2.87
::::
-1.65 1.15 0.89 1.010−1 4.9

::
5.3

U.S.&F 7.6
:::
7.5 1.04

:::
1.03 -8.45

::::
-7.03 0.78

:::
0.76 0.97 2.910−1 6.2

::
5.9

c) σIHS (Eq. (4))

CH 8.9 0.57 -2.04
::::
-2.05 0.45 0.92 8.610−2 3.9

U.S.&F 12.7 0.95 -21.52 0.64
:::
0.63 0.94 4.310−1 10.4
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