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Abstract. Limited availability of ground measurements in the vast majority of river basins world-wide increases 

the value of alternative data sources such as satellite observations in hydrological modelling. This study 10 

investigates the potential of using remotely sensed river water level, i.e. altimetry observations, from multiple 

satellite missions to identify parameter sets for a hydrological model in the semi-arid Luangwa River Basin in 

Zambia. A distributed process-based rainfall-runoff model with sub-grid process heterogeneity was developed 

and run on a daily timescale for the time period 2002 to 2016. As a benchmark, feasible model parameter sets 

were identified using traditional model calibration with observed river discharge data. For the parameter 15 

identification using remote sensing, data from the Gravity Recovery and Climate Experiment (GRACE) were 

used in a first step to restrict the feasible parameter sets based on the seasonal fluctuations in total water storage. 

Next, three alternative ways of further restricting feasible model parameter sets using satellite altimetry time-

series from 18 different locations along the river were compared. In the calibrated benchmark case, daily river 

flows were reproduced relatively well with an optimum Nash-Sutcliffe efficiency of ENS,Q = 0.78 (5/95
th
 20 

percentiles of all feasible solutions ENS,Q,5/95 = 0.61 – 0.75). When using only GRACE observations to restrict the 

parameter space, assuming no discharge observations are available, an optimum of ENS,Q = -1.4 (ENS,Q,5/95 = -2.3 – 

0.38) with respect to discharge was obtained. The direct use of altimetry based river levels frequently led to 

over-estimated flows and poorly identified feasible parameter sets (ENS,Q,5/95 = -2.9 – 0.10). Similarly, converting 

modelled discharge into water levels using rating curves in the form of power relationships with two additional 25 

free calibration parameters per virtual station resulted in an over-estimation of the discharge and poorly 

identified feasible parameter sets (ENS,Q,5/95 = -2.6 – 0.25). However, accounting for river geometry proved to be 

highly effective. This included using river cross-section and gradient information extracted from global high-

resolution terrain data available on Google Earth, and applying the Strickler-Manning equation to convert 

modelled discharge into water levels. Many parameter sets identified with this method reproduced the 30 

hydrograph and multiple other signatures of discharge reasonably well with an optimum of ENS,Q = 0.60 

(ENS,Q,5/95 = -0.31 – 0.50). It was further shown that more accurate river cross-section data improved the water 

level simulations, modelled rating curve and discharge simulations during intermediate and low flows at the 

basin outlet where detailed on-site cross-section information was available. Also, increasing the number of 

virtual stations used for parameter selection in the calibration period considerably improved the model 35 

performance in a spatial split sample validation. The results provide robust evidence that in the absence of 

directly observed discharge data for larger rivers in data scarce regions, altimetry data from multiple virtual 

stations combined with GRACE observations have the potential to fill this gap when combined with readily 
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available estimates of river geometry, thereby allowing a step towards more reliable hydrological modelling in 

poorly gauged or ungauged basins. 40 

1 Introduction  

Reliable models of water movement and distribution in terrestrial systems require sufficient good quality hydro-

meteorological data throughout the modelling process. However, the development of robust models is challenged 

by the limited availability of ground measurements in the vast majority of river basins world-wide (Hrachowitz 

et al., 2013). Therefore, modellers increasingly resort to alternative data sources such as satellite data (Lakshmi, 45 

2004; Winsemius et al., 2008; Sun et al., 2018; Pechlivanidis and Arheimer, 2015; Demirel et al., 2018; Zink et 

al., 2018; Rakovec et al., 2016; Nijzink et al., 2018; Dembélé et al., 2020). 

In the absence of directly observed river discharge data, various types of remotely sensed variables provide 

valuable information for the calibration and evaluation of hydrological models. These include, for instance, 

remotely sensed time series of river width (Sun et al., 2012; Sun et al., 2015), flood extent (Montanari et al., 50 

2009; Revilla-Romero et al., 2015), or river and lake water levels from altimetry (Getirana et al., 2009; Getirana, 

2010; Sun et al., 2012; Garambois et al., 2017; Pereira-Cardenal et al., 2011; Velpuri et al., 2012). 

Satellite altimetry observations provide estimates of the water level relative to a reference ellipsoid. For these 

observations, a radar signal is emitted from the satellite in the nadir direction and reflected back by the earth 

surface. The time difference between sending and receiving this signal is then used to estimate the distance 55 

between the satellite and the earth surface. As the position of the satellite is known at very high accuracy, this 

distance can then be used to infer the surface level relative to a reference ellipsoid (Łyszkowicz and 

Bernatowicz, 2017; Calmant et al., 2009). Satellite altimetry is sensed and recorded along the satellite’s track. 

Altimetry based water levels can therefore only be observed where these tracks intersect with open-water 

surfaces. For rivers, these points are typically referred to as “virtual stations” (de Oliveira Campos et al., 2001; 60 

Birkett, 1998; Schneider et al., 2017; Jiang et al., 2017; Seyler et al., 2013). Depending on the satellite mission, 

the equatorial inter-track distance can vary between 75 km and 315 km, the along-track distance between 173 m 

and 374 m, and the temporal resolution between 10 days and 35 days (Schwatke et al., 2015; CNES, Accessed 

2018; ESA, 2018; Łyszkowicz and Bernatowicz, 2017). Due to this rather coarse resolution, the application of 

remotely sensed altimetry data is at this moment limited to large lakes or rivers of more than approximately 200 65 

m wide (Getirana et al., 2009; de Oliveira Campos et al., 2001; Biancamaria et al., 2017). Use of altimetry for 

hydrological models so far also remains rather rare due to the relatively low temporal resolution of the data, with 

applications typically limited to monthly or longer modelling time steps (Birkett, 1998). 

In some previous studies, altimetry data were used to estimate river discharge at virtual stations in combination 

with routing models (Michailovsky and Bauer-Gottwein, 2014; Michailovsky et al., 2013) or stochastic models 70 

(Tourian et al., 2017). Other studies either directly related river altimetry to modelled discharge (Getirana et al., 

2009; Getirana and Peters-Lidard, 2013; Leon et al., 2006; Paris et al., 2016) or they relied on rating curves 

developed with water level data from either in-situ measurements (Michailovsky et al., 2012; Tarpanelli et al., 

2013; Papa et al., 2012; Tarpanelli et al., 2017) or, alternatively, from altimetry data (Kouraev et al., 2004). In 

typical applications, radar altimetry data from one single or only a few virtual stations were used for model 75 

calibration, validation or data assimilation. These data were mostly obtained from a single satellite mission, 

either TOPEX/Poseidson or Envisat (Sun et al., 2012; Getirana, 2010; Liu et al., 2015; Pedinotti et al., 2012; 
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Fleischmann et al., 2018; Michailovsky et al., 2013; Bauer-Gottwein et al., 2015). In previous studies, 

hydrological models have been calibrated or validated successfully with respect to (satellite based) river water 

levels for example by 1) applying the Spearman Rank Correlation coefficient (Seibert and Vis, 2016; Jian et al., 80 

2017), or by converting modelled discharge to stream levels using 2) rating curves whose parameters are free 

calibration parameters in the modelling process (Sun et al., 2012; Sikorska and Renard, 2017) or 3) the Strickler-

Manning equation to directly estimate water levels over the hydraulic properties of the river (Liu et al., 2015; 

Hulsman et al., 2018). 

In the Zambezi river basin, altimetry data has been used in previous studies for hydrological modelling 85 

(Michailovsky and Bauer-Gottwein, 2014; Michailovsky et al., 2012). These studies used the altimetry data from 

the Envisat satellite in an assimilation procedure to update states in a Muskingum routing scheme. Including the 

altimetry data improved the model performance, especially when the model initially performed poorly due to 

high model complexity or input data uncertainties. 

Despite these recent advances in using river altimetry in hydrological studies, exploitation of its potential is still 90 

limited. Various previous studies have argued and provided evidence based on observed discharge data that, in a 

special case of multi-criteria calibration, the simultaneous model calibration to flow in multiple sub-basins of a 

river basin, can be beneficial for a more robust selection of parameter sets and thus for a more reliable 

representation of hydrological processes and their spatial patterns (e.g. Ajami et al., 2004; Clark et al., 2016; 

Hrachowitz and Clark, 2017; Hasan and Pradhanang, 2017; Santhi et al., 2008). Hence, there may be 95 

considerable value in simultaneously using altimetry data not only from one single satellite mission, but in 

combining data from multiple missions, which has not yet been systematically explored. While promising 

calibration results using data from Envisat were found by Getirana (2010) in tropical and Liu et al. (2015) in 

snow-dominated regions, altimetry data from multiple sources have not yet been used to calibrate hydrological 

models in semi-arid regions.  100 

As altimetry observations only describe water level dynamics, they do not provide direct information on the 

discharge amount. In an attempt to reduce the uncertainty in modelled discharge arising from the missing 

information on flow amounts, data from the Gravity Recovery and Climate Experiment (GRACE), which 

provides estimates of the monthly total water storage anomalies, were used to support model calibration. With 

GRACE, discharge can be constrained through improved simulation of the rainfall partitioning into runoff and 105 

evaporation as illustrated in previous studies (Rakovec et al., 2016; Bai et al., 2018).  

Therefore, the overarching objective of this study is to explore the combined information content (cf. Beven, 

2008) of river altimetry data from multiple satellite missions and GRACE observations to identify feasible 

parameter sets for the calibration of hydrological models of large river systems in a semi-arid, data scarce region. 

More specifically, in a step-wise approach we use GRACE observations together with altimetry data from 110 

multiple virtual stations to identify model parameters following three different strategies and we compare model 

performances to a traditional calibration approach based on in-situ observed river discharge. These three 

strategies compare altimetry observations to 1) modelled discharge by applying the Spearman Rank Correlation 

coefficient, and to modelled stream levels by converting modelled discharge using 2) rating curves whose 

parameters were treated as free model calibration parameters and 3) the Strickler-Manning equation to infer 115 

water levels directly from hydraulic properties of the river. These three strategies are tested on a distributed 

process-based rainfall-runoff model with sub-grid process heterogeneity for the Luangwa Basin. More 
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specifically, we test the following research hypotheses: 1) the use of altimetry data combined with GRACE 

observations allows a meaningful selection of feasible model parameter sets to reproduce river discharge 

depending on the applied parameter identification strategy, and 2) the combined application of multiple virtual 120 

stations from multiple satellite missions improves the model’s ability to reproduce observed hydrological 

dynamics.  

2 Site description 

The study area is the Luangwa River in Zambia, a tributary of the Zambezi River (Figure 1). It has a basin area 

of 159,000 km
2
 which is about 10% of the Zambezi River Basin. The Luangwa Basin is poorly gauged, mostly 125 

unregulated and sparsely populated with about 1.8 million inhabitants in 2005 (The World Bank, 2010). The 

mean annual precipitation is around 970 mm yr
-1

, potential evaporation is around 1555 mm yr
-1

 and river runoff 

reaches about 100 mm yr
-1

 (The World Bank, 2010). The main land cover consists of broadleaf deciduous forest 

(55%), shrub land (25%) and savanna grassland (16%) (GlobCover, 2009). The irrigated area in the basin is 

limited to about 180 km
2
, i.e. roughly 0.1% of the basin area with an annual water use of about 0.7 mm yr

-1
 130 

which amounts to < 0.001% of the annual basin water balance (The World Bank, 2010). The landscape varies 

between low-lying flat areas along the river to large escarpments mostly in the North West of the basin and 

highlands with an elevation difference up to 1850 m (see Figure 1B and Section 3.2 for more information on the 

landscape classification). During the dry season, the river meanders between sandy banks while during the wet 

season from November to May it can cover flood plains several kilometres wide. 135 

The Luangwa drains into the Zambezi downstream of the Kariba Dam and upstream of the Cahora Bassa Dam. 

The operation of both dams is crucial for hydropower production, and flood and drought protection, but is very 

difficult due to the lack of information from poorly gauged tributaries such as the Luangwa (SADC, 2008; 

Schleiss and Matos, 2016; The World Bank, 2010). As a result, the local population has suffered from severe 

floods and droughts (ZAMCOM et al., 2015; Beilfuss and dos Santos, 2001; Hanlon, 2001; SADC, 2008; 140 

Schumann et al., 2016).  

2.1 Data availability 

2.1.1 In-situ discharge and water level observations 

In the Luangwa basin, historical in-situ daily discharge and water level observations were available from the 

Zambian Water Resources Management Authority (WARMA) at the Great East Road Bridge gauging station, 145 

located at 30
o
 13’ E and 14

o
 58’ S (Figure 1) about 75 km upstream of the confluence with the Zambezi. In this 

study, all complete hydrological years of discharge data within the time period 2002 to 2016 were used; these are 

the years 2004, 2006 and 2008. 

2.1.2 Gridded data products 

Besides the in-situ observations, gridded data products were used in this study for topographic description, 150 

model forcing (precipitation and temperature), and model parameter selection/calibration (total water storage 

anomalies), as shown in Table 1. The temperature data was used to estimate the potential evaporation according 

to the Hargreaves method (Hargreaves and Samani, 1985; Hargreaves and Allen, 2003). 
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Gravity Recovery and Climate Experiment (GRACE) observations describe monthly total water storage 

anomalies which include all terrestrial water stores present in the groundwater, soil moisture and surface water. 155 

Two identical satellites observe the variations in the Earth’s gravity field to detect regional mass changes which 

are dominated by variations in the terrestrial water storage once atmospheric effects have been accounted for 

(Landerer and Swenson, 2012; Swenson, 2012). In this study, processed GRACE observations of Release 05 

generated by CSR (Centre for Space Research), GFZ (GeoForschungsZentrum Potsdam) and JPL (Jet Propulsion 

Laboratory) were downloaded from the GRACE Tellus website (https://grace.jpl.nasa.gov/). The average of all 160 

three sources were used. The raw data were previously processed by CSR, GFZ and JPL to remove atmospheric 

mass changes using ECMWF (European Centre for Medium-Range Weather Forecasts) atmospheric pressure 

fields, systematic errors causing north-south-oriented stripes and high frequency noise using a 300 km wide 

Gaussian filter via spatial smoothening (Swenson and Wahr, 2006; Landerer and Swenson, 2012; Wahr et al., 

1998). Processed GRACE observations describe terrestrial water storage anomalies in “equivalent water 165 

thickness” in [cm] relative to the 2004 – 2009 time-mean baseline. In other words, the water storage anomaly is 

the water storage minus the long-term mean (Landerer and Swenson, 2012).  

All gridded information was rescaled to the model resolution of 0.1
°
. The temperature and GRACE data were 

rescaled by dividing each cell of the satellite product into multiple cells such that the model resolution is 

obtained, retaining the original value. The precipitation was rescaled by taking the average of all cells located 170 

within each model cell. 

 

Table 1: Gridded data products used in this study 

 Time period Time  

resolution 

Spatial  

resolution 

Product  

name 

Source 

Digital elevation map NA NA 0.02
o
 GMTED (Danielson and Gesch, 2011) 

Precipitation 2002 – 2016 Daily 0.05
o
  CHIRPS (Funk et al., 2014) 

Temperature 2002 – 2016 Monthly 0.5
o
 CRU (University of East Anglia 

Climatic Research Unit et al., 

2017) 

Total water storage 2002 – 2016 Monthly 1
o
 GRACE (Swenson, 2012; Swenson 

and Wahr, 2006; Landerer 

and Swenson, 2012) 

 

2.1.3 Altimetry data 175 

The altimetry data used in this study was obtained from the following sources: the Database for Hydrological 

Time Series of Inland Waters (DAHITI; https://dahiti.dgfi.tum.de/en/) (Schwatke et al., 2015), HydroSat 

(http://hydrosat.gis.uni-stuttgart.de/php/index.php) (Tourian et al., 2013), Laboratoire d’Etudes en Géophysique 

et Océanographie Spatiales (LEGOS; http://www.legos.obs-mip.fr/soa/hydrologie/hydroweb/; see supplements 

for more information), and the Earth and Planetary Remote Sensing Lab (EAPRS; 180 

http://www.cse.dmu.ac.uk/EAPRS/). In total, altimetry data was obtained for 18 virtual stations in the Luangwa 

basin (Figure 1A) for the time period 2002 – 2016 from the satellite missions Jason 1 – 3, Envisat and Saral 

(Table 2, Figure S2). 

 

https://grace.jpl.nasa.gov/
https://dahiti.dgfi.tum.de/en/
http://hydrosat.gis.uni-stuttgart.de/php/index.php
http://www.legos.obs-mip.fr/soa/hydrologie/hydroweb/
http://www.cse.dmu.ac.uk/EAPRS/
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Table 2: Overview of the altimetry data in the Luangwa River Basin used in this study 185 

Nr. Longitude Latitude Time 

period 

Nr. of 

days 

with data 

Source Mission Space Agency Temporal 

resolution 

Equatorial 

inter- 

track 

distance 

Along-

track  

distance 

Literature 

1 30.2823° -14.8664° 2008-2016 246 DAHITI Jason 2, 3 NASA/CNES 10 days 315 km 294 m (Schwatke et al., 

2015; CNES, 

Accessed 2018) 

2 30.0864° -14.366° 2008-2015 92 DAHITI Jason 2, 3     

3 32.1715° -12.4123° 2008-2016 248 DAHITI Jason 2, 3     

4 31.1868° -13.5927° 2002-2016 104 DAHITI Envisat, Saral ESA (Envisat), 

ISRO/CNES 

(Saral) 

35 days 80 km 

(Envisat), 

75 km 

(Saral) 

374 m 

(Envisat), 

173 m 

(Saral) 

(Schwatke et al., 

2015; ESA, 

2018; CNES, 

Accessed 2018) 

5 31.6984° -13.2039° 2002-2016 82 DAHITI Envisat, Saral  

6 32.2998° -12.2007° 2002-2016 100 DAHITI Envisat, Saral  

7 32.2805° -12.1157° 2002-2016 103 DAHITI Envisat, Saral  

8 32.831° -11.3674° 2002-2016 105 DAHITI Envisat, Saral  

9 30.2704° -14.8809° 2008-2015 247 HydroSat Jason 2 NASA/CNES 10 days 315 km 294 m (Tourian et al., 

2016; Tourian et 

al., 2013) 

10 31.78405° -13.0995° 2002-2010 65 EAPRS Envisat ESA 35 days 80 km 374 m (Michailovsky et 

al., 2012; ESA, 

2018) 

11 31.71099° -13.1943° 2002-2010 93 EAPRS Envisat     

12 30.2740° -14.8763° 2008-2015 231 LEGOS Jason 3 NASA/CNES 10 days 315 km 294 m 

(Frappart et al., 

2015; CNES, 

Accessed 2018) 

13 32.15843° -12.412° 2016-2016 28 LEGOS Jason 3     

14 32.15989° -12.4127° 2002-2009 137 LEGOS Jason 1     

15 30.2740° -14.8763° 2008-2016 271 LEGOS Jason 2     

16 32.16056° -12.4125° 2008-2016 283 LEGOS Jason 2     

17 31.80001° -13.0909° 2013-2016 35 LEGOS Saral ISRO/CNES 35 days 75 km 173 m 

18 30.61577° -14.1852° 2013-2016 24 LEGOS Saral     
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Figure 1: A) Elevation map of the Luangwa River Basin in Zambia including the Great East Road Bridges river gauging station and the locations of the 18 virtual stations (VS 1 – VS 

18, the red dot is VS 4) with altimetry data used in this study; their colours correspond to those in Figure 4. B) Map of the Luangwa River Basin with the main landscape types (see 

Section 3.2). 190 
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2.1.4 River geometry information 

In the Luangwa Basin, very limited detailed in-situ information was available on the river geometry such as 

cross-section and slope. For that reason, this information was extracted from global high-resolution terrain data 

available on Google Earth as done successfully in previous studies for other purposes (Pandya et al., 2017; Zhou 195 

and Wang, 2015). This was done for each virtual station and the basin outlet. Google Earth only provides river 

geometry information above the river water level. As the Luangwa is a perennial river, parts of the cross-section 

remain submerged throughout the year and are thus unknown. To limit uncertainties arising from this issue, the 

cross-section geometry for each virtual station was extracted from Google Earth images with the lowest water 

levels. The dates of these images in general fall in the dry season, with flows at the Great East Road Bridges 200 

gauging station on the respective days ranging from 1% to 4% relative to the maximum discharge (see 

Supplementary Table S3 for the dates of the satellite images and the associated flows at the Great East Road 

Bridges gauging station). The database underlying the global terrain images in Google Earth originate from 

multiple, merged data sources with varying spatial resolutions. For the Luangwa Basin these include the Shuttle 

Radar Topography Mission (SRTM) with a spatial resolution of 30 m, Landsat 8 with a spatial resolution of 15 205 

m and the Satellite Pour l’Observation de la Terre 4/5 (SPOT) with a spatial resolution of 2.5 m to 20 m (Smith 

and Sandwell, 2003; Irons et al., 2012; Drusch et al., 2012).  

In addition to Google Earth data, the submerged part of the channel cross-section was surveyed in the field on 

April 27
th

 2018 near the Great East Road Bridges river gauging station at the coordinates 30
o
 13’ E and 15

o
 00’ S 

(Abas, 2018) with an Acoustic Doppler Current Profiler (ADCP). 210 

3 Hydrological model development 

3.1 General approach 

The potential of river altimetry for model calibration was tested with a process-based hydrological model for the 

Luangwa river basin. This model relied on distributed forcing allowing for spatially explicit distributed water 

storage calculations. The model was run on a daily time scale for the time period 2002 to 2016. To reach the 215 

objective of this study, the following distinct parameter identification strategies were compared in a stepwise 

approach: (1) traditional model calibration to observed river flow as benchmark; (2) identification of parameter 

sets reproducing the seasonal water storage anomalies based on GRACE data only; (3a) Altimetry Strategy 1: 

identification of parameter sets directly based on remotely sensed water levels combined with GRACE data; (3b) 

Altimetry Strategy 2: identification of parameter sets based on remotely sensed water levels by converting 220 

modelled discharges into water levels using calibrated rating curves combined with GRACE data; (3c) Altimetry 

Strategy 3: identification of parameter sets based on remotely sensed water levels by converting modelled 

discharges into water levels using the Strickler-Manning equation and including river geometry information 

(cross-section and gradient) extracted from Google Earth combined with GRACE data; (4a) Water level Strategy 

1: identification of parameter sets based on daily river water level at the catchment outlet only using the 225 

Strickler-Manning equation and including river geometry information extracted from Google Earth combined 

with GRACE data; and (4b) Water level Strategy 2: identification of parameter sets based on daily river water 

level at the catchment outlet only using the Strickler-Manning equation and including river geometry 
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information obtained from a detailed field survey with an Acoustic Doppler Current Profiler (ADCP) combined 

with GRACE data. Note that (1) is completely independent of (2) to (4) where no discharge data was used for the 230 

identification of parameter sets. 

3.2 Hydrological model structure 

In this study, a process-based rainfall-runoff with distributed water accounting and sub-grid process 

heterogeneity was developed (Ajami et al., 2004; Euser et al., 2015). The river basin was discretized into a grid 

with a spatial resolution of 10 x 10 km
2
. Each model grid cell was characterized by the same model structure and 235 

parameter sets but forced by spatially distributed, gridded input data (Table 1). Runoff was then calculated in 

parallel for each cell separately. Subsequently, a routing scheme was applied to estimate the aggregated flow in 

each grid cell at each time step. 

Adopting the FLEX-Topo modelling concept (Savenije, 2010) and extending it to a gridded implementation, 

each grid cell was further discretized into functionally distinct hydrological response units (HRU) as 240 

demonstrated by Nijzink et al. (2016). Each point within a grid cell was assigned to a response class based on its 

position in the landscape as defined by its local slope and “Height-above-the-nearest-drainage” (HAND; Rennó 

et al., 2008; Gharari et al., 2011). Similar to previous studies (e.g. Gao et al., 2016; Nijzink et al., 2016), the 

response units plateau, hillslope, terrace and wetland were distinguished. Reflecting earlier work (e.g. Gharari et 

al., 2011), all locations with a slope of > 4% were assumed to be hillslope. Locations with lower slopes were 245 

then either defined as wetland (HAND < 11m), terrace (11m ≤ HAND < 275m) or plateau (HAND ≥ 275m), see 

Figure 2. Following this classification wetlands make up pHRU = 8%, terraces pHRU = 41%, hillslopes pHRU = 28% 

and plateaus pHRU = 23% of the total Luangwa River Basin area as mapped in Figure 1B. 

Each response class consisted of a series of storage components that were linked by fluxes. The flow generated 

from each grid cell at any given time step was then computed as the area-weighted flow from the individual 250 

response units plus a contribution from the common groundwater component which connects the response units 

(Figure 2). Finally, the outflow from each modelling cell was routed to downstream cells to obtain the 

accumulated flow in each grid cell at any given time step. For this purpose, the mean flow length of each model 

grid cell to the outlet was derived based on the flow direction extracted from the digital elevation model. The 

flow velocity, which was assumed to be constant in space and time, was calibrated. With this information on the 255 

flow path length and velocity, the accumulated flow in each grid cell was calculated at the end of each time step. 

The relevant model equations are given in Table 3. This concept was previously successfully applied in a wide 

range of environments (Gao et al., 2014; Gharari et al., 2014; Fovet et al., 2015; Nijzink et al., 2016; Prenner et 

al., 2018). 

 260 
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Figure 2: Sketch of the hydrological response units including the thresholds used in this analysis for the slope and 

HAND (Height Above Nearest Drainage) and including their corresponding model structures. This spatial sub-grid 

discretization was applied to each grid cell. Symbol explanation: precipitation (P), effective precipitation (Pe), 

interception evaporation (Ei), plant transpiration (Et), infiltration into the unsaturated root zone (Ru), drainage to fast 265 
runoff component (Rf), delayed fast runoff (Rfl), lag time (Tlag), groundwater recharge (Rr), upwelling groundwater 

flux (RGW), fast runoff (Qf), groundwater/slow runoff (Qs).  
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Table 3: Equations applied in the hydrological model. Fluxes [mm d-1]: precipitation (P), effective precipitation (Pe), 

potential evaporation (Ep), interception evaporation (Ei), plant transpiration (Et), infiltration into the unsaturated 

zone (Ru), drainage to fast runoff component (Rf), delayed fast runoff (Rfl), groundwater recharge (Rr for each 270 
relevant HRU and Rr,tot combining all relevant HRUs), upwelling groundwater (RGW for each relevant HRU and 

RGW,tot combining all relevant HRUs), fast runoff (Qf for each HRU and Qf,tot combining all HRUs), groundwater/slow 

runoff (Qs), total runoff (Qm). Storages [mm]: storage in interception reservoir (Si), storage in unsaturated root zone 

(Su), storage in groundwater/slow reservoir (Ss), storage in fast reservoir (Sf). Parameters: interception capacity (Imax) 

[mm], maximum upwelling groundwater (Cmax) [mm d-1], maximum root zone storage capacity (Sumax) [mm], splitter 275 
(W) [-], shape parameter (β) [-], transpiration coefficient (Ce) [-], time lag (Tlag) [d], reservoir time scales [d] of fast (Kf) 

and slow (Ks) reservoirs, areal weights (pHRU) [-],time step (Δt) [d]. Model parameters are shown in bold letters in the 

table below. The equations were applied to each hydrological response unit (HRU) unless indicated differently.  

Reservoir system Water balance equation Process functions 

Interception Δ𝑆i

Δ𝑡
= 𝑃 − 𝑃e − 𝐸i ≈ 0  𝐸i = min (𝐸p, min (𝑃,

𝑰𝐦𝐚𝐱

∆𝑡
)) 

𝑃e = 𝑃 − 𝐸i  

Unsaturated zone Plateau/Terrace: 

Δ𝑆u

Δ𝑡
= 𝑃e − 𝐸t − 𝑅f 

 

Hillslope: 

Δ𝑆u

Δ𝑡
= 𝑅u − 𝐸t  

 

Wetland: 

Δ𝑆u

Δ𝑡
= 𝑃e − 𝐸t − 𝑅f + 𝑅GW   

 

𝐸t = min ((𝐸p − 𝐸i), min (
𝑆u

Δ𝑡
, (𝐸p − 𝐸i) ∙

𝑆u

𝑺𝐮,𝐦𝐚𝐱
∙

1

𝑪𝐞
)) 

𝑅GW = min ((1 −
𝑆u

𝑺𝐮,𝐦𝐚𝐱
) ∙  𝑪𝐦𝐚𝐱,

𝑆s
Δ𝑡

𝒑𝐇𝐑𝐔
)  

if 𝑆u + 𝑅GW  ∙ Δt > 𝑺𝐮,𝐦𝐚𝐱 ∶ 𝑅GW =
𝑺𝐮,𝐦𝐚𝐱−𝑆u

Δ𝑡
 

Hillslope: 

𝑅u = (1 − 𝐶) ∙ 𝑃e 

𝐶 = 1 − (1 −
𝑆u

𝑺𝐮,𝐦𝐚𝐱
)

𝜷

 

 

Fast runoff 𝛥𝑆f

Δ𝑡
= 𝑅fl − 𝑄f 

 

𝑄f =
𝑆f

𝑲𝐟
  

Plateau/Terrace/Wetland: 

𝑅f =
max(0, 𝑆u − 𝑺𝐮𝐦𝐚𝐱)

Δ𝑡
 

𝑅fl = 𝑅f  

Hillslope: 

𝑅f = (1 − 𝑾) ∙ 𝐶 ∙ 𝑃e 

𝑅fl = 𝑅f ∗ 𝑓(𝑻𝐥𝐚𝐠)  

 

Groundwater Δ𝑆s

Δ𝑡
= 𝑅rtot

− 𝑅GWtot
− 𝑄s 

 

𝑅r = 𝑾 ∙ 𝐶 ∙ 𝑃e  

𝑅rtot
= ∑ 𝒑𝐇𝐑𝐔 ∙ 𝑅r

𝐻𝑅𝑈

 

𝑅GWtot
= ∑ 𝒑𝐇𝐑𝐔 ∙ 𝑅GW

𝐻𝑅𝑈

 

 

𝑄s =
𝑆s

𝑲𝐬
 

Total runoff 𝑄m = 𝑄s + 𝑄ftot
 𝑄ftot

= ∑ 𝒑𝐇𝐑𝐔 ∙ 𝑄f

𝐻𝑅𝑈

 

Supporting literature (Gharari et al., 2014; Gao et al., 2014; Euser et al., 2015) 

 

  280 
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3.3 Parameter selection procedures  

To evaluate the information content and thus the utility of altimetry data for the selection of feasible model 

parameter sets, a step-wise procedure as specified in detail below was applied (Table 5). Note that given data 

scarcity and the related issues of epistemic uncertainties (Beven and Westerberg, 2011; McMillan and 

Westerberg, 2015) and equifinality (Beven, 2006; Savenije, 2001) we did not aim to identify the “optimal” 285 

parameter set in what is frequently considered a traditional calibration approach. In most hydrological 

applications the available data have limited strength for rigorous model tests (Clark et al., 2015; Gupta et al., 

2008; Jakeman and Hornberger, 1993). Thus, to reduce the risk of rejecting good parameters when they should 

have been accepted (Beven, 2010; Hrachowitz and Clark, 2017), we rather attempted to identify and discard the 

most implausible parameter sets (Freer et al., 1996) that violate our theoretical understanding of the system or 290 

that are inconsistent with the available data (Knutti, 2008). This allowed us to iteratively constrain the feasible 

parameter space and thus the uncertainty around the modelled hydrograph (Hrachowitz et al., 2014). To do so, a 

Monte-Carlo sampling strategy with uniform prior parameter distributions was applied to generate 5·10
4
 model 

realizations. This random set of solutions was in the following steps used as baseline and iteratively constrained 

by identifying parameter sets that do not satisfy pre-specified criteria (see below), depending on the data type 295 

and source used.  

3.3.1 Benchmark: Parameter selection based on observed discharge data 

As benchmark, and following a traditional calibration procedure, the model was calibrated with observed daily 

discharge based on the Nash-Sutcliffe efficiency (ENS,Q, Eq.1 in Table 4) using all complete hydrological years 

within the time period 2002 to 2016 (Nash and Sutcliffe, 1970). These are the years starting in the fall of 2004, 300 

2006 and 2008.  

To limit the solutions to relatively robust representations of the system while allowing for data and model 

uncertainty (e.g. Beven, 2006; Beven and Westerberg, 2011) only parameter sets that resulted in ENS,Q ≥ 0.6 were 

retained as feasible. The hydrological model consisted of 18 free calibration parameters (Table 5, Figure S1) 

whose uniform prior distributions are given in Table S1 in the supplementary material with associated parameter 305 

constrains as summarized in Table S2. 
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Table 4: Equations used to calculate the model performance 

Name Objective function Symbol explanation Equation nr. 

Nash-Sutcliffe 𝐸NS,θ = 1 −
∑ (θmod(t)−θobs(𝑡))

2
𝑡

∑ (θobs(t)−θobs
̅̅ ̅̅ ̅̅ )

2
𝑡

  θ: variable (1) 

Spearman-Rank 

correlation 

coefficient 

𝐸R,WL =
cov(𝑟Qmod

,𝑟WLobs)

σ(𝑟Qmod
)·σ(𝑟WLobs)

  

rQ,mod: ranks of the modelled 

discharge 

rWL,obs: ranks of the observed 

water levels 

(2) 

Relative error 𝐸R,θ = 1 −
|𝜃mod−𝜃obs|

𝜃obs
  θ: variable (3) 

Euclidian 

distance over 

multiple virtual 

stations 

𝐷E,β,γ = 1 − √(∑ 𝑤𝑖 · (1 − 𝐸β,γ)
2

𝑖

) 

wi: relative weight of virtual 

station i 

β: model performance metric 

γ: parameter selection method 

(4) 

Euclidian 

distance over 

multiple 

signatures 

𝐷E

= 1

− √
1

(𝑁 + 𝑀)
(∑(1 − 𝐸NS,θn

)
2

𝑛

+ ∑(1 − 𝐸R,θm
)

2

𝑚

) 

θ: signature 

n: signatures evaluated with Eq.1 

with maximum N 

m: signatures evaluated with Eq.3 

with maximum M 

(5) 

 

3.3.2 Parameter selection based on the seasonal water storage (GRACE) 310 

In a next step we assumed that discharge records in the Luangwa Basin were absent. The starting assumption 

thus had to be that all model realizations, i.e. all sampled parameter sets, were equally likely to allow feasible 

representations of the hydrological system. In a stepwise approach, confronting these realizations with different 

types of data, we sequentially identified and discarded solutions that were least likely to provide meaningful 

system representations, thereby gradually narrowing down the feasible parameter space.   315 

We first identified and discarded solutions that were least likely to preserve observed seasonal water storage 

(Stot) fluctuations. To do so, the monthly modelled total water storage (𝑆tot,mod = 𝑆i + 𝑆u + 𝑆f + 𝑆s) relative to 

the 2004-2009 time-mean baseline in each grid cell was compared to water storage anomalies observed with 

GRACE where this same time-mean baseline was used (Tang et al., 2017; Fang et al., 2016; Forootan et al., 

2019; Khaki and Awange, 2019).  320 

The model’s skill to reproduce the seasonal water storage, i.e. Stot, was assessed using the Nash-Sutcliffe 

efficiency ENS,Stot (Eq.1). Note that ENS,Stot,j was computed at first from the time series of Stot in each grid cell j 

which were then averaged to obtain ENS,Stot. If no additional data were available, a hypothetic modeller relying on 

ENS,Stot to calibrate a model, may choose only the solution with the highest ENS,Stot or allow for some uncertainty. 

To mimic this traditional approach and balance it with a sufficient number of feasible solutions to be kept for the 325 

subsequent steps, we here identified and discarded the poorest performing 75% of all solutions in terms of 

ENS,Stot as unfeasible for the subsequent modelling steps.  
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3.3.3 Parameter selection based on satellite altimetry data 

Next, the remaining feasible parameter sets were used to evaluate their potential to reproduce time series of 

observed altimetry applying three distinct parameter selection strategies. Assuming again the situation of an 330 

ungauged basin (i.e. no time-series of river flow available), we kept for each strategy as feasible the respective 

1% best performing parameter sets according to the specific performance metric associated to that strategy.  

 

Altimetry Strategy 1: Direct comparison of altimetry data to modelled discharge  

In the simplest approach, we directly used altimetry data to correlate observed water levels with modelled 335 

discharge based on the Spearman rank correlation coefficient (ER,WL; Spearman, 1904) using Eq.2 (Table 4). 

This strategy, hereafter referred to with subscript WL, i.e. water level, requires the assumption that the 

relationship between water level and discharge is monotonic. The Spearman rank correlation was applied 

successfully in previous studies to calibrate a rainfall-runoff model to water level time series (Seibert and Vis, 

2016). As there were multiple virtual stations with water level data available in this study, the ER,WL was 340 

computed at each location simultaneously. The individual values ER,WL were weighted based on the record length 

of the corresponding virtual stations and then combined into the Euclidean distance as aggregate metric DE,R,WL 

with Eq.4. 
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Table 5: Overview of the parameter identification strategies applied in this study 345 

Strategy Calibration data Objective function Parameter group Calibration parameters Comments Q – h conversion  Benefits (+) & limitations (-) 

Discharge  

(reference) 

Discharge  

(at basin outlet) 

ENS,Q (Eq.1)  Entire basin 

Plateau & Terrace 

Hillslope 

Wetland 

River profile 

Ks, Ce 

Imax, Sumax, Kf, W  

Imax, Sumax, Kf, W, β, Tlag  

Imax, Sumax, Kf, W, Cmax 

v 

Total: 18 

Traditional model calibration on 

observed flow data 

Combination of 8 different flow 

signatures 

- - 

Seasonal  

water storage 

GRACE ENS,Stot (Eq.1) Entire basin 

Plateau & Terrace 

Hillslope 

Wetland 

River profile 

Ks, Ce 

Imax, Sumax, Kf, W  

Imax, Sumax, Kf, W, β, Tlag  

Imax, Sumax, Kf, W, Cmax 

v 

Total: 18 

No discharge data used - - 

Altimetry  

Strategy 1 

Altimetry  

(at 18 virtual stations) 

& GRACE 

Altimetry: DE,R,WL (Eq.2,4) 

GRACE: ENS,Stot (Eq.1) 

Entire basin 

Plateau & Terrace 

Hillslope 

Wetland 

River profile 

Ks, Ce 

Imax, Sumax, Kf, W  

Imax, Sumax, Kf, W, β, Tlag  

Imax, Sumax, Kf, W, Cmax 

v 

Total: 18 

No discharge data used  

Combination of 18 virtual 

stations 

Combined with GRACE 

- + No extra parameters or data needed 

+ Assumption: monotonic relation 

between discharge and river water level 

- Focus on dynamics only, not volume 

Altimetry  

Strategy 2 

Altimetry  

(at 18 virtual stations) 

& GRACE 

Altimetry: DE,NS,RC (Eq.1,4) 

GRACE: ENS,Stot (Eq.1) 

Entire basin 

Plateau & Terrace 

Hillslope 

Wetland 

River profile 

Ks, Ce 

Imax, Sumax, Kf, W  

Imax, Sumax, Kf, W, β, Tlag  

Imax, Sumax, Kf, W, Cmax 

v, a1, a2, a3, a4, b1, b2, b3, b4 

Total: 26 

No discharge data used  

Combination of 18 virtual 

stations 

Combined with GRACE 

Calibrated  

Rating curve 

+ No extra data needed 

- Two extra parameters per cross-section 

Altimetry  

Strategy 3 

Altimetry  

(at 18 virtual stations) 

& GRACE 

Altimetry: DE,NS,SM (Eq.1,4) 

GRACE: ENS,Stot (Eq.1) 

Entire basin 

Plateau & Terrace 

Hillslope 

Wetland 

River profile 

Ks, Ce 

Imax, Sumax, Kf, W  

Imax, Sumax, Kf, W, β, Tlag  

Imax, Sumax, Kf, W, Cmax 

v, k 

Total: 18 

No discharge data used  

Combination of 18 virtual 

stations 

Combined with GRACE 

Strickler-Manning + Only 1 extra parameter 

- Cross-section data needed 

- Assumption: constant roughness in 

space and time 

Water level  

Strategy 1 

Water level  

(at basin outlet)  

& GRACE 

Altimetry: ENS,SM,GE (Eq.1) 

GRACE: ENS,Stot (Eq.1) 

Entire basin 

Plateau & Terrace 

Hillslope 

Wetland 

River profile 

Ks, Ce 

Imax, Sumax, Kf, W  

Imax, Sumax, Kf, W, β, Tlag  

Imax, Sumax, Kf, W, Cmax 

v, k 

Total: 19 

No discharge data used  

Combined with GRACE 

Strickler-Manning + Only 1 extra parameter 

- Cross-section data needed 

- Assumption: constant roughness in 

space and time 

Water level  

Strategy 2 

Water level  

(at basin outlet) 

& GRACE 

Altimetry: ENS,SM,ADCP (Eq.1) 

GRACE: ENS,Stot (Eq.1) 

Entire basin 

Plateau & Terrace 

Hillslope 

Wetland 

River profile 

Ks, Ce 

Imax, Sumax, Kf, W  

Imax, Sumax, Kf, W, β, Tlag  

Imax, Sumax, Kf, W, Cmax 

v, k 

Total: 19 

No discharge data used  

Combined with GRACE 

Strickler-Manning + Only 1 extra parameter 

- Cross-section data needed 

- Assumption: constant roughness in 

space and time 
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Altimetry Strategy 2: Rating curves  

In the second strategy, as successfully applied in previous studies (Getirana and Peters-Lidard, 2013; Jian et al., 

2017), model parameters were selected based on the models’ ability to reproduce water levels by converting the 

modelled discharge to water levels, assuming these two are related through a rating curve in the form of a power 

function (Rantz, 1982): 350 

𝑄 = 𝑎 · (ℎ − ℎ0)𝑏  (6) 

Where h is the water level, h0 a reference water level, and a and b are two additional free calibration parameters 

determining the shape of the function and lumping combined influences of different river cross-section 

characteristics such as geometry or roughness. Note, that here for each virtual station h0 is the elevation that 

corresponds to the water level of the Google Earth image with the lowest flow available, corresponding to the 

assumption of no-flow at that time. This strategy is hereafter referred to as with subscript RC, i.e. rating curve. 355 

As river-cross sections vary in space, each of the 18 virtual stations would require an individual set of these 

parameters a and b. To limit the number of additional calibration parameters, we here classified the river-cross 

sections of the 18 virtual stations into 4 groups (Figure 1A and Figure 3). For cross-sections within each class, 

i.e. geometrically similar, the same values for a and b were used, resulting in 4 sets of a and b and thus a total of 

8 additional calibration parameters. The river cross-sections were extracted from global high-resolution terrain 360 

data available on Google Earth (see Section 2.1.4). The modelled river water levels were evaluated against the 

observed water levels at each virtual station using the Nash-Sutcliffe efficiency ENS,RC (equivalent to Eq.1 in 

Table 4), weighted based on the record length of the corresponding virtual stations and then combined into the 

Euclidean distance DE,NS,RC as an aggregated performance metric (Eq.4). 

 365 

Figure 3: River profiles at 18 virtual stations (VS) divided into four groups. The reference level is equal to the lowest 

water level in the river profile for each location separately. 
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Altimetry Strategy 3: Strickler-Manning equation  

As a third strategy, we converted the modelled discharge to river water levels using the Strickler-Manning 370 

equation (Manning, 1891): 

𝑄 = 𝑘 · 𝑖
1
2 · 𝐴 · 𝑅

2
3 

 (7) 

Where k is a roughness parameter here treated as free calibration parameter and assumed constant for all virtual 

stations, i is the mean channel slope extracted here over a distance of 10 km, while A and R are the river cross-

section area and hydraulic radius. Assuming trapezoidal cross-sections (see Figure 4 as illustrative example), A 

and R were calculated for each cross section according to: 375 

𝐴 = 𝐵 · 𝑑 +
1

2
· 𝑑2 · (𝑖1 + 𝑖2) 

 (8) 

𝑅 =
𝐴

𝐵 + 𝑑 · ((1 + 𝑖1
2)

1
2 + (1 + 𝑖2

2)
1
2)

 
 

(9) 

𝑑 = ℎ − ℎ0  (10) 

Where B is the assumed river bed width, i1 and i2 are the river bank slopes, d the water depth, h the water level 

and h0 the reference water level, here assumed to be the lowest observed river water level to limit the number of 

calibration parameters. In contrast to previous studies that use a similar approach but relied on locally observed 

river-cross sections (Michailovsky et al., 2012; Hulsman et al., 2018; Liu et al., 2015), here both, the river bed 

geometries (Figure 3) at and the channel slopes upstream of the 18 virtual stations were computed using high-380 

resolution terrain data retrieved from Google Earth (see Section 2.1.4). Similar data sources were already used in 

previous studies to extract the river geometry (e.g. Michailovsky et al., 2012; Pramanik et al., 2010; Gichamo et 

al., 2012). The reader is referred to Table S3 in the supplementary material for the values of the variables for 

each virtual station. This strategy is hereafter referred to as with subscript SM, i.e. Strickler-Manning. 

Equivalent to above, the modelled river water levels were then evaluated against the observed water levels at 385 

each virtual station using the Nash-Sutcliffe efficiency ENS,SM (equivalent to Eq.1), weighted based on the record 

length of the corresponding virtual stations and then combined into the Euclidean distance DE,NS,SM as an 

aggregated performance metric (Eq.4). 

 

Figure 4: Example of approximating a trapezoidal cross-section (black) into the Google Earth based cross-section 390 
data (red) for virtual station “VS 4” (see also Figure 1A and Figure 3). The reference level is equal to the lowest water 

level in the river profile. 
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3.3.4 Parameter selection based on daily river water level at the basin outlet 

For the previous parameter identification strategy (Altimetry Strategy 3), river geometry information was 

extracted from high-resolution terrain data retrieved from Google Earth which have a low accuracy. 395 

Unfortunately, more accurate cross-section information from in-situ surveys was only available at the Great East 

Road Bridge gauging station, i.e. the basin outlet, where, in turn, no altimetry observations were available. That 

is why water level time series were used to illustrate the influence of the cross-section accuracy.  

As shown in Figure 5, the Google Earth based above-water cross-section at the basin outlet corresponded in 

general well to the field survey considering that satellite images have limited spatial resolution. However, the in-400 

situ measurement also illustrated the relevance of the submerged part of the channel cross-section at that location 

on the day the image was taken (June 2
nd

 2008).  

  

Figure 5: River cross-section at Luangwa Bridge obtained from Google Earth and detailed field survey including the 

river water level on June 2nd 2008. Field measurements were done with an Acoustic Doppler Current Profiler (ADCP) 405 
on April 27th 2018 at the coordinates 30o 13’ E and 15o 00’ S; the satellite image was taken on June 2nd 2008. The 

reference level is equal to the lowest elevation level measured with the ADCP. 

 

Water level Strategy 1: River geometry information extracted from Google Earth 

First, cross-section information was extracted from global high-resolution terrain data available on Google Earth 410 

(subscript GE) and used with the Strickler-Manning equation (Eq.7) to convert the modelled discharge to water 

levels. This was combined with GRACE observations to restrict the parameter space in an equivalent way as in 

Section 3.3.3. The model performance with respect to river water levels was calculated with the Nash-Sutcliffe 

efficiency ENS,SM,GE (Eq.1). 

 415 

Water level Strategy 2: River geometry information obtained from a detailed field survey 

Second, cross-section information obtained from a detailed field survey with an ADCP (subscript ADCP) was 

used with the Strickler-Manning equation (Eq.7) to convert the modelled discharge to water levels. This was 

combined with GRACE observations to restrict the parameter space in an equivalent way as in Section 3.3.3. 

The model performance with respect to river water levels was calculated with the Nash-Sutcliffe efficiency 420 

ENS,SM,ADCP (Eq.1). 
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3.4 Model evaluation 

For each calibration strategy, the performance of all model realizations was evaluated post-calibration with 

respect to discharge using seven additional hydrological signatures (e.g. Sawicz et al., 2011; Euser et al., 2013) 

to assess the skill of the model to reproduce the overall response of the system and thus the robustness of the 425 

selected parameters (Hrachowitz et al., 2014). The signatures included the logarithm of the daily flow time series 

(hereafter referred to with the subscript logQ), the flow duration curve (FDC), its logarithm (logFDC), the mean 

seasonal runoff coefficient during dry periods (April - September; RCdry), the mean seasonal runoff coefficient 

during the wet periods (October - March; RCwet), the autocorrelation function of daily flow (AC) and the rising 

limb density of the hydrograph (RLD). An overview of these signatures can be found in Table 6, and more 430 

detailed explanations in Euser et al. (2013) and references therein. As performance measures for the model to 

reproduce the individual observed signatures the Nash-Sutcliffe efficiency (ENS,logQ, ENS,FDC, ENS,logFDC, ENS,AC; 

equivalent to Eq.1 in Table 4) and a metric based on the relative error (ER,RCdry, ER,RCwet, ER,RLD; equivalent to 

Eq.3) were used (Euser et al., 2013). The signatures were combined, with equal weights, into one objective 

function, which was formulated based on the Euclidian distance DE (Eq.5) so that a value of 1 indicates a 435 

“perfect” model (Schoups et al., 2005): 

Table 6: Overview of flow signatures used in this study 

Flow  

signature 

Explanation Function Model performance equation 

Q Daily flow time series - 
𝐸NS,Q = 1 −

∑ (𝑄mod,t−𝑄obs,t)
2

𝑡

∑ (𝑄obs,t−𝑄obs̅̅ ̅̅ ̅̅ ̅)
2

𝑡

  

logQ Logarithm of daily 

flow time series 

- 
𝐸NS,logQ = 1 −

∑ (𝑄log,mod,t−𝑄log,obs,t)
2

𝑡

∑ (𝑄log,obs,t−𝑄log,obs̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)
2

𝑡

  

FDC Flow duration curve - 
𝐸NS,FDC = 1 −

∑ (𝑄sort,mod,t−𝑄sort,obs,t)
2

𝑡

∑ (𝑄sort,obs,t−𝑄sort,obs̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)
2

𝑡

  

logFDC Logarithm of flow 

duration curve 

- 
𝐸NS,logFDC = 1 −

∑ (𝑄log,sort,mod,t−𝑄log,sort,obs,t)
2

𝑡

∑ (𝑄log,sort,obs,t−𝑄log,sort,obs̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)
2

𝑡

  

RCdry Runoff coefficient 

during dry periods 

𝑅𝐶dry =
𝑄dry

𝑃dry
  𝐸R,RCdry = 1 −

|𝑅𝐶dry,mod−𝑅𝐶dry,obs|

𝑅𝐶dry,obs
  

RCwet Runoff coefficient 

during wet periods 

𝑅𝐶wet =
𝑄wet

𝑃wet
  𝐸R,RCwet = 1 −

|𝑅𝐶wet,mod−𝑅𝐶wet,obs|

𝑅𝐶wet,obs
  

AC Autocorrelation 

function 

𝐴𝐶t =
∑ (𝑄i−�̅�)·(𝑄i+t−�̅�)i

Σ(𝑄i−�̅�)2
  𝐸NS,AC = 1 −

∑ (𝐴𝐶mod,t−𝐴𝐶obs,t)
2

𝑡

∑ (𝐴𝐶obs,t−𝐴𝐶obs̅̅ ̅̅ ̅̅ ̅̅ ̅)
2

𝑡

  

RLD Rising limb density 𝑅𝐿𝐷 =
𝑁peaks

𝑇r
  𝐸R,RLD = 1 −

|𝑅𝐿𝐷mod−𝑅𝐿𝐷obs|

𝑅𝐿𝐷obs
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4 Results and discussion 440 

4.1 Parameter selection and model performance 

The complete set of all model realizations unsurprisingly resulted in a wide range of model solutions (Figure 6A) 

with ENS,Q ranging from -6.4 to 0.78 and with the combined performance metric of all signatures DE ranging 

from -334 to 0.79 (Figure 7). With respect to the individual flow signatures, the model performance varied such 

that the largest range was found in ENS,Q and smallest in ENS,AC as visualized in Figure 7 and tabulated in Table 445 

S4. Although containing relatively good solutions, this full set of all realizations clearly also contained many 

parameter sets that considerably over- and/or underestimated flows.  

4.1.1 Benchmark: Parameter selection based on observed discharge data 

For the benchmark case, applying the traditional model calibration approach using discharge data, this parameter 

selection and calibration strategy resulted in a reasonable model performance, in which the seasonal but also the 450 

daily flow dynamics and magnitudes were in general well captured as shown in Figure 6B. For some years, a 

number of solutions overestimated flows in the wet season and underestimated flows during the dry season, 

when the river becomes a small meandering stream with almost annual morphological changes which is difficult 

to meaningfully observe. The best performing solution had a calibration objective function of ENS,Q,opt = 0.78 

(5/95
th
 percentiles of all feasible solutions ENS,Q,5/95 = 0.61 – 0.75; Figure 7 and Table 7). For the post-calibration 455 

evaluation of all retained solutions, it was observed that most signatures were well reproduced by the majority of 

solutions, except for the dry season runoff coefficient (RCdry; Figure 7 and Table S4). This resulted in aggregated 

model performances, combining all signatures, of DE,5/95 = 0.55 – 0.76 with the above identified best performing 

solution (i.e. ENS,Q,opt) reaching a value of DE,opt = 0.60.  

 460 
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Figure 6: Range of model solutions. The left panel shows the hydrograph and the right panel the flow duration curve 

of the recorded (black) and modelled discharge: the line indicates the solution with the highest calibration objective 

function (ENS or DE) and the shaded area the envelope of the solutions retained as feasible. A) All model solutions 465 
included; solutions retained as feasible based on B) discharge (i.e. “traditional calibration”; ENS,Q), C) GRACE 

(ENS,Stot), and D) Altimetry Strategy 1 only (DE,R,WL).The grey bars in the left subplot D indicate the number of 

altimetry observations available for each day. 
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Figure 7: Comparison of different data sources to identify feasible parameter sets. Data sources applied: 1) All random parameters (no data), 2) Discharge, 3) GRACE, 4) Altimetry 470 
data combined with GRACE (Altimetry Strategy 1), 5) Altimetry data using the rating curves combined with GRACE (Altimetry Strategy 2), and 6) Altimetry data using the 

Strickler – Manning equation combined with GRACE (Altimetry Strategy 3), and 7) Daily river water level combined with GRACE using the Strickler – Manning equation and cross-

section information retrieved from Google Earth (Water level Strategy 1), or 8) obtained from a detailed field survey with an Acoustic Doppler Current Profiler (ADCP, Water level 

Strategy 2). The boxplots visualise the spread in the overall model performance DE with respect to discharge and the following individual signatures: a) daily discharge (ENS,Q), b) its 

logarithm (ENS,logQ), c) flow duration curve (ENS,FDC), d) its logarithm (ENS,logFDC), e) average runoff coefficient during the dry season (ER,RCdry), f) average seasonal runoff coefficient 475 
during the wet season (ER,RCwet), g) autocorrelation function (ENS,AC), and h) rising limb density (ER,RLD). The dots visualise the model performance when selecting the parameter set 

with the highest model efficiency according to each parameter identification strategy. 
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Figure 8: Range of model solutions. The left panel shows the hydrograph and the right panel the flow duration curve 

of the recorded (black) and modelled discharge: the line indicates the solution with the highest calibration objective 480 
function (ENS or DE) and the shaded area the envelope of the solutions retained as feasible. Solutions retained as 

feasible based on E) Altimetry Strategy 2 using rating curves for the discharge – water level conversion (DE,NS,RC), F) 

Altimetry Strategy 3 using the Strickler-Manning equation for the discharge – water level conversion (DE,NS,SM), and 

G) Daily in-situ water level using the Strickler Manning equation for the discharge – water level conversion with 

cross-section information retrieved from Google Earth (Water level strategy 1; ENS,SM,GE) or H) obtained from a 485 
detailed field survey with an Acoustic Doppler Current Profiler (ADCP; Water level strategy 2; ENS,SM,ADCP). The grey 

bars in the left subplots E and F indicate the number of altimetry observations available for each day. 

 

 

  490 
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Table 7: Summary of the model results: elimination of unfeasible parameter sets and detection of optimal parameter 

set according to each parameter identification strategy including the corresponding model performance range (ENS,Q, 

DE) indicating the model’s skill to reproduce the discharge during the benchmark time period. For each strategy, the 

model efficiency for the optimal parameter set is summarised together with the corresponding performance metrics 

with respect to discharge (ENS,Q,opt, DE,opt). For all parameter sets retained as feasible, the maximum (ENS,Q,max, DE,max) 495 
and 5/95 percentiles (ENS,Q,5/95, DE,5/95) of all performance metrics with respect to discharge are summarised. Data 

sources used for the parameter set selection: 1) All parameter sets (no data), 2) Discharge, 3) GRACE, 4) Altimetry 

combined with GRACE (Altimetry Strategy 1), 5) Altimetry data using rating curves combined with GRACE 

(Altimetry Strategy 2), 6) Altimetry data using the Strickler – Manning equation combined with GRACE (Altimetry 

Strategy 3), and 7) Daily river water level combined with GRACE using the Strickler – Manning equation and cross-500 
section information retrieved from Google Earth (Water level Strategy 1), or 8) obtained from a detailed field survey 

with an Acoustic Doppler Current Profiler (ADCP, Water level Strategy 2). 

 
Optimal parameter set Feasible parameter sets 

 

Model efficiency ENS,Q,opt (DE,opt) ENS,Q,max (ENS,Q,5/95) DE,max (DE,5/95) 

1) All parameters sets - - 0.78 (-3.8 – 0.68) 0.79 (-1.4 – 0.71) 

2) Discharge ENS,Q,opt = 0.78 0.78 (0.60) 0.78 (0.61 – 0.75) 0.79 (0.55 – 0.76) 

3) Seasonal water storage (GRACE) ENS,Stot,opt = 0.56 -1.4 (-0.18) 0.78 (-2.3 – 0.38) 0.77 (-0.58 – 0.62) 

4) Altimetry Strategy 1: Compare 
altimetry to discharge 

DE,R,WL,opt = 0.76 0.65 (0.63) 0.65 (-2.9 – 0.10) 0.66 (-0.83 – 0.50) 

5) Altimetry Strategy 2: Rating curves DE,NS,RC,opt = -0.50 -0.31 (0.27) 0.51 (-2.6 – 0.25) 0.66 (-0.72 – 0.56) 

6) Altimetry Strategy 3: Strickler-Manning 
equation 

DE,NS,SM,opt = -1.4 0.60 (0.71) 0.63 (-0.31 – 0.50) 0.75 (0.36 – 0.67) 

7) Water level Strategy 1: Satellite based 
cross-section 

ENS,SM,GE,opt = -1.8 0.65 (0.77) 0.77 (-0.48 – 0.60) 0.77 (0.28 – 0.70) 

8) Water level Strategy 2: In-situ cross-
section 

ENS,SM,ADCP,opt = 0.79 0.14 (0.55) 0.77 (-1.1 – 0.50) 0.77 (0.03 – 0.67) 

 

4.1.2 Parameter selection based on the seasonal water storage (GRACE) 

Starting from the set of all model realizations (Figures 6A and 7), and assuming no discharge observations are 505 

available, we identified and discarded parameter sets as unfeasible when they did not meet the previously 

defined criteria to reproduce the seasonal water storage (ENS,Stot; see Section 3.3.2). The range of random model 

realizations with respect to the total water storage is visualized in Figure 9. The sub-set of solutions retained as 

feasible resulted in a significant reduction in the uncertainty around the modelled variables, which is illustrated 

by the narrower 5/95
th
 percentiles of the solutions compared to the set of all realizations, as shown in Figure 6C. 510 

The feasible solutions with respect to the GRACE reached ENS,Stot,opt = 0.56 (ENS,Stot,5/95 = 0.45 – 0.52) (Figure 7, 

Table 7). These parameter sets were then used to evaluate the model for the years 2004, 2006, 2008 used in the 

benchmark case. While the flow dynamics were captured relatively well, many of the retained solutions 

considerably overestimated flows across all seasons (Figure 6C) resulting in a decreased performance with 

respect to the individual flow signatures, only the dry runoff coefficient (ER,RCdry) improved significantly 515 

compared to the benchmark as shown in Table S4 and Figure 7. The parameter set associated with the best 

performing model with respect to GRACE (ENS,Stot,opt) resulted for the benchmark period in ENS,Q = -1.4 

(ENS,Q,5/95 = -2.3 – 0.38) and the corresponding DE,opt = -0.18 (DE,5/95 = -0.58 – 0.62) with respect to discharge 

(Figure 7, Table 7). As illustrated in Figure 7 and Figure 6C, many parameter sets that resulted in implausible 

representations of the seasonal signals were eliminated. However, as also indicated by the rather modest values 520 

of ENS,Q and DE with respect to discharge, the data source used here obviously contained only limited 

information to avoid the over predictions of flow during all wet seasons. The sequence of applying first GRACE 
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and then altimetry, or the reverse, did not affect the identification of feasible parameter sets when using altimetry 

data as shown in Figure S8. However, it did affect the selection of the “best” parameter set. 

 525 

 

Figure 9: Range of random model realizations with respect to the total water storage (grey) including the observation 

according to GRACE (black) 

4.1.3 Parameter selection based on satellite altimetry data 

Altimetry Strategy 1: Directly compare altimetry data to modelled discharge 530 

The first approach, Altimetry Strategy 1, resulted in an overestimation of in particular intermediate and low 

flows as shown in Figure 6D. The feasible solutions reached an optimum of DE,R,WL,opt = 0.76 (DE,R,WL,5/95 = 0.74 

– 0.75) with respect to altimetry observations. Focusing on the model’s skill to reproduce the observed discharge 

using these feasible parameter sets for the benchmark period, the parameter set associated with the best 

performing model with respect to altimetry (DE,R,WL,opt) resulted in a ENS,Q = 0.65 (ENS,Q,5/95 = -2.9 – 0.10) and DE 535 

= 0.63 (DE,5/95 = -0.83 – 0.50) with respect to discharge (Figure 7, Table 7). Hence, the parameter set with the 

highest model performance with respect to altimetry, did not perform best with respect to discharge as shown in 

Table 7 and Figure S7. While the optimum model performance with respect to discharge was similar to the 

benchmark, the very wide range in the 5/95
th
 percentiles of the solutions indicated that this strategy has only 

limited potential to identify implausible parameter sets. This was also the case with respect to the individual flow 540 

signatures as shown in Figure 7 and Table S4. 

 

Altimetry Strategy 2: Rating curves 

The second approach, Altimetry Strategy 2, also resulted in an overestimation of the flows (Figure 8E). The 

feasible solutions reached an optimum of DE,NS,RC,opt = -0.50 (DE,NS,RC,5/95 = -1.0 – -0.77) with respect to altimetry 545 

observations. As example, Figure S6A visualizes the simulated and observed river water level at Virtual Station 

4 (Figure 1) where the model significantly underestimated the stream levels. Focusing on the model’s skill to 

reproduce the discharge using these parameter sets for the benchmark period, the parameter set associated with 

the best performing model with respect to altimetry (DE,NS,RC,opt) resulted in ENS,Q = -0.31 (ENS,Q,5/95 = -2.6 – 0.25) 

and DE = 0.27 (DE,5/95 = -0.72 – 0.56) with respect to discharge (Figure 7, Table 7). Hence, similar to Altimetry 550 

Strategy 1, the best parameter set with respect to altimetry, did not perform best with respect to discharge (see 

Table 7 and Figure S7). The optimum model performance with respect to discharge was worse compared to the 

benchmark, and the wide range in the 5/95
th
 percentiles of the solutions indicated this strategy poorly identified 

the feasible parameter sets. This was also the case with respect to the individual flow signatures as shown in 
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Figure 7 and Table S4. Only the dry runoff coefficient (ER,RCdry) improved significantly compared to the 555 

benchmark. 

 

Altimetry Strategy 3: Strickler-Manning equation  

The third approach, Altimetry Strategy 3, resulted in improved flow predictions compared to the other two 

strategies using altimetry data (Figure 8F). Even though the feasible solutions exhibited a very poor ability to 560 

reproduce the altimetry data, with an optimum of DE,NS,SM,opt = -1.4 (DE,NS,SM,5/95 = -3.8 – -1.8), the model’s skill 

to reproduce the discharge for the benchmark period using these parameter sets significantly increased compared 

to the two alternative strategies. As example, Figure S6B visualizes the simulated and observed river water level 

at Virtual Station 4 (Figure 1) where the model simulated the stream levels relatively well. The parameter set 

associated with the best performing model with respect to altimetry (DE,NS,SM,opt) resulted in ENS,Q = 0.60 565 

(ENS,Q,5/95= -0.31 – 0.50) and DE = 0.71 (DE,5/95 = 0.36 – 0.67) with respect to discharge (Figure 7, Table 7). 

While the optimum model performance with respect to discharge was worse compared to the benchmark, the 

5/95
th
 percentiles of the solutions were significantly constrained by the removal of many implausible parameter 

sets. This was valid for the performance with respect to the individual flow signatures (ENS,θ and ER,θ) and overall 

flow response (DE) as shown in Figure 7 and Table S4. This indicated that, although the model performance with 570 

respect to altimetry observations was low, this strategy contained valuable information to considerably constrain 

the feasible solution space. 

4.1.4 Parameter selection based on daily river water level at the basin outlet  

Water level Strategy 1: River geometry information extracted from Google Earth 

The parameter identification strategy “Water level Strategy 1”, using cross-section information extracted from 575 

Google Earth, resulted in a poor simulation of the river water level (Figure 10A) with an optimal objective 

function value with respect to river water levels of ENS,SM,GE,opt = -1.8 (ENS,SM,GE,5/95 = -6.8 – -3.1). Focusing on 

the model’s skill to reproduce the discharge using these feasible parameter sets for the benchmark period, the 

parameter set associated with the best performing model with respect to river water levels (ENS,SM,GE,opt) resulted 

in ENS,Q = 0.65 (ENS,Q,5/95 = -0.48 – 0.60) and DE = 0.77 (DE,5/95 = 0.28 – 0.70) with respect to discharge (Figure 7, 580 

Table 7). The model performance with respect to the remaining signatures as visualized in Figure 7 are tabulated 

in Table S4. As shown in Figure 8G, the discharge was overestimated in particular during intermediate and low 

flows. 

 

Water level Strategy 2: River geometry information obtained from a detailed field survey 585 

The parameter identification strategy “Water level Strategy 2”, using cross-section information obtained from a 

detailed field survey, resulted in improved river water level simulations (compare Figure 10A and B) with an 

optimal objective function value with respect to river water levels of ENS,SM,ADCP,opt = 0.79 (ENS,SM,ADCP,5/95 = 0.60 

– 0.74). The parameter set associated with the best performing model with respect to river water levels 

(ENS,SM,ADCP,opt) resulted in ENS,Q = 0.14 (ENS,Q,5/95 = -1.1 – 0.50) and in DE = 0.55 (DE,5/95 = 0.03 – 0.67) with 590 

respect to discharge (Figure 7, Table 7). The model performance with respect to the remaining signatures as 

visualized in Figure 7 are tabulated in Table S4.  
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Compared to using river geometry information extracted from Google Earth (Water level Strategy 1), the overall 

model performance with respect to discharge did not increase since the parameter space was already restricted 

using GRACE data. However, the modelled flow duration curve during intermediate and low flows (compare 595 

Figure 8G with H) and rating curve (Figure 11) improved significantly when using more accurate geometry 

information obtained from a detailed field survey covering the cross-section that is submerged most of the year 

which is thus unlikely to be captured by satellite based observations. Note, that the in-situ cross-section 

information was limited to the submerged part during the time of measurement. The remaining part (water levels 

> 5 m) was extrapolated which is likely to explain the larger discrepancies during high flows visible in the flow 600 

duration curve (Figure 8H). 

 

 

Figure 10: Range of model solutions. The left panel shows the hydrograph and the right panel the flow duration curve 

of the recorded (black) and modelled discharge: the line indicates the solution with the highest calibration objective 605 
function (ENS) and the shaded area the envelope of the solutions retained as feasible. Solutions were retained as 

feasible based on daily water level time series at the basin outlet using the Strickler-Manning equation for the 

discharge – water level conversion; the cross-section was A) extracted from Google Earth (Water level Strategy 1), or 

B) obtained from a detailed field survey with an Acoustic Doppler Current Profiler (ADCP, Water level Strategy 2). 

 610 



28 

 

 

Figure 11: Discharge - water level graphs for the recorded (black) and modelled discharge and stream levels with the 

optimal model performance (ENS) using the Strickler Manning equation for the discharge – stream level conversion 

with cross-section information A) extracted from Google Earth (Water level Strategy 1), or B) obtained from a 

detailed field survey with an Acoustic Doppler Current Profiler (ADCP, Water level Strategy 2).  615 

4.2 Number of virtual stations used for model calibration and evaluation 

In this study, altimetry data was available at 18 virtual stations. However, would the model performance change 

if more or less virtual stations were used? To answer this question, n random stations were selected for model 

calibration while the remaining stations were used for cross-validation (KlemeŠ, 1986; Gharari et al., 2013; 

Garavaglia et al., 2017). This was repeated to cover all combinations of n stations and for n = 1, 2 … 17. When 620 

applying Altimetry Strategy 3 using altimetry data with the Strickler-Manning equation, this analysis revealed 

that when increasing the number of calibration stations, the model calibration performance DE,NS,SM gradually 

decreased, but the ability to meaningfully reproduce the remaining observations which were not used for 

calibration increased significantly (Figure 12). Similar results were obtained for Strategies 1 and 2 (compare 

Figure 12 with Supplementary Figures S3 and S4). Also the model performance with respect to discharge 625 

increased when using more virtual stations with an optimum at 7 – 15 stations depending on the calibration 

strategy (Figure S5). This provides evidence that in spite of reduced calibration performance, the simultaneous 

use of multiple virtual stations can contribute towards more plausible selections of model parameter sets and thus 

increase the model realism. 

 630 
Figure 12: Influence of the number of virtual stations used for A) model calibration and B) evaluation on the model 

performance DE,NS,SM applying Altimetry Strategy 3. 
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4.3 Uncertainties and limitations 

In the absence of discharge data for hydrological model calibration as commonly the case in poorly or ungauged 635 

regions, freely and globally available remotely sensed stream water levels could provide the opportunity to fill 

this gap as illustrated in this study, as well as in previous studies (e.g. Michailovsky and Bauer-Gottwein, 2014; 

Pereira-Cardenal et al., 2011; Sun et al., 2012). However, there are several limitations to the approach proposed 

in this study using altimetry for model calibration. 

First, river altimetry data are prone to large uncertainties which increase for smaller river widths as a result of 640 

backscatter effects of the surrounding topography (Sulistioadi et al., 2015; Biancamaria et al., 2017; 

Domeneghetti et al., 2015). Too small rivers could even be missed altogether. In this study, the Luangwa river 

becomes a small meandering stream in the dry season resulting in larger altimetry uncertainties. Unfortunately, 

this uncertainty could not be estimated for the virtual stations used in this study due to data limitations. However, 

in previous studies in the Zambezi Basin, the RMSE relative to in-situ stream levels ranged between 0.32 m and 645 

0.72 m using Envisat (Michailovsky et al., 2012). Improving altimetry observations such that the uncertainties 

decrease would improve the identification of feasible parameter sets and simulation of stream levels and flow. 

However, comparison results between the three altimetry based calibration strategies are not expected to change 

since the same altimetry data were used. In other words, Altimetry Strategy 3 is still expected to perform best 

when decreasing the uncertainties in the altimetry observations.  650 

Second, large uncertainties in the forcing data (precipitation and temperature) with respect to the spatial-

temporal variations should not be ignored. This could compromise comparison results between modelled river 

water levels and altimetry within the basin since it has a low temporal resolution (10 or 35 days). Bias in the 

precipitation data affects storage calculations and hence the identification of feasible parameter sets based on 

GRACE (Le Coz and van de Giesen, 2019). This could explain why the flows were frequently overestimated 655 

when using GRACE only. In addition, precipitation bias could be compensated through calibration parameters 

introduced for the discharge – water level conversion. Therefore, such parameters should be constrained as much 

as possible. There are also data uncertainties in the cross-sections and river gradients extracted from high-

resolution terrain data available on Google Earth due to its limited spatial resolution, but more importantly since 

no information is available below the water surface. 660 

Further, GRACE observations are prone to uncertainties as a result of data (post-) processing including for 

example data smoothening (Landerer and Swenson, 2012; Blazquez et al., 2018; Riegger et al., 2012) causing 

leakage between neighbouring cells of 1° (≈ 111 km) which are thus not completely independent of each other. 

Additionally, GRACE observations are more accurate for large areas. Depending on the applied processing 

scheme, the error is about 2 cm for basins with an area of around 63 000 km
2
 (Landerer and Swenson, 2012; 665 

Vishwakarma et al., 2018). Also note that due to the coarse temporal resolution, monthly averaged GRACE 

observations are dominated by slow changing processes such as the groundwater, soil moisture system and 

seasonal variations reflected in all storage components. In addition, open water bodies or wetlands could affect 

GRACE observations if they are located in or near the basin, for example within a radius of about 300 km which 

is the distance often used for data smoothening. In this study, several open water bodies or wetlands were located 670 

≤300 km of the Luangwa basin such as Lake Malawi, Kafue Flats, Cahora Bassa reservoir, Kariba reservoir, 

Bangweulu and Tanganyika. These open water bodies and wetlands had a limited impact on the GRACE 

observations due to limited fluctuations or different temporal variation as illustrated in Figure 13 for the Cahora 
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Bassa reservoir. These uncertainties in the GRACE observations could influence the identification of plausible 

parameter sets. For example, feasible parameter sets could be discarded incorrectly which could distort results 675 

obtained by calibrating with respect to altimetry and GRACE simultaneously. However, the comparison between 

the three altimetry based calibration strategies is not expected to change since the same GRACE data were used. 

In other words, Altimetry Strategy 3 is still expected to perform best when considering these uncertainties. 

 

Figure 13: Temporal correlation of the GRACE observations for the cell in which the virtual station for Cahora Bassa 680 
is located (horizontal axis) and for A) all cells within an area surrounding the virtual station with a radius of 3 degree 

(GRACE area of influence, vertical axis, black), and B) the altimetry observation at Cahora Bassa (vertical axis, blue). 

The 1:1 line is visualised in red. The relatively strong temporal correlation between the GRACE cells could be a result 

of the strong seasonality in this area. 

 685 

Uncertainties were not only introduced by the data, but also as a result of assumptions and simplifications. First, 

the reference level h0 was assumed to be equal to the lowest river water level observed to limit the number of 

calibration parameters (Altimetry Strategy 2 and 3, Water level Strategy 1 and 2). However, uncertainties in the 

altimetry observations as explained previously influence h0 estimates which results in a bias between the 

observed and simulated stream levels in Altimetry Strategies 2 and 3. Second, the roughness was assumed to be 690 

constant in time, over the entire cross-section and for all virtual stations throughout the basin (Altimetry Strategy 

3). However, this roughness can vary between 15 – 50 m
1/3

/s for natural rivers (Vatanchi and Maghrebi, 2019; 

Chow, 1959) changing the simulated stream levels between 42% – 75% in the Luangwa Basin with the low 

flows being the most sensitive. Third, all 18 virtual stations were grouped based on their cross-section similarity 

to limit the number of calibration parameters (Altimetry Strategy 2), but differences within each group remain 695 

such that the calibration parameters related to the rating curve varies slightly for each virtual station within a 

group. Fourth, the assumption of a constant flow velocity in space and time affects the timing of the simulated 

flow and stream levels influencing the comparison between model results and altimetry observations (all 

strategies).  

Another limitation is the missing information on absolute flow amounts when directly using (satellite based) 700 

river water levels for model calibration using the Spearman Rank Correlations as model performance metric 

(Altimetry Strategy 1; Seibert and Vis, 2016). This resulted here in an overestimation of intermediate and low 

flows due to the non-linear relation between stream levels and flows. In contrast, when converting the discharge 

to stream water levels, information on absolute flow amounts was included at the cost of introducing additional 

calibration parameters (Altimetry Strategy 2 and 3), thereby increasing the degrees-of-freedom and thus the 705 

potential for parameter equifinality in the model (Beven, 2006; Sikorska and Renard, 2017; Sun et al., 2012).  

Furthermore, it was assumed the Nash-Sutcliffe efficiency contained sufficient valuable information to describe 

the model performance with respect to river water level and total water storage when identifying feasible 

parameter sets. This performance measure is sensitive to the sample size, outliers, bias and time-offset (McCuen 
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Richard et al., 2006). Unfortunately, simulated discharge and stream levels are prone to bias uncertainties as a 710 

result of spatio-temporal bias in the rainfall (Le Coz and van de Giesen, 2019). In addition, altimetry 

observations have a limited sample size for several virtual stations (see Table 2) and are prone to bias due to 

uncertainties in the reference level h0 as mentioned before. Moreover, a time-offset in the simulated flow can 

occur as a result of rainfall uncertainties. As comparison, the model performance with respect to altimetry only 

reached up to DE,NS,SM = -1.3 for Altimetry Strategy 3, while it reached up to ENS,SM,GE = 0.61 with respect to daily 715 

in-situ stream levels for Water level Strategy 1. Therefore, additional study is recommended to confirm this 

assumption and to assess which performance metric(s) would be most suitable. The model performance with 

respect to discharge was evaluated with respect to multiple hydrological signatures simultaneously (see Table 6) 

to assess the model’s skill to reproduce the internal dynamics of the system. Even though a few of these 

signatures have some overlapping information content (McMillan et al., 2017), each signature also contains at 720 

least some additional information not included in the other signatures. In general, the ambition is to represent a 

hydrological system as good as possible in a model which critically required that the model exhibits sufficient 

ability to simultaneously reproduce multiple flow signatures (Gupta et al., 2008; Euser et al., 2013; Hrachowitz 

et al., 2014). 

 725 

4.4 Comparison with previous studies 

Previous studies have successfully used river altimetry data to calibrate and evaluate rainfall-runoff models using 

a few virtual stations (Sun et al., 2012; Getirana, 2010; Getirana et al., 2010; Liu et al., 2015). In these studies, 

the modelled discharge was converted to stream levels by means of a hydraulic model or empirical relations. Our 

results support several previous findings and added a number of new ones. 730 

Similar to previous studies, the rainfall-runoff model reproduced river flow relatively well when calibrating on 

remotely sensed stream water levels preferably at several virtual stations simultaneously, but discharge based 

calibration results performed significantly better (Getirana, 2010). Thus, while river altimetry data cannot fully 

substitute discharge observations, they at least provide an alternative data source that holds information value 

where no reliable discharge data are available. In addition, our results suggest that in spite of the typically 735 

limited temporal resolution of altimetry observations, these data, when using multiple virtual stations 

simultaneously, provide enough information to select meaningful model parameter sets (Seibert and Beven, 

2009; Getirana, 2010).  

Strikingly, only limited studies combined altimetry with GRACE observations in the calibration procedure 

(Kittel et al., 2018). As altimetry observations only describe water level variations with no information on the 740 

flow amounts, GRACE provides additional valuable information to constrain the river discharge by improving 

the rainfall-runoff partitioning as demonstrated in previous studies (Rakovec et al., 2016; Bai et al., 2018; 

Dembélé et al., 2020). Combining both data sources in the calibration procedure allowed for a more accurate 

identification of feasible parameter sets. The model performance range with respect to discharge improved from 

DE,5/95 = -8.4 – 0.77 when using only altimetry to DE,5/95 = 0.19 – 0.75 when combining GRACE and altimetry 745 

for Altimetry Strategy 3 (see Figure S8).  

In contrast to previous studies, altimetry data originated from five different satellite missions rather than a single 

one. As a result, altimetry data was available at 18 locations for the time period 2002 to 2016. This gave the 
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opportunity to analyse the effect of combining different numbers of stations for calibration and evaluation. This 

study illustrated that better predictions can be achieved when using more virtual stations for calibration. 750 

Furthermore, this study demonstrated that in particular the combination of altimetry with information on river 

geometry (cross section, gradient) proved beneficial for the selection of feasible parameter sets within relatively 

narrow bounds comparable to the benchmark using discharge. Using more accurate cross-section information 

obtained from a detailed field survey rather than Google Earth based estimates, improved the water level 

simulations, modelled rating curve and discharge simulations during intermediate and low flows significantly for 755 

which on-site cross-section data was available. That is why it is recommended to acquire accurate cross-section 

information on locations concurring with altimetry overpasses (not done is this study).  

4.5 Opportunities for future studies 

For future studies, it will be interesting to improve Altimetry Strategy 3 using additional data sources. For 

instance, the combination of altimetry observations with river width estimates derived from Landsat or Sentinel-760 

1/2 (Pekel et al., 2016; Hou et al., 2018) may bear some potential as the combination of the two different 

hydraulic variables complements each other and increases the temporal sampling (Huang et al., 2018; Tarpanelli 

et al., 2017; Sichangi et al., 2016). During high flows for example, river width estimates can be more accurate 

than altimetry observations especially when floodplains are inundated and small water level changes cause large 

river width changes. Alternatively, the altimetry observations used here could be combined with river surface 765 

water level slope estimates based on CryoSat observations which provide water level information at lower 

temporal resolution (every 369 days), but higher spatial resolution (equatorial inter-track distance of 7.5 km) 

(Schneider et al., 2017; Jiang et al., 2017). This allows for the estimation of the energy gradient based on stream 

levels as required in the Strickler-Manning equation, instead of the bed slope based on topography, which proved 

to be a good first estimate in absence of more reliable data. In addition, CryoSat observations are available 770 

annually such that there can be more overlap with altimetry observations in contrast to topography data. With the 

upcoming SWOT (Surface Water Ocean Topography) mission, more accurate altimetry observations should be 

available as well as river slope observations and width. The repeat cycle will be 21 days and across-track 

resolution between 10 m and 60 m increasing the number of observation points available within a specific area 

(Biancamaria et al., 2016; Langhorst et al., 2019; Oubanas et al., 2018). As a result, hydrological models can be 775 

calibrated with respect to river altimetry and width simultaneously at multiple locations even for small river 

basins improving the identification of plausible parameters sets and hence the model realism as illustrated in 

Section 4.2. It will also be very valuable to improve cross-section estimates with respect to the submerged part of 

the cross-section as already explored in previous studies (Domeneghetti, 2016) or to use drone observations to 

obtain more accurate cross-section information and estimates of the river slope and roughness (Entwistle and 780 

Heritage, 2019). By improving the river profile description, the simulated stream levels become more accurate 

which is crucial when using this time series for model calibration. As illustrated with Water level Strategies 1 

and 2, improving the cross-section resulted in a more accurate rating curve (Figure 11), stream level simulation 

(see Figure 10), and discharge simulation (Figure 8). Clearly, it will be interesting to analyse and disentangle 

different individual sources of uncertainty related to the discharge – water level conversion from the 785 

hydrological model in a more data rich region (Renard et al., 2010). Unfortunately, this was not possible in this 

study due to the scarcely available in-situ observations in the Luangwa. As concluded by Renard et al. (2010), 
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reliable estimates of the data uncertainty are required to disaggregate multiple sources on uncertainty in rainfall-

runoff modelling successfully. 

5 Summary and conclusion 790 

This study investigated the potential value of river altimetry observations from multiple satellite missions to 

identify feasible parameters for a hydrological model of the semi-arid and poorly gauged Luangwa River Basin. 

A distributed process-based rainfall-runoff model with sub-grid process heterogeneity was developed on a daily 

timescale for the time period 2002 to 2016. Various parameter identification strategies were implemented step-

wise to assess the potential of satellite altimetry data for model calibration. As a benchmark, when identifying 795 

parameter sets with the traditional model calibration strategy using discharge data, the model was able to 

simulate the flows relatively well (ENS,Q = 0.78, ENS,Q,5/95 = 0.61 – 0.75). When assuming no discharge 

observations are available, the feasible parameter sets were restricted with GRACE data only resulting in an 

optimum of ENS,Q = -1.4 (ENS,Q,5/95 = -2.3 – 0.38) with respect to discharge. Combining GRACE with altimetry 

data only from 18 virtual stations focusing on the water level dynamics resulted in frequently overestimated 800 

flows and poorly identified feasible parameter sets (Altimetry Strategy 1, ENS,Q,5/95 = -2.9 – 0.10). This was also 

the case when converting modelled discharge to water levels using rating curves (Altimetry Strategy 2, ENS,Q,5/95 

= -2.6 – 0.25). The identification of the feasible parameter sets improved when including river geometry 

information, more specifically cross-section and river gradient extracted from Google Earth, in the discharge-

water level conversion using the Strickler-Manning equation (Altimetry Strategy 3, ENS,Q = 0.60, ENS,Q,5/95 = -805 

0.31 – 0.50). Moreover, it was shown that more accurate cross-section data improved the water level simulations, 

modelled rating curve and discharge simulations during intermediate and low flows for which on-site cross-

section information was available. The Nash-Sutcliffe efficiency with respect to river water levels increased 

from ENS,SM,GE = -1.8 (ENS,SM,GE,5/95 = -6.8 – -3.1) using river geometry information extracted from Google Earth 

(Water level Strategy 1) to ENS,SM,ADCP = 0.79 (ENS,SM,ADCP,5/95 = 0.60 – 0.74) using river geometry information 810 

obtained from a detailed field survey (Water level Strategy 2). The model performance also improved when 

increasing the number of virtual stations used for parameter selection. Therefore, in the absence of reliable 

discharge data as commonly the case in poorly or ungauged basins, altimetry data from multiple virtual stations 

combined with GRACE observations have the potential to fill this gap if combined with river geometry 

estimates. 815 
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