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Abstract. Limited availability of ground measurements in the vast majority of river basins world-wide increases 

the value of alternative data sources such as satellite observations in hydrological modelling. This study 10 

investigates the potential of using remotely sensed river water level, i.e. altimetry observations, from multiple 

satellite missions to identify parameter sets for a hydrological model in the semi-arid Luangwa River Basin in 

Zambia. A distributed process-based rainfall runoff model with sub-grid process heterogeneity was developed 

and run on a daily timescale for the time period 2002 to 2016. As a benchmark, feasible model parameter sets 

were identified using traditional model calibration with observed river discharge data. For the parameter 15 

identification using remote sensing, data from the Gravity Recovery and Climate Experiment (GRACE) were 

used in a first step to restrict the feasible parameter sets based on the seasonal fluctuations in total water storage. 

Next, three alternative ways of further restricting feasible model parameter sets using satellite altimetry time-

series from 18 different locations along the river were compared. In the calibrated benchmark case, daily river 

flows were reproduced relatively well with an optimum Nash-Sutcliffe efficiency of ENS,Q = 0.78 (5/95th 20 

percentiles of all feasible solutions ENS,Q,5/95 = 0.61 – 0.75). When using only GRACE observations to restrict the 

parameter space, assuming no discharge observations are available, an optimum of ENS,Q = -1.4 (ENS,Q,5/95 = -2.3 – 

0.38) with respect to discharge was obtained. The direct use of altimetry based river levels frequently led to 

over-estimated flows and poorly identified feasible parameter sets (ENS,Q,5/95 = -2.9 – 0.10). Similarly, converting 

modelled discharge into water levels using rating curves in the form of power relationships with two additional 25 

free calibration parameters per virtual station resulted in an over-estimation of the discharge and poorly 

identified feasible parameter sets (ENS,Q,5/95 = -2.6 – 0.25). However, accounting for river geometry proved to be 

highly effective; this included using river cross-section and gradient information extracted from global high-

resolution terrain data available on Google Earth, and applying the Strickler-Manning equation to convert 

modelled discharge into water levels. Many parameter sets identified with this method reproduced the 30 

hydrograph and multiple other signatures of discharge reasonably well with an optimum of ENS,Q = 0.60 

(ENS,Q,5/95 = -0.31 – 0.50).  It was further shown that more accurate river cross-section data improved the water 

level simulations, modelled rating curve and discharge simulations during intermediate and low flows at the 

basin outlet where detailed on-site cross-section information was available. Also, increasing the number of 

virtual stations used for parameter selection in the calibration period considerably improved the model 35 

performance in a spatial split sample validation. The results provide robust evidence that in the absence of 

directly observed discharge data for larger rivers in data scarce regions, altimetry data from multiple virtual 

stations combined with GRACE observations have the potential to fill this gap when combined with readily 
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available estimates of river geometry, thereby allowing a step towards more reliable hydrological modelling in 

poorly gauged or ungauged basins.   40 

1 Introduction  

Reliable models of water movement and distribution in terrestrial systems require sufficient good quality hydro-

meteorological data throughout the modelling process. However, the development of robust models is challenged 

by the limited availability of ground measurements in the vast majority of river basins world-wide (Hrachowitz 

et al., 2013). Therefore, modellers increasingly resort to alternative data sources such as satellite data (Lakshmi, 45 

2004;Winsemius et al., 2008;Sun et al., 2018;Pechlivanidis and Arheimer, 2015;Demirel et al., 2018;Zink et al., 

2018;Rakovec et al., 2016;Nijzink et al., 2018;Dembélé et al., 2020). 

In the absence of directly observed river discharge data, various types of remotely sensed variables provide 

valuable information for the calibration and evaluation of hydrological models. These include, for instance, 

remotely sensed time series of river width (Sun et al., 2012;Sun et al., 2015), flood extent (Montanari et al., 50 

2009;Revilla-Romero et al., 2015), or river and lake water levels from altimetry (Getirana et al., 2009;Getirana, 

2010;Sun et al., 2012;Garambois et al., 2017;Pereira-Cardenal et al., 2011;Velpuri et al., 2012). 

Satellite altimetry observations provide estimates of the water level relative to a reference ellipsoid. For these 

observations, a radar signal is emitted from the satellite in the nadir direction and reflected back by the earth 

surface; the time difference between sending and receiving this signal is then used to estimate the distance 55 

between the satellite and the earth surface. As the position of the satellite is known at very high accuracy, this 

distance can then be used to infer the surface level relative to a reference ellipsoid (Łyszkowicz and 

Bernatowicz, 2017;Calmant et al., 2009). Satellite altimetry is sensed and recorded along the satellite’s track. 

Altimetry based water levels can therefore only be observed where these tracks intersect with open-water 

surfaces; for rivers, these points are typically referred to as “virtual stations” (de Oliveira Campos et al., 60 

2001;Birkett, 1998;Schneider et al., 2017;Jiang et al., 2017;Seyler et al., 2013). Depending on the satellite 

mission, the equatorial inter-track distance can vary between 75 km and 315 km, the along-track distance 

between 173 m and 374 m, and the temporal resolution between 10 days and 35 days (Schwatke et al., 

2015;CNES, Accessed 2018;ESA, 2018;Łyszkowicz and Bernatowicz, 2017). Due to this rather coarse 

resolution, the application of remotely sensed altimetry data is at this moment limited to large lakes or rivers of 65 

more than approximately 200 m wide (Getirana et al., 2009;de Oliveira Campos et al., 2001;Biancamaria et al., 

2017). Use of altimetry for hydrological models so far also remains rather rare due to the relatively low temporal 

resolution of the data, with applications typically limited to monthly or longer modelling time steps (Birkett, 

1998). 

In some previous studies, altimetry data were used to estimate river discharge at virtual stations in combination 70 

with routing models (Michailovsky and Bauer-Gottwein, 2014;Michailovsky et al., 2013) or stochastic models 

(Tourian et al., 2017). Other studies either directly related river altimetry to modelled discharge (Getirana et al., 

2009;Getirana and Peters-Lidard, 2013;Leon et al., 2006;Paris et al., 2016) or they relied on rating curves 

developed with water level data from either in-situ measurements (Michailovsky et al., 2012;Tarpanelli et al., 

2013;Papa et al., 2012;Tarpanelli et al., 2017) or, alternatively, from altimetry data (Kouraev et al., 2004). In 75 

typical applications, radar altimetry data from one single or only a few virtual stations were used for model 

calibration, validation or data assimilation; these data were mostly obtained from a single satellite mission, either 
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TOPEX/Poseidson or Envisat (Sun et al., 2012;Getirana, 2010;Liu et al., 2015;Pedinotti et al., 2012;Fleischmann 

et al., 2018;Michailovsky et al., 2013;Bauer-Gottwein et al., 2015). In previous studies, hydrological models 

have been calibrated or validated successfully with respect to (satellite based) river water levels for example by 80 

1) applying the Spearman Rank Correlation coefficient (Seibert and Vis, 2016;Jian et al., 2017), or by converting 

modelled discharge to stream levels using 2) rating curves (Sun et al., 2012;Sikorska and Renard, 2017) or 3) the 

Strickler-Manning equation (Liu et al., 2015;Hulsman et al., 2018). 

In the Zambezi river basin, altimetry data has been used in previous studies for hydrological modelling 

(Michailovsky and Bauer-Gottwein, 2014;Michailovsky et al., 2012). These studies used the altimetry data from 85 

the Envisat satellite in an assimilation procedure to update states in a Muskingum routing scheme. Including the 

altimetry data improved the model performance; especially when the model initially performed poorly due to 

high model complexity or input data uncertainties. 

Despite these recent advances in using river altimetry in hydrological studies, exploitation of its potential is still 

limited. Various previous studies have argued and provided evidence based on observed discharge data that, in a 90 

special case of multi-criteria calibration, the simultaneous model calibration to flow in multiple sub-basins of a 

river basin, can be beneficial for a more robust selection of parameter sets and thus for a more reliable 

representation of hydrological processes and their spatial patterns (e.g. Ajami et al., 2004;Clark et al., 

2016;Hrachowitz and Clark, 2017;Hasan and Pradhanang, 2017;Santhi et al., 2008). Hence, there may be 

considerable value in simultaneously using altimetry data not only from one single satellite mission but in 95 

combining data from multiple missions, which has not yet been systematically explored. While promising 

calibration results using data from Envisat were found by Getirana (2010) in tropical and Liu et al. (2015) in 

snow-dominated regions, altimetry data from multiple sources has not yet been used to calibrate hydrological 

models in semi-arid regions.   

Therefore, the overarching objective of this study is to explore the combined information content (cf. Beven, 100 

2008) of river altimetry data from multiple satellite missions and its potential to identify feasible parameter sets 

for the calibration of hydrological models of large river systems in a semi-arid, data scarce region. 

In a step-wise approach we compare three parameter identification strategies using altimetry data from multiple 

virtual stations against a traditional calibration approach based on observed discharge at the outlet. The 

parameter identification strategies are 1) applying the Spearman Rank Correlation coefficient, or converting 105 

modelled discharge to stream levels using 2) rating curves or 3) the Strickler-Manning equation. These three 

strategies are tested on a distributed process-based rainfall-runoff model with sub-grid process heterogeneity for 

the Luangwa Basin. We test the following research hypotheses: 1) the use of altimetry data allows a meaningful 

selection of feasible model parameter sets to reproduce river discharge depending on the applied parameter 

identification strategy, and 2) the combined application of multiple virtual stations from multiple satellite 110 

missions improves the model’s realism.  

2 Site description 

The study area is the Luangwa River in Zambia, a tributary of the Zambezi River (Figure 1). It has a basin area 

of 159,000 km2 which is about 10% of the Zambezi River Basin. The Luangwa Basin is poorly gauged, mostly 

unregulated and sparsely populated with about 1.8 million inhabitants in 2005 (The World Bank, 2010). The 115 

mean annual precipitation is around 970 mm yr-1, potential evaporation is around 1555 mm yr-1 and river runoff 
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reaches about 100 mm yr-1 (The World Bank, 2010). The main land cover consists of broadleaf deciduous forest 

(55%), shrub land (25%) and savanna grassland (16%) (GlobCover, 2009). The irrigated area in the basin is 

limited to about 180 km2, i.e. roughly 0.1% of the basin area with an annual water use of about 0.7 mm yr-1 

which amounts to < 0.001% of the annual basin water balance (The World Bank, 2010). The landscape varies 120 

between low lying flat areas along the river to large escarpments mostly in the North West of the basin and 

highlands with an elevation difference up to 1850 m (see Figure 1B and Section 3.2 for more information on the 

landscape classification). During the dry season, the river meanders between sandy banks while during the wet 

season from November to May it can cover flood plains several kilometres wide. 

The Luangwa drains into the Zambezi downstream of the Kariba Dam and upstream of the Cahora Bassa Dam. 125 

The operation of both dams is crucial for hydropower production, and flood and drought protection, but is very 

difficult due to the lack of information from poorly gauged tributaries such as the Luangwa (SADC, 

2008;Schleiss and Matos, 2016;The World Bank, 2010). As a result, the local population has suffered from 

severe floods and droughts (ZAMCOM et al., 2015;Beilfuss and dos Santos, 2001;Hanlon, 2001;SADC, 

2008;Schumann et al., 2016).  130 

2.1 Data availability 

2.1.1 In-situ discharge and water level observations 

In the Luangwa basin, historical in-situ daily discharge and water level observations were available from the 

Zambian Water Resources Management Authority at the Great East Road Bridge gauging station, located at 30o 

13’ E and 14o 58’ S (Figure 1) about 75 km upstream of the confluence with the Zambezi. In this study, all 135 

complete hydrological years of discharge data within the time period 2002 to 2016 were used; these are the years 

2004, 2006 and 2008. 

2.1.2 Gridded data products 

Besides the above in-situ observations, several gridded data products were used in this study for topographic 

description, model forcing (precipitation and temperature), and model parameter selection/calibration (total 140 

water storage anomalies), as shown in Table 1. The temperature data was used to estimate the potential 

evaporation according to the Hargreaves method (Hargreaves and Samani, 1985;Hargreaves and Allen, 2003). 

The Gravity Recovery and Climate Experiment (GRACE) was used as proxy for the total water storage by 

measuring the variations in the Earth’s gravity field to detect regional mass changes. These mass changes are 

dominated by variations in the terrestrial water storage after having accounted for atmospheric and oceanic 145 

effects (Landerer and Swenson, 2012;Swenson, 2012).  

All gridded information was rescaled to the model resolution of 0.1°. The temperature and GRACE data were 

rescaled by dividing each cell of the satellite product into multiple cells such that the model resolution is 

obtained, retaining the original value. The precipitation was rescaled by taking the average of all cells located 

within each model cell. 150 
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Table 1: Gridded data products used in this study 

 Time period Time  
resolution 

Spatial  
resolution 

Product  
name 

Source 

Digital elevation map NA NA 0.02o GMTED (Danielson and Gesch, 2011) 
Precipitation 2002 – 2016 Daily 0.05o  CHIRPS (Funk et al., 2014) 
Temperature 2002 – 2016 Monthly 0.5o CRU (University of East Anglia 

Climatic Research Unit et al., 
2017) 

Total water storage 2002 – 2016 Monthly 1o GRACE (Swenson, 2012;Swenson 
and Wahr, 2006;Landerer 
and Swenson, 2012) 

 

2.1.3 Altimetry data 

The altimetry data used in this study was obtained from the following sources: the Database for Hydrological 155 

Time Series of Inland Waters (DAHITI; https://dahiti.dgfi.tum.de/en/) (Schwatke et al., 2015), HydroSat 

(http://hydrosat.gis.uni-stuttgart.de/php/index.php) (Tourian et al., 2013), Laboratoire d’Etudes en Géophysique 

et Océanographie Spatiales (LEGOS; http://www.legos.obs-mip.fr/soa/hydrologie/hydroweb/; see supplements 

for more information), and the Earth and Planetary Remote Sensing Lab (EAPRS; 

http://www.cse.dmu.ac.uk/EAPRS/). In total, altimetry data was obtained for 18 virtual stations in the Luangwa 160 

basin (Figure 1A) for the time period 2002 – 2016 from the satellite missions Jason 1 – 3, Envisat and Saral 

(Table 2, Figure S2). 

 

Table 2: Overview of the altimetry data in the Luangwa River Basin used in this study 

Nr. Longitude Latitude Time 
period 

Nr. of 
days 

with data 

Source Mission Space Agency Temporal 
resolution 

Equatorial 
inter- 
track 

distance 

Along-
track  

distance 

Literature 

1 30.2823° -14.8664° 2008-2016 246 DAHITI Jason 2, 3 NASA/CNES 10 days 315 km 294 m (Schwatke et al., 
2015;CNES, 
Accessed 2018) 

2 30.0864° -14.366° 2008-2015 92 DAHITI Jason 2, 3     
3 32.1715° -12.4123° 2008-2016 248 DAHITI Jason 2, 3     
4 31.1868° -13.5927° 2002-2016 104 DAHITI Envisat, Saral ESA (Envisat), 

ISRO/CNES 
(Saral) 

35 days 80 km 
(Envisat), 

75 km 
(Saral) 

374 m 
(Envisat), 

173 m 
(Saral) 

(Schwatke et al., 
2015;ESA, 
2018;CNES, 
Accessed 2018) 

5 31.6984° -13.2039° 2002-2016 82 DAHITI Envisat, Saral  
6 32.2998° -12.2007° 2002-2016 100 DAHITI Envisat, Saral  
7 32.2805° -12.1157° 2002-2016 103 DAHITI Envisat, Saral  
8 32.831° -11.3674° 2002-2016 105 DAHITI Envisat, Saral  
9 30.2704° -14.8809° 2008-2015 247 HydroSat Jason 2 NASA/CNES 10 days 315 km 294 m (Tourian et al., 

2016;Tourian et 
al., 2013) 

10 31.78405° -13.0995° 2002-2010 65 EAPRS Envisat ESA 35 days 80 km 374 m (Michailovsky et 
al., 2012;ESA, 
2018) 

11 31.71099° -13.1943° 2002-2010 93 EAPRS Envisat     

12 30.2740° -14.8763° 2008-2015 231 LEGOS Jason 3 NASA/CNES 10 days 315 km 294 m (Frappart et al., 
2015;CNES, 
Accessed 2018) 

13 32.15843° -12.412° 2016-2016 28 LEGOS Jason 3     
14 32.15989° -12.4127° 2002-2009 137 LEGOS Jason 1     
15 30.2740° -14.8763° 2008-2016 271 LEGOS Jason 2     
16 32.16056° -12.4125° 2008-2016 283 LEGOS Jason 2     
17 31.80001° -13.0909° 2013-2016 35 LEGOS Saral ISRO/CNES 35 days 75 km 173 m 
18 30.61577° -14.1852° 2013-2016 24 LEGOS Saral     

 165 

https://dahiti.dgfi.tum.de/en/
http://hydrosat.gis.uni-stuttgart.de/php/index.php
http://www.legos.obs-mip.fr/soa/hydrologie/hydroweb/
http://www.cse.dmu.ac.uk/EAPRS/
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Figure 1: A) Elevation map of the Luangwa River Basin in Zambia including the Great East Road Bridges river gauging station and the locations of the 18 virtual stations (VS 1 – VS 
18) with altimetry data used in this study; their colours correspond to those in Figure 3. B) Map of the Luangwa River Basin with the main landscape types (see Section 3.2). 
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2.1.4 River geometry information 170 

In the Luangwa Basin, very limited detailed in-situ information was available on the river geometry such as 

cross-section and slope. For that reason, this information was extracted from global high-resolution terrain data 

available on Google Earth as done successfully in previous studies for other purposes (Pandya et al., 2017;Zhou 

and Wang, 2015). This was done for each virtual station and the basin outlet. Google Earth only provides river 

geometry information above the river water level. As the Luangwa is a perennial river, parts of the cross-section 175 

remain submerged throughout the year and thus unknown. To limit uncertainties arising from that, the cross-

section geometry for each virtual station was therefore extracted from the Google Earth image with the lowest 

water levels at each individual virtual station. The dates of these images in general fall into the dry season, with 

flows at the Great East Road Bridges gauging station on the respective days ranging from 1% to 4% relative to 

the maximum discharge (see Supplementary Table S3 for the dates of the satellite images and the associated 180 

flows at the Great East Road Bridges gauging station). The database underlying the global terrain images in 

Google Earth originate from multiple, merged data sources with varying spatial resolutions. For the Luangwa 

Basin these include the Shuttle Radar Topography Mission (SRTM) with a spatial resolution of 30 m, the 

Landsat 8 with a spatial resolution of 15 m and the Satellite Pour l’Observation de la Terre 4/5 (SPOT) with a 

spatial resolution of 2.5 m to 20 m (Smith and Sandwell, 2003;Irons et al., 2012;Drusch et al., 2012).  185 

In addition to Google Earth data, the submerged part of the channel cross-section was surveyed in the field on 

April 27th
  2018 near the Great East Road Bridges river gauging station at the coordinates 30o 13’ E and 15o 00’ S 

(Abas, 2018) with an Acoustic Doppler Current Profiler (ADCP). 

3 Hydrological model development 

3.1 General approach 190 

The potential of river altimetry for model calibration was tested with a process-based hydrological model for the 

Luangwa river basin. This model relied on distributed forcing allowing for spatially explicit distributed water 

storage calculations. The model was run on a daily time scale for the time period 2002 to 2016. To reach the 

objective of this study, the following distinct parameter identification strategies were compared in a stepwise 

approach: (1) traditional model calibration to observed river flow as benchmark; (2) identification of parameter 195 

sets reproducing the seasonal water storage anomalies based on GRACE data only; (3a) Altimetry Strategy 1: 

identification of parameter sets directly based on remotely sensed water levels combined with GRACE data; (3b) 

Altimetry Strategy 2: identification of parameter sets based on remotely sensed water levels by converting 

modelled discharges into water levels using calibrated rating curves combined with GRACE data; (3c) Altimetry 

Strategy 3: identification of parameter sets based on remotely sensed water levels by converting modelled 200 

discharges into water levels using the Strickler-Manning equation and including river geometry information 

(cross-section and gradient) extracted from Google Earth combined with GRACE data; (4a) Water level Strategy 

1: identification of parameter sets based on daily river water level at the catchment outlet only using the 

Strickler-Manning equation and including river geometry information extracted from Google Earth combined 

with GRACE data; and (4b) Water level Strategy 2: identification of parameter sets based on daily river water 205 

level at the catchment outlet only using the Strickler-Manning equation and including river geometry 
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information obtained from a detailed field survey with an Acoustic Doppler Current Profiler (ADCP) combined 

with GRACE data. Note that (1) is completely independent of (2) to (4) where no discharge data was used for the 

identification of parameter sets. 

3.2 Hydrological model structure 210 

In this study, a process-based rainfall-runoff with distributed water accounting and sub-grid process 

heterogeneity was developed (Ajami et al., 2004;Euser et al., 2015). The river basin was discretized into a grid 

with a spatial resolution of 10 x 10 km2. Each model grid cell was characterized by the same model structure and 

parameter sets but forced by spatially distributed, gridded input data (Table 1). Runoff was then calculated in 

parallel for each cell separately. Subsequently, a routing scheme was applied to estimate the aggregated flow in 215 

each grid cell at each time step. 

Adopting the FLEX-Topo modelling concept (Savenije, 2010) and extending it to a gridded implementation, 

each grid cell was further discretised into functionally distinct hydrological response classes as demonstrated by 

Nijzink et al. (2016). Each point within a grid cell was assigned to a response class based on its position in the 

landscape as defined by its local slope and “Height-above-the-nearest-drainage” (HAND; Rennó et al., 220 

2008;Gharari et al., 2011). Similar to previous studies (e.g. Gao et al., 2016;Nijzink et al., 2016) here the 

response classes plateau, hillslope, terrace and wetlands were distinguished. Reflecting earlier work (e.g. Gharari 

et al., 2011), all locations with slope of > 4% were assumed to be hillslope. Locations with slopes lower than that 

were then either defined as wetland (HAND < 11m), terrace (11m ≤ HAND < 275m) or plateau (HAND ≥ 

275m); see Figure 2. Following this classification wetlands make up 8%, terraces 41%, hillslopes 28% and 225 

plateaus 23% of the total Luangwa River Basin area as mapped in Figure 1B. 

Each response class consisted of a series of storage components that are linked by fluxes. The flow generated 

from each grid cell at any given time step is then computed as the area-weighted flow from the individual 

response classes plus a contribution from the common groundwater component which connects the response 

classes (Figure 2). Finally, the outflow from each modelling cell was routed to downstream cells to obtain the 230 

accumulated flow in each grid cell at any given time step. For this purpose, the mean flow length of each model 

gird cell to the outlet was derived based on the flow direction extracted from the digital elevation model. The 

flow velocity, which was assumed to be constant in space and time, was calibrated. With this information on the 

flow path length and velocity, the accumulated flow in each grid cell was calculated at the end of each time step. 

The relevant model equations are given in Table 3. This concept was previously successfully applied in a wide 235 

range of environments (Gao et al., 2014;Gharari et al., 2014;Fovet et al., 2015;Nijzink et al., 2016;Prenner et al., 

2018). 
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Figure 2: Sketch of the hydrological response classes including the thresholds used in this analysis for the slope and 240 
HAND (Height Above Nearest Drainage) and including their corresponding model structures. This spatial sub-grid 
discretization was applied to each grid cell. Symbol explanation: precipitation (P), effective precipitation (Pe), 
interception evaporation (Ei), plant transpiration (Ea), infiltration into the unsaturated root zone (Ru), drainage to fast 
runoff component (Rf), delayed fast runoff (Rfl), lag time (Tlag), groundwater recharge (Rr), upwelling groundwater 
flux (Rc), fast runoff (Qf),  groundwater/slow runoff (Qs).  245 
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Table 3: Equations applied in the hydrological model. Fluxes [mm d-1]: precipitation (P), effective precipitation (Pe), 
potential evaporation (Ep), interception evaporation (Ei), plant transpiration (Et), infiltration into the unsaturated 
zone (Ru), drainage to fast runoff component (Rf), delayed fast runoff (Rfl), groundwater recharge (Rr), upwelling 
groundwater (Rc), fast runoff (Qf), groundwater/slow runoff (Qs), total runoff (Qm). Storages [mm]: storage in 
interception reservoir (Si), storage in unsaturated root zone (Su), storage in groundwater/slow reservoir (Ss), storage in 250 
fast reservoir (Sf). Parameters: interception capacity (Imax) [mm], maximum upwelling groundwater (Cmax) [mm d-1], 
maximum root zone storage capacity (Sumax) [mm], splitter (W) [-], shape parameter (β) [-], transpiration coefficient 
(Ce) [-], time lag (Tlag) [d], reservoir time scales [d] of fast (Kf) and slow (Ks) reservoirs, areal weights (pHRU) [-],time 
step (Δt) [d]. Model parameters are shown in bold letters in the table below. The equations were applied to each 
hydrological response unit (HRU) unless indicated differently.  255 

Reservoir system Water balance equation Process functions 

Interception Δ𝑆𝑆i
𝚫𝚫𝒕𝒕

= 𝑃𝑃 − 𝑃𝑃e − 𝐸𝐸i ≈ 0  𝐸𝐸i = min �𝐸𝐸p, min �𝑃𝑃,
𝑰𝑰𝐦𝐦𝐦𝐦𝐦𝐦
∆𝒕𝒕 �� 

𝑃𝑃e = 𝑃𝑃 − 𝐸𝐸i 

 

Unsaturated zone Plateau/Hillslope/Terrace: 
Δ𝑆𝑆u
𝚫𝚫𝒕𝒕 = 𝑅𝑅u − 𝐸𝐸t 

 

Wetland: 
Δ𝑆𝑆u
𝚫𝚫𝒕𝒕 = 𝑅𝑅u − 𝐸𝐸t + 𝑅𝑅c     

 

𝐸𝐸t = min (�𝐸𝐸p − 𝐸𝐸i�, min �
𝑆𝑆u
𝚫𝚫𝒕𝒕 , �𝐸𝐸p − 𝐸𝐸i� ∙

𝑆𝑆u
𝑺𝑺𝐮𝐮,𝐦𝐦𝐦𝐦𝐦𝐦

∙
1
𝑪𝑪𝐞𝐞
�) 

𝑅𝑅c = min��1 − 𝑆𝑆u
𝑺𝑺𝐮𝐮,𝐦𝐦𝐦𝐦𝐦𝐦

� ∙  𝑪𝑪𝐦𝐦𝐦𝐦𝐦𝐦,
𝑆𝑆s
𝚫𝚫𝒕𝒕

𝒑𝒑𝐇𝐇𝐇𝐇𝐇𝐇
�  

if  𝑆𝑆u + 𝑅𝑅c  ∙ 𝚫𝚫𝚫𝚫 > 𝑺𝑺𝐮𝐮,𝐦𝐦𝐦𝐦𝐦𝐦 ∶ 𝑅𝑅c = 𝑺𝑺𝐮𝐮,𝐦𝐦𝐦𝐦𝐦𝐦−𝑆𝑆u
𝚫𝚫𝒕𝒕

 

Plateau/Terrace/Wetland: 

𝑅𝑅u = 𝑃𝑃e 

Hillslope: 

𝑅𝑅u = (1 − 𝐶𝐶)  ∙ 𝑃𝑃e 

𝐶𝐶 = 1 − �1 −
𝑆𝑆u

𝑺𝑺𝐮𝐮,𝐦𝐦𝐦𝐦𝐦𝐦
�
𝜷𝜷

 

 

Fast runoff 𝛥𝛥𝑆𝑆f
𝚫𝚫𝒕𝒕 = 𝑅𝑅fl − 𝑄𝑄f 

 

𝑄𝑄f = 𝑆𝑆f
𝑲𝑲𝐟𝐟

  

Terrace/Wetland: 

𝑅𝑅f =
max(0,𝑆𝑆u − 𝑺𝑺𝐮𝐮𝐦𝐦𝐦𝐦𝐦𝐦)

𝚫𝚫𝒕𝒕  

𝑅𝑅fl = 𝑅𝑅f  

Hillslope: 

𝑅𝑅f = (1 −𝑾𝑾) ∙ 𝐶𝐶 ∙ 𝑃𝑃e 

𝑅𝑅fl = 𝑅𝑅f ∗ 𝑓𝑓(𝑇𝑇lag)   

 

Groundwater Δ𝑆𝑆s
𝚫𝚫𝒕𝒕 = 𝑅𝑅rtot − 𝑅𝑅ctot − 𝑄𝑄s 

 

𝑅𝑅r = 𝑾𝑾 ∙ 𝐶𝐶 ∙ 𝑃𝑃e  

𝑅𝑅rtot = �𝒑𝒑𝐇𝐇𝐇𝐇𝐇𝐇 ∙ 𝑅𝑅r
𝐻𝐻𝐻𝐻𝐻𝐻

 

𝑅𝑅ctot = �𝒑𝒑𝐇𝐇𝐇𝐇𝐇𝐇 ∙ 𝑅𝑅c
𝐻𝐻𝐻𝐻𝐻𝐻

 

 

𝑄𝑄s =
𝑆𝑆s
𝑲𝑲𝐬𝐬

 

Total runoff 𝑄𝑄m = 𝑄𝑄s + 𝑄𝑄ftot 𝑄𝑄ftot = �𝒑𝒑𝐇𝐇𝐇𝐇𝐇𝐇 ∙ 𝑄𝑄f
𝐻𝐻𝐻𝐻𝐻𝐻

 

Supporting literature (Gharari et al., 2014;Gao et al., 2014;Euser et al., 2015) 
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3.3 Parameter selection procedures and model performance evaluation 

To evaluate the information content and thus the utility of altimetry data for the selection of feasible model 

parameter sets, a step-wise procedure as specified in detail below was applied (Table 4). Note that given data 

scarcity and the related issues of epistemic uncertainties (Beven and Westerberg, 2011;McMillan and 260 

Westerberg, 2015) and equifinality (Beven, 2006;Savenije, 2001) we did not aim to identify the “optimal” 

parameter set in what is frequently considered a traditional calibration approach. In most hydrological 

applications the available data have limited strength for rigorous model tests (Clark et al., 2015;Gupta et al., 

2008;Jakeman and Hornberger, 1993). Thus, to reduce the risk of rejecting good parameters when they should 

have been accepted (Beven, 2010;Hrachowitz and Clark, 2017), we rather attempted to identify and discard the 265 

most implausible parameter sets (Freer et al., 1996) that violate our theoretical understanding of the system or 

that are inconsistent with the available data (Knutti, 2008). This allowed us to iteratively constrain the feasible 

parameter space and thus the uncertainty around the modelled hydrograph (Hrachowitz et al., 2014). To do so, a 

Monte-Carlo sampling strategy with uniform prior parameter distributions was applied to generate 5·104 model 

realizations. This random set of solutions was in the following steps used as baseline and iteratively constrained 270 

by identifying parameter sets that do not satisfy pre-specified criteria (see below), depending on the data type 

and source used.  

3.3.1 Benchmark: Parameter selection and model performance based on observed discharge data 

Model calibration 

As benchmark, and following a traditional calibration procedure, the model was calibrated with observed daily 275 

discharge based on the Nash-Sutcliffe efficiency (Nash and Sutcliffe, 1970) using all complete hydrological 

years within the time period 2002 to 2016; these are the years starting in the fall of 2004, 2006 and 2008:  

𝐸𝐸NS,Q = 1 −
∑ �𝑄𝑄mod(t) − 𝑄𝑄obs(𝑡𝑡)�2𝑡𝑡

∑ (𝑄𝑄obs(t) − 𝑄𝑄obs������)2𝑡𝑡
  

 
(1) 

To limit the solutions to relatively robust representations of the system while allowing for data and model 

uncertainty (e.g. Beven, 2006;Beven and Westerberg, 2011) only parameter sets that resulted in ENS,Q ≥ 0.6 were 

retained as feasible. The hydrological model consisted of 17 free calibration parameters (Table 4) whose uniform 280 

prior distributions are given in Table S1 in the supplementary material with associated parameter constrains as 

summarised in Table S2. 
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Table 4: Overview of the parameter identification strategies applied in this study 

Calibration strategy 

name 

Calibration  

data 

Objective function Nr. of 

calibration 

parameters 

Comments Discharge –  

water level  

conversion method 

Benefits (+) & limitations (-) 

Discharge (reference) Discharge  

(at basin outlet) 

ENS,Q 17 Traditional model calibration on observed 

flow data 

Combination of 8 different flow signatures 

- - 

Seasonal water storage GRACE ENS,Stot 17 No discharge data used - - 

Altimetry Strategy 1 Altimetry  

(at 18 virtual stations) 

& GRACE 

Altimetry: DE,R,WL  

GRACE: ENS,Stot 

17 No discharge data used  

Combination of 18 virtual stations 

Combined with GRACE 

- + No extra parameters or data needed 

+ Assumption: monotonic relation 

between discharge and river water 

level 

- Focus on dynamics only, not 

volume 

Altimetry Strategy 2 Altimetry  

(at 18 virtual stations) 

& GRACE 

Altimetry: DE,NS,RC  

GRACE: ENS,Stot 

25 

 

No discharge data used  

Combination of 18 virtual stations 

Combined with GRACE 

Calibrated Rating 

curve 

+ No extra data needed 

- Two extra parameters per cross-

section 

Altimetry Strategy 3 Altimetry  

(at 18 virtual stations) 

& GRACE 

Altimetry: DE,NS,SM  

GRACE: ENS,Stot 

18 

 

No discharge data used  

Combination of 18 virtual stations 

Combined with GRACE 

Strickler-Manning + Only 1 extra parameter 

- Cross-section data needed 

- Assumption: constant roughness in 

space and time 

Water level Strategy 1 Water level  

(at basin outlet)  

& GRACE 

Altimetry: ENS,SM,GE  

GRACE: ENS,Stot 

18 No discharge data used  

Combined with GRACE 

Strickler-Manning + Only 1 extra parameter 

- Cross-section data needed 

- Assumption: constant roughness in 

space and time 

Water level Strategy 2 Water level  

(at basin outlet) 

& GRACE 

Altimetry: ENS,SM,ADCP  

GRACE: ENS,Stot 

18 No discharge data used  

Combined with GRACE 

Strickler-Manning + Only 1 extra parameter 

- Cross-section data needed 

- Assumption: constant roughness in 

space and time 

  285 
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Model evaluation 

The performance of all model realizations was evaluated post-calibration with respect to discharge using seven 

additional hydrological signatures (e.g. Sawicz et al., 2011;Euser et al., 2013) to assess the skill of the model to 

reproduce the overall response of the system and thus the robustness of the selected parameters (Hrachowitz et 

al., 2014). The signatures included the logarithm of the daily flow time series (hereafter referred to with the 290 

subscript logQ), the flow duration curve (FDC), its logarithm (logFDC), the mean seasonal runoff coefficient 

during dry periods (April - September; RCdry), the mean seasonal runoff coefficient during the wet periods 

(October - March; RCwet), the autocorrelation function of daily flow (AC) and the rising limb density of the 

hydrograph (RLD). An overview of these signatures can be found in Table 5, and more detailed explanations in 

Euser et al. (2013) and references therein. As performance measures for the model to reproduce the individual 295 

observed signatures the Nash-Sutcliffe efficiency (ENS,logQ, ENS,FDC, ENS,logFDC, ENS,AC; equivalent to Eq.1 and a 

metric based on the relative error (ER,RCdry, ER,RCwet, ER,RLD) were used (Euser et al., 2013): 

𝐸𝐸R,θ = 1 −
|𝜃𝜃mod − 𝜃𝜃obs|

𝜃𝜃obs
 

 (2) 

Where θ is any of the three signatures evaluated with ER. The signatures where combined, with equal weights, 

into one objective function, which was formulated based on the Euclidian distance DE (Schoups et al., 2005) so 

that a value of 1 indicates a “perfect” model: 300 

𝐷𝐷E = 1 − �
1

(𝑁𝑁 + 𝑀𝑀)���1 − 𝐸𝐸NS,θn�
2

𝑛𝑛

+ ��1 − 𝐸𝐸R,θm�
2

𝑚𝑚

� 
 

(3) 

 

Where θ is a signature, n indicates the signatures evaluated based on the Nash-Sutcliffe efficiency, m indicates 

the signatures evaluated based on the relative error and N and M are the respective number of signatures used.  
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Table 5: Overview of flow signatures used in this study 

Flow  

signature 

Explanation Function Model performance equation 

Q Daily flow time 

series 

- 
𝐸𝐸NS,Q = 1 − ∑ �𝑄𝑄mod,t−𝑄𝑄obs,t�

2
𝑡𝑡

∑ �𝑄𝑄obs,t−𝑄𝑄obs��������
2

𝑡𝑡
  

logQ Logarithm of daily 

flow time series 

- 
𝐸𝐸NS,logQ = 1 −

∑ �𝑄𝑄log,mod,t−𝑄𝑄log,obs,t�
2

𝑡𝑡

∑ �𝑄𝑄log,obs,t−𝑄𝑄log,obs������������
2

𝑡𝑡
  

FDC Flow duration curve - 
𝐸𝐸NS,FDC = 1 − ∑ �𝑄𝑄sort,mod,t−𝑄𝑄sort,obs,t�

2
𝑡𝑡

∑ �𝑄𝑄sort,obs,t−𝑄𝑄sort,obs��������������
2

𝑡𝑡
  

logFDC Logarithm of flow 

duration curve 

- 
𝐸𝐸NS,logFDC = 1 −

∑ �𝑄𝑄log,sort,mod,t−𝑄𝑄log,sort,obs,t�
2

𝑡𝑡

∑ �𝑄𝑄log,sort,obs,t−𝑄𝑄log,sort,obs������������������
2

𝑡𝑡
  

RCdry Runoff coefficient 

during dry periods 
𝑅𝑅𝐶𝐶dry = 𝑄𝑄dry

𝑃𝑃dry
  𝐸𝐸R,RCdry = 1 − �𝐻𝐻𝑅𝑅dry,mod−𝐻𝐻𝑅𝑅dry,obs�

𝐻𝐻𝑅𝑅dry,obs
  

RCwet Runoff coefficient 

during wet periods 
𝑅𝑅𝐶𝐶wet = 𝑄𝑄wet

𝑃𝑃wet
  𝐸𝐸R,RCwet = 1 − �𝐻𝐻𝑅𝑅wet,mod−𝐻𝐻𝑅𝑅wet,obs�

𝐻𝐻𝑅𝑅wet,obs
  

AC Autocorrelation 

function 
𝐴𝐴𝐶𝐶t = ∑ (𝑄𝑄i−𝑄𝑄�)∗(𝑄𝑄ı+t−𝑄𝑄�)������������������i

Σ(𝑄𝑄i−𝑄𝑄�)2   𝐸𝐸NS,AC = 1 − ∑ �𝐴𝐴𝑅𝑅mod,t−𝐴𝐴𝑅𝑅obs,t�
2

𝑡𝑡

∑ �𝐴𝐴𝑅𝑅obs,t−𝐴𝐴𝑅𝑅obs����������
2

𝑡𝑡
  

RLD Rising limb density 𝑅𝑅𝑅𝑅𝐷𝐷 = 𝑁𝑁peaks
𝑇𝑇r

  𝐸𝐸R,RLD = 1 − |𝐻𝐻𝑅𝑅𝑅𝑅mod−𝐻𝐻𝑅𝑅𝑅𝑅obs|
𝐻𝐻𝑅𝑅𝑅𝑅obs

  

 305 

3.3.2 Parameter selection and model performance based on the seasonal water storage (GRACE) 

In a next step we assumed that discharge records in the Luangwa Basin were absent. The starting assumption 

thus had to be that all model realizations, i.e. all sampled parameter sets, were equally likely to allow feasible 

representations of the hydrological system. In a stepwise approach, confronting these realizations with different 

types of data, we sequentially identified and discarded solutions that were least likely to provide meaningful 310 

system representations, thereby gradually narrowing down the feasible parameter space.    

As altimetry data alone only contain limited information on the river flow volumes, we first identified and 

discarded solutions that were least likely to preserve observed the seasonal water storage (Stot) fluctuations. To 

do so, the monthly modelled total water storage (𝑆𝑆tot,mod = 𝑆𝑆i + 𝑆𝑆u + 𝑆𝑆f + 𝑆𝑆s) relative to the 2004-2009 time-

mean baseline in each grid cell was compared to water storage anomalies as obtained from the GRACE data 315 

product (Tang et al., 2017;Fang et al., 2016;Forootan et al., 2019;Khaki and Awange, 2019). In the GRACE 

product, the same time period was used for the time-mean baseline (Swenson and Wahr, 2006;Swenson, 

2012;Landerer and Swenson, 2012).  

The model’s skill to reproduce the seasonal water storage, i.e. Stot, was assessed using the Nash-Sutcliffe 

efficiency ENS,Stot  (Eq. 1). Note that ENS,Stot,j was computed at first from the time series of Stot in each grid cell j 320 

which were then averaged to obtain ENS,Stot. If no additional data were available, a hypothetic modeller relying on 

ENS,Stot to calibrate a model, may choose only the solution with the highest ENS,Stot or allow for some uncertainty. 

To mimic this traditional approach but to balance it with a sufficient number of feasible solutions to be kept for 

the subsequent steps we here identified and discarded the poorest performing 75% of all solutions in terms of 

ENS,Stot as unfeasible for the subsequent modelling steps.  325 
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3.3.3 Parameter selection and model performance based on satellite altimetry data 

Next, the remaining feasible parameter sets were used to evaluate their potential to also reproduce time series of 

observed altimetry applying three distinct parameter selection and model evaluation strategies. Assuming again 

the situation of an ungauged basin (i.e. no time-series of river flow available), we kept for each strategy as 330 

feasible the respective 1% best performing parameter sets according to the specific performance metric 

associated to that strategy. In a final step, these solutions were then compared for their potential to reproduce 

actually observed river flow time series. 

 

Altimetry Strategy 1: Direct comparison of altimetry data to modelled discharge  335 

Hereafter referred to as with subscript WL, i.e. water level. In the simplest approach, we directly used altimetry 

data to correlate observed water levels with modelled discharge based on the Spearman rank correlation 

coefficient (ER,WL; Spearman, 1904):  

 

𝐸𝐸R,WL =
cov(𝑟𝑟Qmod, 𝑟𝑟WLobs)

σ �𝑟𝑟Qmod� ∗ σ(𝑟𝑟WLobs)
 

 
(4) 

Where rQ,mod and rWL,obs are the ranks of the modelled discharge and the observed water levels, respectively. This 340 

method requires as assumption that the relationship between water level and discharge has to be monotonic. The 

Spearman rank correlation was applied successfully in previous studies to calibrate a rainfall-runoff model to 

water level time series (Seibert and Vis, 2016). As there were multiple virtual stations with water level data 

available in this study, the ER,WL was computed at each location simultaneously. The individual values ER,WL 

were weighted based on the record length of the corresponding virtual stations and then combined into the 345 

Euclidean distance as aggregate metric DE,R,WL, equivalent to Eq. 5. 

𝐷𝐷E,β,γ = 1 − ���𝑤𝑤𝑖𝑖 ∗ �1 − 𝐸𝐸β,γ�
2

𝑖𝑖

� 
 

(5) 

Where Eβ,γ is the individual model performance for each virtual station, β is the abbreviation for the model 

performance metric, γ the abbreviation for the parameter selection method and wi the relative weight. 

 

Altimetry Strategy 2: Rating curves  350 

In the second strategy, as successfully applied in previous studies (Getirana and Peters-Lidard, 2013;Jian et al., 

2017), model parameters were selected based on the models’ ability to reproduce water levels by converting the 

modelled discharge to water levels, assuming these two are related through a rating curve in the form of a power 

function (Rantz, 1982): 

𝑄𝑄 = 𝑎𝑎 ∗ (ℎ − ℎ0)𝑏𝑏  (6) 

Where h is the water level, h0 a reference water level, and a and b are two additional calibration parameters, 355 

determining the shape of the function and lumping the combined influences of different river cross-section 

characteristics, such as geometry or roughness. Note, that here for each virtual station h0 is the elevation that 

corresponds to the water level of the Google Earth image with the lowest flow available. This strategy is 

hereafter referred to as with subscript RC, i.e. rating curve. As river-cross sections vary in space, each of the 18 
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virtual stations would require an individual set of these parameters a and b. To limit the number of additional 360 

calibration parameters, we here classified the river-cross sections of the 18 virtual stations into 4 classes (Figure 

1A and Figure 3). For cross-sections within each class, i.e. geometrically similar, the same values for a and b 

were used, resulting in 4 sets of a and b and thus a total of 8 additional calibration parameters. The river cross-

sections were extracted from global high-resolution terrain data available on Google Earth (see Section 2.1.4). 

The modelled river water levels were evaluated against the observed water levels at each virtual station using the 365 

Nash-Sutcliffe efficiency ENS,RC (equivalent to Eq. 1), weighted based on the record length of the corresponding 

virtual stations and then combined into the Euclidean distance DE,NS,RC as an aggregated performance metric (Eq. 

5). 

 

 370 
Figure 3: River profiles at 18 virtual stations (VS) divided into four groups. The reference level is equal to the lowest 
water level in the river profile for each location separately. 

 

Altimetry Strategy 3: Strickler-Manning equation  

As third strategy, we converted the modelled discharge to river water levels using the Strickler-Manning 375 

equation (Manning, 1891): 

𝑄𝑄 = 𝑘𝑘 ∗ 𝑖𝑖
1
2 ∗ 𝐴𝐴 ∗ 𝑅𝑅

2
3  (7) 

Where k is a roughness parameter, here treated as free calibration parameter and assumed constant for all virtual 

stations, i is the mean channel slope, here over a distance of 10 km, while A and R are the river cross-section area 

and hydraulic radius. Assuming trapezoidal cross-sections (see Figure 4 as illustrative example), A and R were 

calculated for each cross section according to: 380 

𝐴𝐴 = 𝐵𝐵 ∗ 𝑑𝑑 +
1
2
∗ 𝑑𝑑2 ∗ (𝑖𝑖1 + 𝑖𝑖2) 

 (8) 
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𝑅𝑅 =
𝐴𝐴

𝐵𝐵 + 𝑑𝑑 ∗ �(1 + 𝑖𝑖12)
1
2 + (1 + 𝑖𝑖22)

1
2�

 
 

(9) 

𝑑𝑑 = ℎ − ℎ0  (10) 

Where B is the assumed river bed width, i1 and i2 are the river bank slopes, d the water depth, h the water level 

and h0 the reference water level, here assumed to be the lowest observed river water level to limit the number of 

calibration parameters. In contrast to previous studies that use a similar approach but relied on locally observed 

river-cross sections (Michailovsky et al., 2012;Hulsman et al., 2018;Liu et al., 2015), here both, the river bed 

geometries (Figure 3) at and the channel slopes upstream of the 18 virtual stations were computed using high-385 

resolution terrain data retrieved from Google Earth (see Section 2.1.4); similar data sources were already used in 

previous studies to extract the river geometry (e.g. Michailovsky et al., 2012;Pramanik et al., 2010;Gichamo et 

al., 2012). The reader is referred to Table S3 in the supplementary material for the values of the variables for 

each virtual station. This strategy is hereafter referred to as with subscript SM, i.e. Strickler-Manning. 

Equivalent to above, the modelled river water levels were then evaluated against the observed water levels at 390 

each virtual station using the Nash-Sutcliffe efficiency ENS,SM (equivalent to Eq. 1), weighted based on the record 

length of the corresponding virtual stations and then combined into the Euclidean distance DE,NS,SM as an 

aggregated performance metric (Eq. 5). 

 
Figure 4: Example of approximating a trapezoidal cross-section (black) into the Google Earth based cross-section 395 
data (red) for virtual station “VS 4” (see also Figure 1A and Figure 3). The reference level is equal to the lowest water 
level in the river profile. 

3.3.4 Parameter selection and model performance based on daily river water level at the basin outlet 

For the previous parameter identification strategy (Altimetry Strategy 3), river geometry information was 

extracted from high-resolution terrain data retrieved from Google Earth which have a low accuracy. 400 

Unfortunately, more accurate cross-section information from in-situ surveys was only available at the Great East 

Road Bridge gauging station, i.e. the basin outlet, where, in turn, no altimetry observations were available. That 

is why water level time series were used to illustrate the influence of the cross-section accuracy.  

As shown in Figure 5, the Google Earth based above-water cross-section at the basin outlet corresponded in 

general well to the field survey considering that satellite images have limited spatial resolution. However, the in-405 

situ measurement also illustrated the relevance of the submerged part of the channel cross-section at that location 

on the day the image was taken (June 2nd 2008).  
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Figure 5: River cross-section at Luangwa Bridge obtained from Google Earth and detailed field survey including the 
river water level on June 2nd 2008. Field measurements were done with an Acoustic Doppler Current Profiler (ADCP) 410 
on April 27th 2018 at the coordinates 30o 13’ E and 15o 00’ S; the satellite image was taken on June 2nd 2008. The 
reference level is equal to the lowest elevation level measured with the ADCP. 

 

Water level Strategy 1: River geometry information extracted from Google Earth 

First, cross-section information was extracted from global high-resolution terrain data available on Google Earth 415 

(subscript GE) and used with the Strickler-Manning equation (Eq. 7) to convert the modelled discharge to water 

levels. This was combined with GRACE observations to restrict the parameter space in an equivalent way as in 

Section 3.3.3. The model performance with respect to river water levels was calculated with the Nash-Sutcliffe 

efficiency ENS,SM,GE (Eq. 1). 

 420 

Water level Strategy 2: River geometry information obtained from a detailed field survey 

Second, cross-section information obtained from a detailed field survey with an ADCP (subscript ADCP) was 

used with the Strickler-Manning equation (Eq. 7) to convert the modelled discharge to water levels. This was 

combined with GRACE observations to restrict the parameter space in an equivalent way as in Section 3.3.3. 

The model performance with respect to river water levels was calculated with the Nash-Sutcliffe efficiency 425 

ENS,SM,ADCP (Eq. 1). 

4 Results and discussion 

4.1 Parameter selection and model performance 

The complete set of all model realizations unsurprisingly results in a wide range of model solutions (Figure 6A), 

with ENS,Q ranging from -6.4 to 0.78 and with the combined performance metric of all signatures DE ranging 430 

from -334 to 0.79 (Figure 7). With respect to the individual flow signatures, the model performance varied such 

that the largest range was found in ENS,Q and smallest in ENS,AC as visualised in Figure 7 and tabulated in Table 

S4. Although containing relatively good solutions, this full set of all realizations clearly also contained many 

parameter sets that considerably over- and/or underestimate flows.   

 435 
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Figure 6: Range of model solutions. The left panel shows the hydrograph and the right panel the flow duration curve 
of the recorded (black) and modelled discharge: the line indicates the solution with the highest calibration objective 
function (ENS or DE) and the shaded area the envelope of the solutions retained as feasible. A) All model solutions 440 
included; solutions retained as feasible based on B) discharge (i.e. “traditional calibration”; ENS,Q), C) GRACE 
(ENS,Stot), and D) Altimetry Strategy 1 only (DE,R,WL).The grey bars in the left subplot D indicate the number of 
altimetry observations available for each day. 
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 445 
Figure 7: Comparison of different data sources to identify feasible parameter sets. Data sources applied: 1) All random parameters (no data), 2) Discharge, 3) GRACE, 4) Altimetry 
data combined with GRACE (Altimetry Strategy 1), 5) Altimetry data using the rating curves combined with GRACE (Altimetry Strategy 2), and 6) Altimetry data using the 
Strickler – Manning equation combined with GRACE (Altimetry Strategy 3), and 7) Daily river water level combined with GRACE using the Strickler – Manning equation and cross-
section information retrieved from Google Earth (Water level Strategy 1), or 8) obtained from a detailed field survey with an Acoustic Doppler Current Profiler (ADCP, Water level 
Strategy 2). The boxplots visualise the spread in the overall model performance DE  with respect to discharge and the following individual signatures: a) daily discharge (ENS,Q), b) its 450 
logarithm (ENS,logQ), c) flow duration curve (ENS,FDC), d) its logarithm (ENS,logFDC), e) average runoff coefficient during the dry season (ER,RCdry), f) average seasonal runoff coefficient 
during the wet season (ER,RCwet),  g) autocorrelation function (ENS,AC), and h) rising limb density (ER,RLD). The dots visualise the model performance when selecting the parameter set 
with the highest model efficiency according to each parameter identification strategy. 
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Figure 8: Range of model solutions. The left panel shows the hydrograph and the right panel the flow duration curve 455 
of the recorded (black) and modelled discharge: the line indicates the solution with the highest calibration objective 
function (ENS or DE) and the shaded area the envelope of the solutions retained as feasible. Solutions retained as 
feasible based on E) Altimetry Strategy 2 using rating curves for the discharge – water level conversion (DE,NS,RC), F) 
Altimetry Strategy 3 using the Strickler-Manning equation for the discharge – water level conversion (DE,NS,SM), and 
G) Daily in-situ water level using the Strickler Manning equation for the discharge – water level conversion with 460 
cross-section information retrieved from Google Earth (Water level strategy 1; ENS,SM,GE) or H) obtained from a 
detailed field survey with an Acoustic Doppler Current Profiler (ADCP; Water level strategy 2; ENS,SM,ADCP). The grey 
bars in the left subplots E and F indicate the number of altimetry observations available for each day. 
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4.1.1 Benchmark: Parameter selection and model performance based on observed discharge data 465 

For the benchmark case, applying the traditional model calibration approach using discharge data, this parameter 

selection and calibration strategy results  in a reasonable model performance, in which the seasonal but also the 

daily flow dynamics and magnitudes are in general well captured as shown in Figure 6B. For some years, a 

number of solutions overestimate flows in the wet season and underestimate flows during the dry season, when 

the river becomes a small meandering stream with almost annual morphological changes which is difficult to 470 

meaningfully observe. The best performing solution has a calibration objective function ENS,Q,opt = 0.78 (5/95th 

percentiles of all feasible solutions ENS,Q,5/95 = 0.61 – 0.75; Figure 7 and Table 6). For the post-calibration 

evaluation of all retained solutions, it was observed that most signatures are well reproduced by the majority of 

solutions, except for the dry season runoff coefficient (RCdry; Figure 7 and Table S4). This resulted in aggregated 

model performances, combining all signatures, of DE,5/95 = 0.55 – 0.76 with the above identified best performing 475 

solution (i.e. ENS,Q,opt) reaching a value of DE,opt = 0.60.  

 

Table 6: Summary of the model results: elimination of unfeasible parameter sets and detection of optimal parameter 
set according to each parameter identification strategy including the corresponding model performance range (ENS,Q, 
DE) indicating the model’s skill to reproduce the discharge during the benchmark time period. For each strategy, the 480 
model efficiency for the optimal parameter set is summarised together with the corresponding performance metrics 
with respect to discharge (ENS,Q,opt, DE,opt); for all parameter sets retained as feasible, the maximum (ENS,Q,max, DE,max) 
and 5/95 percentiles (ENS,Q,5/95, DE,5/95) of all performance metrics with respect to discharge are summarised. Data 
sources used for the parameter set selection: 1) All parameter sets (no data), 2) Discharge, 3) GRACE, 4) Altimetry 
combined with GRACE (Altimetry Strategy 1), 5) Altimetry data using rating curves combined with GRACE 485 
(Altimetry Strategy 2), 6) Altimetry data using the Strickler – Manning equation combined with GRACE (Altimetry 
Strategy 3), and 7) Daily river water level combined with GRACE using the Strickler – Manning equation and cross-
section information retrieved from Google Earth (Water level Strategy 1), or 8) obtained from a detailed field survey 
with an Acoustic Doppler Current Profiler (ADCP, Water level Strategy 2). 

 Optimal parameter set Feasible parameter sets 

 

Model efficiency ENS,Q,opt (DE,opt) ENS,Q,max (ENS,Q,5/95) DE,max (DE,5/95) 

1) All parameters sets - - 0.78 (-3.8 – 0.68) 0.79 (-1.4 – 0.71) 

2) Discharge ENS,Q,opt = 0.78 0.78 (0.60) 0.78 (0.61 – 0.75) 0.79 (0.55 – 0.76) 

3) Seasonal water storage (GRACE) ENS,Stot,opt = 0.56 -1.4 (-0.18) 0.78 (-2.3 – 0.38) 0.77 (-0.58 – 0.62) 

4) Altimetry Strategy 1: Compare 
altimetry to discharge 

DE,R,WL,opt = 0.76 0.65 (0.63) 0.65 (-2.9 – 0.10) 0.66 (-0.83 – 0.50) 

5) Altimetry Strategy 2: Rating curves DE,NS,RC,opt = -0.50 -0.31 (0.27) 0.51 (-2.6 – 0.25) 0.66 (-0.72 – 0.56) 

6) Altimetry Strategy 3: Strickler-Manning 
equation 

DE,NS,SM,opt = -1.4 0.60 (0.71) 0.63 (-0.31 – 0.50) 0.75 (0.36 – 0.67) 

7) Water level Strategy 1: satellite based 
cross-section 

ENS,SM,GE,opt = -1.8 0.65 (0.77) 0.77 (-0.48 – 0.60) 0.77 (0.28 – 0.70) 

8) Water level Strategy 2: in-situ cross-
section 

ENS,SM,ADCP,opt = 0.79 0.14 (0.55) 0.77 (-1.1 – 0.50) 0.77 (0.03 – 0.67) 

 490 

4.1.2 Parameter selection and model performance based on the seasonal water storage (GRACE) 

Starting from the set of all model realizations (Figures 6A and 7), and assuming no discharge observations are 

available, we then identified and discarded parameter sets as unfeasible when they did not meet the previously 

defined criteria to reproduce the seasonal water storage (ENS,Stot; see Section 3.3.2). The range of random model 

realizations with respect to the total water storage is visualised in Figure 9. The sub-set of solutions retained as 495 

feasible resulted in a significant reduction in the uncertainty around the modelled variables, which is illustrated 
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by the narrower 5/95th percentiles of the solutions compared to the set of all realizations, as shown in Figure 6C. 

The feasible solutions with respect to the GRACE reached ENS,Stot,opt = 0.56 (ENS,Stot,5/95 = 0.45 – 0.52) (Figure 7, 

Table 6). These parameter sets were then used to evaluate the model for the years 2004, 2006, 2008 used in the 

benchmark case. While the flow dynamics are captured relatively well, many of the retained solutions 500 

considerably overestimated flows across all seasons (Figure 6C) resulting in a decreased performance with 

respect to the individual flow signatures, only the dry runoff coefficient (ER,RCdry) improved significantly 

compared to the benchmark as shown in Table S4 and Figure 7. The parameter set associated with the best 

performing model with respect to GRACE (ENS,Stot,opt) resulted for the benchmark period in a ENS,Q  =  -1.4 

(ENS,Q,5/95 = -2.3 – 0.38) and the corresponding DE,opt = -0.18 (DE,5/95 = -0.58 – 0.62) with respect to discharge 505 

(Figure 7, Table 6). As illustrated in Figure 7 and Figure 6C, many parameter sets that resulted in implausible 

representations of the seasonal signals were eliminated. However, as also indicated by the rather modest values 

of ENS,Q and DE with respect to discharge, the data source used here obviously contained only limited 

information to avoid the over predictions of flow during all wet seasons. The sequence of applying first GRACE 

and then altimetry, or the reverse, did not affect the identification of feasible parameter sets when using altimetry 510 

data as shown in Figure S9; however, it did affect the selection of the “best” parameter set. 

 

 
Figure 9: Range of random model realizations with respect to the total water storage (grey) including the observation 

according to GRACE (black) 515 

4.1.3 Parameter selection and model performance based on satellite altimetry data 

After having identified feasible parameter sets based on the seasonal water storage, additional unfeasible 

parameter sets were eliminated using altimetry data with three different strategies. In all three cases, the best 5% 

of all feasible parameter sets were selected; this resulted in 1% of all parameter sets.  

 520 

Altimetry Strategy 1: Directly compare altimetry data to modelled discharge 

The first approach, Altimetry Strategy 1, resulted in an overestimation of in particular intermediate and low 

flows as shown in Figure 6D. The feasible solutions reached an optimum of DE,R,WL,opt = 0.76 (DE,R,WL,5/95 = 0.74 

– 0.75) with respect to altimetry observations. Focusing on the model’s skill to reproduce the observed discharge 

using these feasible parameter sets for the benchmark period, the parameter set associated with the best 525 

performing model with respect to altimetry (DE,R,WL,opt) resulted in a ENS,Q  =  0.65 (ENS,Q,5/95 = -2.9 – 0.10) and 

DE = 0.63 (DE,5/95 = -0.83 – 0.50)  with respect to discharge (Figure 7, Table 6). Hence, the parameter set with the 

highest model performance with respect to altimetry, did not perform best with respect to discharge as shown in 
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Table 6 and Figure S8. While the optimum model performance with respect to discharge was similar to the 

benchmark, the very wide range in the 5/95th percentiles of the solutions indicated that this strategy has only 530 

limited potential to identify implausible parameter sets. This was also the case with respect to the individual flow 

signatures as shown in Figure 7 and Table S4. 

 

Altimetry Strategy 2: Rating curves 

The second approach, Altimetry Strategy 2, also resulted in an overestimation of the flows (Figure 8E). The 535 

feasible solutions reached an optimum of DE,NS,RC,opt = -0.50 (DE,NS,RC,5/95 = -1.0 – -0.77) with respect to altimetry 

observations. As example, Figure S6A visualises the simulated and observed river water level at Virtual Station 

4 where the model significantly underestimated the stream levels. Focusing on the model’s skill to reproduce the 

discharge using these parameter sets for the benchmark period, the parameter set associated with the best 

performing model with respect to altimetry (DE,NS,RC,opt) resulted in ENS,Q  = -0.31 (ENS,Q,5/95 = -2.6 – 0.25) and DE 540 

= 0.27 (DE,5/95 = -0.72 – 0.56)  with respect to discharge (Figure 7, Table 6); hence similar to Altimetry Strategy 

1, the best parameter set with respect to altimetry, did not perform best with respect to discharge (see Table 6 

and Figure S8). The optimum model performance with respect to discharge was worse compared to the 

benchmark, and the wide range in the 5/95th percentiles of the solutions indicated this strategy poorly identified 

the feasible parameter sets. This was also the case with respect to the individual flow signatures as shown in 545 

Figure 7 and Table S4; only the dry runoff coefficient (ERCdry) improved significantly compared to the 

benchmark. 

 

Altimetry Strategy 3: Strickler-Manning equation  

The third approach, Altimetry Strategy 3, resulted in improved flow predictions compared to the other two 550 

strategies using altimetry data (Figure 8F). Even though the feasible solutions exhibit a very poor ability to 

reproduce the altimetry data, with an optimum of DE,NS,SM,opt = -1.4 (DE,NS,SM,5/95 = -3.8 – -1.8), the model’s skill 

to reproduce the discharge for the benchmark period using these parameter sets, significantly increased 

compared to the two alternative strategies. As example, Figure S6B visualises the simulated and observed river 

water level at Virtual Station 4 where the model simulated the stream levels relatively well. The parameter set 555 

associated with the best performing model with respect to altimetry (DE,NS,SM,opt) resulted in ENS,Q  = 0.60 

(ENS,Q,5/95= -0.31 – 0.50) and DE = 0.71 (DE,5/95 = 0.36 – 0.67)  with respect to discharge (Figure 7, Table 6). 

While the optimum model performance with respect to discharge was worse compared to the benchmark, the 

5/95th percentiles of the solutions were significantly constrained by the removal of many implausible parameter 

sets; this was valid for the performance with respect to the individual flow signatures (ENS,θ and ER,θ) and overall 560 

flow response (DE) as shown in Figure 7 and Table S4. This indicated that, although the model performance with 

respect to altimetry observations was low, this strategy contains valuable information to considerably constrain 

the feasible solution space. 

4.1.4 Parameter selection and model performance based on daily river water level at the basin outlet  

 565 

Water level Strategy 1: River geometry information extracted from Google Earth 
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The parameter identification strategy “Water level Strategy 1”, using cross-section information extracted from 

Google Earth, resulted in a poor simulation of the river water level (Figure 10A) with an optimal objective 

function value with respect to river water levels of ENS,SM,GE,opt  = -1.8 (ENS,SM,GE,5/95 = -6.8 – -3.1). Focusing on 

the model’s skill to reproduce the discharge using these feasible parameter sets for the benchmark period, the 570 

parameter set associated with the best performing model with respect to river water levels (ENS,SM,GE,opt) resulted 

in ENS,Q,GE  = 0.65 (ENS,Q,5/95,GE  = -0.48 – 0.60) and DE,GE = 0.77 (DE,GE,5/95 = 0.28 – 0.70) with respect to 

discharge  (Figure 7, Table 6); the model performance with respect to the remaining signatures as visualised in 

Figure 7 are tabulated in Table S4. As shown in Figure 8G, the discharge was overestimated in particular during 

intermediate and low flows. 575 

 

Water level Strategy 2: River geometry information obtained from a detailed field survey 

The parameter identification strategy “Water level Strategy 2”, using cross-section information obtained from a 

detailed field survey, resulted in improved river water level simulations (compare Figure 10A and B) with an 

optimal objective function value with respect to river water levels of ENS,SM,ADCP,opt = 0.79 (ENS,SM,ADCP,5/95 = 0.60 580 

– 0.74). The parameter set associated with the best performing model with respect to river water levels 

(ENS,SM,ADCP,opt) resulted in ENS,Q,ADCP  = 0.14 (ENS,Q,5/95,ADCP = -1.1 – 0.50) and in DE,ADCP = 0.55 (DE,ADCP,5/95 = 

0.03 – 0.67) with respect to discharge (Figure 7, Table 6); the model performance with respect to the remaining 

signatures as visualised in Figure 7 are tabulated in Table S4.  

Compared to using river geometry information extracted from Google Earth (Water level Strategy 1), the overall 585 

model performance with respect to discharge did not increase since the parameter space was already restricted 

using GRACE data. However, the modelled flow duration curve during intermediate and low flows (compare 

Figure 8G with H) and rating curve (Figure 11) improved significantly when using more accurate geometry 

information obtained from a detailed field survey covering the cross-section that is submerged most of the year 

which is thus unlikely to be captured by satellite based observations. Note, that the in-situ cross-section 590 

information was limited to the submerged part during the time of measurement; the remaining part (water levels 

> 5 m) was extrapolated which is likely to explain the larger discrepancies during high flows visible in the flow 

duration curve (Figure 8H). 
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 595 
Figure 10: Range of model solutions. The left panel shows the hydrograph and the right panel the flow duration curve 
of the recorded (black) and modelled discharge: the line indicates the solution with the highest calibration objective 
function (ENS) and the shaded area the envelope of the solutions retained as feasible. Solutions were retained as 
feasible based on daily water level time series at the basin outlet using the Strickler-Manning equation for the 
discharge – water level conversion; the cross-section was A) extracted from Google Earth (Water level Strategy 1), or 600 
B) obtained from a detailed field survey with an Acoustic Doppler Current Profiler (ADCP, Water level Strategy 2). 

 

 
Figure 11: Discharge - water level graphs for the recorded (black) and modelled discharge and stream levels with the 
optimal model performance (ENS) using the Strickler Manning equation for the discharge – stream level conversion 605 
with cross-section information A) extracted from Google Earth (Water level Strategy 1), or B) obtained from a 
detailed field survey with an Acoustic Doppler Current Profiler (ADCP, Water level Strategy 2).  

4.2 Number of virtual stations used for model calibration and evaluation 

In this study, altimetry data was available at 18 virtual stations. However, would the model performance change 

if more or less virtual stations were used? For this purpose, n random stations were selected for model 610 

calibration; the remaining stations were used for cross-validation (KlemeŠ, 1986;Gharari et al., 2013;Garavaglia 

et al., 2017). This was repeated to cover all combinations of n stations and for n = 1, 2 … 17. When applying 

Strategy 3 using altimetry data with the Strickler-Manning equation, this analysis revealed that when increasing 

the number of calibration stations, the model calibration performance DE,NS,SM gradually decreased, but the 
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ability to meaningfully reproduce the remaining observations which were not used for calibration increased 615 

significantly (Figure 12). Similar results were obtained for Strategies 1 and 2 (compare Figure 12 with 

Supplementary Figures S3 and S4). Also the model performance with respect to discharge increased when using 

more virtual stations with an optimum at 7 – 15 stations depending on the calibration strategy (Figure S5). This 

provides evidence that in spite of reduced calibration performance, the simultaneous use of multiple virtual 

stations can contribute towards more plausible selections of model parameter sets and thus increase the model 620 

realism. 

 
Figure 12: Influence of the number of virtual stations used for A) model calibration and B) evaluation on the model 
performance DE,NS,SM applying Altimetry Strategy 3. 

 625 

4.3 Uncertainties and limitations 

In the absence of discharge data for hydrological model calibration as commonly the case in poorly or ungauged 

regions, freely and globally available remotely sensed stream water levels could provide the opportunity to fill 

this gap as illustrated in this study, as well as in previous studies (e.g. Michailovsky and Bauer-Gottwein, 

2014;Pereira-Cardenal et al., 2011;Sun et al., 2012). However, there are several limitations to the approach 630 

proposed in this study using altimetry for model calibration. 

First, river altimetry data are prone to large uncertainties which increase for smaller river widths (Sulistioadi et 

al., 2015;Biancamaria et al., 2017). Unfortunately, this uncertainty could not be estimated for the virtual stations 

used in this study due to data limitations. However, in previous studies in the Zambezi Basin, the RMSE relative 

to in-situ stream levels ranged between 0.32 m and 0.72 m using Envisat (Michailovsky et al., 2012) .  635 

Second, large uncertainties in the forcing data (precipitation and temperature) with respect to the spatial-

temporal variations should not be ignored. This could compromise comparison results between modelled river 

water levels and altimetry within the basin since it has a low temporal resolution (10 or 35 days). Also, bias in 

the precipitation data affects storage calculations and hence also the identification of feasible parameter sets 

based on GRACE (Le Coz and van de Giesen, 2019); this could explain why the flows were frequently 640 

overestimated when using GRACE only. In addition, precipitation bias could be compensated through 

calibration parameters introduced for the discharge – water level conversion; therefore, such parameters should 

be constrained as much as possible. There are also data uncertainties in the cross-sections and river gradients 

extracted from high-resolution terrain data available on Google Earth due to its limited spatial resolution, but 

more importantly since no information is available below the water surface. 645 
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Further, GRACE observations are prone to uncertainties as a result of data (post-) processing including for 

example data smoothening (Landerer and Swenson, 2012;Blazquez et al., 2018). In addition, open water bodies 

or wetlands could affect GRACE observations if they are located in or near the basin, for example within a 

radius of about 300 km which is the distance often used for data smoothening. In this study, several open water 

bodies or wetlands were located ≤300 km of the Luangwa basin such as Lake Malawi, Kafue Flats, Cahora 650 

Bassa reservoir, Kariba reservoir, Bangweulu and Tanganyika. These open water bodies and wetlands had a 

limited impact on the GRACE observations due to limited fluctuations or different temporal variation as 

illustrated in Figure 13 for the Cahora Bassa reservoir. 

 
Figure 13: Temporal correlation of the GRACE observations for the cell in which the virtual station for Cahora Bassa 655 
is located (horizontal axis) and for A) all cells within an area surrounding the virtual station with a radius of 3 degree 
(GRACE area of influence, vertical axis, black), and B) the altimetry observation at Cahora Bassa (vertical axis, blue). 
The 1:1 line is visualised in red. The relatively strong temporal correlation between the GRACE cells could be a result 
of the strong seasonality in this area. 

 660 

Uncertainties were not only introduced by the data, but also as a result of assumptions and simplifications. First, 

the reference level h0 was assumed to be equal to the lowest river water level observed to limit the number of 

calibration parameters (Altimetry Strategy 2 and 3, Water level Strategy 1 and 2). Second, the roughness was 

assumed to be constant over the entire cross-section and for all virtual stations throughout the basin which affects 

the discharge - water level conversion and therefore also the model efficiency (Altimetry Strategy 3). Third, all 665 

18 virtual stations were grouped based on their cross-section similarity to limit the number of calibration 

parameters (Altimetry Strategy 2), but differences within each group remain. Fourth, the assumption of a 

constant flow velocity in space and time affects the timing of the flow influencing the comparison between 

model results and altimetry observations (all strategies). 

Another limitation is the missing flow volume information when directly using (satellite based) river water 670 

levels for model calibration, using the Spearman Rank Correlations as model performance metric (Altimetry 

Strategy 1; Seibert and Vis, 2016). This resulted here in an overestimation of intermediate and low flows due to 

the non-linear relation between stream levels and flows. In contrast, when converting the discharge to stream 

water levels, flow volume information was included at the cost of introducing additional calibration parameters 

(Altimetry Strategy 2 and 3), thereby increasing the degrees-of-freedom and thus the potential for parameter 675 

equifinality in the model (Beven, 2006;Sikorska and Renard, 2017;Sun et al., 2012).  

Furthermore, it was assumed the Nash-Sutcliffe efficiency contained sufficient valuable information to describe 

the model performance with respect various flow signatures, river water level and total water storage. Additional 

study is recommended to confirm this assumption and to assess which performance metric would be most 

suitable.  680 
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4.4 Comparison with previous studies 

Previous studies have successfully used river altimetry data to calibrate and evaluate rainfall-runoff models using 

a few virtual stations (Sun et al., 2012;Getirana, 2010;Getirana et al., 2010;Liu et al., 2015). In these studies, the 

modelled discharge was converted to stream levels by means of a hydraulic model or empirical relations. Our 

results support several previous findings and added a number of new ones. 685 

Similar to previous studies, the rainfall-runoff model reproduced river flow relatively well when calibrating on 

remotely sensed stream water levels preferably at several virtual stations simultaneously, but discharge based 

calibration results performed significantly better (Getirana, 2010). Thus, while river altimetry data cannot fully 

substitute discharge observations, they at least provide an alternative data source that holds some informative 

value where no reliable discharge data are available. In addition, our results suggest that in spite of the typically 690 

limited temporal resolution of altimetry observations, these data, when using multiple virtual stations 

simultaneously, provide enough information to select meaningful model parameter sets (Seibert and Beven, 

2009;Getirana, 2010).  

In contrast to previous studies, altimetry data originated from five different satellite missions rather than a single 

one. As a result, altimetry data was available at 18 locations for the time period 2002 to 2016. This gave the 695 

opportunity to analyse the effect of combining different numbers of stations for calibration and evaluation. This 

study illustrated that better predictions can be achieved when using more virtual stations for calibration. 

Furthermore, this study demonstrated that in particular the combination of altimetry with information on river 

geometry (cross section, gradient) proved beneficial for the selection of feasible parameter sets within relatively 

narrow bounds comparable to the benchmark using discharge. When using more accurate cross-section 700 

information obtained from a detailed field survey rather than Google Earth based estimates, improved the water 

level simulations, modelled rating curve and discharge simulations during intermediate and low flows 

significantly for which on-site cross-section data was available. That is why it is recommended to acquire 

accurate cross-section information on locations concurring with altimetry overpasses (not done is this study).  

4.5 Opportunities for future studies 705 

For future studies, it would be very interesting to combine altimetry observations with river width estimates 

derived from Landsat or Sentinel-1/2 (Huang et al., 2018). Alternatively, the altimetry observations used here 

could be combined with CryoSat based altimetry observations which provide water level information at lower 

temporal resolution (every 369 days), but higher spatial resolution (equatorial inter-track distance of 7.5 km) 

providing valuable information to estimate the river slope (Schneider et al., 2017;Jiang et al., 2017). In addition, 710 

with the upcoming SWOT (Surface Water Ocean Topography) mission, more accurate altimetry observations 

should be available as well as river slope observations and width; the repeat cycle will be 21 days and across-

track resolution between 10 m and 60 m increasing the number of observation points available within a specific 

area (Biancamaria et al., 2016;Langhorst et al., 2019;Oubanas et al., 2018). Also, it would be very useful to 

improve cross-section estimates with respect to the submerged part as already explored in previous studies 715 

(Domeneghetti, 2016). Furthermore, drone observations could be used to obtain more accurate cross-section 

information and estimates of the river slope and roughness (Entwistle and Heritage, 2019).  Also, it would be 

interesting to assess and separate uncertainties related to the discharge – water level conversion from the 

hydrological model in a more data rich region.  
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5 Summary and conclusion 720 

This study investigated the potential value of river altimetry observations from multiple satellite missions to 

identify feasible parameters for a hydrological model of the semi-arid and poorly gauged Luangwa River Basin. 

A distributed process-based rainfall-runoff model with sub-grid process heterogeneity was developed on a daily 

timescale for the time period 2002 to 2016. Various parameter identification strategies were implemented step-

wise to assess the potential of satellite altimetry data for model calibration. As benchmark, when identifying 725 

parameter sets with the traditional model calibration strategy using discharge data, the model was able to 

simulate the flows relatively well (ENS,Q = 0.78, ENS,Q,5/95 = 0.61 – 0.75). When assuming no discharge 

observations are available, the feasible parameter sets were restricted with GRACE data only resulting in an 

optimum of ENS,Q = -1.4 (ENS,Q,5/95 = -2.3 – 0.38) with respect to discharge. Combining GRACE with altimetry 

data only from 18 virtual stations focusing on the water level dynamics resulted in frequently overestimated 730 

flows and poorly identified feasible parameter sets (Altimetry Strategy 1, ENS,Q,5/95 = -2.9 – 0.10). This was also 

the case when converting modelled discharge to water levels using rating curves (Altimetry Strategy 2, ENS,Q,5/95 

= -2.6 – 0.25). The identification of the feasible parameter sets improved when including river geometry 

information, more specifically cross-section and river gradient extracted from Google Earth, in the discharge-

water level conversion using the Strickler-Manning equation (Altimetry Strategy 3, ENS,Q = 0.60, ENS,Q,5/95 = -735 

0.31 – 0.50). Moreover, it was shown that more accurate cross-section data improved the water level simulations, 

modelled rating curve and discharge simulations during intermediate and low flows for which on-site cross-

section information was available; the Nash-Sutcliffe efficiency with respect to river water levels increased from 

ENS,SM,GE = -1.8 (ENS,SM,GE,5/95 = -6.8 – -3.1)  using river geometry information extracted from Google Earth 

(Water level Strategy 1) to ENS,SM,ADCP = 0.79 (ENS,SM,ADCP,5/95 = 0.6 – 0.74) using river geometry information 740 

obtained from a detailed field survey (Water level Strategy 2). The model performance also improved when 

increasing the number of virtual stations used for parameter selection. Therefore, in the absence of reliable 

discharge data as commonly the case in poorly or ungauged basins, altimetry data from multiple virtual stations 

combined with GRACE observations have the potential to fill this gap if combined with river geometry 

estimates. 745 
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