We would like to thank the editor and referees for their feedback on our paper. We are sorry if we did not

completely satisfy the reviewers’ requests. We are happy that we got a second chance to meet these demands.

We hope that by this revision we completely take away the concerns raised. We have updated the paper based on

these comments with the following main changes:

The introduction was updated such that GRACE was introduced and included in the objective of the
study.

A list of parameters was included in Table 5 to avoid any confusion on the number of parameters for
each calibration strategy.

The methodology section was rearranged and shortened.

The discussion was updated such that the implications of the points raised were included where that was
missing.

More details on the changes can be found in the responses to the reviewer and the marked-up revised manuscript.



Dear Anonymous Referee #2,

Thank you for your feedback. We have revised the manuscript taking your comments into account.

The authors do indeed give a few details on GRACE and discuss the uncertainties associated to GRACE
products but a clear description of the GRACE product and how it was processed is still missing. The reader is
still left to guess whether GRACE provides soil water storage in mm or storage variation in mm/time step? What
are the “seasonal water storage anomalies” mentioned p 7 1 196 and p14 | 315?

p3 | 100-111: GRACE is not mentioned in the definition of the objectives of the study. It appears suddenly at
section 3.1. There is also no reference to GRACE in the last parts of the discussion (4.4-4.5). What is the added

value of GRACE + altimetry data instead of only altimetry. Could this be tested and discussed?

GRACE was indeed not mentioned in the Introduction. In the revised manuscript, we described GRACE in the
Introduction and included it in the study objectives. Altimetry observations only monitor water level dynamics,
hence there is no information on the amounts of water flowing in a river; in other words absolute discharge
magnitudes. By using GRACE observations, which describe the monthly total water storage anomalies, the
hydrological model can be constrained further in the calibration procedure, leading to more accurate discharge
estimates. With GRACE, improved simulation of the rainfall partitioning into runoff and evaporation can be
attained, which was illustrated in previous studies (Rakovec et al., 2016; Bai et al., 2018).

In addition, section 2.1.2 was updated to inform the reader on more technical details including the following:
Gravity Recovery and Climate Experiment (GRACE) observations describe the monthly total water storage
anomalies. With two identical satellites, the variations in the Earth’s gravity field were measured to detect
regional mass changes which are dominated by variations in the terrestrial water storage after having accounted
for atmospheric effects (Landerer and Swenson, 2012; Swenson, 2012). In this study, processed GRACE
observations of Release 05 generated by CSR (Centre for Space Research), GFZ (GeoForschungsZentrum
Potsdam) and JPL (Jet Propulsion Laboratory) were downloaded from the GRACE Tellus website

(https://grace.jpl.nasa.gov/); the average of all three sources were used. The data processing included among

others estimating terrestrial water storage variations from GRACE gravity field estimates; removing atmospheric
mass changes using ECMWF (European Centre for Medium-Range Weather Forecasts) atmospheric pressure
fields; removing systematic errors that cause north-south-oriented stripes; spatial smoothening to remove high
frequency noise using a 300 km wide Gaussian filter; and subtracting the 2004 — 2009 time-mean from the
observations to obtain water storage anomalies (Swenson and Wahr, 2006; Landerer and Swenson, 2012; Wahr
et al., 1998). Processed GRACE observations describe the total terrestrial water storage “anomaly” in
“equivalent water thickness” in [cm] relative to the 2004 — 2009 time-mean baseline. In other words, the “water
storage anomaly” is the observed total water storage subtracted by the time-mean (Landerer and Swenson, 2012).
GRACE describes the total water storage anomaly, which includes the variation of all terrestrial water stores
present in the groundwater, soil moisture and surface water (the atmospheric water has been subtracted).

Also the discussion (section 4.3 and 4.4) has been updated by discussing the added value of including GRACE in
the calibration procedure including the following: GRACE observations are prone to uncertainties as a result of

data (post-) processing including for example data smoothening (Landerer and Swenson, 2012; Blazquez et al.,


https://grace.jpl.nasa.gov/

2018; Riegger et al., 2012) causing neighbouring cells of 1° (= 111 km) not to be completely independent from
each other. Additionally, GRACE observations are more accurate for large areas; depending on the applied
processing scheme, the error is about 2 cm for basins with an area of around 63 000 km? (Landerer and Swenson,
2012; Vishwakarma et al., 2018). Also note that due to the coarse temporal resolution, monthly GRACE
observations only provide information on slow changing processes such as the groundwater and the soil
moisture; fast processes are missed. It is strong in monitoring the seasonal variations which is reflected in all
storage components.

Strikingly, only limited studies combined altimetry with GRACE observations in the calibration procedure
(Kittel et al., 2018). As altimetry observations only describe water level variations with no information on the
flow amounts, GRACE provides additional valuable information to constrain flow volumes by improving the
rainfall runoff partitioning as demonstrated in previous studies (Rakovec et al., 2016; Bai et al., 2018).
Combining both data sources in the calibration procedure allowed for a more accurate identification of feasible
parameter sets; the model performance range with respect to discharge improved from Dg 505 = -8.4 — 0.77, when
using only altimetry, to Dgsps = 0.19 — 0.75 when combining GRACE and altimetry for Altimetry Strategy 3
(see Figure S9). Unfortunately, GRACE observations are prone to several sources of uncertainties and
limitations as explained in the previous section, which could result in inadvertently discarding behavioural

parameter sets when calibrating with respect to altimetry and GRACE simultaneously.

A clear Table with the list of model parameters was requested by the Reviewers but not provided. There are a
Figure and Table in Supplementary Materials but no reference is made to them in the main text so they are
useless. Besides, they are themselves quite confusing. The authors declare 17 to 25 calibration parameters
(Table 4) but depending what Figure / Table the reader looks at, it shows between 9 and 27 parameters... In
Table 3 there is also a list of parameters in the caption where | can count 11 parameters + a reference to

Hydrological Response Units that comes out of nowhere.

We apologize for not having added a clearer table in the previous version. The reviewer is correct in stating that
the combination of different models and calibration strategies tested here, together with the varying numbers of
free calibration parameters caused some confusion. We have now adapted Table 5 (Table 4 in the original
manuscript) in the revised manuscript such that the respective calibration parameters are listed for each
calibration strategy. We hope this helps the reader in getting a clear image on the model parameters for each
calibration approach. In total, there are 27 different calibration parameters, but none of the calibration strategies
include them all simultaneously (see Table R1 here below). In the benchmark reference model, there were 18
parameter sets (instead of 17 as mentioned in the manuscript).

The schematization (Figure 2) and the description of the model structure (Section 3.2) in the previous version of
the manuscript already included explicit reference to and explanation of the hydrological response units used.

We have further clarified this in the newly revised version of the manuscript.



Table R1: Overview of calibration parameters

Strategy Parameter group Calibration parameters
Discharge Entire basin Ks, Ce
Plateau & Terrace Imaxs Sumax, Ksy W
(rEference) Hillslope Imax, Sumax, K, W, B, Tiag
Wetland Imaxs Sumaxs K, W, Crnax
River profile \Y
Total: 18
Seasonal Entire basin Ks, Ce
Plateau & Terrace Imaxs Sumax, Ksy W
water storage Hillslope Imax, Sumax, Kt, W, B, Thag
Wetland Imaxs Sumaxs K, W, Crnax
River profile Y
Total: 18
Altimetry Entire basin Ks, Ce
Plateau & Terrace Imaxs Sumax, Ksy W
Strategy 1 Hillslope Imax, Sumax, Kt, W, B, Thag
Wetland Imaxs Sumaxs K, W, Crnax
River profile Y
Total: 18
Altimetry Entire basin Ks, Ce
Plateau & Terrace Imaxs Sumax, K, W
Strategy 2 Hillslope maxs Sumacs Kt W, B, Tiag
Wetland Imaxs Sumaxs K, W, Crnax
River profile V, a1, @, @3, as, by, by, b3, by
Total: 26
Altimetry Entire basin Ks, Ce
Plateau & Terrace Imaxs Sumax, K, W
Strategy 3 Hillslope lmexs Sumexs Kis W, B, Tieg
Wetland Imaxs Sumaxs K, W, Cnax
River profile v, k
Total: 18
Water level Entire basin Ks, Ce
Plateau & Terrace Imaxs Sumax, K, W
Strategy 1 Hillslope lmaxs Sumacr Kt W, B, Tiag
Wetland Imax; Sumax, Kfv W, Cmax
River profile v, k
Total: 19
Water level Entire basin Ks, Ce
Plateau & Terrace Imaxs Sumax, Ks, W
Strategy 2 Hillslope lmaxs Sumacr Kt W, B, Tiag
Wetland Imax; Sumax, Kfv W, Cmax
River profile v, k

Total: 19



Remarks were done on the presentation of the study methodology (section 3.3). Besides the addition of a
synthesis Table (which is welcome), very little modifications were done to the text. As a result, the methodology
section is still very long (longer than the results & discussion section) and confusing. For example, the model
evaluation criteria are described along with the first calibration strategy in 3.3.1 although they were also used
for the other strategies (but not all of them). | really think that this section should be reworked in depth to make

things clearer.

Thank you for this comment. It is true that the methodology section is long and detailed. However, the multi-
faceted complexity of the experiment requires a somewhat lengthy description. We have tried to make the
section clearer and updated Section 3.3, by moving the part describing the model evaluation to Section 3.4 as it
is not part of the parameter selection procedure itself. Further, a table was added with an overview of the
objective functions used in this paper as some were used for multiple strategies. In addition, this section was
rearranged as can be seen in the marked-up version of the manuscript. We hope these adjustments improve this

section such that it is not confusing anymore.

On this topic I'm still not convinced that is was necessary to use all these evaluation criteria to see differences
between the strategies and draw conclusions. I'm not sure that each of these signatures does bring specific
information that is not already covered by another one (see McMillan et al., 2017). Using less

signatures/criteria would certainly make the paper more legible.

We agree that some signatures do have some overlapping information content and we will acknowledge that in
the revised version of the manuscript. However, each signature also provides additional information that cannot
be provided by other signatures. Some signatures will add more, some other will add less information. However,
in the absence of more detailed and suitable data to calibrate a model, as in this data scarce environment, it is still
necessary to efficiently and effectively constrain the model parameter space. Here the use of as many signatures
as possible has considerable value: even if a signature only identifies one unsuitable parameter set, this set can be
removed, thereby reducing model uncertainty. In any case it is desirable for any model to reproduce as many
signatures as well as possible, so as to give us more confidence in the model’s skill to reproduce, at least to some

degree, also the actual internal dynamics of the system.

The discussion lists the points raised by the reviewers but does not really discuss them. It should be expanded to

discuss really the implications of these points for the conclusions of the study.

Thank you for this comment. In the manuscript, several discussion points were indeed added based on review
comments; this included a discussion on GRACE uncertainties, choice of model performance measure and
signatures, bias in precipitation and discharge observations, separating uncertainty sources (originating from the
hydrological model or the discharge — water level conversion), and opportunities for future studies.

Sections 4.3 and 4.4 were updated to highlight implications where that was missing or unclear (see marked-up
manuscript). Please note, that many discussion points explain uncertainties related to data, assumptions or

simplifications. It is difficult to assess their exact implications on the conclusion without further studies which is



beyond the scope of this paper. That is why we decided to inform the reader on the existence of different
uncertainty sources that could impact the results to increase the awareness. In addition, we tried to remain
concise taking into account the comments of previous reviewers.

Unfortunately we were not sure to which discussion points exactly the reviewer was referring to, but hope these

changes improve the discussion as recommended by the Referee.

McMillan, H, Westerberg, I, Branger, F. Five guidelines for selecting hydrological signatures. Hydrological
Processes. 2017; 31: 4757— 4761. https://doi.org/10.1002/hyp.11300
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Abstract. Limited availability of ground measurements in the vast majority of river basins world-wide increases
the value of alternative data sources such as satellite observations in hydrological modelling. This study
investigates the potential of using remotely sensed river water level, i.e. altimetry observations, from multiple
satellite missions to identify parameter sets for a hydrological model in the semi-arid Luangwa River Basin in
Zambia. A distributed process-based rainfall runoff model with sub-grid process heterogeneity was developed
and run on a daily timescale for the time period 2002 to 2016. As a benchmark, feasible model parameter sets
were identified using traditional model calibration with observed river discharge data. For the parameter
identification using remote sensing, data from the Gravity Recovery and Climate Experiment (GRACE) were
used in a first step to restrict the feasible parameter sets based on the seasonal fluctuations in total water storage.
Next, three alternative ways of further restricting feasible model parameter sets using satellite altimetry time-
series from 18 different locations along the river were compared. In the calibrated benchmark case, daily river
flows were reproduced relatively well with an optimum Nash-Sutcliffe efficiency of Ensg = 0.78 (5/95™
percentiles of all feasible solutions Ens o505 = 0.61 — 0.75). When using only GRACE observations to restrict the
parameter space, assuming no discharge observations are available, an optimum of Ens o= -1.4 (Ens g5 = -2.3 —
0.38) with respect to discharge was obtained. The direct use of altimetry based river levels frequently led to
over-estimated flows and poorly identified feasible parameter sets (Ensgsies = -2.9 — 0.10). Similarly, converting
modelled discharge into water levels using rating curves in the form of power relationships with two additional
free calibration parameters per virtual station resulted in an over-estimation of the discharge and poorly
identified feasible parameter sets (Ensqsios = -2.6 — 0.25). However, accounting for river geometry proved to be
highly effective:—. this-This included using river cross-section and gradient information extracted from global
high-resolution terrain data available on Google Earth, and applying the Strickler-Manning equation to convert
modelled discharge into water levels. Many parameter sets identified with this method reproduced the
hydrograph and multiple other signatures of discharge reasonably well with an optimum of Enso = 0.60
(Ensgsis = -0.31 — 0.50). It was further shown that more accurate river cross-section data improved the water
level simulations, modelled rating curve and discharge simulations during intermediate and low flows at the
basin outlet where detailed on-site cross-section information was available. Also, increasing the number of
virtual stations used for parameter selection in the calibration period considerably improved the model
performance in a spatial split sample validation. The results provide robust evidence that in the absence of
directly observed discharge data for larger rivers in data scarce regions, altimetry data from multiple virtual
stations combined with GRACE observations have the potential to fill this gap when combined with readily
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available estimates of river geometry, thereby allowing a step towards more reliable hydrological modelling in

poorly gauged or ungauged basins.

1 Introduction

Reliable models of water movement and distribution in terrestrial systems require sufficient good quality hydro-
meteorological data throughout the modelling process. However, the development of robust models is challenged
by the limited availability of ground measurements in the vast majority of river basins world-wide (Hrachowitz
et al., 2013). Therefore, modellers increasingly resort to alternative data sources such as satellite data (Lakshmi,
2004; Winsemius et al., 2008; Sun et al., 2018; Pechlivanidis and Arheimer, 2015; Demirel et al., 2018; Zink et
al., 2018; Rakovec et al., 2016; Nijzink et al., 2018; Dembélé et al., 2020).

In the absence of directly observed river discharge data, various types of remotely sensed variables provide
valuable information for the calibration and evaluation of hydrological models. These include, for instance,
remotely sensed time series of river width (Sun et al., 2012; Sun et al., 2015), flood extent (Montanari et al.,
2009; Revilla-Romero et al., 2015), or river and lake water levels from altimetry (Getirana et al., 2009; Getirana,
2010; Sun et al., 2012; Garambois et al., 2017; Pereira-Cardenal et al., 2011; Velpuri et al., 2012).

Satellite altimetry observations provide estimates of the water level relative to a reference ellipsoid. For these
observations, a radar signal is emitted from the satellite in the nadir direction and reflected back by the earth
surface;-. the-The time difference between sending and receiving this signal is then used to estimate the distance
between the satellite and the earth surface. As the position of the satellite is known at very high accuracy, this
distance can then be used to infer the surface level relative to a reference ellipsoid (Lyszkowicz and
Bernatowicz, 2017; Calmant et al., 2009). Satellite altimetry is sensed and recorded along the satellite’s track.
Altimetry based water levels can therefore only be observed where these tracks intersect with open-water
surfaces; for rivers, these points are typically referred to as “virtual stations” (de Oliveira Campos et al., 2001;
Birkett, 1998; Schneider et al., 2017; Jiang et al., 2017; Seyler et al., 2013). Depending on the satellite mission,
the equatorial inter-track distance can vary between 75 km and 315 km, the along-track distance between 173 m
and 374 m, and the temporal resolution between 10 days and 35 days (Schwatke et al., 2015; CNES, Accessed
2018; ESA, 2018; Lyszkowicz and Bernatowicz, 2017). Due to this rather coarse resolution, the application of
remotely sensed altimetry data is at this moment limited to large lakes or rivers of more than approximately 200
m wide (Getirana et al., 2009; de Oliveira Campos et al., 2001; Biancamaria et al., 2017). Use of altimetry for
hydrological models so far also remains rather rare due to the relatively low temporal resolution of the data, with
applications typically limited to monthly or longer modelling time steps (Birkett, 1998).

In some previous studies, altimetry data were used to estimate river discharge at virtual stations in combination
with routing models (Michailovsky and Bauer-Gottwein, 2014; Michailovsky et al., 2013) or stochastic models
(Tourian et al., 2017). Other studies either directly related river altimetry to modelled discharge (Getirana et al.,
2009; Getirana and Peters-Lidard, 2013; Leon et al., 2006; Paris et al., 2016) or they relied on rating curves
developed with water level data from either in-situ measurements (Michailovsky et al., 2012; Tarpanelli et al.,
2013; Papa et al., 2012; Tarpanelli et al., 2017) or, alternatively, from altimetry data (Kouraev et al., 2004). In
typical applications, radar altimetry data from one single or only a few virtual stations were used for model
calibration, validation or data assimilation;—. these-These data were mostly obtained from a single satellite
mission, either TOPEX/Poseidson or Envisat (Sun et al., 2012; Getirana, 2010; Liu et al., 2015; Pedinotti et al.,
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2012; Fleischmann et al., 2018; Michailovsky et al., 2013; Bauer-Gottwein et al., 2015). In previous studies,
hydrological models have been calibrated or validated successfully with respect to (satellite based) river water
levels for example by 1) applying the Spearman Rank Correlation coefficient (Seibert and Vis, 2016; Jian et al.,

2017), or by converting modelled discharge to stream levels using 2) rating curves_whose parameters are free

calibration parameters in the modelling process (Sun et al., 2012; Sikorska and Renard, 2017) or 3) the Strickler-

Manning equation_to directly estimate water levels over the hydraulic properties of the river (Liu et al., 2015;
Hulsman et al., 2018).

In the Zambezi river basin, altimetry data has been used in previous studies for hydrological modelling

(Michailovsky and Bauer-Gottwein, 2014; Michailovsky et al., 2012). These studies used the altimetry data from
the Envisat satellite in an assimilation procedure to update states in a Muskingum routing scheme. Including the
altimetry data improved the model performance;-, especially when the model initially performed poorly due to
high model complexity or input data uncertainties.

Despite these recent advances in using river altimetry in hydrological studies, exploitation of its potential is still
limited. Various previous studies have argued and provided evidence based on observed discharge data that, in a
special case of multi-criteria calibration, the simultaneous model calibration to flow in multiple sub-basins of a
river basin, can be beneficial for a more robust selection of parameter sets and thus for a more reliable
representation of hydrological processes and their spatial patterns (e.g. Ajami et al., 2004; Clark et al., 2016;
Hrachowitz and Clark, 2017; Hasan and Pradhanang, 2017; Santhi et al., 2008). Hence, there may be
considerable value in simultaneously using altimetry data not only from one single satellite mission but in
combining data from multiple missions, which has not yet been systematically explored. While promising
calibration results using data from Envisat were found by Getirana (2010) in tropical and Liu et al. (2015) in
snow-dominated regions, altimetry data from multiple sources has not yet been used to calibrate hydrological
models in semi-arid regions.

As altimetry observations only describe water level dynamics, it does not provide direct information on the

discharge amount. In an attempt to reduce the uncertainty in modelled discharge arising from the missing

information on flow amounts, data from the Gravity Recovery and Climate Experiment (GRACE), which

provides estimates of the total monthly water storage anomalies, were used to support model calibration. With

GRACE, discharge can be constrained through improved simulation of the rainfall partitioning into runoff and

evaporation as illustrated in previous studies (Rakovec et al., 2016; Bai et al., 2018).

Therefore, the overarching objective of this study is to explore the combined information content (cf. Beven,
2008) of river altimetry data from multiple satellite missions and GRACE observations its-petential-to identify

feasible parameter sets for the calibration of hydrological models of large river systems in a semi-arid, data

scarce region.
More specifically, in +r-a step-wise approach we use GRACE observations together with altimetry data from
multiple virtual stations to identify model parameters following three parameter—identification—_different

strategies using-altimetry-datafrom-multiple-virtual-stations—_and we compare model performances toagainst a
traditional calibration approach based on in-situ observed river discharge-at-the-outlet. These three parameter

identification-strategies compare altimetry observations to are-1) modelled discharge by applying the Spearman

Rank Correlation coefficient, er-and to modelled stream levels by converting modelled discharge to-stream-levels

using 2) rating curves whose parameters were treated as free model calibration parameters and 3) the Strickler-
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Manning equation_to infer water levels directly from hydraulic properties of the river. These three strategies are

tested on a distributed process-based rainfall-runoff model with sub-grid process heterogeneity for the Luangwa

Basin. More specifically, We-we test the following research hypotheses: 1) the use of altimetry data combined

with GRACE observations allows a meaningful selection of feasible model parameter sets to reproduce river

discharge depending on the applied parameter identification strategy, and 2) the combined application of

multiple virtual stations from multiple satellite missions improves the model’s ability to reproduce observed
hydrological dynamicsrealism.

2 Site description

The study area is the Luangwa River in Zambia, a tributary of the Zambezi River (Figure 1). It has a basin area
of 159,000 km® which is about 10% of the Zambezi River Basin. The Luangwa Basin is poorly gauged, mostly
unregulated and sparsely populated with about 1.8 million inhabitants in 2005 (The World Bank, 2010). The
mean annual precipitation is around 970 mm yr™, potential evaporation is around 1555 mm yr™* and river runoff
reaches about 100 mm yr™ (The World Bank, 2010). The main land cover consists of broadleaf deciduous forest
(55%), shrub land (25%) and savanna grassland (16%) (GlobCover, 2009). The irrigated area in the basin is
limited to about 180 km?, i.e. roughly 0.1% of the basin area with an annual water use of about 0.7 mm yr*
which amounts to < 0.001% of the annual basin water balance (The World Bank, 2010). The landscape varies
between low lying flat areas along the river to large escarpments mostly in the North West of the basin and
highlands with an elevation difference up to 1850 m (see Figure 1B and Section 3.2 for more information on the
landscape classification). During the dry season, the river meanders between sandy banks while during the wet
season from November to May it can cover flood plains several kilometres wide.

The Luangwa drains into the Zambezi downstream of the Kariba Dam and upstream of the Cahora Bassa Dam.
The operation of both dams is crucial for hydropower production, and flood and drought protection, but is very
difficult due to the lack of information from poorly gauged tributaries such as the Luangwa (SADC, 2008;
Schleiss and Matos, 2016; The World Bank, 2010). As a result, the local population has suffered from severe
floods and droughts (ZAMCOM et al., 2015; Beilfuss and dos Santos, 2001; Hanlon, 2001; SADC, 2008;
Schumann et al., 2016).

2.1 Data availability

2.1.1 In-situ discharge and water level observations

In the Luangwa basin, historical in-situ daily discharge and water level observations were available from the
Zambian Water Resources Management Authority at the Great East Road Bridge gauging station, located at 30°
13> E and 14° 58° S (Figure 1) about 75 km upstream of the confluence with the Zambezi. In this study, all
complete hydrological years of discharge data within the time period 2002 to 2016 were used; these are the years
2004, 2006 and 2008.

2.1.2 Gridded data products

Besides the above in-situ observations, several-gridded data products were used in this study for topographic

description, model forcing (precipitation and temperature), and model parameter selection/calibration (total
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water storage anomalies), as shown in Table 1. The temperature data was used to estimate the potential
evaporation according to the Hargreaves method (Hargreaves and Samani, 1985; Hargreaves and Allen, 2003).

TFhe-Gravity Recovery and Climate Experiment (GRACE) observations was-describe the monthly used-as-proxy
for-the-total water storage_anomalies which includes all terrestrial water stores present in the groundwater, soil

moisture and surface water.

changes: Two identical satellites observe the variations in the Earth’s gravity field to detect regional mass
changes which Fhese-mass-changes-are dominated by variations in the terrestrial water storage once after-having
aecountedfor-atmospheric and-oceanie-effects have been accounted for (Landerer and Swenson, 2012; Swenson,
2012). In this study, processed GRACE observations of Release 05 generated by CSR (Centre for Space

Research), GFZ (GeoForschungsZentrum Potsdam) and JPL (Jet Propulsion Laboratory) were downloaded from

the GRACE Tellus website (https://grace.jpl.nasa.qgov/); the average of all three sources were used. The raw data

were previously processed by CSR, GFZ and JPL to remove atmospheric mass changes using ECMWF

(European Centre for Medium-Range Weather Forecasts) atmospheric pressure fields, systematic errors causing

north-south-oriented stripes and high frequency noise using a 300 km wide Gaussian filter via spatial
smoothening (Swenson and Wahr, 2006; Landerer and Swenson, 2012; Wabhr et al., 1998). Processed GRACE

observations describe terrestrial water storage anomalies in “equivalent water thickness” in [cm] relative to the

2004 — 2009 time-mean baseline. In other words, the water storage anomaly is the water storage minus the long-

term mean (Landerer and Swenson, 2012).

Al gridded information was rescaled to the model resolution of 0.1". The temperature and GRACE data were
rescaled by dividing each cell of the satellite product into multiple cells such that the model resolution is
obtained, retaining the original value. The precipitation was rescaled by taking the average of all cells located

within each model cell.

Table 1: Gridded data products used in this study

Time period Time Spatial Product Source
resolution  resolution  name
Digital elevation map  NA NA 0.02° GMTED  (Danielson and Gesch, 2011)
Precipitation 2002 - 2016 Daily 0.05° CHIRPS  (Funket al., 2014)
Temperature 2002 - 2016  Monthly 0.5° CRU (University of East Anglia
Climatic Research Unit et al.,
2017)
Total water storage 2002 - 2016  Monthly 1° GRACE (Swenson, 2012; Swenson

and Wahr, 2006; Landerer
and Swenson, 2012)

2.1.3 Altimetry data

The altimetry data used in this study was obtained from the following sources: the Database for Hydrological
Time Series of Inland Waters (DAHITI; https://dahiti.dgfi.tum.de/en/) (Schwatke et al., 2015), HydroSat
(http://hydrosat.qgis.uni-stuttgart.de/php/index.php) (Tourian et al., 2013), Laboratoire d’Etudes en Géophysique

et Océanographie Spatiales (LEGOS; http://www.legos.obs-mip.fr/soa/hydrologie/hydroweb/; see supplements

for more information), and the Earth and Planetary Remote Sensing Lab (EAPRS;


https://grace.jpl.nasa.gov/
https://dahiti.dgfi.tum.de/en/
http://hydrosat.gis.uni-stuttgart.de/php/index.php
http://www.legos.obs-mip.fr/soa/hydrologie/hydroweb/
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http://www.cse.dmu.ac.uk/EAPRS/). In total, altimetry data was obtained for 18 virtual stations in the Luangwa

basin (Figure 1A) for the time period 2002 — 2016 from the satellite missions Jason 1 — 3, Envisat and Saral

(Table 2, Figure S2).

Table 2: Overview of the altimetry data in the Luangwa River Basin used in this study

Nr.  Longitude Latitude Time Nr. of Source Mission Space Agency  Temporal Equatorial Along- Literature
period days resolution inter- track
with data track distance
distance
1 30.2823° -14.8664°  2008-2016 246 DAHITI Jason 2, 3 NASA/CNES 10 days 315 km 294 m (Schwatke et al.,
2 30.0864° -14.366° 2008-2015 92 DAHITI Jason 2, 3 2015; CNES,
3 32.1715° -12.4123°  2008-2016 248 DAHITI Jason 2, 3 Accessed 2018)
4 31.1868° -13.5927°  2002-2016 104 DAHITI Envisat, Saral ESA (Envisat), 35 days 80 km 374m (Schwatke et al.,
5 31.6984° -13.2039°  2002-2016 82 DAHITI Envisat, Saral ISRO/CNES (Envisat), (Envisat),  2015; ESA,
6 32.2998° -12.2007°  2002-2016 100 DAHITI Envisat, Saral (Saral) 75 km 173 m 2018; CNES,
7 32.2805° -12.1157°  2002-2016 103 DAHITI Envisat, Saral (Saral) (Saral) Accessed 2018)
8 32.831° -11.3674°  2002-2016 105 DAHITI Envisat, Saral
9 30.2704° -14.8809°  2008-2015 247 HydroSat Jason 2 NASA/CNES 10 days 315km 294 m (Tourian et al.,
2016; Tourian et
al., 2013)
10 31.78405° -13.0995°  2002-2010 65 EAPRS Envisat ESA 35 days 80 km 374m (Michailovsky et
11 31.71099° -13.1943°  2002-2010 93 EAPRS Envisat al., 2012; ESA,
2018)
12 30.2740° -14.8763°  2008-2015 231 LEGOS Jason 3 NASA/CNES 10 days 315 km 294 m (Frappart et al.,
13 32.15843° -12.412° 2016-2016 28 LEGOS Jason 3 2015; CNES,
14 32.15989° -12.4127°  2002-2009 137 LEGOS Jason 1 Accessed 2018)
15 30.2740° -14.8763°  2008-2016 271 LEGOS Jason 2
16 32.16056° -12.4125°  2008-2016 283 LEGOS Jason 2
17 31.80001° -13.0909°  2013-2016 35 LEGOS Saral ISRO/CNES 35 days 75 km 173 m
18 30.61577° -14.1852°  2013-2016 24 LEGOS Saral
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2.1.4 River geometry information

In the Luangwa Basin, very limited detailed in-situ information was available on the river geometry such as
cross-section and slope. For that reason, this information was extracted from global high-resolution terrain data
available on Google Earth as done successfully in previous studies for other purposes (Pandya et al., 2017; Zhou
and Wang, 2015). This was done for each virtual station and the basin outlet. Google Earth only provides river
geometry information above the river water level. As the Luangwa is a perennial river, parts of the cross-section
remain submerged throughout the year and are thus unknown. To limit uncertainties arising from this issuethat,
the cross-section geometry for each virtual station was therefere-extracted from the Google Earth image with the
lowest water levels at each individual virtual station. The dates of these images in general fall inte the dry
season, with flows at the Great East Road Bridges gauging station on the respective days ranging from 1% to 4%
relative to the maximum discharge (see Supplementary Table S3 for the dates of the satellite images and the
associated flows at the Great East Road Bridges gauging station). The database underlying the global terrain
images in Google Earth originate from multiple, merged data sources with varying spatial resolutions. For the
Luangwa Basin these include the Shuttle Radar Topography Mission (SRTM) with a spatial resolution of 30 m,
the-Landsat 8 with a spatial resolution of 15 m and the Satellite Pour I’Observation de la Terre 4/5 (SPOT) with a
spatial resolution of 2.5 m to 20 m (Smith and Sandwell, 2003; Irons et al., 2012; Drusch et al., 2012).

In addition to Google Earth data, the submerged part of the channel cross-section was surveyed in the field on
April 27" 2018 near the Great East Road Bridges river gauging station at the coordinates 30° 13’ E and 15° 00° S
(Abas, 2018) with an Acoustic Doppler Current Profiler (ADCP).

3 Hydrological model development
3.1 General approach

The potential of river altimetry for model calibration was tested with a process-based hydrological model for the
Luangwa river basin. This model relied on distributed forcing allowing for spatially explicit distributed water
storage calculations. The model was run on a daily time scale for the time period 2002 to 2016. To reach the
objective of this study, the following distinct parameter identification strategies were compared in a stepwise
approach: (1) traditional model calibration to observed river flow as benchmark; (2) identification of parameter
sets reproducing the seasonal water storage anomalies based on GRACE data only; (3a) Altimetry Strategy 1:
identification of parameter sets directly based on remotely sensed water levels combined with GRACE data; (3b)
Altimetry Strategy 2: identification of parameter sets based on remotely sensed water levels by converting
modelled discharges into water levels using calibrated rating curves combined with GRACE data; (3c) Altimetry
Strategy 3: identification of parameter sets based on remotely sensed water levels by converting modelled
discharges into water levels using the Strickler-Manning equation and including river geometry information
(cross-section and gradient) extracted from Google Earth combined with GRACE data; (4a) Water level Strategy
1: identification of parameter sets based on daily river water level at the catchment outlet only using the
Strickler-Manning equation and including river geometry information extracted from Google Earth combined
with GRACE data; and (4b) Water level Strategy 2: identification of parameter sets based on daily river water

level at the catchment outlet only using the Strickler-Manning equation and including river geometry
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information obtained from a detailed field survey with an Acoustic Doppler Current Profiler (ADCP) combined
with GRACE data. Note that (1) is completely independent of (2) to (4) where no discharge data was used for the

identification of parameter sets.

3.2 Hydrological model structure

In this study, a process-based rainfall-runoff with distributed water accounting and sub-grid process
heterogeneity was developed (Ajami et al., 2004; Euser et al., 2015). The river basin was discretized into a grid
with a spatial resolution of 10 x 10 km?. Each model grid cell was characterized by the same model structure and
parameter sets but forced by spatially distributed, gridded input data (Table 1). Runoff was then calculated in
parallel for each cell separately. Subsequently, a routing scheme was applied to estimate the aggregated flow in
each grid cell at each time step.

Adopting the FLEX-Topo modelling concept (Savenije, 2010) and extending it to a gridded implementation,
each grid cell was further discretised into functionally distinct hydrological response elasses-units (HRU) as
demonstrated by Nijzink et al. (2016). Each point within a grid cell was assigned to a response class based on its
position in the landscape as defined by its local slope and “Height-above-the-nearest-drainage” (HAND; Rennd
et al., 2008; Gharari et al., 2011). Similar to previous studies (e.g. Gao et al., 2016; Nijzink et al., 2016), here-the

response elasses-units plateau, hillslope, terrace and wetlands were distinguished. Reflecting earlier work (e.g.

Gharari et al., 2011), all locations with slope of > 4% were assumed to be hillslope. Locations with lower slopes
lewer-than-that-were then either defined as wetland (HAND < 11m), terrace (11m < HAND < 275m) or plateau
(HAND > 275m),; see Figure 2. Following this classification wetlands make up pyry = 8%, terraces ppry = 41%,
hillslopes pyru = 28% and plateaus pury = 23% of the total Luangwa River Basin area as mapped in Figure 1B.
Each response class consisted of a series of storage components that are linked by fluxes. The flow generated
from each grid cell at any given time step is then computed as the area-weighted flow from the individual
response elasses—units plus a contribution from the common groundwater component which connects the
response elasses-units (Figure 2). Finally, the outflow from each modelling cell was routed to downstream cells
to obtain the accumulated flow in each grid cell at any given time step. For this purpose, the mean flow length of
each model gird cell to the outlet was derived based on the flow direction extracted from the digital elevation
model. The flow velocity, which was assumed to be constant in space and time, was calibrated. With this
information on the flow path length and velocity, the accumulated flow in each grid cell was calculated at the
end of each time step. The relevant model equations are given in Table 3. This concept was previously
successfully applied in a wide range of environments (Gao et al., 2014; Gharari et al., 2014; Fovet et al., 2015;
Nijzink et al., 2016; Prenner et al., 2018).
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Table 3: Equations applied in the hydrological model. Fluxes [mm d*]: precipitation (P), effective precipitation (P),
potential evaporation (E,), interception evaporation (E;), plant transpiration (E), infiltration into the unsaturated
zone (Ry), drainage to fast runoff component (Ry), delayed fast runoff (Rf), groundwater recharge (R,), upwelling

275 | groundwater (Regw), fast runoff (Qs), groundwater/slow runoff (Q), total runoff (Qn,). Storages [mm]: storage in
interception reservoir (S;), storage in unsaturated root zone (S,), storage in groundwater/slow reservoir (S), storage in
fast reservoir (S;). Parameters: interception capacity (Ims) [Mm], maximum upwelling groundwater (Cpg) [mm d?],
maximum root zone storage capacity (Suymax) [mm], splitter (W) [-], shape parameter () [-], transpiration coefficient
(Ce) [[], time lag (Ty4g) [d], reservoir time scales [d] of fast (Ks) and slow (K;) reservoirs, areal weights (pnryu) [-],time

280 step (47) [d]. Model parameters are shown in bold letters in the table below. The equations were applied to each
hydrological response unit (HRU) unless indicated differently.

Reservoir system Water balance equation Process functions
i AS; N ]
Interception =P-P—E~0 E; = min (Ep,min (P, Zix))
P,=P-E
Unsaturated zone Plateau/Hillslope/Terrace: ) - (Su Se 1
E. = mm((Ep —E;),min{—, (Ep —E) )
ASy R —E At Sumax Ce
At t ) s
R (=
Wetland: S, _s
ASu_R v oan ifSu+Rc-At>Su_max:Rc=%tu
At - M t eaw Plateau/Terrace/Wetland:
Ry =P,
Hillslope:
R,=(1-0C) ‘P,
B
Su )
C=1—-(1-
< Su,max
Fast runoff AS¢ _ St
—— =Rq — Qf -
AL n— Qf K
Terrace/Wetland:
_ max(0, Sy — Sumax)
f At
Rp = R¢
Hillslope:
Re=(1-W)-C-P,
Rp = R¢* f(Thag)
Groundwater ASg R.=W-C-P,
At = Mree = RGGWtot —0s
Ry = Z PHRU " Ry
HRU
RegWio, = Z PHru " Regw
HRU
Ss
Q=12
S Ks
Total runoff =
otal runo Om = Qs + oy Ot = Z Puru * Of
HRU

Supporting literature (Gharari et al., 2014; Gao et al., 2014; Euser et al., 2015)
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3.3 Parameter selection procedures and-modelperformance-evaluation

To evaluate the information content and thus the utility of altimetry data for the selection of feasible model
parameter sets, a step-wise procedure as specified in detail below was applied (Table 5). Note that given data
scarcity and the related issues of epistemic uncertainties (Beven and Westerberg, 2011; McMillan and
Westerberg, 2015) and equifinality (Beven, 2006; Savenije, 2001) we did not aim to identify the “optimal”
parameter set in what is frequently considered a traditional calibration approach. In most hydrological
applications the available data have limited strength for rigorous model tests (Clark et al., 2015; Gupta et al.,
2008; Jakeman and Hornberger, 1993). Thus, to reduce the risk of rejecting good parameters when they should
have been accepted (Beven, 2010; Hrachowitz and Clark, 2017), we rather attempted to identify and discard the
most implausible parameter sets (Freer et al., 1996) that violate our theoretical understanding of the system or
that are inconsistent with the available data (Knutti, 2008). This allowed us to iteratively constrain the feasible
parameter space and thus the uncertainty around the modelled hydrograph (Hrachowitz et al., 2014). To do so, a
Monte-Carlo sampling strategy with uniform prior parameter distributions was applied to generate 5-10* model
realizations. This random set of solutions was in the following steps used as baseline and iteratively constrained
by identifying parameter sets that do not satisfy pre-specified criteria (see below), depending on the data type

and source used.

3.3.1 Benchmark: Parameter selection and-medelperformance-based on observed discharge data

| ealibrati
As benchmark, and following a traditional calibration procedure, the model was calibrated with observed daily
discharge based on the Nash-Sutcliffe efficiency (Enso. EQ.1 in Table 4) {Nash-and-Suteliffe;1970) using all
complete hydrological years within the time period 2002 to 2016_(Nash and Sutcliffe, 1970); these are the years
starting in the fall of 2004, 2006 and 2008.:

Y (p (D _ 0 +
I _ 1 ZE\med\Y < ©
RSR TS S (0 (N0 2

LE\Yebs\YJ <ebs/

&

To limit the solutions to relatively robust representations of the system while allowing for data and model
uncertainty (e.g. Beven, 2006; Beven and Westerberg, 2011) only parameter sets that resulted in Exsq> 0.6 were
retained as feasible. The hydrological model consisted of 1718 free calibration parameters (Table 5, Figure S1)
whose uniform prior distributions are given in Table S1 in the supplementary material with associated parameter
constrains as summarised in Table S2.
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Table 4: Equations used to calculate the model performance

Name Obijective function Symbol explanation Equation nr.
: Ze(Omoa(§)=Bons(6))” - vari
Nash-Sutcliffe E =1 0: variable 1
- NS9 Zt(eobs(t)_eobs)z - -(_)
I'o.mod: ranks of the modelled
Spearman-Rank disch
. cov(rq, T WLobs) Ischarge
correlation Erwr=—7—"""—"— 2
— 9(amoq) 00 WLos) T'wi_obs: FaNk of the observed water
coefficient level
evels
Relative error Ero=1- w"“’;—_g"bs‘ 6: variable 3)
obs
Euclidian w;: relative weight of virtual
distance over station i @)
D Z w; * (1 —E .
multiple virtual BBy = o (1= By)’ #: model performance metric
stations y. parameter selection method
lidi 0: signature
Euclidian
] -1 n: signatures evaluated with Eq.1
distance over ] ]
ol with maximum N (5)
multiple . .
) 2(1 Exsgp, ) + 2(1 — Egg,, ) m: signatures evaluated with Eq.3
signatures (N + M) T "
with maximum

3.3.2 Parameter selection and-medel-performanee-based on the seasonal water storage (GRACE)

In a next step we assumed that discharge records in the Luangwa Basin were absent. The starting assumption
thus had to be that all model realizations, i.e. all sampled parameter sets, were equally likely to allow feasible
representations of the hydrological system. In a stepwise approach, confronting these realizations with different

types of data, we sequentially identified and discarded solutions that were least likely to provide meaningful

system representations, thereby gradually narrowing down the feasible parameter space.

we-We first identified and

discarded solutions that were least likely to preserve observed the seasonal water storage (S fluctuations. To
do so, the monthly modelled total water storage (Siotmod = Si + Su + S¢ +Ss) relative to the 2004-2009 time-
mean baseline in each grid cell was compared to water storage anomalies observed with as-ebtained-from-the

GRACE data—preduect-where this same time-mean baseline was used (Tang et al., 2017; Fang et al., 2016;
Forootan et al., 2019; Khaki and Awange, 2019). n-the- GRACE -produet-the-same-time-period-was-used-for-the

The model’s skill to reproduce the seasonal water storage, i.e. Sy, Was assessed using the Nash-Sutcliffe
efficiency Ensswt (EQ.1). Note that Eyssiorj Was computed at first from the time series of Sy in each grid cell j
which were then averaged to obtain Ens st 1T N0 additional data were available, a hypothetic modeller relying on
Ens stot t0 calibrate a model, may choose only the solution with the highest Ens str OF allow for some uncertainty.
To mimic this traditional approach but to balance it with a sufficient number of feasible solutions to be kept for
the subsequent steps we here identified and discarded the poorest performing 75% of all solutions in terms of

Ensstot @S Unfeasible for the subsequent modelling steps.
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3.3.3 Parameter selection and-medel-performance-based on satellite altimetry data

Next, the remaining feasible parameter sets were used to evaluate their potential to alse-reproduce time series of
observed altimetry applying three distinct parameter selection and model evaluation strategies. Assuming again
the situation of an ungauged basin (i.e. no time-series of river flow available), we kept for each strategy as

feasible the respective 1% best performing parameter sets according to the specific performance metric

associated to that strategy.

Altimetry Strategy 1: Direct comparison of altimetry data to modelled discharge
Hereafterreferredto-as-with-subseript- Wi —e—water-level-In the simplest approach, we directly used altimetry

data to correlate observed water levels with modelled discharge based on the Spearman rank correlation

coefficient (Egwy; Spearman, 1904) using Eq.2 (Table 4). :

strategy, hereafter referred to with subscript WL, i.e. water level, Fhis-methed-requires theas assumption that the

relationship between water level and discharge is has-te—be-monotonic. The Spearman rank correlation was
applied successfully in previous studies to calibrate a rainfall-runoff model to water level time series (Seibert and
Vis, 2016). As there were multiple virtual stations with water level data available in this study, the Egw_ was
computed at each location simultaneously. The individual values Egw, were weighted based on the record length

of the corresponding virtual stations and then combined into the Euclidean distance as aggregate metric De g wi

with Eq.4.equivalentto-Eg4
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Table 5: Overview of the parameter identification strategies applied in this study

Strategy Calibration data Objective function Parameter group Calibration parameters Comments Q - h conversion Benefits (+) & limitations (-)
Discharge Discharge Enso (Eq.1) Entire basin K. Ce Traditional model calibration on - -
(reference) (at basin outlet) Plateau & Terrace Imaxs Sumax, Ke, W observed flow data
Hillslope Imaxe Sumaxs K, W. B, Tiog Combination of 8 different flow
Wetland Imax. Sumaxe K, W, Crnax signatures
River profile v
Total: 18
Seasonal GRACE Ens,stot (EQ.1) Entire basin K, Ce No discharge data used - -
water storage Plateau & Terrace Imaxs Sumax, Ke, W
HiIISIOQe lmaxJ_Sumax;_Kf; W, @, TIag
Wetland Imax: Sumax, Ke, W, Crnax
River profile v
Total: 18
Altimetry Altimetry Altimetry: Derw (EQ.2,4) Entire basin Ks. Ce No discharge data used - + No extra parameters or data needed
Strategy 1 (at 18 virtual stations) ~ GRACE: Ensstt (EQ.1) Plateau & Terrace Imax. Sumax. Kt W Combination of 18 virtual + Assumption: monotonic relation
& GRACE Hillslope Imaxe Sumaxs K, W. B, Tiog stations between discharge and river water level
Wetland Imaxs Sumaxs K, W, Crnax Combined with GRACE - Focus on dynamics only, not volume
River profile i
Total: 18
Altimetry Altimetry Altimetry: Densge (Eq.1,4) Entire basin K, Ce No discharge data used Calibrated + No extra data needed
Strategy 2 (at 18 virtual stations) GRACE: Ensstwot (EQ.1) Plateau & Terrace Imaxs Sumax. Kr, W Combination of 18 virtual Rating curve - Two extra parameters per cross-section
& GRACE Hillslope Imaxe Sumaxe K, W. B, Tiag stations
Wetland Imaxs Sumaxs K, W, Crnax Combined with GRACE
River profile V, a1, 8y, 83, 8, D1, by, b3, by
Total: 26
Altimetry Altimetry Altimetry: Denssm (Eq.1.4) Entire basin K, Ce No discharge data used Strickler-Manning + Only 1 extra parameter
Strategy 3 (at 18 virtual stations) GRACE: Ensstt (EQ.1) Plateau & Terrace Imaxs Sumax. Kr, W Combination of 18 virtual - Cross-section data needed
& GRACE Hillslope Imaxe Sumaxe Ke, W, B, Tiag stations - Assumption: constant roughness in
Wetland Imaxs Sumaxs K, W, Crnax Combined with GRACE space and time
River profile v, k
Total: 18
Water level Water level Altimetry: Enssmce (EQ.1) Entire basin Ks, Ce No discharge data used Strickler-Manning + Only 1 extra parameter
Strategy 1 (at basin outlet) GRACE: Ensstot (EQ.1) Plateau & Terrace Imaxe Sumax, Ke, W Combined with GRACE - Cross-section data needed
& GRACE Hillslope Imaxe Sumaxe Ke, W, B, Tiag - Assumption: constant roughness in
Wetland Imaxe Sumaxe K, W, Crnax space and time
River profile v, k
Total: 19
Water level Water level Altimetry: Enssm,aoce (EQ.1) Entire basin K, Ce No discharge data used Strickler-Manning + Only 1 extra parameter
Strategy 2 (at basin outlet) GRACE: Ensstot (EQ.1) Plateau & Terrace Imaxe Sumax. Ksy W Combined with GRACE - Cross-section data needed
& GRACE Hillslope Imaxe Sumaxe Ko W, B, Tiag - Assumption: constant roughness in
Wetland Imaxs Sumaxs Ke, W, Crnax space and time
River profile v, k
Total: 19
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Altimetry Strategy 2: Rating curves

In the second strategy, as successfully applied in previous studies (Getirana and Peters-Lidard, 2013; Jian et al.,
2017), model parameters were selected based on the models’ ability to reproduce water levels by converting the
modelled discharge to water levels, assuming these two are related through a rating curve in the form of a power
function (Rantz, 1982):

Q =ax(h—hy)" ©)
Where h is the water level, hy a reference water level, and a and b are two additional free calibration parameters,
determining the shape of the function and lumping the combined influences of different river cross-section
characteristics, such as geometry or roughness. Note, that here for each virtual station hy is the elevation that
corresponds to the water level of the Google Earth image with the lowest flow available, corresponding to the

assumption of no-flow at that time. This strategy is hereafter referred to as with subscript RC, i.e. rating curve.

As river-cross sections vary in space, each of the 18 virtual stations would require an individual set of these
parameters a and b. To limit the number of additional calibration parameters, we here classified the river-cross
sections of the 18 virtual stations into 4 elasses-groups (Figure 1A and Figure 3). For cross-sections within each
class, i.e. geometrically similar, the same values for a and b were used, resulting in 4 sets of a and b and thus a

total of 8 additional calibration parameters. The river cross-sections were extracted from global high-resolution
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terrain data available on Google Earth (see Section 2.1.4). The modelled river water levels were evaluated
against the observed water levels at each virtual station using the Nash-Sutcliffe efficiency Exsrc (equivalent to
Eqg.1 in Table 4), weighted based on the record length of the corresponding virtual stations and then combined

into the Euclidean distance Dg nsrc @S an aggregated performance metric (Eq.4).
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Figure 3: River profiles at 18 virtual stations (VS) divided into four groups. The reference level is equal to the lowest
water level in the river profile for each location separately.

Altimetry Strategy 3: Strickler-Manning equation
As a third strategy, we converted the modelled discharge to river water levels using the Strickler-Manning

equation (Manning, 1891):

Q:k*i%*A*Ré (N
Where k is a roughness parameter, here treated as free calibration parameter and assumed constant for all virtual
stations, i is the mean channel slope, extracted here over a distance of 10 km, while A and R are the river cross-
section area and hydraulic radius. Assuming trapezoidal cross-sections (see Figure 4 as illustrative example), A
and R were calculated for each cross section according to:
A=B*d+%*d2*(i1+i2) (8)
A

R = 9
B+d*((1+i12)%+(1+i§)%) ©)

d=h-h, (10)
Where B is the assumed river bed width, i; and i, are the river bank slopes, d the water depth, h the water level
and hg the reference water level, here assumed to be the lowest observed river water level to limit the number of

calibration parameters. In contrast to previous studies that use a similar approach but relied on locally observed
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river-cross sections (Michailovsky et al., 2012; Hulsman et al., 2018; Liu et al., 2015), here both, the river bed
geometries (Figure 3) at and the channel slopes upstream of the 18 virtual stations were computed using high-
resolution terrain data retrieved from Google Earth (see Section 2.1.4);. sSimilar data sources were already used
in previous studies to extract the river geometry (e.g. Michailovsky et al., 2012; Pramanik et al., 2010; Gichamo
et al., 2012). The reader is referred to Table S3 in the supplementary material for the values of the variables for
each virtual station. This strategy is hereafter referred to as with subscript SM, i.e. Strickler-Manning.

Equivalent to above, the modelled river water levels were then evaluated against the observed water levels at
each virtual station using the Nash-Sutcliffe efficiency Enssw (equivalent to Eq.1), weighted based on the record
length of the corresponding virtual stations and then combined into the Euclidean distance Dgnssv as an

aggregated performance metric (Eq.4).

10
—— GoogleEarth (VS 4)
——- Fitted trapezium

0 T T I
0 100 200 300 400 500 600

Channel distance [m]

Elevation above reference [m]

Figure 4: Example of approximating a trapezoidal cross-section (black) into the Google Earth based cross-section
data (red) for virtual station “VS 4” (see also Figure 1A and Figure 3). The reference level is equal to the lowest water
level in the river profile.

3.3.4 Parameter selection and-medelperformanee-based on daily river water level at the basin outlet

For the previous parameter identification strategy (Altimetry Strategy 3), river geometry information was
extracted from high-resolution terrain data retrieved from Google Earth which have a low accuracy.
Unfortunately, more accurate cross-section information from in-situ surveys was only available at the Great East
Road Bridge gauging station, i.e. the basin outlet, where, in turn, no altimetry observations were available. That
is why water level time series were used to illustrate the influence of the cross-section accuracy.

As shown in Figure 5, the Google Earth based above-water cross-section at the basin outlet corresponded in
general well to the field survey considering that satellite images have limited spatial resolution. However, the in-
situ measurement also illustrated the relevance of the submerged part of the channel cross-section at that location

on the day the image was taken (June 2™ 2008).
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Figure 5: River cross-section at Luangwa Bridge obtained from Google Earth and detailed field survey including the
river water level on June 2™ 2008. Field measurements were done with an Acoustic Doppler Current Profiler (ADCP)
on April 27" 2018 at the coordinates 30° 13’ E and 15° 00° S; the satellite image was taken on June 2" 2008. The
reference level is equal to the lowest elevation level measured with the ADCP.

Water level Strategy 1: River geometry information extracted from Google Earth

First, cross-section information was extracted from global high-resolution terrain data available on Google Earth
(subscript GE) and used with the Strickler-Manning equation (Eq.7) to convert the modelled discharge to water
levels. This was combined with GRACE observations to restrict the parameter space in an equivalent way as in
Section 3.3.3. The model performance with respect to river water levels was calculated with the Nash-Sutcliffe

efficiency Ensswce (EQ.1).

Water level Strategy 2: River geometry information obtained from a detailed field survey

Second, cross-section information obtained from a detailed field survey with an ADCP (subscript ADCP) was
used with the Strickler-Manning equation (Eq.7) to convert the modelled discharge to water levels. This was
combined with GRACE observations to restrict the parameter space in an equivalent way as in Section 3.3.3.
The model performance with respect to river water levels was calculated with the Nash-Sutcliffe efficiency

Enssw.ance (EQ.1).

3.4 Model evaluation

For each calibration strategy, the performance of all model realizations was evaluated post-calibration with

respect to discharge using seven additional hydrological signatures (e.q. Sawicz et al., 2011; Euser et al., 2013)

to assess the skill of the model to reproduce the overall response of the system and thus the robustness of the

selected parameters (Hrachowitz et al., 2014). The signatures included the logarithm of the daily flow time series

(hereafter referred to with the subscript logQ), the flow duration curve (FDC), its logarithm (logFDC), the mean

seasonal runoff coefficient during dry periods (April - September; RCdry), the mean seasonal runoff coefficient

during the wet periods (October - March; RCwet), the autocorrelation function of daily flow (AC) and the rising

limb density of the hydrograph (RLD). An overview of these signatures can be found in Table 6, and more

detailed explanations in Euser et al. (2013) and references therein. As performance measures for the model to

reproduce the individual observed signatures the Nash-Sutcliffe efficiency (Ens oqo. Ensfeocs Ens.ogrpcs Ens.aci

equivalent to Eq.1 in Table 4) and a metric based on the relative error (Eggcdrys. Errcwet. Erpip: €Quivalent to
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Eq.3) were used (Euser et al., 2013). The signatures where combined, with equal weights, into one objective

function, which was formulated based on the Euclidian distance De (Eq.5) so that a value of 1 indicates a

“perfect” model (Schoups et al., 2005):

Table 6: Overview of flow signatures used in this study

Flow Explanation Function Model performance equation
signature
Q Daily flow time series - Enso=1— Ze(Qmodi=Cobss)’
- —2
Q Y t(Qobs,t—Qobs)
1ogQ Logarithm of daily - B -1 S(Quogmods—Clogobst)”
NSlogQ = L ——/—  ——=2
flow time series Yt(Qiogobst—Clogobs)
EDC Flow duration curve - Exsroe = 1 — 2 e(@sortmod.c~@sortobss)”
- —_ N2
’ Y¢(Qsort,obs,t—Qsortobs)
logFDC Logarithm of flow - E -1 Te(Quogsortmodt—Qlogsortobs.)
NS,logfDC — - —
duration curve o8 2(Qiogsortobs—Clogsorcobs)
RCdr{ Runoff coefficient RCdI‘y — Qdry ER RCdry = 1— ‘Rcdry,mod’RCdry,ubs‘
. . Pary »RLATY RCq4r-
during dry periods dryiobs
RCwet Runoff coefficient RC,., = Quet E — 1 — [RCwetmoa=RCwetobs
. . wet Pwet RRCwet RCwetobs
during wet periods
AC Autocorrelation AC, = ZQi—0*(Qin=Q) g —1— 2 (ACmodt—ACobsi)
2(Qi-0)? NS,AC = - —=
function 2t(ACobs t—ACobs)
RLD Rising limb density RLD = Npeaks E — 1 — |RLDmoda~RLDps|
T R,RLD RLDops

4 Results and discussion
4.1 Parameter selection and model performance

The complete set of all model realizations unsurprisingly results in a wide range of model solutions (Figure 6A),
with Ensg ranging from -6.4 to 0.78 and with the combined performance metric of all signatures Dg ranging
from -334 to 0.79 (Figure 7). With respect to the individual flow signatures, the model performance varied such
that the largest range was found in Ensq and smallest in Ensac as visualised in Figure 7 and tabulated in Table
S4. Although containing relatively good solutions, this full set of all realizations clearly also contained many
parameter sets that considerably over- and/or underestimate flows.

4.1.1 Benchmark: Parameter selection and-medelperfermance-based on observed discharge data

For the benchmark case, applying the traditional model calibration approach using discharge data, this parameter
selection and calibration strategy results in a reasonable model performance, in which the seasonal but also the
daily flow dynamics and magnitudes are in general well captured as shown in Figure 6B. For some years, a
number of solutions overestimate flows in the wet season and underestimate flows during the dry season, when
the river becomes a small meandering stream with almost annual morphological changes which is difficult to
meaningfully observe. The best performing solution has a calibration objective function Ens g opt = 0.78 (5/95"
percentiles of all feasible solutions Ensgses = 0.61 — 0.75; Figure 7 and Table 7). For the post-calibration
evaluation of all retained solutions, it was observed that most signatures are well reproduced by the majority of

solutions, except for the dry season runoff coefficient (RCqy; Figure 7 and Table S4). This resulted in aggregated
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model performances, combining all signatures, of Dg 505 = 0.55 — 0.76 with the above identified best performing
solution (i.e. Ens g opt) reaching a value of Dg o = 0.60.
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Figure 6: Range of model solutions. The left panel shows the hydrograph and the right panel the flow duration curve
of the recorded (black) and modelled discharge: the line indicates the solution with the highest calibration objective

495 function (Eys or Dg) and the shaded area the envelope of the solutions retained as feasible. A) All model solutions
included; solutions retained as feasible based on B) discharge (i.e. “traditional calibration”; Eys ), C) GRACE
(Ens.stot), and D) Altimetry Strategy 1 only (Dgrwi)- The grey bars in the left subplot D indicate the number of
altimetry observations available for each day.

22



500

505

1_ .. ] v o LI hd L Y v w v
17 . Tl | ®
i L ™ L L4
] ° 1 u ° T L4 - °* ]
] ® L @ El ﬁ
i ] ° °
e . -
] L IR o M
0 4 ° ) o .
= : 1
o} i
g °
c
1]
£ .
g [
g 11
[o X
K]
] []
o
=
| I AR A D N A D D D D D DR D A D B A D B D B B B | LU U L R D D A D D I B D A D B B | LI | N D A DR D DR D D N B D B B D B D D DR D B DR D D B B
9] ] ] e} 9] o] - 9] ~ ]
guLzw oLL % oL % "o, 2 ey N o, % >3 m oo, 2>y 5 cLzZz% 5 o,22%
8 Ugg‘ﬁgua @Hg‘ﬁguo @Hg‘ﬁguoa U‘Hg‘ﬁgum;‘ Ugg‘%gua> U‘Hg‘ﬁguom U’Hg‘%guoo Ugg‘ﬁgun
DOQu__uUc(_A ogm—Uu‘I—‘ OQ“__UUQ:_IQOEU__UU{_IU\OQH__UU{Jmo.gu__uUc(_lHO.QL_UU{_IHOEu__UUq_I
L - A L A - A W A EEAED TS A EEGED LS AEE LSS st s R st s e s s AR
w ge Ty - T P T Y B - BT BT L) B - BT BT L B - BT BT T E W L5 Y wn T R S T wn
=z Z 2 £ F Z & Z Z 2 Zc g Z X Z2Z2Z2Zac 20222 2ZcFf 2B =zZ2Z2 208222207728 z2222cygZ2X 2 2Z2cy2C
gUwuy gy Guuy oy Gugy oy Siuguy gy S gy ‘.:uJUJu,JU-JUJLULuUJELuLouUJuJLULuUJEuJH.IuJUJu.ILULLIUJ
ES 80T ICOE 83000 UC 0L SOU00COE »s 000 UC O ps 2 U0 UE DL »s 8 00 JE OC 30 U0 UCOF 55800 9C B
e} @) 9] [®) %) ) ] U o 9]
EE-—!.—u—h-c-—h—n—i ?('ENNNNNNN wn@,mmmmmmm bg¢¢v¢¢¢¢hu@,mmMmmmm :Sm@wmwowtﬁhhhhhhh:égoomooooooooco
2 5 9 £ g £ g @
[¥] q = £ = - -
= 2 & = = = 2 s
< o [} < < <
i ul ui ui ui ui ui u
Q Q Q Q Q Q Q Q
- o m o 11 © ~ ©

Figure 7: Comparison of different data sources to identify feasible parameter sets. Data sources applied: 1) All random parameters (no data), 2) Discharge, 3) GRACE, 4) Altimetry
data combined with GRACE (Altimetry Strategy 1), 5) Altimetry data using the rating curves combined with GRACE (Altimetry Strategy 2), and 6) Altimetry data using the
Strickler — Manning equation combined with GRACE (Altimetry Strategy 3), and 7) Daily river water level combined with GRACE using the Strickler — Manning equation and cross-
section information retrieved from Google Earth (Water level Strategy 1), or 8) obtained from a detailed field survey with an Acoustic Doppler Current Profiler (ADCP, Water level
Strategy 2). The boxplots visualise the spread in the overall model performance Dg with respect to discharge and the following individual signatures: a) daily discharge (Eys,g), b) its
logarithm (Ens jog0), €) flow duration curve (Ensrpc), d) its logarithm (Ens ogenc), €) average runoff coefficient during the dry season (Ergrcary), T) average seasonal runoff coefficient
during the wet season (Egr rewet), 9) autocorrelation function (Ensac), and h) rising limb density (Egr r.p). The dots visualise the model performance when selecting the parameter set

with the highest model efficiency according to each parameter identification strategy.
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Figure 8: Range of model solutions. The left panel shows the hydrograph and the right panel the flow duration curve
of the recorded (black) and modelled discharge: the line indicates the solution with the highest calibration objective
function (Eys or Dg) and the shaded area the envelope of the solutions retained as feasible. Solutions retained as
feasible based on E) Altimetry Strategy 2 using rating curves for the discharge — water level conversion (Dg s rc), F)
Altimetry Strategy 3 using the Strickler-Manning equation for the discharge — water level conversion (Dg s sv), and
G) Daily in-situ water level using the Strickler Manning equation for the discharge — water level conversion with
cross-section information retrieved from Google Earth (Water level strategy 1; Eyssw.ce) or H) obtained from a
detailed field survey with an Acoustic Doppler Current Profiler (ADCP; Water level strategy 2; Exsswm.apce). The grey
bars in the left subplots E and F indicate the number of altimetry observations available for each day.
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Table 7: Summary of the model results: elimination of unfeasible parameter sets and detection of optimal parameter
set according to each parameter identification strategy including the corresponding model performance range (Ensq,
Dg) indicating the model’s skill to reproduce the discharge during the benchmark time period. For each strategy, the
model efficiency for the optimal parameter set is summarised together with the corresponding performance metrics
with respect to discharge (Ensqopt: Deopt):s fEOr all parameter sets retained as feasible, the maximum (Ens o max,
De max) and 5/95 percentiles (Ens g5, Desies) Of all performance metrics with respect to discharge are summarised.
Data sources used for the parameter set selection: 1) All parameter sets (no data), 2) Discharge, 3) GRACE, 4)
Altimetry combined with GRACE (Altimetry Strategy 1), 5) Altimetry data using rating curves combined with
GRACE (Altimetry Strategy 2), 6) Altimetry data using the Strickler — Manning equation combined with GRACE
(Altimetry Strategy 3), and 7) Daily river water level combined with GRACE using the Strickler — Manning equation
and cross-section information retrieved from Google Earth (Water level Strategy 1), or 8) obtained from a detailed
field survey with an Acoustic Doppler Current Profiler (ADCP, Water level Strategy 2).

Optimal parameter set

Feasible parameter sets

Model efficiency Ens,q,0pt (DE,opt) Ens,q,max (ENS,Q,S/SS) D¢ max ( DE,5/95)
1) All parameters sets - - 0.78 (-3.8 -0.68) 0.79 (-1.4-0.71)
2) Discharge Ens,qopt=0.78 0.78 (0.60) 0.78 (0.61-0.75)  0.79 (0.55-0.76)
3) Seasonal water storage (GRACE) Ens stot,opt = 0.56 -1.4 (-0.18) 0.78(-2.3-0.38) 0.77 (-0.58 -0.62)
4) Altimetry Strategy 1: Compare De g wiopt = 0.76 0.65 (0.63) 0.65(-2.9-0.10) 0.66 (-0.83 —0.50)
altimetry to discharge
5) Altimetry Strategy 2: Rating curves De nsre,opt = -0.50 -0.31(0.27) 0.51(-2.6-0.25) 0.66 (-0.72 —0.56)
6) Altimetry Strategy 3: Strickler-Manning De nssmyopt = -1.4 0.60 (0.71) 0.63(-0.31-0.50) 0.75(0.36-0.67)
equation
7) Water level Strategy 1: satellite based Enssm,Ge,opt = 1.8 0.65 (0.77) 0.77 (-0.48-0.60) 0.77 (0.28 —0.70)
cross-section
8) Water level Strategy 2: in-situ cross- Ens,sm,ancp,opt = 0.79 0.14 (0.55) 0.77 (-1.1 -0.50) 0.77 (0.03 -0.67)

section

4.1.2 Parameter selection and-modelperformanee-based on the seasonal water storage (GRACE)

Starting from the set of all model realizations (Figures 6A and 7), and assuming no discharge observations are
available, we then-identified and discarded parameter sets as unfeasible when they did not meet the previously
defined criteria to reproduce the seasonal water storage (Ensstot; Se€ Section 3.3.2). The range of random model
realizations with respect to the total water storage is visualised in Figure 9. The sub-set of solutions retained as
feasible resulted in a significant reduction in the uncertainty around the modelled variables, which is illustrated
by the narrower 5/95™ percentiles of the solutions compared to the set of all realizations, as shown in Figure 6C.
The feasible solutions with respect to the GRACE reached Ens siot,opt = 0.56 (Ens stot,505 = 0.45 — 0.52) (Figure 7,
Table 7). These parameter sets were then used to evaluate the model for the years 2004, 2006, 2008 used in the
benchmark case. While the flow dynamics are captured relatively well, many of the retained solutions
considerably overestimated flows across all seasons (Figure 6C) resulting in a decreased performance with
respect to the individual flow signatures, only the dry runoff coefficient (Egrgrcay) improved significantly
compared to the benchmark as shown in Table S4 and Figure 7. The parameter set associated with the best
performing model with respect to GRACE (Ensstotopt) resulted for the benchmark period in a Ensg = -1.4
(Ensgses = -2.3 — 0.38) and the corresponding Dg gy = -0.18 (Dgsies = -0.58 — 0.62) with respect to discharge
(Figure 7, Table 7). As illustrated in Figure 7 and Figure 6C, many parameter sets that resulted in implausible
representations of the seasonal signals were eliminated. However, as also indicated by the rather modest values
of Ensg and De with respect to discharge, the data source used here obviously contained only limited

information to avoid the over predictions of flow during all wet seasons. The sequence of applying first GRACE
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and then altimetry, or the reverse, did not affect the identification of feasible parameter sets when using altimetry

data as shown in Figure S8.; hHowever, it did affect the selection of the “best” parameter set.
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Figure 9: Range of random model realizations with respect to the total water storage (grey) including the observation
according to GRACE (black)

4.1.3 Parameter selection and-medel-performance-based on satellite altimetry data

Altimetry Strategy 1: Directly compare altimetry data to modelled discharge

The first approach, Altimetry Strategy 1, resulted in an overestimation of in particular intermediate and low
flows as shown in Figure 6D. The feasible solutions reached an optimum of De g wi opt = 0.76 (Dgrwi 55 = 0.74
— 0.75) with respect to altimetry observations. Focusing on the model’s skill to reproduce the observed discharge
using these feasible parameter sets for the benchmark period, the parameter set associated with the best
performing model with respect to altimetry (Dggwi opt) resulted in a Ensg = 0.65 (Ensgsies = -2.9 — 0.10) and
De = 0.63 (Dgsjos = -0.83 — 0.50) with respect to discharge (Figure 7, Table 7). Hence, the parameter set with the
highest model performance with respect to altimetry, did not perform best with respect to discharge as shown in
Table 7 and Figure S7. While the optimum model performance with respect to discharge was similar to the
benchmark, the very wide range in the 5/95™ percentiles of the solutions indicated that this strategy has only
limited potential to identify implausible parameter sets. This was also the case with respect to the individual flow

signatures as shown in Figure 7 and Table S4.

Altimetry Strategy 2: Rating curves

The second approach, Altimetry Strategy 2, also resulted in an overestimation of the flows (Figure 8E). The
feasible solutions reached an optimum of Dg nsre,opt = -0.50 (Dgnsresies = -1.0 —-0.77) with respect to altimetry
observations. As example, Figure S6A visualises the simulated and observed river water level at Virtual Station
4 (Figure 1) where the model significantly underestimated the stream levels. Focusing on the model’s skill to
reproduce the discharge using these parameter sets for the benchmark period, the parameter set associated with
the best performing model with respect to altimetry (Dgnsgrcopt) resulted in Ensg = -0.31 (Ensgsies = -2.6 —
0.25) and Dg = 0.27 (Dgss = -0.72 — 0.56) with respect to discharge (Figure 7, Table 7).; Hhence similar to

Altimetry Strategy 1, the best parameter set with respect to altimetry, did not perform best with respect to
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discharge (see Table 7 and Figure S7). The optimum model performance with respect to discharge was worse
compared to the benchmark, and the wide range in the 5/95™ percentiles of the solutions indicated this strategy
poorly identified the feasible parameter sets. This was also the case with respect to the individual flow signatures
as shown in Figure 7 and Table S4.; Oenly the dry runoff coefficient (Ercary) improved significantly compared to

the benchmark.

Altimetry Strategy 3: Strickler-Manning equation

The third approach, Altimetry Strategy 3, resulted in improved flow predictions compared to the other two
strategies using altimetry data (Figure 8F). Even though the feasible solutions exhibit a very poor ability to
reproduce the altimetry data, with an optimum of Denssmopt = 1.4 (Dens,smses = -3.8 — -1.8), the model’s skill
to reproduce the discharge for the benchmark period using these parameter sets, significantly increased
compared to the two alternative strategies. As example, Figure S6B visualises the simulated and observed river
water level at Virtual Station 4_(Figure 1) where the model simulated the stream levels relatively well. The
parameter set associated with the best performing model with respect to altimetry (Dg s smopt) resulted in Exsg
= 0.60 (Ensos/es= -0.31 — 0.50) and Dg = 0.71 (Dgge5 = 0.36 — 0.67) with respect to discharge (Figure 7, Table
7). While the optimum model performance with respect to discharge was worse compared to the benchmark, the
5/95™ percentiles of the solutions were significantly constrained by the removal of many implausible parameter
sets.; Tthis was valid for the performance with respect to the individual flow signatures (Exsg and Egg) and
overall flow response (Dg) as shown in Figure 7 and Table S4. This indicated that, although the model
performance with respect to altimetry observations was low, this strategy contains valuable information to
considerably constrain the feasible solution space.

4.1.4 Parameter selection and-modelperformanee-based on daily river water level at the basin outlet

Water level Strategy 1: River geometry information extracted from Google Earth

The parameter identification strategy “Water level Strategy 17, using cross-section information extracted from
Google Earth, resulted in a poor simulation of the river water level (Figure 10A) with an optimal objective
function value with respect to river water levels of Exssmeeopt = -1.8 (Enssmcesnes = -6.8 — -3.1). Focusing on
the model’s skill to reproduce the discharge using these feasible parameter sets for the benchmark period, the
parameter set associated with the best performing model with respect to river water levels (Ensswm,ceopt) resulted
in Ensoce = 0.65 (Ensosmesce = -0.48 — 0.60) and Degge = 0.77 (Degeses = 0.28 — 0.70) with respect to
discharge (Figure 7, Table 7).; Tthe model performance with respect to the remaining signatures as visualised in
Figure 7 are tabulated in Table S4. As shown in Figure 8G, the discharge was overestimated in particular during

intermediate and low flows.

Water level Strategy 2: River geometry information obtained from a detailed field survey

The parameter identification strategy “Water level Strategy 2”, using cross-section information obtained from a
detailed field survey, resulted in improved river water level simulations (compare Figure 10A and B) with an
optimal objective function value with respect to river water levels of Exssmapce.opt = 0-79 (Ens sm.apcesies = 0.60
— 0.74). The parameter set associated with the best performing model with respect to river water levels

(Ens,smapceopt) resulted in Ensgapce = 0.14 (Ensgsis.ance = -1.1 — 0.50) and in Dg apce = 0.55 (De apcesies =
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0.03 — 0.67) with respect to discharge (Figure 7, Table 7); the model performance with respect to the remaining
signatures as visualised in Figure 7 are tabulated in Table S4.

Compared to using river geometry information extracted from Google Earth (Water level Strategy 1), the overall
model performance with respect to discharge did not increase since the parameter space was already restricted
using GRACE data. However, the modelled flow duration curve during intermediate and low flows (compare
Figure 8G with H) and rating curve (Figure 11) improved significantly when using more accurate geometry
information obtained from a detailed field survey covering the cross-section that is submerged most of the year
which is thus unlikely to be captured by satellite based observations. Note, that the in-situ cross-section
information was limited to the submerged part during the time of measurement.; Tthe remaining part (water
levels > 5 m) was extrapolated which is likely to explain the larger discrepancies during high flows visible in the
flow duration curve (Figure 8H).
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Figure 10: Range of model solutions. The left panel shows the hydrograph and the right panel the flow duration curve
of the recorded (black) and modelled discharge: the line indicates the solution with the highest calibration objective
function (Eys) and the shaded area the envelope of the solutions retained as feasible. Solutions were retained as
feasible based on daily water level time series at the basin outlet using the Strickler-Manning equation for the
discharge — water level conversion; the cross-section was A) extracted from Google Earth (Water level Strategy 1), or
B) obtained from a detailed field survey with an Acoustic Doppler Current Profiler (ADCP, Water level Strategy 2).
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Figure 11: Discharge - water level graphs for the recorded (black) and modelled discharge and stream levels with the
optimal model performance (Eys) using the Strickler Manning equation for the discharge — stream level conversion
with cross-section information A) extracted from Google Earth (Water level Strategy 1), or B) obtained from a
detailed field survey with an Acoustic Doppler Current Profiler (ADCP, Water level Strategy 2).

4.2 Number of virtual stations used for model calibration and evaluation

In this study, altimetry data was available at 18 virtual stations. However, would the model performance change

if more or less virtual stations were used? To answer this gquestionFer-this—purpese, n random stations were

selected for model calibration; the remaining stations were used for cross-validation (KlemeS, 1986; Gharari et
al., 2013; Garavaglia et al., 2017). This was repeated to cover all combinations of n stations and forn=1, 2 ...
17. When applying Strategy 3 using altimetry data with the Strickler-Manning equation, this analysis revealed
that when increasing the number of calibration stations, the model calibration performance Dgnssv gradually
decreased, but the ability to meaningfully reproduce the remaining observations which were not used for
calibration increased significantly (Figure 12). Similar results were obtained for Strategies 1 and 2 (compare
Figure 12 with Supplementary Figures S3 and S4). Also the model performance with respect to discharge
increased when using more virtual stations with an optimum at 7 — 15 stations depending on the calibration
strategy (Figure S5). This provides evidence that in spite of reduced calibration performance, the simultaneous
use of multiple virtual stations can contribute towards more plausible selections of model parameter sets and thus

increase the model realism.
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Figure 12: Influence of the number of virtual stations used for A) model calibration and B) evaluation on the model
performance Dg ns sw applying Altimetry Strategy 3.
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4.3 Uncertainties and limitations

In the absence of discharge data for hydrological model calibration as commonly the case in poorly or ungauged
regions, freely and globally available remotely sensed stream water levels could provide the opportunity to fill
this gap as illustrated in this study, as well as in previous studies (e.g. Michailovsky and Bauer-Gottwein, 2014;
Pereira-Cardenal et al., 2011; Sun et al., 2012). However, there are several limitations to the approach proposed
in this study using altimetry for model calibration.

First, river altimetry data are prone to large uncertainties which increase for smaller river widths as a result of

backscatter effects of the surrounding topography (Sulistioadi et al., 2015; Biancamaria et al., 2017;

Domeneghetti et al., 2015). Too small rivers could even be missed altogether. In this study, the Luangwa river

becomes a small meandering stream in the dry season resulting in larger altimetry uncertainties. Unfortunately,

this uncertainty could not be estimated for the virtual stations used in this study due to data limitations. However,

in previous studies in the Zambezi Basin, the RMSE relative to in-situ stream levels ranged between 0.32 m and

0.72 m using Envisat (Michailovsky et al., 2012). Improving altimetry observations such that the uncertainties

decrease would improve the identification of feasible parameter sets and simulation of stream levels and flow.

However, comparison results between the three altimetry based calibration strategies are not expected to change

since the same altimetry data were used. In other words, Altimetry Strategy 3 is still expected to perform best

when decreasing the uncertainties in the altimetry observations.

Second, large uncertainties in the forcing data (precipitation and temperature) with respect to the spatial-
temporal variations should not be ignored. This could compromise comparison results between modelled river
water levels and altimetry within the basin since it has a low temporal resolution (10 or 35 days). Alse;-bBias in
the precipitation data affects storage calculations and hence alse-the identification of feasible parameter sets
based on GRACE (Le Coz and van de Giesen, 2019).; Tthis could explain why the flows were frequently
overestimated when using GRACE only. In addition, precipitation bias could be compensated through
calibration parameters introduced for the discharge — water level conversion.; Ttherefore, such parameters should
be constrained as much as possible. There are also data uncertainties in the cross-sections and river gradients
extracted from high-resolution terrain data available on Google Earth due to its limited spatial resolution, but
more importantly since no information is available below the water surface.

Further, GRACE observations are prone to uncertainties as a result of data (post-) processing including for

example data smoothening (Landerer and Swenson, 2012; Blazquez et al., 2018; Riegger et al., 2012) causing

leakage between neighbouring cells of 1° (= 111 km) which are thus not completely independent from each

other. Additionally, GRACE observations are more accurate for large areas. Depending on the applied

processing scheme, the error is about 2 cm for basins with an area of around 63 000 km? (Landerer and Swenson,

2012; Vishwakarma et al., 2018). Also note that due to the coarse temporal resolution, monthly averaged

GRACE observations are dominated by slow changing processes such as the groundwater and soil moisture

system and seasonal variations reflected in all storage components. In addition, open water bodies or wetlands

could affect GRACE observations if they are located in or near the basin, for example within a radius of about
300 km which is the distance often used for data smoothening. In this study, several open water bodies or
wetlands were located <300 km of the Luangwa basin such as Lake Malawi, Kafue Flats, Cahora Bassa
reservoir, Kariba reservoir, Bangweulu and Tanganyika. These open water bodies and wetlands had a limited

impact on the GRACE observations due to limited fluctuations or different temporal variation as illustrated in
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Figure 13 for the Cahora Bassa reservoir._These uncertainties in the GRACE observations could influence the

identification of plausible parameter sets. For example feasible parameter sets could be discarded incorrectly

which could distort results obtained by calibrating with respect to altimetry and GRACE simultaneously.

However, the comparison between the three altimetry based calibration strategies is not expected to change since

the same GRACE data were used. In other words, Altimetry Strategy 3 is still expected to perform best when

considering these uncertainties.
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Figure 13: Temporal correlation of the GRACE observations for the cell in which the virtual station for Cahora Bassa
is located (horizontal axis) and for A) all cells within an area surrounding the virtual station with a radius of 3 degree
(GRACE area of influence, vertical axis, black), and B) the altimetry observation at Cahora Bassa (vertical axis, blue).
The 1:1 line is visualised in red. The relatively strong temporal correlation between the GRACE cells could be a result
of the strong seasonality in this area.

Uncertainties were not only introduced by the data, but also as a result of assumptions and simplifications. First,
the reference level hy was assumed to be equal to the lowest river water level observed to limit the number of

calibration parameters (Altimetry Strategy 2 and 3, Water level Strategy 1 and 2). However, uncertainties in the

altimetry observations as explained previously influence h, estimates which results in a bias between the

observed and simulated stream levels in Altimetry Strategies 2 and 3. Second, the roughness was assumed to be

constant in time, over the entire cross-section and for all virtual stations throughout the basin which-affects-the

cischarge—water-level-conversion-an*-d-therefore-also-the-model-efficiency-(Altimetry Strategy 3). However

this roughness can vary between 15 — 50 m*®/s for natural rivers (Vatanchi and Maghrebi, 2019; Chow, 1959)

changing the simulated stream levels between 42% — 75% in the Luangwa Basin with the low flows being the

most sensitive. Third, all 18 virtual stations were grouped based on their cross-section similarity to limit the
number of calibration parameters (Altimetry Strategy 2), but differences within each group remain_such that the

calibration parameters related to the rating curve varies slightly for each virtual station within a group. Fourth,

the assumption of a constant flow velocity in space and time affects the timing of the simulated flow and stream

levels influencing the comparison between model results and altimetry observations (all strategies).

Another limitation is the missing flow volume information when directly using (satellite based) river water
levels for model calibration, using the Spearman Rank Correlations as model performance metric (Altimetry
Strategy 1; Seibert and Vis, 2016). This resulted here in an overestimation of intermediate and low flows due to
the non-linear relation between stream levels and flows. In contrast, when converting the discharge to stream
water levels, flow volume information was included at the cost of introducing additional calibration parameters
(Altimetry Strategy 2 and 3), thereby increasing the degrees-of-freedom and thus the potential for parameter
equifinality in the model (Beven, 2006; Sikorska and Renard, 2017; Sun et al., 2012).

Furthermore, it was assumed the Nash-Sutcliffe efficiency contained sufficient valuable information to describe
the model performance with respect to various—flew-signatures; river water level and total water storage_when
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identifying feasible parameter sets. This performance measure is sensitive to the sample size, outliers, bias and

time-offset (McCuen Richard et al., 2006). Unfortunately, simulated discharge and stream levels are prone to

bias uncertainties as a result of spatiotemporal bias in the rainfall (Le Coz and van de Giesen, 2019). In addition,

altimetry observations have a limited sample size for several virtual stations (see Table 2) and are prone to bias

due to uncertainties in the reference level hy as mentioned before. Moreover, a time-offset in the simulated flow

can occur as a result of rainfall uncertainties. As comparison, the model performance with respect to altimetry

only reached up to Denssw=_-1.3 for Altimetry Strategy 3, while it reached up t0 Exsswee = 0.61 with respect to

daily in-situ stream levels for Water level Strategy 1. Therefore, Aadditional study is recommended to confirm

this assumption and to assess which performance metric(s) would be most suitable. The model performance with

respect to discharge was evaluated with respect to multiple hydrological signatures simultaneously (see Table 6)

to assess the model’s skill to reproduce the internal dynamics of the system. Even though a few of these
signatures have some overlapping information content (McMillan et al., 2017), each signature also contains at

least some additional information not included in the other signatures. In general, the ambition is to represent a

hydrological system as good as possible in a model which critically required that the model exhibits sufficient

ability to simultaneously reproduce multiple flow signatures (Gupta et al., 2008; Euser et al., 2013; Hrachowitz

et al., 2014).

4.4 Comparison with previous studies

Previous studies have successfully used river altimetry data to calibrate and evaluate rainfall-runoff models using
a few virtual stations (Sun et al., 2012; Getirana, 2010; Getirana et al., 2010; Liu et al., 2015). In these studies,
the modelled discharge was converted to stream levels by means of a hydraulic model or empirical relations. Our
results support several previous findings and added a number of new ones.

Similar to previous studies, the rainfall-runoff model reproduced river flow relatively well when calibrating on
remotely sensed stream water levels preferably at several virtual stations simultaneously, but discharge based
calibration results performed significantly better (Getirana, 2010). Thus, while river altimetry data cannot fully
substitute discharge observations, they at least provide an alternative data source that holds seme-informationve
value where no reliable discharge data are available. In addition, our results suggest that in spite of the typically
limited temporal resolution of altimetry observations, these data, when using multiple virtual stations
simultaneously, provide enough information to select meaningful model parameter sets (Seibert and Beven,
2009; Getirana, 2010).

Strikingly, only limited studies combined altimetry with GRACE observations in the calibration procedure

(Kittel et al., 2018). As altimetry observations only describe water level variations with no information on the

flow amounts, GRACE provides additional valuable information to constrain the river discharge by improving

the rainfall runoff partitioning as demonstrated in previous studies (Rakovec et al., 2016; Bai et al., 2018;

Dembélé et al., 2020). Combining both data sources in the calibration procedure allowed for a more accurate

identification of feasible parameter sets. The model performance range with respect to discharge improved from

Desi95 = -8.4 — 0.77 when using only altimetry t0 Dggjes = 0.19 — 0.75 when combining GRACE and altimetry

for Altimetry Strategy 3 (see Figure S8).
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In contrast to previous studies, altimetry data originated from five different satellite missions rather than a single
one. As a result, altimetry data was available at 18 locations for the time period 2002 to 2016. This gave the
opportunity to analyse the effect of combining different numbers of stations for calibration and evaluation. This
study illustrated that better predictions can be achieved when using more virtual stations for calibration.
Furthermore, this study demonstrated that in particular the combination of altimetry with information on river
geometry (cross section, gradient) proved beneficial for the selection of feasible parameter sets within relatively
narrow bounds comparable to the benchmark using discharge. When-using-Using more accurate cross-section
information obtained from a detailed field survey rather than Google Earth based estimates, improved the water
level simulations, modelled rating curve and discharge simulations during intermediate and low flows
significantly for which on-site cross-section data was available. That is why it is recommended to acquire

accurate cross-section information on locations concurring with altimetry overpasses (not done is this study).

4.5 Opportunities for future studies

For future studies, it will be interesting to improve Altimetry Strateqy 3 using additional data sources. For

instance, it-weuld-be-very-interesting-to-combine_the combination of altimetry observations with river width

estimates derived from Landsat or Sentinel-1/2 (Pekel et al., 2016; Hou et al., 2018) may bear some potential as

the combination of the two different hydraulic variables complements each other and increases the temporal

sampling (Huang et al., 2018; Tarpanelli et al., 2017; Sichangi et al., 2016). For instance, during high flows river

width estimates can be more accurate than altimetry observations especially when floodplains are inundated and

small water level changes cause large river width changes. Alternatively, the altimetry observations used here

could be combined with river surface water level slope estimates based on CryoSat observations based-altimetry

observations-which provide water level information at lower temporal resolution (every 369 days), but higher

spatial resolution (equatorial inter-track distance of 7.5 km) providing-valuable-information-to-estimate-the-river
slepe-(Schneider et al., 2017; Jiang et al., 2017). This allows for the estimation of the energy gradient based on

stream levels as required in the Strickler-Manning equation, instead of the bed slope based on topography, which

proved to be a good first estimate in absence of more reliable data. In addition, CryoSat observations are

available annually such that there can be more overlap with altimetry observations in contrast to topography

data. In addition, with the upcoming SWOT (Surface Water Ocean Topography) mission, more accurate
altimetry observations should be available as well as river slope observations and width.; Tthe repeat cycle will
be 21 days and across-track resolution between 10 m and 60 m increasing the number of observation points
available within a specific area (Biancamaria et al., 2016; Langhorst et al., 2019; Oubanas et al., 2018). As a

result, hydrological models can be calibrated with respect to river altimetry and width simultaneously at multiple

locations even for small river basin improving the identification of plausible parameters sets and hence the

model realism as illustrated in Section 4.2. It will also be very valuable to improve cross-section estimates with

respect to the submerged part_of the cross-section as already explored in previous studies (Domeneghetti, 2016)

or to use —Furthermere,-drone observations ceuld-be-used-to obtain more accurate cross-section information and

estimates of the river slope and roughness (Entwistle and Heritage, 2019)._By improving the river profile

description, the simulated stream levels become more accurate which is crucial when using this time series for

model calibration. As illustrated with Water level Strategies 1 and 2, improving the cross-section resulted in a

more accurate rating curve (Figure 11), stream level simulation (see Figure 10), and discharge simulation (Figure
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8). Clearly, it will would-be interesting to assess-analyze and disentangle separatedifferent individual sources of

uheertainties-uncertainty related to the discharge — water level conversion from the hydrological model in a more

data rich region_(Renard et al., 2010). Unfortunately, this was not possible in this study due to the scarcely

available in-situ observations in the Luangwa. As concluded by Renard et al. (2010), reliable estimates of the

data_uncertainty are required to disaggregate multiple sources on uncertainty in rainfall-runoff modelling

successfully.

5 Summary and conclusion

This study investigated the potential value of river altimetry observations from multiple satellite missions to
identify feasible parameters for a hydrological model of the semi-arid and poorly gauged Luangwa River Basin.
A distributed process-based rainfall-runoff model with sub-grid process heterogeneity was developed on a daily
timescale for the time period 2002 to 2016. Various parameter identification strategies were implemented step-
wise to assess the potential of satellite altimetry data for model calibration. As a benchmark, when identifying
parameter sets with the traditional model calibration strategy using discharge data, the model was able to
simulate the flows relatively well (Ensqg = 0.78, Ensgses = 0.61 — 0.75). When assuming no discharge
observations are available, the feasible parameter sets were restricted with GRACE data only resulting in an
optimum of Exso = -1.4 (Ensgses = -2.3 — 0.38) with respect to discharge. Combining GRACE with altimetry
data only from 18 virtual stations focusing on the water level dynamics resulted in frequently overestimated
flows and poorly identified feasible parameter sets (Altimetry Strategy 1, Ensgsies = -2.9 — 0.10). This was also
the case when converting modelled discharge to water levels using rating curves (Altimetry Strategy 2, Exsosos
= -2.6 — 0.25). The identification of the feasible parameter sets improved when including river geometry
information, more specifically cross-section and river gradient extracted from Google Earth, in the discharge-
water level conversion using the Strickler-Manning equation (Altimetry Strategy 3, Ensgq = 0.60, Ensgses = -
0.31 - 0.50). Moreover, it was shown that more accurate cross-section data improved the water level simulations,
modelled rating curve and discharge simulations during intermediate and low flows for which on-site cross-
section information was available; the Nash-Sutcliffe efficiency with respect to river water levels increased from
Enssmee = -1.8 (Enssmcesos = -6.8 — -3.1) using river geometry information extracted from Google Earth
(Water level Strategy 1) to Exssmapce = 0.79 (Enssmapceses = 0.6 — 0.74) using river geometry information
obtained from a detailed field survey (Water level Strategy 2). The model performance also improved when
increasing the number of virtual stations used for parameter selection. Therefore, in the absence of reliable
discharge data as commonly the case in poorly or ungauged basins, altimetry data from multiple virtual stations
combined with GRACE observations have the potential to fill this gap if combined with river geometry

estimates.
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