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Abstract 10 

Degraded water quality in rivers and streams can have large economic, societal and ecological impacts. 11 

Stream water quality can be highly variable both over space and time. To develop effective management 12 

strategies for riverine water quality, it is critical to be able to predict these spatio-temporal variabilit ies. 13 

However, our current capacity to model stream water quality is limited, particularly at large spatial 14 

scales across multiple catchments. This is due to a lack of understanding of the key controls that drive 15 

spatio-temporal variabilities of stream water quality. To address this, we developed a Bayesian 16 

hierarchical statistical model to analyse the spatio-temporal variability in stream water quality across 17 

the state of Victoria, Australia. The model was developed based on monthly water quality monitoring 18 

data collected at 102 sites over 21 years. The modelling focused on six key water quality constituents: 19 

total suspended solids (TSS), total phosphorus (TP), filterable reactive phosphorus (FRP), total Kjeldahl 20 

nitrogen (TKN), nitrate-nitrite (NOx), and electrical conductivity (EC). Among the six constituents, the 21 

models explained varying proportions of variation in water quality. EC was the most predictable 22 

constituent (88.6% variability explained) and FRP had the lowest predictive performance (19.9% 23 

variability explained). The models were validated for multiple sets of calibration/validation sites and 24 

showed robust performance. Temporal validation revealed a systematic change in the TSS model 25 

performance across most catchments since an extended drought period in the study region, highlight ing 26 

potential shifts in TSS dynamics over the drought. Further improvements in model performance need to 27 

focus on: (1) alternative statistical model structures to improve fitting for the low concentration data, 28 

especially records below the detection limit; and (2) better representation of non-conservative 29 

constituents by accounting for important biogeochemical processes. We also recommend future 30 

improvements in water quality monitoring programs which can potentially enhance the model capacity, 31 

via: 1) improving the monitoring and assimilation of high-frequency water quality data; and 2) 32 

improving the availability of data to capture land use and management changes over time.  33 
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1. Introduction 37 

Deteriorating water quality in aquatic systems such as rivers and streams can have significant 38 

environmental, economic and social ramifications (e.g. Whitworth et al., 2012;Vörösmarty et al.,  39 

2010;Qin et al., 2010;Kingsford et al., 2011). However, our ability to manage and mitigate water quality 40 

impacts is hampered by the variability in water quality both across space and time, and our inability to 41 

predict this variability (Chang, 2008;Bengraı̈ne and Marhaba, 2003;Ai et al., 2015). Water quality 42 

conditions can vary across individual events, as well as at daily, seasonal and inter-annual scales at an 43 

individual location (Arheimer and Lidén, 2000; Kirchner et al., 2004; Larned et al., 2004; Pellerin et al.,  44 

2012; Saraceno et al., 2009). Water quality conditions also typically differ significantly across locations 45 

(Meybeck and Helmer, 1989). These variabilities in stream water quality are driven by three key 46 

mechanisms: (1) the source of constituents, which defines the total amount of constituents being 47 

available in a catchment; (2) the mobilization of constituents in particulate and dissolved forms, which 48 

detaches constituents from their sources via processes such as erosion and  biogeochemical processing; 49 

and (3) the delivery of mobilized constituents from catchments to receiving waters via multiple 50 

hydrologic pathways including surface and subsurface flow (Granger et al., 2010). 51 

Spatial variability in stream water quality is driven by natural catchment characteristics (e.g., climate, 52 

geology, soil type, topography and hydrology) as well as by human activities within catchments (e.g., 53 

land use and management, vegetation cover etc.), all of which control the extent and magnitude of the 54 

three key mechanisms described above (Lintern et al., 2018a). At the same time, temporal shifts in water 55 

quality are influenced by changes in climatic, hydrological and other catchment conditions, such as 56 

temperature (Roberts and Mulholland, 2007), the timing and magnitude of rainfall events (Fraser et al.,  57 

1999), runoff generation and streamflow (Ahearn et al., 2004; Mellander et al., 2015; Sharpley et al.,  58 

2002), and vegetation cover changes over time (Kaushal et al., 2014;Ouyang et al., 2010).  59 

Despite undertstanding of the basic mechanisms, we currently lack the ability to model these spatio-60 

temporal variabilities at larger scales to inform the development of effective policy and mitigation 61 

strategies. Conceptual or physically-based water quality models are typically limited by the 62 

simplification of physical processes (Hrachowitz et al., 2016). Furthermore, practical implementation 63 

of these models can be also limited by the intensive requirements of data and calibration effort, 64 
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particularly for large regions with varying catchment conditions (Fu et al., 2018;Abbaspour et al., 2015). 65 

In contrast, whilst most statistical water quality models are easier to implement, they often focus on 66 

either the spatial variation of time-averaged water quality conditions (Tramblay et al., 2010;Ai et al.,  67 

2015), or the temporal variation at individual locations (Kisi and Parmar, 2016;Kurunç et al.,  68 

2005;Parmar and Bhardwaj, 2015). Consequently, it remains challenging to address spatio-temporal 69 

variability simulaneously over long time periods and large regions. This lack of integrated modelling of 70 

both spatial and temporal variability in water quality can not only limits our understanding of the key 71 

factors that affect water quality dynamics over both of these dimensions. It also hinders our ability to 72 

predict future water quality changes in un-monitored locations. 73 

The aim of this research is to develop a data-driven model to predict spatio-temporal changes in stream 74 

water quality. This model was established using long-term (21 years) stream water quality observations 75 

across 102 catchments in the state of Victoria, Australia. The model built on two previous studies on the 76 

same dataset that identified the key drivers for water quality spatial and temporal variabilit ies, 77 

respectively (Lintern et al., 2018b; Guo et al., 2019). Our approach aims to bridge the gap between fully-78 

distributed water quality models and statistical approaches to provide useful information for catchment 79 

managers, especially for large-scale water quality assessments.  80 

2. Method 81 

2.1 Spatio-temporal modelling framework 82 

A Bayesian hierarchical approach was used to model the spatio-temporal variability in stream water 83 

quality. The Bayesian approach enables the inherent natural stochasticity of water quality to be 84 

incorporated into the model (Clark, 2005), and the hierarchical model structure enables the key controls 85 

of temporal variability in water quality to vary across locations (Webb and King, 2009;Borsuk et al.,  86 

2001). 87 

The structure of this model is presented below in Eq. 1 to 6. The transformed concentration of a 88 

constituent (see Sect. 2.2 for justification) at time i and site j (𝐶𝑖𝑗) is assumed to be normally distributed 89 

with a mean 𝜇𝑖𝑗 and standard deviation 𝜎 representing inherent randomness (Eq. 1).   90 

𝑪𝒊𝒋~𝑵(𝝁𝒊𝒋, 𝝈) (1) 
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To represent spatio-temporal variability, 𝜇𝑖𝑗 is modelled as the sum of the site-level mean constituent 91 

concentration (𝐶�̅� ) and the deviation from that mean at time i (∆𝑖𝑗) (Eq. 2).   92 

𝝁𝒊𝒋 =  �̅�𝒋 +  ∆𝒊𝒋 (2) 

To describe spatial variability, the site-level mean (𝐶�̅� ) is modelled as a linear function of a global 93 

intercept (int), and the sum of the m catchment characteristics 𝑆1,𝑗 to 𝑆𝑚,𝑗 (e.g. land use, topography) 94 

weighted by their relative contributions to spatial varaibility (𝛽_𝑆1 to 𝛽_𝑆𝑚) (Eq. 3).   95 

�̅�𝒋 = 𝒊𝒏𝒕 + 𝜷_𝑺𝟏 × 𝑺𝟏,𝒋 + +𝜷_𝑺𝟐 × 𝑺𝟐,𝒋 + ⋯ + 𝜷_𝑺𝒎 × 𝑺𝒎,𝒋 (3) 

The temporal variability, represented by the deviation from the mean (∆𝑖𝑗), is a linear combination of n 96 

temporal variables, 𝑇1,𝑖𝑗 to 𝑇𝑛,𝑖𝑗  (e.g., climate condition, streamflow, vegetation cover) (Eq. 4), at time 97 

i and site j.   98 

∆𝒊𝒋=  𝜷_𝑻𝟏,𝒋 × 𝑻𝟏,𝒊𝒋 + ⋯ + 𝜷_𝑻𝒏,𝒋 × 𝑻𝒏,𝒊𝒋 (4) 

To account for differences in these temporal influences across sites, the effect of each temporal variable 99 

at site j (𝛽_𝑇𝑁,𝑗  with N in 1,2, … n) is drawn from a distribution with a mean of 𝑁𝛽 _𝑇𝑁,𝑗
 (Eq. 5), which 100 

is then modelled with a linear combination of two additional chatchment characteristics, 𝑆𝑇𝑁1,𝑗 and 101 

𝑆𝑇𝑁2,𝑗 (Eq. 6).  102 

𝜷_𝑻𝐍,𝒋~𝑵 (𝝁𝜷_𝑻𝑵,𝒋
, 𝝈𝜷_𝑻𝑵

) , 𝒇𝒐𝒓 𝑵 𝒊𝒏 𝟏, 𝟐, … (5) 

𝑵𝜷_𝑻𝑵,𝒋
= 𝒊𝒏𝒕𝜷_𝑻𝑵 + 𝜷_𝑺𝑻𝑵𝟏 × 𝑺𝑻𝑵𝟏,𝒋 + 𝜷_𝑺𝑻𝑵𝟐 × 𝑺𝑻𝑵𝟐,𝒋 (6) 

Section 2.2 introduces the data used to develop these Beyesian hierarchical models. Section 2.3 103 

describes how the detailed model strucutre was determined, including the choice of key predictors for 104 

the spatial variability (i.e., catchment characteristics 𝑆1,𝑗 to 𝑆𝑚,𝑗) and temporal variability (i.e. 𝑇1,𝑖𝑗 to 105 

𝑇𝑛,𝑖𝑗 and 𝑆𝑇𝑁1,𝑗 and 𝑆𝑇𝑁2,𝑗), and all their corresponding coefficient values. The approaches to evaluate 106 

model performance and robustness are described in Sect. 2.4. 107 

2.2 Data collection and processing 108 

The Bayesian hierarchical models were developed with 21-year stream water quality observations at 109 

102 catchments in state of Victoria, Australia. The collection and processing of the data are detailed in 110 

previous publications that worked with the same dataset (Lintern et al., 2018b; Guo et al., 2019). Briefly, 111 
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however, stream water quality data were extracted from the Victorian Water Measurement Information 112 

System (Department of Environment Land Water and Planning Victoria, 2016b), which contains 113 

monthly grab samples of water quality at approximately 400 sites across Victoria. Water quality data 114 

sampled between 1994 and 2014 at 102 sites were used to develop the model (Fig. 1). This was because 115 

these sites and this time period provided the longest consistent period of continuous records over the 116 

greatest number of monitoring sites. The catchments corresponding to these water quality monitoring 117 

sites were delineated using the Geofabric tool (Bureau of Meteorology, 2012), and have areas ranging 118 

from 5 km2 to 16,000 km2. The water quality parameters of interest were: total suspended solids (TSS), 119 

total phosphorus (TP), filterable reactive phosphorus (FRP), total Kjeldahl nitrogen (TKN), nitrate-120 

nitrite (NOx) and electrical conductivity (EC). These parameters represent sediments, nutrients and salts,  121 

which are some of the key concerns for water quality managers in Australia and around the world. These 122 

water quality data were sampled following standard DELWP protocols (Australian Water Technologies, 123 

1999) and analysed in National Association of Testing Authorities accredited laboratories . 124 

 125 

Figure 1. Map of (a) the 102 selected water quality monitoring sites and their catchment 126 
boundaries, with insert showing the location of the state of Victoria within Australia; (b) annual 127 

average temperature and (c) annual precipitation and (d) elevation across Victoria. 128 

We selected potential spatial explanatory variables (i.e. predictors to explain spatial variability) based 129 

on catchment characterisitics that are widely known to influence water quality condition (Lintern et al.,  130 

2018a). Fifty potential explanatory catchment characteristics were selected based on a literature review. 131 
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These included catchment land use, land cover, topographic, climatic, geological, lithological and 132 

hydrological catchment characteristics. These variables were derived using datasets obtained from 133 

Geoscience Australia (2004, 2011),  the Bureau of Meteorology (2012), the Bureau of Rural Sciences 134 

(2010), Department of Environment Land Water and Planning Victoria (2016) and the Terrestrial 135 

Ecosystem Research Network (2016) (see Table S1 in the Supplementary Material for detailed variable 136 

names and data sources). We used a static set of land use data from 2005-2006 to represent the entire 137 

study period, as a preliminary analysis of land use data between 1996 and 2011 suggested less than 1% 138 

changes (i.e. agricultural, grazing, conservation). 139 

Temporal explanatory variables of discharge (originally in ML d-1) and water temperature (°C) 140 

corresponding to the same timestamps for water quality observations were also extracted for each site 141 

over the study period (Department of Environment Land Water and Planning Victoria, 2016). Discharge 142 

was converted to streamflow (mm d-1) for each catchment, which allowed us to also calculate the average 143 

streamflows over 1, 3, 7, 14 and 30 days preceding the water quality sampling dates. In addition, gridded 144 

climate data (Frost et al., 2016;Raupach et al., 2009, 2012) and the normalized difference vegetation 145 

index (NDVI) data (NASA LP DAAC, 2017;Eidenshink, 1992) were also extracted to calculate the 146 

catchment average daily rainfall (mm), daily evapotranspiration (ET) (mm), daily average temperature 147 

(°C), daily root zone (shallower than 1m) and deep (deeper than 1m) soil moisture, as well as monthly 148 

NDVI. A summary of these data and their sources is in Table S2 in the Supplementary Material. 149 

The raw input data were filtered and transformed to increase the data symmetry, making them more 150 

suitable for use in the linear spatio-temporal model structure (Eqs. 3, 4 and 6). For the filtering process, 151 

we first removed all water quality records with flags of quality issues and values below the limits of 152 

reporting (LOR). This was because that uncertainty of values below LOR may amplify after the 153 

transformation, posing large influence in the subsequent model fitting. Furthermore, those low 154 

concentrations were of less interest; poor water quality conditions (i.e., high constituent concentrations)  155 

were our primarily concerns to model. Water quality records corresponding to days with zero flows were 156 

also excluded from further analyses.  157 

For the transformation process, we transformed the data of each of the spatial catchment characteristics, 158 
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temporal explanatory variables, as well aseach constituent to improve the symmetry of individua l 159 

distributions. The log-sinh transformation (Wang et al., 2012) was used for all catchment characteristics 160 

due to the presence of zero values in several characteristics (e.g., percentage area of different types of 161 

land use). The best log-sinh transformation parameter was determined for each spatial explanatory 162 

variable across all 102 catchments. In addition, all observed constituent concentrations and temporal 163 

explanatory variables were Box-Cox transformed. For each variable, i.e., 21-year time-series data across 164 

all 102 sites, we first identified the optimal Box-Cox parameter at each site λ, and then the averaged λ 165 

across all sites to determine the final λ used to transform a respective variable. This ensured a consistent 166 

transformation  for each variable across all sites. All log-sinh and Box-Cox transformation parameters 167 

used are summarized in Table S3 and S4 in the Supplementary Material. 168 

2.3 Model fitting  169 

Based on the general spatio-temporal modelling structure (Eqs. 2 to 6), we identified the best spatial 170 

predictors (𝑆1 to 𝑆𝑚 in Eq. 3) and the best temporal predictors (𝑇1  to 𝑇𝑛  in Eq. 4) in two sequential  171 

studies (Lintern et al., 2018b; Guo et al., 2019). The predictors were selected using an exhaustive search 172 

approach (May et al., 2011;Saft et al., 2016), which considered a large number of potential predictors 173 

and all possible combinations of these predictors. This selection approach required firstly fitting an 174 

individual model to each candidate predictor set, and then comparing all fitted models to select a single 175 

best set of predictors. Alternative models were evaluated based on the Akaike Information Criterion 176 

(AIC) (Akaike, 1974) and Bayesian Information Criterion (BIC) (Schwarz, 1978) to ensure optimal 177 

balance between model performance and complexity.  178 

The key factors identified for the spatial and temporal variabilities in each constituent are listed in Tables 179 

S5 and S6 in the Supplementary Materials. General speaking, the key factors controlling the spatial 180 

variability in river water quality were land-use and long-term climate conditions (Lintern et al., 2018b). 181 

Temporal variability was mainly explained by temporal changes in streamflow conditions, water 182 

temperature and soil moisture (Guo et al., 2019). We further modelled the spatial variation in each of 183 

these temporal relationships (β_T1 to β_Tn in Eq. 4) with two spatial characteristics, 𝑆𝑇𝑁1 and 𝑆𝑇𝑁2 (Eq. 184 

6), where a higher number of predictors was not used to avoid over-fitting. We found 𝑆𝑇𝑁1 and 𝑆𝑇𝑁2 185 
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via a Spearman correlation analyses (p<0.05) between the fitted parameter values of each temporal 186 

predictor variable (β_T1 to β_Tn) and potential spatial explanatory variables as mentioned in Sect. 2.2. 187 

𝑆𝑇𝑁1 and 𝑆𝑇𝑁2 were selected as the two catchment characteristics which had the highest correlations 188 

with the fitted parameter values of each temporal predictor, which were also summarized in Table S6 in 189 

the Supplementary Material. 190 

After identifying the predictors for each constituent, the Bayesian hierarchical spatio-temporal model 191 

was fitted for each constituent across all monitoring sites. To achieve this, we used the R package rstan 192 

(Stan Development Team, 2018), which enabled both the sampling of parameter values from posterior 193 

distributions with Markov chain Monte Carlo (MCMC) and model evaluation. Constituent standard 194 

deviation (σ) was assumed to be drawn from a prior of minimally informative distribution of half-normal 195 

N(0,10) that was truncated to only positive values (Gelman, 2006; Stan Development Team, 2018). The 196 

regression coefficient of each spatial predictor (β_S1, β_S2, …, β_Sm in Eq. 3) was assumed to be drawn 197 

from an independent hyper-parameter normal distribution with mean of β_S and standard deviation of 198 

σ_S. The site-level regression coefficients of the temporal predictors (β_T1,j, β_T2,j, …, β_Tn,j in Eq. 4, 199 

respectively) were sampled from the corresponding hyper-parameter normal distribution with means of 200 

µ.β_T1, µ.β_T2, …, µ.β_Tn  and standard deviations of σ.β_T1, σ.β_T2, …, σ.β_Tn. The hyper-parameters 201 

were further assumed to be drawn from minimally informative normal distributions with N(0,5) (for all 202 

the means) and minimally informative half-normal distribution of N(0,10) that was truncated to only 203 

positive values (for all the standard deviations). In each model run there were four independent Markov 204 

chains. A total of 20,000 iterations were used for each chain. Convergence of the chains was checked 205 

using the Rhat value (Sturtz et al., 2005).  206 

2.4 Model performance and sensitivity analyses  207 

The performance of the fitted model for each constituent was first evaluated by comparing the simulated 208 

and observed concentrations at 102 sites altogether to understand how the full spatio-temporal 209 

variabilties were captured (Sect. 3.1). As explained in Sect. 2.2, the model calibration for each 210 

constituent was performed with only the above-LOR data. Therefore, model performance was first 211 

evaluated with only these above-LOR data. Performance was then evaluated with the full dataset 212 

including the below-LOR data, to understand the model capacity to simulate the full distribution of 213 
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constituent concentration. In addition, the model performance for capturing spatial differences was 214 

assessed by comparing the simulated and observed long-term mean concentration at each site. The 215 

performance assessments were based on both visual inspection of model fitting as well as the Nash-216 

Sutcliffe efficiency (NSE), which suggested the proportion of variability that can be explained by the 217 

models (Nash and Sutcliffe, 1970). 218 

Additional evaluations of model sensitivity were conducted with calibration and validation on subsets 219 

of the full data (Sect. 3.2). Firstly, to understand the sensitivity of the model to the monitoring sites 220 

included for calibration, we randomly selected 80% of the sites for calibration and used the remaining 221 

20% for validation, and repeated this validation process for five times for each constituent. The 222 

calibration and validation performance was compared to each other, as well as with the performance of 223 

the full model.  224 

We also evaluated the model sensitivity to the periods of calibration. Since the study region was greatly 225 

influenced by a prolonged drought from 1997 to 2009 - known as the Millennium Drought, we focused 226 

on analysing the impact of this drought period. Specifically, we calibrated the model for each constituent 227 

to pre-, during- and post-drought periods (1994-1996, 1997-2009 and 2010-2014, respectively) and then 228 

validated the model on the remaining period which was not used for calibration. For example, when 229 

calibrating to the pre-drought period (1994-1996), validation was performed on both the during and 230 

post-drought data (1997-2014). Each corresponding calibration and validation performance was 231 

compared with each other as well as against that of the full model, to identify potential impacts of the 232 

drought on model robustness.  233 

3. Results 234 

3.1 Model performance  235 

The spatio-temporal water quality models show varying performances among the constituents. When 236 

assessed with only the above-LOR data (Fig. 2), the best performing models are those for EC and TKN, 237 

which capture 90.7%  and 65.8% of the total observed spatio-temporal variability. The modelling power 238 

is lowest for FRP (NSE = -1.92), which might be related to the large number of  FRP records below the 239 

LOR (38%). Similar to FRP, poorer model performance is also observed for NOx and TSS, with NSE 240 
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values of 0.216 and 0.225, where the proportion of below-LOR samples were 17.3% and 15%, 241 

respectively. When evaluated against the entire dataset (i.e., including both below- and above LOR 242 

data), the models explain 19.9% (FRP) to 88.6% (EC) of spatio-temporal variability (Table 1). Model 243 

performances for FRP, NOx and TSS improve notably compared with previous evaluation on above-244 

LOR data. However, FRP, NOx and TSS remain as the three constituents that are most difficult to 245 

predict. We further discuss the possible factors influencing their model performance in Sect. 4.2. 246 

 247 

Figure 2. Performance of the spatio-temporal models for each of the six constituents, 248 

represented by the simulated and observed concentrations of above-LOR records across all 102 249 

calibration sites, in Box-Cox transformed space. Darker regions represent denser distribution of 250 
simulation and observation points. Dashed red lines show the 1:1 lines whereas dashed blue lines 251 

show the LOR levels. For each constituent, the percentage of data below the LOR and the model 252 

performance (NSE) are also specified.   253 

Table 1. Comparison of model performance for all records and only the above-LOR records for 254 

each constituent. 255 

 256 

When simulating the site-level mean concentrations, the spatio-temporal models generally show good 257 

abilities to capture variability across sites for all constituents (Fig. 3). The highest model performance 258 

is for EC (explaining 94.7% of spatial variability) and lowest performance is for FRP (explaining 259 

44.2% spatial variability). The relative abilities of models to represent spatial variability in different 260 
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constituents are generally consistent with their capacities to capture spatio-temporal variability (Table 261 

1). 262 

 263 

Figure 3. Model fit for site-level mean concentration at the 102 calibration sites, for the selected 264 
six constituents, in Box-Cox transformed space. The NSE for each constituent is also show and 265 

dashed red lines show the 1:1 lines.   266 

3.2 Model sensitivity to calibration sites and periods 267 

This section presents model sensitivity to different calibration sites and periods of record (as detailed in 268 

Sect. 2.4). Note that in these evaluations, the FRP model is not a focus due to the poor model 269 

performance observed in Sect. 3.1.  270 

We first compare the performance of each spatio-temporal model fitted with the full dataset with those 271 

obtained from the five corresponding “partial” models that were calibrated to only 80% of the 272 

monitoring sites. Across constituents, the calibration performances obtained from the full dataset are 273 

comparable with the five models calibrated with 80% of the sites (calibration dataset). In addition, each 274 

pair of calibration and validation performance is highly consistent. In either comparison, the 275 

corresponding differences in NSE are within 0.1 (Table 2, see Figs. S1 to S6 in the Supplementary 276 

Material for detailed fitting plots for the partial calibration/validation). These suggest that the spatio-277 

temporal model performance are highly robust and remain unaffected by the choice of calibration sites.  278 
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Table 2. Comparison of model performances (as NSE) of the full model (Column 2) and the five 279 

partial models (Columns 3 to 7) with each calibrated to 80% randomly selected monitoring sites. 280 

In Columns 3 to 7, the top row showing calibration performance and the bottom row showing 281 

the validation performance (i.e. at the 20% sites that were not used for calibration). 282 
 283 

The performance of the full model for each constituent is also compared with that of the three models 284 

calibrated to the pre-, during and post-drought periods. In general, we observe consistent performance 285 

for each constituent, across calibrations to the three periods of contrasting hydrological conditions 286 

(Table 3, see Figs. S7 to S12 in the Supplementary Material for detailed model fittings). One notable 287 

common pattern is that the performance for calibration and validation is more consistent for the 288 

drought period than either the pre- and post-drought periods. However, this is most likely explained by 289 

relative sizes of the calibration data sets, which are 3, 13 and 5 years for the pre-, during and post-290 

drought periods respectively. Of all constituents (excluding FRP), TSS shows greater differences in 291 

model performances across periods – especially when comparing the pre-drought calibration with its 292 

validation. Fig. 4 shows the corresponding TSS model fit as represented by the site-level mean 293 

concentrations for the three calibration/validation datasets. Notably, when calibrated to the pre-drought 294 

period and validated on both the during- and post-drought periods, the model over-estimates a majority 295 

of the data (Fig. 4 (b)); and when calibrated to the during-drought period, it slightly under-estimates 296 

pre- and post-drought period TSS (Fig. 4 (d)).  297 

Table 3. Comparison of model performances (as NSE) of the full model and the three models 298 

that were calibrated to the pre-drought (1994-1996), drought (1997-2009) and the post-drought 299 

(2010-2014) periods. For each of the models, the calibration performance is shown on the top 300 

row and the validation performance (i.e. over the periods that were not used for calibration) is 301 
shown on the bottom row. 302 

 303 
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 304 
Figure 4. Comparison of the TSS model performance, as the simulated against observed site-305 

level mean concentrations in Box-Cox transformed space. The left column shows calibration 306 

performance for the model calibrated to the pre-drought (1994-1996), drought (1997-2009) and 307 
the post-drought (2010-2014) periods, respectively; the right column shows the corresponding 308 

validation performance for each period. See Sect. 2.4 for details of the calibration and validation 309 

approach. 310 

 311 

The potential impacts of drought on TSS dynamics are further illustrated with the performance of the 312 

full spatio-temporal model over the pre-, during and post-drought periods (Fig. 5). Both the during- 313 

and post-drought periods have consistently good performances, while the model underestimates the 314 
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majority of sites for the pre-drought period. This is consistent with Fig. 4 in suggesting a systematic 315 

decrease in TSS concentration since the drought. The better performance of the full model during and 316 

after drought (Fig. 5) can be a results of calibration period of the full spatio-temporal model – between 317 

1994 and 2014 – which was dominated by the during- and post-drought periods; consequently, the full 318 

spatio-temporal model can be largely defined by observed TSS dynamics during and after the drought.  319 

In summary, Figs. 4 and 5 suggest that since the drought, TSS concentrations experienced a large-320 

scale downward shift compared to the pre-drought period, under otherwise identical spatial and 321 

temporal conditions. Such a shift indicates changes in the relationships between TSS and its key 322 

spatial and temporal controls since the start of the drought. Some possible causes are further discussed 323 

in Sect. 4.3. 324 

 325 

Figure 5. Comparison of the performance of the full spatio-temporal TSS model across a) pre-326 

drought (1994-1996), b) during drought (1997-2009) and c) post-drought (2010-2014) periods, as 327 

represented by the simulated against observed site-level mean concentrations in Box-Cox 328 
transformed space. 329 

4. Discussion 330 

4.1 Implications for statistical water quality modelling  331 

Our spatial-temporal water quality models are able to capture the majority of observed variability across 332 

the 102 sampling locations in Victoria (Sect. 3.1); the model performances also allow us to explore some 333 

limitations of the modelling framework. The greatest limiting factor for model performance seems to be 334 

when high proportions of LOR data are present. As shown in Fig. 2 and Table 1, model performance is 335 

best for TKN and EC, where proportions of below-LOR records are low. For constituents where the 336 

LOR records occupy greater proportions of the entire dataset, we observe poorer model performances 337 

(e.g. FRP). As illustrated in Fig. 2, the FRP calibration data have a clear left-truncation pattern resulted 338 
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from removing a large proportion of below-LOR data. This substantially increased the degrees of 339 

skewness and discontinuity of the data, essentially violating the assumption of linear modelling of 340 

continuous data, and thus limiting the performance of the spatio-temporal model. It is worth noting that 341 

in this study, since we modelled spatial and temporal variabilities in an integrated manner, the model 342 

may compensate representation of the individual components of spatial and temporal variability to 343 

improve fitting to the overall variability during calibration. Consequently, in this spatio-temporal 344 

modelling framework, large presence of below-LOR data can limit the accurate representation of both 345 

variability components. 346 

Figure 2 highlights another possible influence on model performance, which is a combination of our 347 

inability to analyse low concentrations and the limited resolution of these low-concentration 348 

measurements due to heavy transformation in data processing. This is evidenced by visually inspecting 349 

the fittings which show distinct “categorical” behaviour for low concentrations for some constituents. 350 

This “categorical” issue impacts the six constituents to different extents, ranking from the strongest as: 351 

FRP, TSS, TP, NOx, TKN and EC – a ranking that is broadly aligned with the degree of lacking model 352 

performance for these constituents. Similar to the below-LOR records, when these categorical values 353 

are present in large proportions of the full records (e.g. TSS and FRP), they can also violate the linear 354 

model assumptions and cause performance deterioration. This issue could be overcome by alternative 355 

model structures that explicitly account for truncated data. For example, Wang and Robertson (2011) 356 

and Zhao et al. (2016) illustrated an approach to resolving the discontinuity of the likelihood estimation 357 

in modelling fitting to data with presence of zero values, which can be potentially extended to improve 358 

fitting for the categorical levels at low concentrations.  359 

In addition, our current models are empirical relationships which are likely unable to represent complex  360 

biogeochemical processes. For example, performances for FRP and NOx might be limited because: 1) 361 

the linear model structure can over-simplify constituent dynamics due to biogeochemical processes that 362 

are often highly non-linear; 2) the model may not include parameters that can adequately represent 363 

relevant biogeochemical processes (due to the lack of these data). To better capture changes in reactive 364 

constituents, greater consideration of and data representing biogeochemical processes may be required 365 

to address nutrient cycling including denitrification, ammonification and mineralisation (Granger et al.,  366 
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2010). Therefore, possible ways to improve the statistical modelling of non-conservative constituents 367 

are: 1) alternative non-linear statistical model structures; or 2) inclusion of parameters to better represent 368 

biogeochemical processes.  369 

Lastly, it is worth noting that our results are presented in the transformed scale for which the spatio-370 

temporal models were developed and the statistical assumptions hold (see details on data transformation 371 

in Sect. 2.2). Model performance is heavily affected when simulated model outputs are back-372 

transformed to the measurement scale (see Figs. S13 in the Supplementary Information). However, our 373 

models are very useful in representing and predicting proportional changes in concentrations, which 374 

adds important information for assessing and managing catchment water quality. For example, an 375 

increase of 1 mg L-1 in suspended solids would be alarming in pristine streams and/or periods of good 376 

water quality, while having much less impact on highly polluted conditions. The transformed models 377 

developed in this study can help managers to understand these proportional changes to identify critical 378 

locations and periods of key water quality concerns.  379 

4.2 Implications for water quality monitoring programs  380 

Within the current spatio-temporal models, water quality temporal variability is based on monthly 381 

monitoring data. This suggests potential oppourtunities to further strengthen the model capacity to 382 

explain temporal variability by utilizing data with higher temporal resolution. This approach can be 383 

supported by recent developments that significantly improved the accessibility of high frequency water 384 

quality monitoring data (Bende-Michl and Hairsine, 2010;Outram et al., 2014;Lannergård et al.,  385 

2019;Pellerin et al., 2016). Another potential development is to use remote sensing data to augment low 386 

frequency sampled data with higher frequency remotely sensed estimates e.g. for sediments and 387 

nutrients (Glasgow et al., 2004;Ritchie et al., 2003). Alternatively, where high frequency data are lacking 388 

for the target constituent, high frequency proxy data could also be utilized to enhance the understanding 389 

obtained from low frequency samples. For example, turbidity can be used as surrogate for sediments 390 

and nutrients (Schilling et al., 2017;Robertson et al., 2018;Lannergård et al., 2019). Currently, 391 

continuous turbidity data are available from Australia state agencies, such as the Victorian Water Quality 392 

Monitoring Network database (Department of Environment Land Water and Planning Victoria, 2016) 393 

and the NSW Water information database (WaterNSW, 2018), and collated at national level in the 394 
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Bureau of Meteorology’s Water Data Online portal (Bureau of Meteorology, 2019). These datasets may 395 

have great potential to enhance the temporal resolutions of records for other key water quality 396 

constituents (e.g. nutrients and sediments).  397 

Changes in land management over time (e.g. tillage, fertiliser application, irrigation) are currently not 398 

considered as predictors of water quality temporal variability. This is due to a lack of availability and/or 399 

inconsistency of available data. However, changes in land use management practices can occur over 400 

short time periods, which  can lead to increases in pollutant sources and changes to runoff generation 401 

processes (e.g. Tang et al., 2005;DeFries and Eshleman, 2004;Smith et al., 2013). Therefore, model 402 

performance can potentially be further improved by increased capacities in the monitoring of temporal 403 

patterns of land management.   404 

4.3 Potential impacts of long-term drought on water quality dynamics 405 

Results of model calibration and validation to different time periods suggest a systematic decrease in 406 

TSS concentrations since the prolonged drought, in comparison with the pre-drought period under the 407 

same spatial and temporal conditions. Such a shift is not observed for any other five constituents 408 

analysed (nutrients and salts) (Sect. 3.2). 409 

In the literature, impacts of the Millennium Drought on the hydrology and runoff regimes of south-410 

eastern Australia are well understood (van Dijk et al., 2013;Leblanc et al., 2012;Saft et al., 2015). 411 

However, less is known about how this significant and prolonged drought event has impacted water 412 

quality (Bond et al., 2008). Previous studies on other drought events around the world mainly focused 413 

on changes in water quality as responses to the reduced streamflow during drought. For examples , 414 

reduction in sediment levels have been reported during drought, due to lower erosion from the 415 

contributing catchment and lower rates of solid transport associated with reduced flows (Murdoch et al.,  416 

2000;Caruso, 2002). At a more local scale, increasing sediment concentrations during droguht have also 417 

been observed in streams adjscent to land with high densities of livestock and bushland, which both 418 

constantly contribute to sediment load during drought, leading to elevated concentrations due to lower 419 

dilution rate (Caruso, 2002). Similarly to sediments, the impact of droughts on stream nutrient and salt 420 

concentrations were also commonly understood as responses to reduced runoff generation and 421 
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streamflow. Nutrient concentrations typically decrease during droughts in catchments with no 422 

significant point-source pollution (Mosley, 2015), as nutrient leaching and overland flow are reduced  423 

(Caruso, 2002). In contrast, catchments with significant point-source pollution generally experience 424 

water quality deterioration during drought due to reduced dilution (van Vliet and Zwolsman, 425 

2008;Mosley, 2015). For salinity, concentration often increases during drought with reduced dilution 426 

and increased evaporation (Caruso, 2002), particularly for catchments that are more influenced by saline 427 

groundwater input where drought can increase the relative contribution of saline groundwater input 428 

(Costelloe et al., 2005).  429 

However, our findings highlight other possible pathways on how drought can affect stream water 430 

quality. The results suggest that the prolonged drought induced changes in sediment dynamics i.e. 431 

changes of relationships between sediments and its predictors (Figs. 4 and 5). In contrast to sediments, 432 

our models for nutrients and salts maintain consistent performance for different drought and non-drought 433 

periods, suggesting no clear shifts in dynamics. A few studies have also reported changes in the 434 

concentration-discharge relationships for sediments and nutrients. Specifically, these relationships 435 

changed from high- to low-flow conditions (Zhang, 2018;Moatar et al., 2017), as well as from drought 436 

to the recovery period (Burt et al., 2015). However, effects of extended multi-year droughts on the 437 

concentration-discharge relationships are less explored. Furthermore, there is also a lack of 438 

comprehensive assessments on the change of relationships between water quality and other relevant 439 

controls (e.g. water temperature, land cover etc.) during extended drought over large geographica l 440 

regions. Our findings highlight great oppourtunities to use this dataset to further investigate the impacts 441 

of prolonged droughts on water quality dynamics, especially the changes in relationships between TSS 442 

and each of its key controls across multiple catchments. 443 

In addition, we acknowledge that our ability to represent the pre- and post-drought conditions in this 444 

study may be limited by the record length, since only 2 years of pre-drought and 4 years of post-drought 445 

data were available. Once longer records build up, they will enable us to update our understanding of 446 

the impact of this prolonged drought. We would be also able to conduct more sophisticated 447 

investigations, such as comparing the impacts of long-term droughts versus individual dry and wet years. 448 

Addressing these research questions are particularly important in a changing climate that will be 449 
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characterized by lower streamflows and possibly a shift towards more intermittent flows in many parts 450 

of the world (Saft et al., 2015;Chiew et al., 2014;Ukkola et al., 2015). 451 

5. Conclusions 452 

Using long-term stream water quality data collected from 102 sites in south-eastern Australia, we 453 

developed a Bayesian hierarchical statistical model to analyse the spatio-temporal variabilities in six 454 

key water quality constituents: TSS, TP, FRP, TKN, NOx and EC. The spatio-temporal models are 455 

capable of predicting future water quality changes in non-monitored locations under similar conditions 456 

to the historical period we investigated. A notable shift in TSS dynamics is observed since the extended 457 

drought in the study region, which highlights potential oppourtunities for further research to better 458 

understand the impact of this significant drought event on water quality.   459 

Despite the promising performance of these models, the results also illustrate areas of further 460 

improvement, both in the modelling framework but also in the monitoring of water quality. In improving 461 

the modelling framework, alternative statistical approaches could be considered to reduce the impact of 462 

below detection limit and low concentration data on model performance. In addition, the models could 463 

be extended to take into account some key biogeochemical processes to better represent spatial-temporal 464 

variability in non-conservative constituents (e.g., FRP or NOx). To further enhance the performance of 465 

the current models, we recommend that future water quality monitoring programs be enhanced with: 1) 466 

collection and assimilation of high-frequency sampling data to enhance the temporal resolution of water 467 

quality data; and 2) more frequent monitoring of changes in land use intensity and management to be 468 

able to include these parameters in the model. These improvements will be very helpful to operational 469 

catchment management and mitigation. 470 

Data availability 471 

All data used in this study were extracted from public domain. All stream water quality data were 472 

extracted from the Victorian Water Measurement Information System (via http://data.water.vic.gov.au/, 473 

provided by the Department of Environment Land Water and Planning Victoria). The catchments 474 

corresponding to these water quality monitoring sites were delineated using the Geofabric tool provided 475 

by the Bureau of Meteorology, via ftp://ftp.bom.gov.au/anon/home/geofabric/. We have listed the 476 
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Tables  690 

Table 1. Comparison of model performance for all records and only the above-LOR records for 691 
each constituent. 692 

Constituent Above-LOR records only All records 

TSS 0.225 0.397 

TP 0.433 0.445 

FRP -1.920 0.199 

TKN 0.658 0.630 

NOx 0.216 0.382 

EC 0.907 0.886 

 693 
Table 2. Comparison of model performances (as NSE) of the full model (Column 2) and the five 694 

partial models (Columns 3 to 7) with each calibrated to 80% randomly selected monitoring sites. 695 

In Columns 3 to 7, the top row showing calibration performance and the bottom row showing 696 

the validation performance (i.e. at the 20% sites that were not used for calibration). 697 
Constituent Full model 80% sites 

split 1 

80% sites 

split 2 

80% sites 

split 3 

80% sites 

split 4 

80% sites 

split 5 

TSS 0.397 0.406 0.431 0.390 0.428 0.423 

0.348 0.441 0.443 0.446 0.434 

TP 0.445 0.440 0.422 0.440 0.472 0.456 

0.386 0.444 0.454 0.449 0.444 

FRP 0.199 0.141 0.219 0.244 0.216 0.177 

0.041 0.350 0.337 0.356 0.344 

TKN 0.630 0.664 0.643 0.630 0.658 0.669 

0.639 0.589 0.581 0.584 0.587 

NOx 0.382 0.410 0.464 0.438 0.476 0.466 

0.419 0.593 0.603 0.597 0.597 

EC 0.886 0.895 0.894 0.875 0.900 0.892 

0.796 0.828 0.837 0.828 0.826 

 698 

Table 3. Comparison of model performances (as NSE) of the full model and the three models 699 

that were calibrated to the pre-drought (1994-1996), drought (1997-2009) and the post-drought 700 
(2010-2014) periods. For each of the models, the calibration performance is shown on the top 701 

row and the validation performance (i.e. over the periods that were not used for calibration) is 702 

shown on the bottom row. 703 
Constituent Full model Pre-drought 

calibration 

During drought 

calibration 

Post-drought 

calibration 

TSS 0.397 0.495 0.399 0.499 

0.208 0.402 0.390 

TP 0.445 0.477 0.438 0.525 

0.421 0.474 0.411 

FRP 0.199 -1.336 0.187 0.204 

-1.406 0.197 0.024 

TKN 0.630 0.649 0.650 0.711 

0.566 0.648 0.610 

NOx 0.382 0.443 0.426 0.509 

0.394 0.471 0.393 

EC 0.886 0.854 0.901 0.901 

0.887 0.873 0.884 

 704 
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