
1 
 

 

A data-based predictive model for spatio-temporal 1 

variability in stream water quality  2 

Danlu Guo1, Anna Lintern1,2, J. Angus Webb1, Dongryeol Ryu1, Ulrike Bende-Michl3, Shuci Liu1, 3 

Andrew William Western1 4 

1 Department of Infrastructure Engineering, The University of Melbourne, Parkville, VIC Australia;  5 

2 Department of Civil Engineering, Monash University, Clayton, VIC Australia 6 

3 Bureau of Meteorology, Parkes, ACT Australia. 7 

Corresponding author’s email: danlu.guo@unimelb.edu.au  8 

  9 



2 
 

 

Abstract 10 

Our current capacity to model stream water quality is limited particularly at large spatial scales across 11 

multiple catchments. To address this, we developed a Bayesian hierarchical statistical model to simulate 12 

the spatio-temporal variability in stream water quality across the state of Victoria, Australia. The model 13 

was developed using monthly water quality monitoring data over 21 years, across 102 catchments, which 14 

span over 130,000 km2. The modelling focused on six key water quality constituents: total suspended 15 

solids (TSS), total phosphorus (TP), filterable reactive phosphorus (FRP), total Kjeldahl nitrogen 16 

(TKN), nitrate-nitrite (NOx), and electrical conductivity (EC). The model structure was informed by 17 

knowledge of the key factors driving water quality variation, which had been identified in two preceding 18 

studies using the same dataset. Apart from FRP, which is hardly explainable (19.9%), the model explains 19 

38.2% (NOx) to 88.6% (EC) of total spatio-temporal variability in water quality. Across constituents, 20 

the model generally captures over half of the observed spatial variability; temporal variability remains 21 

largely unexplained across all catchments, while long-term trends are well captured. The model is best 22 

used to predict proportional changes in water quality in a Box-Cox transformed scale, but can have 23 

substantial bias if used to predict absolute values for high concentrations. This model can assist 24 

catchment management by (1) identifying hot-spots and hot moments for waterway pollution; (2) 25 

predicting effects of catchment changes on water quality e.g. urbanization or forestation; and (3) 26 

identifying and explaining major water quality trends and changes. Further model improvements should 27 

focus on: (1) alternative statistical model structures to improve fitting for truncated data, for constituents 28 

where a large amount of data below the detection-limit; and (2) better representation of non-conservative 29 

constituents (e.g. FRP) by accounting for important biogeochemical processes.  30 
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1. Introduction 35 

Deteriorating water quality in aquatic systems such as rivers and streams can have significant 36 

environmental, economic and social ramifications (e.g. Whitworth et al., 2012;Vörösmarty et al., 37 

2010;Qin et al., 2010;Kingsford et al., 2011). Reducing these impacts requires effective management 38 

and mitigation of poor water quality; however, high variability in water quality both across space and 39 

time reduces our ability to accurately assess the status of water quality and to develop effective 40 

management strategies. Thus, improved modelling frameworks to predict and interpret this variability 41 

would be useful for water quality management (Chang, 2008;Ai et al., 2015;Zhou et al., 2012).  42 

Water quality conditions can vary across individual events, as well as at daily, seasonal and inter-annual 43 

scales at an individual location (Arheimer and Lidén, 2000; Kirchner et al., 2004; Larned et al., 2004; 44 

Pellerin et al., 2012; Saraceno et al., 2009). Water quality conditions also typically differ substantially 45 

across locations (Meybeck and Helmer, 1989;Chang, 2008;Varanka et al., 2015;Lintern et al., 2018a). 46 

These variabilities in stream water quality are driven by three key mechanisms: (1) source, which defines 47 

the total amount of constituents being available in a catchment; (2) mobilization, which detaches 48 

constituents (both in particulate and dissolved forms) from their sources via processes such as erosion 49 

and biogeochemical processing; and (3) delivery of mobilized constituents from catchments to receiving 50 

waters via multiple hydrologic pathways including surface and subsurface flow (Granger et al., 2010). 51 

Spatial variability in stream water quality is driven by human activities within catchments (e.g., land use 52 

and management, vegetation cover etc.) (Lintern et al., 2018a;Carey and Migliaccio, 2009;Giri and Qiu, 53 

2016;Heathwaite, 2010), along with natural catchment characteristics such as climate, geology, soil 54 

type, topography and hydrology (Hrachowitz et al., 2016;Poulsen et al., 2006;Sueker et al., 55 

2001;Onderka et al., 2012). At the same time, temporal shifts in water quality are also influenced by 56 

changes in pollutant sources, such as land use and land management including urbanization, agriculture 57 

and vegetation clearing (Ren et al., 2003;Smith et al., 2013;Ouyang et al., 2010). In addition, water 58 

quality can also vary in time with variations in the mobilization and delivery processes, which are largely 59 

driven by the hydro-climatic conditions at a catchment, such as streamflow (Ahearn et al., 60 

2004;Mellander et al., 2015;Sharpley et al., 2002;Zhang and Ball, 2017), the timing and magnitude of 61 

rainfall events (Fraser et al., 1999;Miller et al., 2014) and temperature (Bailey and Ahmadi, 2014).  62 
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As abovementioned, we have good understanding of the key controls for variations in water quality, 63 

albeit in an isolated, idealized context. We still lack a sound understanding of how relationships between 64 

specific landscape characteristics and water quality can shift with influences from other landscape 65 

characteristics, and how the drivers of temporal variability in water quality can interact and vary across 66 

large spatial scales (Musolff et al., 2015;Lintern et al., 2018a;Ali et al., 2017). In contrast, current 67 

detailed understanding have been primarily based on field studies at small scales with detailed 68 

information on specific temporal drivers ranging from hydrologic conditions to detailed management 69 

decisions such as fertilizer rates and application timing (Smith et al., 2013;Poudel et al., 2013;Adams et 70 

al., 2014). While operational weather observation networks, stream gauging networks and remote 71 

sensing can provide some of this information, developing a large-scale understanding of water quality 72 

patterns across catchments would ideally also involve an extensive suite of management information 73 

that substantially exceeds what is currently available. 74 

Due to the limited understanding of large-scale water quality patterns, we currently lack the capacity to 75 

model spatio-temporal variabilities in water quality at large scales across multiple catchments. This 76 

hinders our ability to inform the development of effective policy and mitigation strategies over large 77 

regions. Specifically, conceptual or physically-based water quality models are typically limited by the 78 

simplification of physical processes such as flow pathways (Hrachowitz et al., 2016). Furthermore, 79 

practical implementation of these models can be also limited by the intensive data requirements for 80 

calibration and validation, particularly for large regions with highly heterogeneous catchment conditions 81 

(Fu et al., 2018;Abbaspour et al., 2015). In contrast, when performed over large geographical regions, 82 

statistical water quality models are generally more capable of simulating water quality variability while 83 

requiring less detailed information and thus effort for implementation. However, existing statistical 84 

models often focus only on either the spatial variation of time-averaged water quality conditions 85 

(Tramblay et al., 2010;Ai et al., 2015) or the temporal variation at individual locations (Kisi and Parmar, 86 

2016;Kurunç et al., 2005;Parmar and Bhardwaj, 2015), which often limits their value as practical 87 

management tools. Modelling the spatio-temporal variability simultaneously remains challenging over 88 

long time periods and large regions.  89 

Accordingly, this research attempts to bridge the gap between fully-distributed physically-based water 90 
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quality models and data-driven statistical approaches. We aim to develop a process-informed, data-91 

driven model to predict spatio-temporal changes in stream water quality over a large region consisting 92 

of multiple catchments. Specifically, this model was established using long-term (21 years) stream water 93 

quality observations across 102 catchments in Australia, with an aggregate catchment area of 130,000 94 

km2. To obtain the necessary understanding of process drivers required to develop this model, two 95 

preceding studies were conducted on the same dataset to identify the key drivers for the spatial and 96 

temporal variability of water quality, respectively (Lintern et al., 2018b; Guo et al., 2019). The aim of 97 

this study is to develop an integrated spatio-temporal model using the previously-identified spatial and 98 

temporal predictors, and to then assess the performance of this model. Spatio-temporal variability of 99 

water quality was modelled using a novel Bayesian hierarchical approach which can jointly account for 100 

both variability components, including accounting for varying temporal water quality dynamics between 101 

catchments. This modelling approach also has relatively low requirement for input data, which keeps 102 

the modelling detail commensurate with the level of data availability. During the model development, 103 

we also obtained additional understanding on the patterns of spatial variations in the effects of each 104 

temporal predictor. The model can potentially provide useful information for large-scale catchment 105 

management, assessment and policy making, such as testing major changes in land use patterns, 106 

informing pollution hot-spots, as well as identification and attribution of water quality trends and 107 

changes over time.  108 

2. Method 109 

We first discuss the process used to develop the integrated spatio-temporal model (Section 2.1). Sections 110 

2.1.1 and 2.1.2 introduces the statistical modelling framework and the data used for model development, 111 

respectively. The approaches to determine model structure was then introduced, which include the 112 

choice of key predictors (Section 2.1.3) and the calibration for model parameters (Section 2.1.4). Finally, 113 

the approaches to evaluate model performance and robustness are described in Section 2.2. 114 

2.1 Model development 115 

2.1.1 Spatio-temporal modelling framework 116 

A Bayesian hierarchical approach was used to model the spatio-temporal variability in stream water 117 

quality. The Bayesian approach enables the inherent natural stochasticity of water quality to be 118 
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incorporated into the model (Clark, 2005). A key strength of applying the hierarchical model structure 119 

to analyze spatio-temporal variability is that this structure enables the key controls of temporal 120 

variability in water quality to vary across locations (Webb and King, 2009;Borsuk et al., 2001). This 121 

variability has been found to be important in other study regions where the (temporal) solute export 122 

regime varies with catchment characteristics such as climate and land use (Musolff et al., 2015;Poor and 123 

McDonnell, 2007). 124 

The structure of the Bayesian hierarchical model is presented below in Eq. 1 to 6. Eq. 1 formulates the 125 

transformed constituent concentration (see Section 2.1.2 for justification) at time i and site j (𝐶𝑖𝑗) as a 126 

normally distribution with a mean 𝜇𝑖𝑗 and standard deviation 𝜎 representing inherent randomness.  127 

𝑪𝒊𝒋~𝑵(𝝁𝒊𝒋, 𝝈) (1) 

To represent spatio-temporal variability, 𝜇𝑖𝑗 is modelled as the sum of the site-level mean constituent 128 

concentration (𝐶𝑗̅) and the deviation from that mean at time i (∆𝑖𝑗) (Eq. 2).   129 

𝝁𝒊𝒋 =  𝑪̅𝒋 +  ∆𝒊𝒋 (2) 

To describe spatial variability, the site-level mean concentration at site j (𝐶𝑗̅) is modelled as a linear 130 

function of a global intercept (intC), and the sum of m catchment characteristics 𝑆1,𝑗 to 𝑆𝑚,𝑗 (e.g. land 131 

use, topography) weighted by their relative contributions to spatial variability (𝛽𝑆1 to 𝛽𝑆𝑚) (Eq. 3).   132 

𝑪̅𝒋 = 𝒊𝒏𝒕𝑪 + 𝜷𝑺𝟏 × 𝑺𝟏,𝒋 + 𝜷𝑺𝟐 × 𝑺𝟐,𝒋 + ⋯ + 𝜷𝑺𝒎 × 𝑺𝒎,𝒋 (3) 

The temporal variability, represented by the deviation from the mean (∆𝑖𝑗), is a linear combination of n 133 

temporal variables, 𝑇1,𝑖𝑗 to 𝑇𝑛,𝑖𝑗 (e.g., climate condition, streamflow, vegetation cover) (Eq. 4), at time 134 

i and site j.   135 

∆𝒊𝒋=  𝜷𝑻𝟏,𝒋 × 𝑻𝟏,𝒊𝒋 + ⋯ + 𝜷𝑻𝒏,𝒋 × 𝑻𝒏,𝒊𝒋 (4) 

The selection of key spatial and temporal predictors for the model has been performed in our two 136 

preceding studies (Lintern et al., 2018b; Guo et al., 2019) and is briefly described in Section 2.1.3. Eq. 137 

1 to 4 enable the model to separately represent the spatial and temporal variability in water quality; 138 

however, there is still a further step required to make the model fully spatio-temporal (i.e. being able to 139 

predict over both time and location). Specifically, in Guo et al. (2019), clear spatial variation was 140 

observed in the relationships between water quality and its key temporal predictors (i.e. in the 𝛽𝑇𝑁,𝑗 in 141 
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Eq. 4). To be able to model multiple catchments across a large spatial area simultaneously, we must 142 

account for differences in these temporal influences across sites. To do this, the effect of each temporal 143 

variable at site j (𝛽𝑇𝑁,𝑗 with N in 1,2, … n) is drawn from a distribution with a mean of 𝜇𝛽𝑇𝑁,𝑗 (Eq. 5), 144 

which is then modelled with a linear combination of two additional chatchment characteristics, 𝑆𝑇𝑁1,𝑗 145 

and 𝑆𝑇𝑁2,𝑗 (Eq. 6). Details of the selection for these two additional predictors are presented in Section 146 

2.1.3. 147 

𝜷𝑻𝑵,𝒋~𝑵(𝝁𝜷𝑻𝑵,𝒋, 𝝈𝜷𝑻), 𝒇𝒐𝒓 𝑵 𝒊𝒏 𝟏, 𝟐, … 𝒏 (5) 

𝝁𝜷𝑻𝑵,𝒋 = 𝒊𝒏𝒕𝜷𝑻𝑵 + 𝜷𝑺𝑻𝑵𝟏 × 𝑺𝑻𝑵𝟏,𝒋 + 𝜷𝑺𝑻𝑵𝟐 × 𝑺𝑻𝑵𝟐,𝒋 (6) 

2.1.2 Data collection and processing 148 

The Bayesian hierarchical model was developed with 21 years of monthly stream water quality 149 

observations at 102 catchments in the state of Victoria, Australia (aggregate catchment area > 130,000 150 

km2). The collection and processing of the data are detailed in previous publications that worked with 151 

the same dataset (Lintern et al., 2018b; Guo et al., 2019). Briefly, stream water quality data were 152 

extracted from the Victorian Water Measurement Information System (Department of Environment 153 

Land Water and Planning (DELWP) Victoria, 2016b), which contains monthly grab samples of water 154 

quality at approximately 400 sites across Victoria. Water quality data sampled between 1994 and 2014 155 

at 102 sites were used to develop the model (Fig. 1). These sites and time period were chosen because 156 

they provided the longest consistent period of continuous records over the greatest number of monitoring 157 

sites. The catchments corresponding to these water quality monitoring sites were delineated using the 158 

Geofabric tool (Bureau of Meteorology, 2012), and have areas ranging from 5 km2 to 16,000 km2. The 159 

water quality parameters of interest were: total suspended solids (TSS), total phosphorus (TP), filterable 160 

reactive phosphorus (FRP), total Kjeldahl nitrogen (TKN), nitrate-nitrite (NOx) and electrical 161 

conductivity (EC). These parameters represent sediments, nutrients and salts, which are some of the key 162 

concerns for water quality managers in Australia and around the world. These water quality samples 163 

were collected following standard DELWP protocols (Australian Water Technologies, 1999) and 164 

analysed in National Association of Testing Authorities accredited laboratories. Note that in the 165 

sampling protocol, FRP is defined as ‘Reactive Phosphorus for a filtered sample to a defined filter size 166 

(e.g. RP(<0.45 µm))’, which is equivalent to the more widely-used terminology, SRP i.e. Soluble 167 

Reactive Phosphorus (Jarvie et al., 2002).    168 
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 169 

Figure 1. Map of (a) the 102 selected water quality monitoring sites and their catchment 170 
boundaries, with inserts showing the location of the state of Victoria within Australia; (b) annual 171 

average temperature and (c) annual precipitation and (d) elevation across Victoria. 172 

To compile a dataset for the potential spatial explanatory variables (i.e. predictors to explain spatial 173 

variability in water quality), a comprehensive literature review was conducted (Lintern et al., 2018a), 174 

which summarized the key catchment landscape characterisitics that are widely known to influence 175 

water quality. Further, as part of Lintern et al. (2018b), fifty potential explanatory catchment 176 

characteristics were selected, which included catchment land use, land cover, topographic, climatic, 177 

geological, lithological and hydrological catchment characteristics. These variables were derived using 178 

datasets obtained from Geoscience Australia (2004, 2011), the Bureau of Meteorology (2012), the 179 

Bureau of Rural Sciences (2010), Department of Environment Land Water and Planning Victoria (2016) 180 

and the Terrestrial Ecosystem Research Network (2016) (see Table S1 in the Supplementary Material 181 

for detailed variable names and data sources). We used a static set of land use data from 2005-2006 to 182 

represent the entire study period, as a preliminary analysis between 1996 and 2011 suggested less than 183 

1% changes in the key land uses in these catchments (i.e. agricultural, grazing, conservation). 184 

Nineteen potential temporal explanatory variables were included. Firstly, data of discharge (originally 185 

in ML d-1) and water temperature (°C) corresponding to the same timestamps for water quality 186 

observations were also extracted for each monitoring site over the study period (Department of 187 

Environment Land Water and Planning Victoria, 2016). Discharge was converted to runoff depth (mm 188 

d-1) for each catchment, and the average streamflows over 1, 3, 7, 14 and 30 days preceding the water 189 

quality sampling dates were calculated. In addition, we extracted gridded dataset from the Australian 190 
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Water Availability Project (AWAP) (Frost et al., 2016;Raupach et al., 2009, 2012) and Australian Water 191 

Resources Assessment Landscape (AWRA-L) model (Frost et al., 2016). These datasets were used to 192 

calculate catchment averaged values of daily average temperature (°C), daily rainfall (mm), antecedent 193 

rainfall (1, 3, 7, 14 and 30 days preceding sampling), dry spell (> 0.1mm rainfall) length in the antecedent 194 

14 days, daily actual evapotranspiration (ET) (mm), as well as soil moisture for the root-zone and the 195 

deep-zone (averaged volumetric content for shallower and deeper than 1m, respectively). In addition, 196 

catchment averaged monthly NDVI data were extracted from Advanced Very High Resolution 197 

Radiometer (AVHRR) Product (Eidenshink, 1992) and Moderate Resolution Imaging 198 

Spectroradiometer MOD13A3 (NASA LP DAAC, 2017). A summary of these datasets of temporal 199 

variables and their corresponding sources are in Table S2 in the Supplementary Material and details are 200 

provided in Guo et al. 2019.  201 

The raw input data were filtered and transformed to increase the data reliability, continuity and 202 

symmetry, making them more suitable for use in the linear spatio-temporal model structure (Eq. 3, 4 203 

and 6). For the filtering process, we first removed all water quality records with flags indicating quality 204 

issues. We also removed any values below the detection limit (DL), which was defined as the ‘minimum 205 

concentration detected for which there is 95% confidence of accuracy and therefore is accurate enough 206 

to report’ in the monitoring protocols for this dataset (Australian Water Technologies, 1999). This was 207 

because the uncertainty in values below the DL would be amplified after transformation, which would 208 

influence the subsequent model fitting. Furthermore, those undetectable low concentrations were of less 209 

interest for management purposes. Water quality records corresponding to days with zero flows were 210 

also excluded from further analyses.  211 

The transformation process was performed for each of the spatial catchment characteristics, temporal 212 

explanatory variables, as well as each water quality constituent to improve the symmetry of individual 213 

distributions. The log-sinh transformation (Wang et al., 2012) (Eq. 7) was used for all catchment 214 

characteristics, due to its ability to resolve the presence of zero values in several of the catchment 215 

characteristics (e.g., percentage area of individual land uses). The GA package in R (Luca Scrucca, 2019) 216 

was used to identify the log-sinh transformation parameters (a and b) for each spatial explanatory 217 

variable that minimized the data skewness (i.e. symmetry is maximized) across all 102 catchments.  218 



10 
 

 

𝑦𝑙𝑜𝑔−𝑠𝑖𝑛ℎ =
1

𝑏
log (sinh[𝑎 + 𝑏𝑦𝑟𝑎𝑤])   (7) 219 

In addition, all observed constituent concentrations and temporal explanatory variables were Box-Cox 220 

transformed (Box and Cox, 1964) (Eq. 8).  221 

𝑦𝐵𝑜𝑥−𝐶𝑜𝑥 = {
𝑦𝑅𝑎𝑤

𝜆 −1

𝜆
,    𝑓𝑜𝑟 𝜆 ≠ 0

𝑙𝑜𝑔𝑦,        𝑓𝑜𝑟 𝜆 = 0
    (8) 222 

For each variable, the optimal Box-Cox transformation parameter λ was identified using the car R 223 

package and a maximum likelihood-like approach. We first identified the optimal Box-Cox parameter λ 224 

using the data at each site (i.e. 21-year time-series). The averaged λ across all sites was then used to 225 

transform the data across all catchments together. This transformation approach ensured that all sites 226 

used a consistent transformation parameter. All transformation parameters used are summarized in 227 

Tables S3 and S4 in the Supplementary Material. The transformation process has greatly improved the 228 

data symmetry and thus suitability for use in a linear model (the quality of the transformations was 229 

assessed via visual inspection in Lintern et al., 2018b; Guo et al., 2019; and summarized in Figures S2, 230 

S4 and S6 in the Supplementary Material). 231 

2.1.3 Selection of key model predictors 232 

Key predictors for the model were selected in a process-informed and data-driven manner based on our 233 

two preceding studies (Lintern et al., 2018b; Guo et al., 2019). Lintern et al. (2018b) identified the best 234 

spatial predictors (𝑆1 to 𝑆𝑚 in Eq. 3) for the model, while the best temporal predictors across all sites 235 

(𝑇1 to 𝑇𝑛 in Eq. 4) have been identified in Guo et al., (2019). In both studies, the best predictors were 236 

selected using an exhaustive search approach (May et al., 2011;Saft et al., 2016), which considered all 237 

possible combinations of the potential predictors introduced earlier in this section. This selection 238 

approach required firstly fitting an individual model to all possible candidate predictor sets, and then 239 

comparing all fitted models to select a single best set of predictors. Alternative models were evaluated 240 

based on the Akaike Information Criterion (AIC) (Akaike, 1974) and Bayesian Information Criterion 241 

(BIC) (Schwarz, 1978) to ensure optimal balance between model performance and complexity.  242 

The best predictors to explain the spatial and temporal variabilities in each constituent are listed in Table 243 

1. Generally speaking, the key factors controlling the spatial variability in river water quality were land-244 

use and long-term climate conditions (Lintern et al., 2018b). Temporal variability was mainly explained 245 
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by temporal changes in streamflow conditions, water temperature and soil moisture (Guo et al., 2019). 246 

The potential mechanisms via which these key drivers influence water quality are discussed in details 247 

in these two previous studies. 248 

Table 1. Key factors affecting the spatial and temporal variability for each of six constituents, as identified 249 
in Lintern et al. (2018) and Guo et al. (2019b), respectively. 250 

 251 

Whilst the previous studies (Lintern et al. 2018b, Guo et al. 2019) identified the predictors for spatial 252 

and temporal variability respectively, they did not provide guidance on the predictors for spatial 253 

variability in the relationships between drivers of temporal variability and temporal water quality 254 

response (i.e. T in Eq 4). As such, the final step of the predictor selection process to develop the 255 

combined spatio-temporal model was to identify the key catchment characteristics that affect spatial 256 

variability in the hydroclimatic parameters driving temporal changers in water quality (βT1 to βTn in Eq. 257 

4, also right column in Table 1). This is achieved by selecting two spatial characteristics that are most 258 

closely related to the coefficient for each temporal predictor (𝑆𝑇𝑁1 and 𝑆𝑇𝑁2, Eq. 6) across all sites, 259 

where only two spatial characteristics were used to avoid over-fitting. Selection of these two spatial 260 

characteristics were based on a Spearman correlation analysis between the fitted parameter values of 261 

each temporal predictor variable and the fifty potential spatial explanatory variables (as mentioned 262 

earlier in this section), following three steps: 263 

1. from the 50 candidate spatial predictors, the one with the highest Spearman correlation with TN is 264 

selected as STN1, provided the correlation is statistically significant (p<0.05); 265 

2. the subset of remaining spatial predictors with spearman correlation with STN1 < 0.7 is found; and 266 

3. from this subset, the spatial predictor with the highest spearman correlation with TN is selected as 267 

STN2, provided the correlation has p<0.05; 268 

Steps 2 and 3 intended to avoid cross-correlations between 𝑆𝑇𝑁1  and 𝑆𝑇𝑁2 . The selected spatial 269 

characteristics that influence the temporal relationships in our model are presented and interpreted in 270 

Section 3.1. Note that the entire process to select 𝑆𝑇𝑁1  and 𝑆𝑇𝑁2  was performed with the fitted 271 

parameters for each predictor of the temporal variability obtained from Guo et al. (2019). 272 

2.1.4 Model calibration  273 

After identifying the spatial and temporal predictors for each constituent, as well as the spatial 274 
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characteristics which affect the strengths of each temporal predictor, the Bayesian hierarchical spatio-275 

temporal model was fitted for each constituent across all monitoring sites simultaneously. To achieve 276 

this, we used the R package rstan (Stan Development Team, 2018), which enabled both the sampling of 277 

parameter values from posterior distributions with Markov chain Monte Carlo (MCMC) and model 278 

evaluation. Constituent standard deviation (σ) was assumed to be drawn from a minimally informative 279 

prior half-normal of N(0,10) distribution truncated to only positive values (Gelman, 2006; Stan 280 

Development Team, 2018). The regression coefficient of each spatial predictor (βS1, βS2, …, βSm in Eq. 281 

3) was independently drawn from hyper-parameter distributions of N(βSM, σβSM). The site-level 282 

regression coefficients of the temporal predictors (βT1,j, βT2,j, …, βTn,j in Eq. 4, respectively) were 283 

sampled from the corresponding hyper-parameter distribution of N(µβTN, σβTN). The hyper-parameters 284 

were further assumed to be drawn from minimally informative prior distributions, following 285 

recommendations in Gelman (2006) and Stan Development Team (2019): for all the hyper-parameter 286 

means, a normal prior distribution of N(0,5) was used; for all the hyper-parameter standard deviations, 287 

a half-normal prior distribution of N(0,10) was used, which was truncated to only positive values. In 288 

each model run there were four independent Markov chains. A total of 20,000 iterations were used for 289 

each chain. Convergence of the chains was ensured by checking the Rhat value (Sturtz et al., 2005), 290 

which is a summary statistic on the convergence of the Bayesian models from the four Markov chains 291 

used in model calibration (Stan Development Team, 2018). Specifically, an Rhat value much greater 292 

than 1 indicates that the independent Markov chains have not been mixed well, and a value of below 1.1 293 

is recommended (Stan Development Team, 2018). 294 

2.2 Model performance evaluation and sensitivity analyses  295 

Performance evaluation of the model was undertaken on several aspects of the model results (Section. 296 

3.2). Since the model was calibrated in a Box-Cox transformation scale (see justification in Section 297 

2.1.2), the Box-Cox transformation scale was used for model evaluation to enable a clear investigation 298 

on the influences of a wide range of factors that can influence model performance. Detailed performance 299 

evaluations include: 300 

1. Ability to capture total spatio-temporal variability. Firstly, the simulations from the fitted model 301 

and the corresponding observed concentrations were compared at 102 sites altogether to 302 
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understand how the overall spatio-temporal variabilities were captured. For each constituent, 303 

this evaluation was performed with: 1) these above-DL data to focus only on data used for 304 

calibration (as detailed in Section. 2.1.2); and 2) the full dataset including the below-DL data 305 

(set to half of the DL of the specific constituent), to understand how well the model represents 306 

the full distribution of constituent concentrations. A good model performance when including 307 

the below-DL data would suggest that the calibrated model is transferable to below-DL data 308 

too. All performance assessments were based on both visual inspection of model fitting as well 309 

as the Nash-Sutcliffe efficiency (NSE), which quantified the proportion of variability that was 310 

explained by the model (Nash and Sutcliffe, 1970). 311 

2. Proportions of spatial and temporal variability explained. This involved a decomposition of the 312 

total observed variability using Eq. 2., into proportions contributed by spatial variability 313 

(variations in all site-mean concentrations from the grand average of site-mean concentrations) 314 

and temporal variability (variations in all concentrations from the corresponding site-mean 315 

concentrations). The corresponding modelled values were then used to calculate NSE for each 316 

variability component of each constituent. 317 

3. Ability to capture variation in ambient conditions across space, and temporal variation 318 

(including trends) across multiple catchments. These were evaluated by a) comparing all 319 

simulated and observed site-averaged long-term mean concentrations; and b) comparing the 320 

simulated and observed time-series and long-term trends at representative sites. Further to a), 321 

performance was also evaluated on a real measurement scale by first back-transforming all 322 

modelled sample concentrations, calculating the back-transformed site-level means and then 323 

compared those to the corresponding observations. A further analysis to b) was also performed 324 

by comparing the estimated Sen’s slope (Akritas et al., 1995) for the observations and 325 

simulations at all sites, and then computing the percentage of sites where the observed trends as 326 

indicated by the Sen’s slope have been correctly represented by the model. 327 

Additional evaluations of model sensitivity were conducted with calibration and validation on subsets 328 

of the full data (Section. 3.3), to understand model transferability and stability: 329 

1. Model sensitivity to the monitoring sites used for calibration. We randomly selected 80% of the 330 
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sites for calibration and used the remaining 20% for validation, and repeated this validation 331 

process 50 times. We compared all calibration and validation performances of these ‘partial 332 

models’ with each other, as well as with the performance of the full model, to obtain a 333 

comprehensive evaluation of the sensitivity of model performance to calibration sites. 334 

2. Model sensitivity to calibration data period. Since the study region was greatly influenced by a 335 

prolonged drought from 1997 to 2009 – known as the Millennium Drought (van Dijk et al., 336 

2013), we also investigated model robustness for before, during and after this drought period. 337 

Specifically, we calibrated the model to each pre-, during- and post-drought period (1994-1996, 338 

1997-2009 and 2010-2014, respectively) with model validation on the remaining data. For 339 

example, when calibrating to the pre-drought period (1997-2009), validation was performed on 340 

the merged during and post-drought period (1994-1996 plus 2010-2014). The corresponding 341 

calibration and validation performances were compared with each other as well as against that 342 

of the full model, to identify potential impacts of the drought on model robustness.  343 

3. Results 344 

3.1 Spatial variation in the impact of temporal factors  345 

The key controls of the spatial and temporal variations in water quality have been identified in our two 346 

preceding studies (Lintern et al. 2018b, Guo et al. 2019) and briefly summarized in Section 2.1.3. and 347 

are thus not discussed here. As also detailed in Section 2.1.3, to achieve full spatio-temporal predictive 348 

capacity, the model developed in this study considers the spatial variation in the strength of each 349 

temporal predictor by using two additional catchment spatial characteristics (𝑆𝑇𝑁1,𝑗 and 𝑆𝑇𝑁2,𝑗 in Eq. 350 

6). on the Spearman’s correlations. Here we focus on the most important temporal predictor for each 351 

constituent, streamflow, where Table 2 shows the two spatial characteristics identified that are most 352 

closely related to the spatial variation of the effects of impact of streamflow on water quality. The full 353 

list of the selected key catchment characteristics for all temporal predictors of each constituent is 354 

summarized in Table S5 and visualized in Figure S4. 355 

Table 2. The key catchment landscape characteristics that are related to the varying relationships of water 356 
quality and same-day streamflow across space, which were selected as the two predictors for the 357 

streamflow effect in our model. The corresponding Spearman’s correlation (ρ at p<0.05) between the 358 
effect of streamflow and each catchment characteristic is presented. 359 

TSS, TP and TKN show consistent patterns of the spatial variation in the effects of streamflow on water 360 
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quality, which are strongly driven by the differences in average rainfall conditions across catchments. 361 

Specifically, streamflow generally has a larger effect on water quality in catchments with higher average 362 

annual rainfall. Since the streamflow effects are positive for the majority of catchments (as shown in 363 

Figure S5), these correlations indicate that for the same increase in transformed streamflow, a greater 364 

increase in transformed concentrations of TSS, TP and TKN will occur at a catchment with higher annual 365 

average rainfall. Given that the Box-Cox lambda values (Table S4) are close to zero, the transformation 366 

is log-like and hence changes in transformed flow and concentration approximately correspond to 367 

proportional changes in the real values of flow and concentration. In contrast, for FRP, NOx and EC, the 368 

spatial patterns of streamflow effects are specific to each constituent. This difference in the model results 369 

between TSS, TP and TKN against the other constituents might be related to the distinct transport 370 

pathways of particulate and dissolved constituents. The former is predominantly related to surface flow 371 

and thus relies heavily on rainfall contribution. Dissolved constituents are likely transported along the 372 

subsurface pathway. Apart from streamflow, the spatial patterns in other key temporal drivers of water 373 

quality (e.g. antecedent streamflow, soil moisture etc.) are less consistent across different constituents 374 

(Figure S4).  375 

3.2 Model performance evaluation  376 

The spatio-temporal water quality models show varying performances between the constituents. When 377 

assessed with only the above-DL data (Fig. 2), the best performing models are those for EC and TKN, 378 

which capture 90.7% and 65.8% of the total observed spatio-temporal variability. The modelling 379 

performance is lowest for FRP, NOx and TSS, with NSE values of -1.92, 0.216 and 0.225, respectively. 380 

When evaluated against the entire dataset (i.e., including both below- and above DL data), the models 381 

explain 19.9% (FRP) to 88.6% (EC) of spatio-temporal variability (Table 3). Model performances for 382 

FRP, NOx and TSS improve notably compared with the previous evaluation of above-DL data, however, 383 

they remain as the three constituents that are most difficult to predict. We further discuss the possible 384 

factors influencing their model performance in Section 4.1. 385 
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 386 

Figure 2. Performance of the spatio-temporal models for each of the six constituents, 387 
represented by the simulated median concentrations and corresponding observations of above-388 

DL records across all 102 calibration sites, in Box-Cox transformed space. Darker regions 389 
represent denser distribution of simulation and observation points. Dashed red lines show the 390 
1:1 lines whereas dashed blue lines show the DL levels. For each constituent, the percentage of 391 

data below the DL and the model performance (NSE) are also specified. 392 

Table 3. Comparison of model performance for all records and only the above-DL records for 393 
each constituent. 394 

The model performance to predict spatial and temporal variability is summarized in Figure 3, which 395 

compares the observed and explainable variability for each of the spatial and temporal components 396 

(detailed in Section 2.1.4). Regarding the observed variability (lighter colours), EC is strongly 397 

dominated by spatial variability (91.8%), highlighting that within-site variation in water quality is 398 

minimal compared to between-site variation. To a lesser extent, spatial variability also contributes to 399 

major proportions of total variability for TP and TKN (60.8% and 66.6%, respectively). TSS, FRP and 400 

NOx are more influenced by temporal variability (57.4%, 56.6%, 60.5%, respectively). 401 

 402 
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 403 

Figure 3. Observed spatial and temporal variabilities as proportions of the total variability (total 404 
width of each bar, 100%). The dashed line differentiates temporal variability (left side) with 405 

spatial variability (right side), and the darker colours highlight the proportions of spatial and 406 
temporal variabilities that are explainable by the model. All values were estimated in Box-Cox 407 

transformed space. 408 

The explained variability (darker colours) show that, across all catchments, temporal variability is much 409 

more difficult to model compared with spatial variability. It also appears that a substantial part of the 410 

model’s overall performance is driven by its ability to capture spatial variability in ambient water quality 411 

conditions. For example, the models for TSS, FRP and NOx show poorer overall performance (Fig. 2, 412 

with NSE values of 0.225, -1.92 and 0.216, respectively)), because the total variability for each of these 413 

is dominated by temporal variability (57.4%, 56.6%, 60.5%, respectively), which largely remains 414 

unexplained by the model (Fig. 3). In contrast, the EC model shows a very good fit with 90.7% of total 415 

variability explained – 91.8% of the total observed variability is due to spatial variability, of which 416 

94.7% is explained by the model. Therefore, although the EC model can only explain a small portion of 417 

temporal variability (20% out of 8.2% of total variability), the overall model performance remains high.  418 

As highlighted in Fig. 3, the model has good capacity to capture spatial variability in water quality. This 419 

is further evaluated in Fig. 4 by comparing the simulated and observed site-level mean concentrations. 420 

The highest model performance is for EC and lowest performance is for FRP (explaining 94.7% and 421 

44.2% spatial variability, respectively). At the back-transformed scale, the model shows greater biases 422 

for sites with higher concentrations (approximately the highest 10% sites for each constituent) (Fig. 5). 423 

This is not surprising as the model was fitted to a Box-Cox transformed space that reduces focus on high 424 

values and increases the focused on low values. This compromised its ability to represent sites with 425 
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unusually high concentrations. The implications of the model having higher predictive capacity in the 426 

transformed scale is further discussed in Section. 4.1.   427 

 428 

Figure 4. Model fit for site-level mean concentration at the 102 calibration sites for six 429 
constituents, with the 95% lower and upper bounds of posterior simulations shown in vertical 430 

grey lines. All simulations and observations are presented in in Box-Cox transformed space. The 431 
NSE for each constituent is also shown and red dash lines show the 1:1 lines.   432 

 433 
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 434 

Figure 5. Back-transformation of the model simulations to the measurement scale emphasizes lack of fit 435 
for the highest concentrations, illustrated by simulated against observed site-level mean concentrations of 436 

each constituent in a back-transformed scale. The 95% lower and upper bounds of all posterior 437 
simulations shown in vertical grey lines. The NSE for each constituent is also shown and red dash lines 438 

show the 1:1 lines.   439 
 440 

As also noted in Fig. 3, the ability of the spatio-temporal model to explain temporal variability remains 441 

relatively limited. This is further explored in Fig. 6, where the observed and simulated time-series are 442 

presented for one monitoring site for each constituent, at which the model performance (NSE) was the 443 

highest. These results show that even for catchments where the model has the highest ability to capture 444 

temporal variability, the model consistently underestimated temporal variability for all constituents. 445 
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 446 

Figure 6. Model fit of the within-site (temporal) water quality variability, illustrated with the 447 
observed and simulated time-series for the best-performing site for each constituent. All values 448 
are presented in Box-Cox transformed space. The NSE for each constituent is also shown. The 449 

red line indicates the corresponding mean of all posterior simulations, while the pink bands 450 
show the corresponding 95% lower and upper bounds (only visible for FRP). 451 

Fig. 6 also illustrates that, although the model shows substantial underestimation of temporal variability 452 

within site, long-term temporal trends in the time-series are well captured at the best sites (except for 453 

FRP). Table 4 summarizes the ability of the model to capture observed trends across all 102 catchments 454 

for each constituent. In general, the model is able to capture observed trends in most sites for NOx and 455 

EC and for both positve and negative trends. For TP and TKN, positive trends are well captured while 456 

for TSS the negative trends are better captured.  457 

Table 4. Model ability to capture observed water quality trends across all monitoring sites for 458 
each constituent. The percentages of sites where observed positive and negative trends are 459 

captured by the model are presented separately. Values in brackets indicate numbers of sites 460 
where corresponding positive or negative trends are observed. For detailed estimation of these 461 

percentages please refer to Sect. 2.2. 462 

3.3 Model sensitivity analyses 463 

We first compare the performance of each spatio-temporal model fitted with the full dataset with those 464 

obtained from the 50 corresponding “partial” models that were calibrated to only 80% of the monitoring 465 

sites. Note that in this comparison, the FRP model was not assessed due to its poor performance (Section 466 

3.2). The calibration and validation results for the 50 partial models are summarized in Table 5 along 467 
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with the performance of the full model calibrated to all 102 sites (see Figs. S6 and S7 in the 468 

Supplementary Material for detailed comparison of model residuals of the partial calibration/validation). 469 

Across constituents, the calibration performance of the full model was comparable with the 50 partial 470 

models. Note the slightly higher calibration performance for the partial models of NOx compared to the 471 

full model. This seems to be related to the generally lower percentages of below-DL data in the 50 472 

randomly-chosen partial calibration datasets (14.1%-17.9%) compared to the full dataset (17.3%) – we 473 

further discuss the impacts of below-DL data on model performance in Section 4.1. In addition, model 474 

performance is highly consistent between corresponding calibration and validation, with most 475 

differences in NSEs less than 0.1. These suggest that the spatio-temporal model performance is highly 476 

robust and unaffected by the choice of calibration sites. 477 

Table 5. Comparison of model performances (as NSE) of the full model (Column 2) and the 50 478 
partial models (Columns 3 to 5) with each calibrated to 80% randomly selected monitoring sites. 479 

Columns 3 to 5 summarize the mean, minimum and maximum NSE values across the 50 runs, 480 
where for each constituent, the top row showing calibration performance and the bottom row 481 
showing the validation performance (i.e. at the 20% sites that were not used for calibration). 482 

 483 

The performance of the full model for each constituent is also compared with that of the three models 484 

calibrated to the pre-, during and post-drought periods. In general, we observe consistent performance 485 

for each constituent, across calibrations to the three periods of contrasting hydrological conditions 486 

(Table 6, see Figs. S8 to S13 in the Supplementary Material for detailed model fittings). One notable 487 

common pattern is that the performance for calibration and validation is more consistent during the  488 

drought period than either the pre- and post-drought periods. However, this is most likely explained by 489 

relative sizes of the calibration data sets, which are 3, 13 and 5 years for the pre-, during and post-490 

drought periods respectively.  491 

Of all constituents (excluding FRP), TSS shows greater differences in model performances across 492 

periods – especially when comparing the pre-drought calibration with its validation for the site-level 493 

mean concentrations (Fig. 7). Notably, when calibrated to the pre-drought period and validated on both 494 

the during- and post-drought periods, the validated model over-estimates most of the data (Fig. 7 (b)); 495 
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and when calibrated to the during-drought period, the validated model slightly under-estimates pre- 496 

and post-drought period TSS (Fig. 7 (d)).  497 

Table 6. Comparison of model performances (as NSE) of the full model and the three models 498 
that were calibrated to the pre-drought (1994-1996), drought (1997-2009) and the post-drought 499 
(2010-2014) periods. For each of the models, the calibration performance is shown on the top 500 

row and the validation performance (i.e. over the periods that were not used for calibration) is 501 
shown on the bottom row. See Section 2.1.4 for details of the calibration and validation 502 

approach. 503 

 504 
Figure 7. Comparison of the TSS model performance, as the simulated against observed site-505 
level mean concentrations in Box-Cox transformed space. The left column shows calibration 506 

performance for the model calibrated to the pre-drought (1994-1996), drought (1997-2009) and 507 
the post-drought (2010-2014) periods, respectively; the right column shows the corresponding 508 
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validation performance for each period. The 95% lower and upper bounds of simulations shown 509 
in vertical grey lines and red dash lines show the 1:1 lines.   510 

 511 

The potential impacts of drought on TSS dynamics are further illustrated with the performance of the 512 

spatio-temporal model (calibrated to the full dataset with all sites and all data from 1994 to 2014) over 513 

the pre-, during and post-drought periods (Fig. 8). Both the during- and post-drought periods have 514 

consistently good performances, while the model underestimates most sites for the pre-drought period. 515 

This is consistent with Fig. 7 in suggesting a systematic decrease in TSS concentration since the drought 516 

began. The better performance of the full model during and after drought (Fig. 8) can be a result of the 517 

calibration period of the full spatio-temporal model – between 1994 and 2014 – which was dominated 518 

by the during- and post-drought periods.  519 

In summary, Figs 7 and 8 together with Figs. S13-S17 suggest that whilst model performance for most 520 

constituents are not affected by the hydrological periods used for calibration and validation, the 521 

calibration period did have notable impact on TSS. Some possible causes are discussed in Section 4.3. 522 

 523 

Figure 8. Comparison of the performance of the full spatio-temporal TSS model calibrated to all 524 
data across a) pre-drought (1994-1996), b) during drought (1997-2009) and c) post-drought 525 

(2010-2014) periods, as represented by the simulated against observed site-level mean 526 
concentrations in Box-Cox transformed space. The 95% lower and upper bounds of simulations 527 

shown in vertical grey lines and red dash lines show the 1:1 lines.   528 

4. Discussion 529 

4.1 Implications for statistical water quality modelling  530 

In this study, we developed the first process-informed statistical model that is capable of explaining a 531 

reasonable proportion of water quality variability for a large spatial area of over 130,000km2. Although 532 

the calibration data have relatively low sampling frequency (i.e. monthly), our model generally performs 533 
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satisfactorily in explaining the total variability in water quality. This demonstrates the effectiveness of 534 

the Bayesian hierarchical modelling framework in predicting spatio-temporal variability in water quality 535 

across large scales. The Bayesian hierarchical model is: a) more advantageous than other simpler 536 

statistical water quality models with its more comprehensive and process-informed approach, and 537 

capacity to represent varying temporal relationships across large-scale regions; b) less demanding for 538 

input data compared with those required by fully-distributed, processes-based models. From a practical 539 

perspective, this model has the potential to contribute to a number of management activities including 540 

catchment planning, management and policy-making activities, specifically:  541 

1) The spatial predictive capacity can be used to identify pollution hot-spots and the catchment 542 

conditions that are likely causes of high concentrations. This can be used to help identify target 543 

catchment(s) to prioritize future water quality monitoring and management (Figs. 4 and 5); 544 

2) Further to 1), since water quality has been linked with catchment characteristics in this model, 545 

it can also be used to assess potential impacts of alternative options of land use and land cover 546 

change, as well as potential effects of climate change, on ambient water quality conditions;  547 

3) The model’s temporal predictive capacity can identify changes in water quality due to changes 548 

in hydro-climatic conditions and vegetation cover, and thus enabling attribution of detected 549 

trends. On the other hand, any ‘unexpected’ trends can be identified to prompt further 550 

investigation to identify causes (Figure 6 and Table 4). The model could also be used for 551 

assessing the impacts of long-term catchment changes on water quality (Figures 7 and 8). 552 

Despite the opportunities highlighted above, the model’s performance also suggests some current 553 

limitations of the modelling framework in the following situations:  554 

1) High within-site temporal variability. In Section 3.2 we have identified a general lack of 555 

predictive power for temporal variability. The potential impacts of high temporal variability on 556 

model performance is particularly evident for results of TSS, NOx and FRP in Fig. 3. Since our 557 

model has already included hydro-climatic conditions and vegetation cover to explain temporal 558 

variability, the unexplained temporal variability is likely due to other uncaptured temporal 559 

drivers. These could be: changes in land use and land management, bio-geochemical processes, 560 
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or transit time of water through catchments. 561 

2) Presence of high proportions of below-DL data. The full datasets for the three poorly modelled 562 

constituents (FRP, TSS and NOx) all have higher proportions of data below the detection limit 563 

(38.2% 17.3% and 15% of all data, respectively) compared with other constituents. As 564 

illustrated in Fig. 2, for each of these constituents, removal of below-DL data before model 565 

calibration had created clear a truncation on the left-hand side of the distribution. This 566 

substantially increases the degrees of skewness and discontinuity of the data, essentially 567 

violating the assumption of normally distributed residuals and thus limiting model performance. 568 

The model capacity to handle truncated data might be improved by model fitting approaches 569 

explicitly designed for this issue. For example, Wang and Robertson (2011) and Zhao et al. 570 

(2016) illustrated an approach to resolving the discontinuity of the likelihood estimation in 571 

model fitting to data with presence of a lower bound such as zero rainfall values. 572 

3) Non-conservativeness of constituents. The results indicate that the reactivity of the constituent 573 

is broadly associated with performance, which suggest that bio-geochemical processes (e.g. 574 

phosphorus cycling, nitrification/de-nitrification) can make water quality dynamics more 575 

difficult for the model to capture. To better capture changes in reactive constituents, the model 576 

may require greater consideration of and more extensive spatial and temporal data to represent 577 

bio-geochemical processes. Examples include improvements on the process representation for 578 

nitrogen cycling and the desorption and adsorption of phosphorus (Granger et al., 2010;Smyth 579 

et al., 2013;Tian and Zhou, 2007). 580 
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As previously noted, our model was developed in a Box-Cox transformed scale to ensure the validity of 581 

the statistical assumptions (see details on data transformation in Sect. 2.1.2), which shows limited 582 

performance for high constituent concentrations when simulations are back-transformed to the 583 

measurement scale (Figs. 4 and 5). However, our model approximately represents proportional changes 584 

in water quality1, which can thus help managers to understand proportional changes to inform practical 585 

catchment management. 586 

For future implementations, the established model structure and parameterization would be best suited 587 

to within the study region. Before performing new simulations (e.g. for new monitoring sites or for 588 

current study sites over a different time-period), the statistical properties of the new input datasets should 589 

be checked to ensure that they are similar to the calibration datasets. To model new catchments outside 590 

of the study region, a re-calibration of the model is required. This would involve extensive selection of 591 

key predictors and model calibration, much as performed in this study and the two preceding ones 592 

(Lintern et al., 2018b; Guo et al., 2019). A sufficiently long record length (e.g. 20 years) is ideal for such 593 

modelling, as it ensures a reasonable understanding of the temporal variability to be obtained. 594 

4.2 Implications for water quality monitoring programs  595 

The current spatio-temporal model extracts water quality temporal variability from monthly data. 596 

Utilizing data with higher temporal resolution may further strengthen the model capacity to explain 597 

temporal variability, especially by capturing more information on water quality dynamics during flow 598 

events. This may be possible into the future; however, current high-frequency water quality sensors 599 

(Bende-Michl and Hairsine, 2010;Outram et al., 2014;Lannergård et al., 2019;Pellerin et al., 2016) still 600 

have very high resourcing requirements that limits widespread deployment in operational networks.   601 

Furthermore, changes in land use and management over time are currently not considered here as 602 

predictors of temporal variability in water quality, which include but not limit to land clearing, 603 

urbanization, tillage, fertiliser application and irrigation. This is due to a complete lack, or inconsistency 604 

of available data. However, changes in land use/land management practices can occur over short time 605 

periods, which can lead to increases in pollutant sources and changes to runoff generation processes 606 

(e.g. Tang et al., 2005;DeFries and Eshleman, 2004;Smith et al., 2013). Therefore, our modelling 607 
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framework can potentially be improved by having additional monitoring data on the temporal patterns 608 

of land use/land management to better capture their impacts on water quality. 609 

4.3 Potential impacts of long-term drought on water quality dynamics 610 

Results of model calibration and validation to different time periods suggest a systematic decrease in 611 

TSS concentrations during and after the prolonged drought, in comparison with the pre-drought period 612 

under the same spatial and temporal conditions. Such a shift is not observed for any other five 613 

constituents analyzed (nutrients and salts) (Section 3.3).  614 

A further analysis of the calibrated model parameters for pre-, during and post-drought periods suggest 615 

that the effects of key spatial predictors do not vary much across periods (Figure S14). In contrast, the 616 

effects of key temporal predictors highlight a clear shift in the role of antecedent flow (prior 7-day flow) 617 

across different time periods (Figure 9). Specifically, the antecedent flow effects are mostly positive 618 

across catchments before the drought, and shift to mostly negative during the drought. After the drought, 619 

the antecedent flow effects have mixed directions among different catchments. Considering the limited 620 

performance of the TSS model (i.e. substantial under-estimation of temporal variability in Section 3.1), 621 

these changing relationships suggested in the calibrated parameters might be unreliable. However, this 622 

should not affect the reliability of the observed change in TSS since the drought (Section 3.3), which 623 

was based on the systematic differences of model fitting between different periods, revealing a broad-624 

scale patterns across the state on the drought influences. 625 

 626 

Figure 9. Effects of the five key predictors for the temporal variability in TSS across 102 sites, 627 
summarized by the posterior mean of the calibrated parameter values for each predictor (box 628 
shows values across all sites), from left: flow, 7-day antecedent flow, water temperature, root-629 

zone soil moisture and deep soil moisture. 630 

In the literature, impacts of the Millennium Drought on the hydrology and runoff regimes of south-631 

eastern Australia are well understood (van Dijk et al., 2013;Leblanc et al., 2012;Saft et al., 2015). 632 
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However, less is known about how this major and prolonged drought event has impacted water quality 633 

(Bond et al., 2008). Previous studies on other drought events around the world mainly focused on 634 

changes in water quality as responses to the reduced streamflow during drought. For example, reduction 635 

in sediment levels during drought has been reported and attributed to lower erosion from the contributing 636 

catchment, together with lower rates of solid transport associated with reduced flows (Murdoch et al., 637 

2000;Caruso, 2002). At a more local scale, increasing sediment concentrations during drought have also 638 

been observed in streams adjacent to land with high densities of livestock and bushland, which both 639 

constantly contribute to sediment load during drought, leading to elevated concentrations with lower 640 

dilution rate (Caruso, 2002). Similar to sediments, the impact of droughts on stream nutrient and salt 641 

concentrations have also commonly been understood as responses to reduced runoff generation and 642 

streamflow. In catchments with no significant point-source pollution, nutrient concentrations typically 643 

decreased during droughts (Mosley, 2015) with less nutrient leaching and overland flow, but may also 644 

increase due to increasing livestock inputs at more local scales (Caruso, 2002). In contrast, catchments 645 

with significant point-source pollution generally experience water quality deterioration during drought 646 

due to reduced dilution (van Vliet and Zwolsman, 2008;Mosley, 2015). For salinity, concentration often 647 

increases during drought with reduced dilution and increased evaporation (Caruso, 2002). This is 648 

particularly evident for catchments that are more influenced by saline groundwater input as the relative 649 

contribution of groundwater increased during drought (Costelloe et al., 2005).  650 

In contrast to these previous studies, our findings suggest additional possible pathways along which 651 

drought can affect stream water quality, that prolonged drought might have altered the relationships 652 

between sediments and its predictors (Figs. 7 and 8). In contrast to sediments, our model suggests no 653 

clear shifts in the dynamics of nutrients and salts in a regional scale. Our findings are in line with a few 654 

previous studies which reported temporal changes in the concentration-discharge relationships for 655 

sediments and nutrients, specifically, when comparing high- and low-flow conditions (Zhang, 656 

2018;Moatar et al., 2017), as well as drought and recovery period (Burt et al., 2015). Our findings 657 

provide extra dimensions to what would be offered by simple trend analyses using approaches such as 658 

Mann Kendall test or Sen’s slope (e.g. Smith et al., 1987;Chang, 2008;Hirsch et al., 1991;Bouza-Deaño 659 

et al., 2008). Those approaches are only capable of indicating direction and magnitude of observed 660 
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trends. In contrast, our model was able to attribute the consistent upward shift in TSS concentration to 661 

change in relationships between water quality and its key driving factors since the start of drought.  662 

In addition, we also acknowledge that our ability to represent the pre- and post-drought conditions in 663 

this study may be limited by the record length, since only 2 years of pre-drought and 4 years of post-664 

drought data were available. Once longer records build up, they will enable us to update our 665 

understanding of the impact of this prolonged drought. We would be also able to conduct more 666 

sophisticated investigations, such as comparing the impacts of long-term droughts versus individual dry 667 

and wet years and events (e.g. Saft et al., 2015;Outram et al., 2014;Burt et al., 2015). 668 

5. Conclusions 669 

This study aims to address the current lack of water quality models that operate at large scales across 670 

multiple catchments. To achieve this, we used long-term stream water quality data collected from 102 671 

sites in south-eastern Australia, and developed a Bayesian hierarchical statistical model to simulate the 672 

spatio-temporal variabilities in six key water quality constituents: TSS, TP, FRP, TKN, NOx and EC. 673 

The choice of model predictors was guided by previous studies on the same dataset (Lintern et al., 674 

2018b; Guo et al., 2019). The model generally well captures the spatio-temporal variability in water 675 

quality, where spatial variability between catchments is much better represented than temporal 676 

variability. The model is best used to predict proportional changes in water quality in a Box-Cox 677 

transformed scale, and can have substantial bias if used to predict absolute values for high 678 

concentrations. Cross-validation shows that the spatio-temporal model can predict water quality in non-679 

monitored locations under similar conditions to the historical period and the calibration catchments that 680 

we investigated. This can assist management by (1) identifying hot-spots and key temporal periods for 681 

waterway pollution; (2) testing effects of catchment changes e.g. urbanization or afforestation; and (3) 682 

identifying and attributing major water quality trends and changes.  683 

Based on the above model evaluations, we discussed potential ways to further enhance the model 684 

performance. In improving the modelling framework, alternative statistical approaches could be 685 

considered to reduce the impact of below detection limit data on model performance. In addition, the 686 

models could be extended to consider some key bio-geochemical processes to better dynamics in non-687 

conservative constituents (e.g., FRP or NOx). Regarding data availability, the current models could 688 



30 
 

 

potentially benefit from improved monitoring of changes in land use intensity and management to be 689 

able to include these drivers in the model. The inclusion of high-frequency water quality sampling data 690 

may also extend the model’s ability to represent temporal variability. However, high-frequency water 691 

quality data are also typically highly variable with large noise. Therefore, the implication of such data 692 

for the spatio-temporal modelling framework remains an open question, which needs further 693 

investigation in future applications of this modeling framework. 694 

Data availability 695 

All data used in this study were extracted from public domain. All stream water quality data were 696 

extracted from the Victorian Water Measurement Information System (via http://data.water.vic.gov.au/, 697 
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sources of all other data for the spatial and temporal predictors of our models in Tables S1 and S2 in the 701 

Supplementary Materials. 702 
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Tables  969 

Table 1. Key factors affecting the spatial and temporal variability for each of six constituents, as identified 970 
in Lintern et al. (2018) and Guo et al. (2019b), respectively. 971 

Constituent Key factors that affect spatial variability Key factors that affect 

TSS Hottest month maximum temperature 

Percentage area covered by grass  

Percentage area covered by shrub  

Percentage cropping area 

Maximum elevation 

Dam storage 

Percentage clay area 

Same-day streamflow 

7-day antecedent streamflow 

Water temperature 

Soil moisture root 

Soil moisture deep 

TP Erosivity 

Percentage area covered by grass  

Percentage area covered by shrub  

Percentage area made up of roads 

Percentage cropping area 

Average soil TP content 

Same-day streamflow 

30-day antecedent streamflow 

Water temperature 

Soil moisture root 

Soil moisture deep 

FRP Percentage area covered by shrub  

Percentage cropping area 

Catchment area 

Average soil TP content 

Mean channel slope 

Same-day streamflow 

Water temperature 

Soil moisture deep 

TKN Percentage clay area 

Warmest quarter mean temperature 

Coldest quarter rainfall 

Percentage cropping area 

Percentage pasture area 

Average soil TP content 

Same-day streamflow 

30-day antecedent streamflow 

NDVI 

Water temperature 

Soil moisture root 

Soil moisture deep 
NOx Annual radiation 

Warm quarter rainfall 

Hottest month maximum temperature 

Average soil TP content 

Mean channel slope 

Same-day streamflow 

30-day antecedent streamflow 

NDVI 

Water temperature 

Soil moisture root 

Soil moisture deep 

EC Annual radiation 

Annual rainfall 

Wettest quarter rain 

Hottest month maximum temperature 

Percentage agriculture area 

Percentage cropping area 

Percentage area covered by shrub  

Average soil TN content 

Same-day streamflow 

14-day antecedent streamflow 

Water temperature 

Soil moisture root 

Soil moisture deep 

 

 972 

Table 2. The key catchment landscape characteristics that are related to the varying relationships of water 973 
quality and same-day streamflow across space, which were selected as the two predictors for the 974 
streamflow effect in our model. Two characteristics were selected to summary the variability of 975 
streamflow effects across space for each constituent, see Section 2.3 for details of the selection method. The 976 
corresponding Spearman’s correlation (R, at p<0.05) between the effect of streamflow and each 977 
catchment characteristic is presented. 978 

Constituent Key factors that affect 

spatial variability in temporal effects 

Spearman’s ρ  

(p<0.05) 

TSS Annual rainfall 0.722 

Hottest month maximum temperature -0.575 

TP Annual rainfall 0.695 

Percentage area used for cropping -0.556 

FRP Percentage agriculture area 0.392 

Percentage area underlain by mixed igneous bedrock 0.314 

TKN Annual rainfall 0.713 

Hottest month maximum temperature -0.618 

NOx Total storage capacity of dams in catchment -0.493 

Mean soil TN content 0.458 

EC Percentage area covered by grassland -0.347 

Percentage area covered by woodland -0.317 

 979 
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Table 3. Comparison of model performance for all records and only the above-DL records for 980 
each constituent.  981 

Constituent Above-DL records only All records 

TSS 0.225 0.397 

TP 0.433 0.445 

FRP -1.920 0.199 

TKN 0.658 0.630 

NOx 0.216 0.382 

EC 0.907 0.886 

 982 
 983 

Table 4. Model ability to capture observed water quality trends across all monitoring sites for 984 
each constituent. The percentages of sites where observed positive and negative trends are 985 

captured by the model are presented separately. Values in brackets indicate numbers of sites 986 
where corresponding positive or negative trends are observed. For detailed estimation of these 987 

percentages please refer to Sect. 2.2.  988 
Constituent % positive trends captured % negative trends captured 

TSS 33.3 (12) 85.0 (20) 

TP 82.1 (28) 16.7 (12) 

FRP 47.1 (17) 55.6 (9) 

TKN 81.1 (37) 40.0 (10) 

NOx 68.6 (35) 66.7 (27) 

EC 82.6 (23) 77.3 (22) 

 989 

Table 5. Comparison of model performances (as NSE) of the full model (Column 2) and the 50 990 
partial models (Columns 3 to 5) with each calibrated to 80% randomly selected monitoring sites. 991 
Columns 3 to 5 summarize the mean, minimum and maximum NSE values across the 50 runs, 992 
where for each constituent, the top row showing calibration performance and the bottom row 993 
showing the validation performance (i.e. at the 20% sites that were not used for calibration). 994 

Constituent Full model 50 CV mean 50 CV min 50 CV max 

TSS 0.397 0.413 0.376 0.439 

0.382 0.292 0.513 

TP 0.445 0.461 0.427 0.501 

0.411 0.151 0.575 

FRP 0.199 0.168 0.067 0.232 

0.129 -0.078 0.272 

TKN 0.630 0.654 0.622 0.670 

0.622 0.468 0.691 

NOx 0.382 0.453 0.414 0.489 

0.397 0.258 0.563 

EC 0.886 0.893 0.882 0.903 

0.875 0.809 0.924 

 995 

Table 6. Comparison of model performances (as NSE) of the full model and the three models 996 
that were calibrated to the pre-drought (1994-1996), drought (1997-2009) and the post-drought 997 
(2010-2014) periods. For each of the models, the calibration performance is shown on the top 998 

row and the validation performance (i.e. over the periods that were not used for calibration) is 999 
shown on the bottom row. 1000 

Constituent Full model Pre-drought 

calibration 

During drought 

calibration 

Post-drought 

calibration 

TSS 0.397 0.495 0.399 0.499 

0.208 0.402 0.390 



39 
 

 

TP 0.445 0.477 0.438 0.525 

0.421 0.474 0.411 

FRP 0.199 -1.336 0.187 0.204 

-1.406 0.197 0.024 

TKN 0.630 0.649 0.650 0.711 

0.566 0.648 0.610 

NOx 0.382 0.443 0.426 0.509 

0.394 0.471 0.393 

EC 0.886 0.854 0.901 0.901 

0.887 0.873 0.884 

 1001 


