Freguency

(Please see our responses in blue)

Comments to the Author:

Editor Decision

Dear Dr. Guo,

Thank you for revising the manuscript and providing extensive responses and explanations of the changes. You have
addressed the basic concerns. There remain a few technical issues that should be addressed:

Thank you so much for your consideration, our responses to your questions and corresponding revisions are specified

below.

- Fig. S1: The bins for the x-axis are selected such that the figures are not informative (e.g., all TSS observations fall into

the same category). Please adapt the scale and bins accordingly.

We have revised Fig. S1 to better visualize the highly skewed data. Specifically, for each constituent the plot only show
up to the 99" percentile of all records, and the maximum value is highlighted in the corresponding panel title (see

below).
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Figure S1. Distribution of the raw water quality data across all catchments. Each panel shows one constituent with only
the above-DL data. To help visualizing the highly skewed data, the top percentile of data for each constituent were not
plotted, while the maximum value was shown in the corresponding panel title.
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- Tab. 5 (and the respective text): For TSS, FRP, NOx the full model performs worse than the minimum of all 50
partial models. Does this not indicate that there is an incompatibility of the data in space and time that cannot fully
resolved by the model? Or what is your interpretation? Should this not be briefly mentioned in the text?

Thank you so much for raising this issue. After careful checking of the results, we found that in the previous version of
Table 5, the full-model performances were based on only the above-DL data, whereas the performances of the 50
partial models (cross-validation) were based on all (calibration or validation) data including both the above- and below-
DL values. So, these two model evaluations were not in comparable scales in the previous manuscript.

During correction we have updated the ‘full model performance’ in Table 5 with that for all data including the below-
DL records (see below), so that the full models NSEs and now more comparable with the cross-validation NSEs.

Table 5. Comparison of model performances (as NSE) of the full model (Column 2) and the 50 partial models
(Columns 3 to 5) with each calibrated to 80% randomly selected monitoring sites. Columns 3 to 5 summarize
the mean, minimum and maximum NSE values across the 50 runs, where for each constituent, the top row
showing calibration performance and the bottom row showing the validation performance (i.e. at the 20% sites
that were not used for calibration).

Constituent Full model 50 CV mean 50 CV min 50 CV max
TSS 0.397 0.413 0.376 0.439
0.382 0.292 0.513
TP 0.445 0.461 0.427 0.501
0.411 0.151 0.575
FRP 0.199 0.168 0.067 0.232
0.129 -0.078 0.272
TKN 0.630 0.654 0.622 0.670
0.622 0.468 0.691
NOx 0.382 0.453 0.414 0.489
0.397 0.258 0.563
EC 0.886 0.893 0.882 0.903
0.875 0.809 0.924

After this revision, the only result that still needs further attention is for NO,, where the cross-validation performances
are still clearly better than that of the full-model. We think this might be related to differences in the proportions of
below-DL data used to evaluate the full model and the partial models. We have presented detailed explanation in the
main text as:

- L471: “Note the slightly higher calibration performance for the partial models of NOx compared to the full model.
This seems to be related to the generally lower percentages of below-DL data in the 50 randomly-chosen partial
calibration datasets (14.1%-17.9%) compared to the full dataset (17.3%) — we further discuss the impacts of below-
DL data on model performance in Section 4.1.”

In consistent with Table 5, the ‘full model performance’ in Table 6 (which compares the full model performance with
the calibration/validation performance of three sub-periods) was also updated with inclusion of the below-DL values.
Further, in consistent with these, we have also updated the corresponding model performances summary in the
Abstract with inclusion of the below-DL values:

- L19: “Apart from FRP, which is hardly explainable (19.9%), the model explains 38.2% (NOx) to 88.6% (EC) of total
spatio-temporal variability in water quality.”

- Table 6: The caption is wrong (Table 3).

This has been revised.



Sincerely

Christian Stamm
Editor HESS

Again we thank you for your time and effort in handling this manuscript. We believe that the manuscript has been
greatly benefited from the review process.
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Abstract

Our current capacity to model stream water quality is limited particularly at large spatial scales across
multiple catchments. To address this, we developed a Bayesian hierarchical statistical model to simulate
the spatio-temporal variability in stream water quality across the state of Victoria, Australia. The model
was developed using monthly water quality monitoring data over 21 years, across 102 catchments, which
span over 130,000 km?. The modelling focused on six key water quality constituents: total suspended
solids (TSS), total phosphorus (TP), filterable reactive phosphorus (FRP), total Kjeldahl nitrogen
(TKN), nitrate-nitrite (NOx), and electrical conductivity (EC). The model structure was informed by
knowledge of the key factors driving water quality variation, which had been identified in two preceding
studies using the same dataset. Apart from FRP, which is largely—unhardly explainable (19.9%), the
model explains 24:38.26% (NOy) to 99-788.6% (EC) of total spatio-temporal variability in water quality.
Across constituents, the model generally captures over half of the observed spatial variability; temporal
variability remains largely unexplained across all catchments, while long-term trends are well captured.
The model is best used to predict proportional changes in water quality in a Box-Cox transformed scale,
but can have substantial bias if used to predict absolute values for high concentrations. This model can
assist catchment management by (1) identifying hot-spots and hot moments for waterway pollution; (2)
predicting effects of catchment changes on water quality e.g. urbanization or forestation; and (3)
identifying and explaining major water quality trends and changes. Further model improvements should
focus on: (1) alternative statistical model structures to improve fitting for truncated data, for constituents
where a large amount of data below the detection-limit; and (2) better representation of non-conservative

constituents (e.g. FRP) by accounting for important biogeochemical processes.

Keywords

stream water quality; spatio-temporal variability; sediments; nutrients; statistical modeling; Bayesian

hierarchical model
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1. Introduction

Deteriorating water quality in aquatic systems such as rivers and streams can have significant
environmental, economic and social ramifications (e.g. Whitworth et al., 2012;V6rosmarty et al.,
2010;Qin et al., 2010;Kingsford et al., 2011). Reducing these impacts requires effective management
and mitigation of poor water quality; however, high variability in water quality both across space and
time reduces our ability to accurately assess the status of water quality and to develop effective
management strategies. Thus, improved modelling frameworks to predict and interpret this variability

would be useful for water quality management (Chang, 2008;Ai et al., 2015;Zhou et al., 2012).

Water quality conditions can vary across individual events, as well as at daily, seasonal and inter-annual
scales at an individual location (Arheimer and Lidén, 2000; Kirchner et al., 2004; Larned et al., 2004;
Pellerin et al., 2012; Saraceno et al., 2009). Water quality conditions also typically differ substantially
across locations (Meybeck and Helmer, 1989;Chang, 2008;Varanka et al., 2015;Lintern et al., 2018a).
These variabilities in stream water quality are driven by three key mechanisms: (1) source, which defines
the total amount of constituents being available in a catchment; (2) mobilization, which detaches
constituents (both in particulate and dissolved forms) from their sources via processes such as erosion
and biogeochemical processing; and (3) delivery of mobilized constituents from catchments to receiving

waters via multiple hydrologic pathways including surface and subsurface flow (Granger et al., 2010).

Spatial variability in stream water quality is driven by human activities within catchments (e.g., land use
and management, vegetation cover etc.) (Lintern et al., 2018a;Carey and Migliaccio, 2009;Giri and Qiu,
2016;Heathwaite, 2010), along with natural catchment characteristics such as climate, geology, soil
type, topography and hydrology (Hrachowitz et al., 2016;Poulsen et al., 2006;Sueker et al.,
2001;0Onderka et al., 2012). At the same time, temporal shifts in water quality are also influenced by
changes in pollutant sources, such as land use and land management including urbanization, agriculture
and vegetation clearing (Ren et al., 2003;Smith et al., 2013;Ouyang et al., 2010). In addition, water
quality can also vary in time with variations in the mobilization and delivery processes, which are largely
driven by the hydro-climatic conditions at a catchment, such as streamflow (Ahearn et al,
2004;Mellander et al., 2015;Sharpley et al., 2002;Zhang and Ball, 2017), the timing and magnitude of

rainfall events (Fraser et al., 1999;Miller et al., 2014) and temperature (Bailey and Ahmadi, 2014).
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As abovementioned, we have good understanding of the key controls for variations in water quality,
albeit in an isolated, idealized context. We still lack a sound understanding of how relationships between
specific landscape characteristics and water quality can shift with influences from other landscape
characteristics, and how the drivers of temporal variability in water quality can interact and vary across
large spatial scales (Musolff et al., 2015;Lintern et al., 2018a;Ali et al., 2017). In contrast, current
detailed understanding have been primarily based on field studies at small scales with detailed
information on specific temporal drivers ranging from hydrologic conditions to detailed management
decisions such as fertilizer rates and application timing (Smith et al., 2013;Poudel et al., 2013;Adams et
al., 2014). While operational weather observation networks, stream gauging networks and remote
sensing can provide some of this information, developing a large-scale understanding of water quality
patterns across catchments would ideally also involve an extensive suite of management information

that substantially exceeds what is currently available.

Due to the limited understanding of large-scale water quality patterns, we currently lack the capacity to
model spatio-temporal variabilities in water quality at large scales across multiple catchments. This
hinders our ability to inform the development of effective policy and mitigation strategies over large
regions. Specifically, conceptual or physically-based water quality models are typically limited by the
simplification of physical processes such as flow pathways (Hrachowitz et al., 2016). Furthermore,
practical implementation of these models can be also limited by the intensive data requirements for
calibration and validation, particularly for large regions with highly heterogeneous catchment conditions
(Fu et al., 2018;Abbaspour et al., 2015). In contrast, when performed over large geographical regions,
statistical water quality models are generally more capable of simulating water quality variability while
requiring less detailed information and thus effort for implementation. However, existing statistical
models often focus only on either the spatial variation of time-averaged water quality conditions
(Tramblay et al., 2010;Ai et al., 2015) or the temporal variation at individual locations (Kisi and Parmar,
2016;Kurung et al., 2005;Parmar and Bhardwaj, 2015), which often limits their value as practical
management tools. Modelling the spatio-temporal variability simultaneously remains challenging over

long time periods and large regions.

Accordingly, this research attempts to bridge the gap between fully-distributed physically-based water
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quality models and data-driven statistical approaches. We aim to develop a process-informed, data-
driven model to predict spatio-temporal changes in stream water quality over a large region consisting
of multiple catchments. Specifically, this model was established using long-term (21 years) stream water
quality observations across 102 catchments in Australia, with an aggregate catchment area of 130,000
km?. To obtain the necessary understanding of process drivers required to develop this model, two
preceding studies were conducted on the same dataset to identify the key drivers for the spatial and
temporal variability of water quality, respectively (Lintern et al., 2018b; Guo et al., 2019). The aim of
this study is to develop an integrated spatio-temporal model using the previously-identified spatial and
temporal predictors, and to then assess the performance of this model. Spatio-temporal variability of
water quality was modelled using a novel Bayesian hierarchical approach which can jointly account for
both variability components, including accounting for varying temporal water quality dynamics between
catchments. This modelling approach also has relatively low requirement for input data, which keeps
the modelling detail commensurate with the level of data availability. During the model development,
we also obtained additional understanding on the patterns of spatial variations in the effects of each
temporal predictor. The model can potentially provide useful information for large-scale catchment
management, assessment and policy making, such as testing major changes in land use patterns,
informing pollution hot-spots, as well as identification and attribution of water quality trends and

changes over time.

2. Method

We first discuss the process used to develop the integrated spatio-temporal model (Section 2.1). Sections
2.1.1 and 2.1.2 introduces the statistical modelling framework and the data used for model development,
respectively. The approaches to determine model structure was then introduced, which include the
choice of key predictors (Section 2.1.3) and the calibration for model parameters (Section 2.1.4). Finally,

the approaches to evaluate model performance and robustness are described in Section 2.2.

2.1 Model development
2.1.1 Spatio-temporal modelling framework

A Bayesian hierarchical approach was used to model the spatio-temporal variability in stream water

quality. The Bayesian approach enables the inherent natural stochasticity of water quality to be
5
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incorporated into the model (Clark, 2005). A key strength of applying the hierarchical model structure
to analyze spatio-temporal variability is that this structure enables the key controls of temporal
variability in water quality to vary across locations (Webb and King, 2009;Borsuk et al., 2001). This
variability has been found to be important in other study regions where the (temporal) solute export
regime varies with catchment characteristics such as climate and land use (Musolff et al., 2015;Poor and

McDonnell, 2007).

The structure of the Bayesian hierarchical model is presented below in Eq. 1 to 6. Eq. 1 formulates the

transformed constituent concentration (see Section 2.1.2 for justification) at time i and site j (C;;) as a
normally distribution with a mean y;; and standard deviation o representing inherent randomness.
Cij~N(p;j, 0) (1)
To represent spatio-temporal variability, p;; is modelled as the sum of the site-level mean constituent
concentration (C_j) and the deviation from that mean at time 7 (4;;) (Eq. 2).
ki = Cj+ A ()
To describe spatial variability, the site-level mean concentration at site j ((,_'j) is modelled as a linear
function of a global intercept (intC), and the sum of m catchment characteristics Sy ; to Sp, j (e.g. land

use, topography) weighted by their relative contributions to spatial variability (85 to £S;,) (Eq. 3).

Ci=intC+ BS1 XS+ BS2XSyj+ -+ BS;m X S 3)
The temporal variability, represented by the deviation from the mean (4;;), is a linear combination of n
temporal variables, T, ;; to Ty, ;; (e.g., climate condition, streamflow, vegetation cover) (Eq. 4), at time
i and site j.

Ajj= BT1j X Ty + -+ BTyj X Thyj 4
The selection of key spatial and temporal predictors for the model has been performed in our two
preceding studies (Lintern et al., 2018b; Guo et al., 2019) and is briefly described in Section 2.1.3. Eq.
1 to 4 enable the model to separately represent the spatial and temporal variability in water quality;
however, there is still a further step required to make the model fully spatio-temporal (i.e. being able to
predict over both time and location). Specifically, in Guo et al. (2019), clear spatial variation was
observed in the relationships between water quality and its key temporal predictors (i.e. in the STy ; in

6



142

143

144

145

146

147

148
149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

Eq. 4). To be able to model multiple catchments across a large spatial area simultaneously, we must
account for differences in these temporal influences across sites. To do this, the effect of each temporal

variable at site j (BTy,; with Nin 1,2, ... n) is drawn from a distribution with a mean of BTy ; (Eq. 5),
which is then modelled with a linear combination of two additional chatchment characteristics, STy ;

and STy j (Eq. 6). Details of the selection for these two additional predictors are presented in Section

2.1.3.
BTy ;~N(uBTy ), 6BT),for Nin1l,2,..n ®)
HﬁTN‘]' = lntBTN + ﬁSTNl X STNl,j + ﬁSTNZ X STNZ,]' (6)

2.1.2 Data collection and processing

The Bayesian hierarchical model was developed with 21 years of monthly stream water quality
observations at 102 catchments in the state of Victoria, Australia (aggregate catchment area > 130,000
km?). The collection and processing of the data are detailed in previous publications that worked with
the same dataset (Lintern et al., 2018b; Guo et al., 2019). Briefly, stream water quality data were
extracted from the Victorian Water Measurement Information System (Department of Environment
Land Water and Planning (DELWP) Victoria, 2016b), which contains monthly grab samples of water
quality at approximately 400 sites across Victoria. Water quality data sampled between 1994 and 2014
at 102 sites were used to develop the model (Fig. 1). These sites and time period were chosen because
they provided the longest consistent period of continuous records over the greatest number of monitoring
sites. The catchments corresponding to these water quality monitoring sites were delineated using the
Geofabric tool (Bureau of Meteorology, 2012), and have areas ranging from 5 km?* to 16,000 km?. The
water quality parameters of interest were: total suspended solids (TSS), total phosphorus (TP), filterable
reactive phosphorus (FRP), total Kjeldahl nitrogen (TKN), nitrate-nitrite (NOy) and electrical
conductivity (EC). These parameters represent sediments, nutrients and salts, which are some of the key
concerns for water quality managers in Australia and around the world. These water quality samples
were collected following standard DELWP protocols (Australian Water Technologies, 1999) and
analysed in National Association of Testing Authorities accredited laboratories. Note that in the
sampling protocol, FRP is defined as ‘Reactive Phosphorus for a filtered sample to a defined filter size
(e.g. RP(<0.45 um))’, which is equivalent to the more widely-used terminology, SRP i.e. Soluble

Reactive Phosphorus (Jarvie et al., 2002).
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Figure 1. Map of (a) the 102 selected water quality monitoring sites and their catchment
boundaries, with inserts showing the location of the state of Victoria within Australia; (b) annual
average temperature and (c) annual precipitation and (d) elevation across Victoria.

To compile a dataset for the potential spatial explanatory variables (i.e. predictors to explain spatial
variability in water quality), a comprehensive literature review was conducted (Lintern et al., 2018a),
which summarized the key catchment landscape characterisitics that are widely known to influence
water quality. Further, as part of Lintern et al. (2018b), fifty potential explanatory catchment
characteristics were selected, which included catchment land use, land cover, topographic, climatic,
geological, lithological and hydrological catchment characteristics. These variables were derived using
datasets obtained from Geoscience Australia (2004, 2011), the Bureau of Meteorology (2012), the
Bureau of Rural Sciences (2010), Department of Environment Land Water and Planning Victoria (2016)
and the Terrestrial Ecosystem Research Network (2016) (see Table S1 in the Supplementary Material
for detailed variable names and data sources). We used a static set of land use data from 2005-2006 to
represent the entire study period, as a preliminary analysis between 1996 and 2011 suggested less than

1% changes in the key land uses in these catchments (i.e. agricultural, grazing, conservation).

Nineteen potential temporal explanatory variables were included. Firstly, data of discharge (originally
in ML d') and water temperature (°C) corresponding to the same timestamps for water quality
observations were also extracted for each monitoring site over the study period (Department of
Environment Land Water and Planning Victoria, 2016). Discharge was converted to runoff depth (mm
d") for each catchment, and the average streamflows over 1, 3, 7, 14 and 30 days preceding the water

quality sampling dates were calculated. In addition, we extracted gridded dataset from the Australian
8
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Water Availability Project (AWAP) (Frost et al., 2016;Raupach et al., 2009, 2012) and Australian Water
Resources Assessment Landscape (AWRA-L) model (Frost et al., 2016). These datasets were used to
calculate catchment averaged values of daily average temperature (°C), daily rainfall (mm), antecedent
rainfall (1, 3, 7, 14 and 30 days preceding sampling), dry spell (> 0.1mm rainfall) length in the antecedent
14 days, daily actual evapotranspiration (ET) (mm), as well as soil moisture for the root-zone and the
deep-zone (averaged volumetric content for shallower and deeper than 1m, respectively). In addition,
catchment averaged monthly NDVI data were extracted from Advanced Very High Resolution
Radiometer (AVHRR) Product (Eidenshink, 1992) and Moderate Resolution Imaging
Spectroradiometer MOD13A3 (NASA LP DAAC, 2017). A summary of these datasets of temporal
variables and their corresponding sources are in Table S2 in the Supplementary Material and details are

provided in Guo et al. 2019.

The raw input data were filtered and transformed to increase the data reliability, continuity and
symmetry, making them more suitable for use in the linear spatio-temporal model structure (Eq. 3, 4
and 6). For the filtering process, we first removed all water quality records with flags indicating quality
issues. We also removed any values below the detection limit (DL), which was defined as the ‘minimum
concentration detected for which there is 95% confidence of accuracy and therefore is accurate enough
to report’ in the monitoring protocols for this dataset (Australian Water Technologies, 1999). This was
because the uncertainty in values below the DL would be amplified after transformation, which would
influence the subsequent model fitting. Furthermore, those undetectable low concentrations were of less
interest for management purposes. Water quality records corresponding to days with zero flows were

also excluded from further analyses.

The transformation process was performed for each of the spatial catchment characteristics, temporal
explanatory variables, as well as each water quality constituent to improve the symmetry of individual
distributions. The log-sinh transformation (Wang et al., 2012) (Eq. 7) was used for all catchment
characteristics, due to its ability to resolve the presence of zero values in several of the catchment
characteristics (e.g., percentage area of individual land uses). The GA package in R (Luca Scrucca, 2019)
was used to identify the log-sinh transformation parameters (¢ and b) for each spatial explanatory

variable that minimized the data skewness (i.e. symmetry is maximized) across all 102 catchments.
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In addition, all observed constituent concentrations and temporal explanatory variables were Box-Cox

transformed (Box and Cox, 1964) (Eq. 8).

A
yR“TWl, forA #0
logy, fori=0

(®)

YBox—Cox =

For each variable, the optimal Box-Cox transformation parameter A was identified using the car R
package and a maximum likelihood-like approach. We first identified the optimal Box-Cox parameter 4
using the data at each site (i.e. 21-year time-series). The averaged 4 across all sites was then used to
transform the data across all catchments together. This transformation approach ensured that all sites
used a consistent transformation parameter. All transformation parameters used are summarized in
Tables S3 and S4 in the Supplementary Material. The transformation process has greatly improved the
data symmetry and thus suitability for use in a linear model (the quality of the transformations was
assessed via visual inspection in Lintern et al., 2018b; Guo et al., 2019; and summarized in Figures S2,
S4 and S6 in the Supplementary Material).

2.1.3 Selection of key model predictors

Key predictors for the model were selected in a process-informed and data-driven manner based on our
two preceding studies (Lintern et al., 2018b; Guo et al., 2019). Lintern et al. (2018b) identified the best
spatial predictors (S; to S,, in Eq. 3) for the model, while the best temporal predictors across all sites
(T, to T, in Eq. 4) have been identified in Guo et al., (2019). In both studies, the best predictors were
selected using an exhaustive search approach (May et al., 2011;Saft et al., 2016), which considered all
possible combinations of the potential predictors introduced earlier in this section. This selection
approach required firstly fitting an individual model to all possible candidate predictor sets, and then
comparing all fitted models to select a single best set of predictors. Alternative models were evaluated
based on the Akaike Information Criterion (AIC) (Akaike, 1974) and Bayesian Information Criterion

(BIC) (Schwarz, 1978) to ensure optimal balance between model performance and complexity.

The best predictors to explain the spatial and temporal variabilities in each constituent are listed in Table
1Fable+. Generally speaking, the key factors controlling the spatial variability in river water quality

were land-use and long-term climate conditions (Lintern et al., 2018b). Temporal variability was mainly
10
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explained by temporal changes in streamflow conditions, water temperature and soil moisture (Guo et
al., 2019). The potential mechanisms via which these key drivers influence water quality are discussed
in details in these two previous studies.

Table 1. Key factors affecting the spatial and temporal variability for each of six constituents, as identified
in Lintern et al. (2018) and Guo et al. (2019b), respectively.

Whilst the previous studies (Lintern et al. 2018b, Guo et al. 2019) identified the predictors for spatial
and temporal variability respectively, they did not provide guidance on the predictors for spatial
variability in the relationships between drivers of temporal variability and temporal water quality
response (i.e. ST in Eq 4). As such, the final step of the predictor selection process to develop the
combined spatio-temporal model was to identify the key catchment characteristics that affect spatial
variability in the hydroclimatic parameters driving temporal changers in water quality (77 to 7, in Eq.
4, also right column in Table 1). This is achieved by selecting two spatial characteristics that are most
closely related to the coefficient for each temporal predictor (STy, and STy,, Eq. 6) across all sites,
where only two spatial characteristics were used to avoid over-fitting. Selection of these two spatial
characteristics were based on a Spearman correlation analysis between the fitted parameter values of
each temporal predictor variable and the fifty potential spatial explanatory variables (as mentioned

earlier in this section), following three steps:

1. from the 50 candidate spatial predictors, the one with the highest Spearman correlation with STy is

selected as ST, provided the correlation is statistically significant (p<0.05);

2. the subset of remaining spatial predictors with spearman correlation with STy < 0.7 is found; and

3. from this subset, the spatial predictor with the highest spearman correlation with STy is selected as

STn, provided the correlation has p<0.05;

Steps 2 and 3 intended to avoid cross-correlations between STy, and STy, . The selected spatial
characteristics that influence the temporal relationships in our model are presented and interpreted in
Section 3.1. Note that the entire process to select STy, and STy, was performed with the fitted
parameters for each predictor of the temporal variability obtained from Guo et al. (2019).

2.1.4 Model calibration

After identifying the spatial and temporal predictors for each constituent, as well as the spatial
11
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characteristics which affect the strengths of each temporal predictor, the Bayesian hierarchical spatio-
temporal model was fitted for each constituent across all monitoring sites simultaneously. To achieve
this, we used the R package rstan (Stan Development Team, 2018), which enabled both the sampling of
parameter values from posterior distributions with Markov chain Monte Carlo (MCMC) and model
evaluation. Constituent standard deviation (o) was assumed to be drawn from a minimally informative
prior half-normal of N(0,10) distribution truncated to only positive values (Gelman, 2006; Stan
Development Team, 2018). The regression coefficient of each spatial predictor (5S1, 5S2. ..., fSmin EQ.
3) was independently drawn from hyper-parameter distributions of N(ufSm, ofSm). The site-level
regression coefficients of the temporal predictors (871, ST2j ..., fTnj in EQ. 4, respectively) were
sampled from the corresponding hyper-parameter distribution of N(uf7n, o8Tn). The hyper-parameters
were further assumed to be drawn from minimally informative prior distributions, following
recommendations in Gelman (2006) and Stan Development Team (2019): for all the hyper-parameter
means, a normal prior distribution of N(0,5) was used; for all the hyper-parameter standard deviations,
a half-normal prior distribution of N(0,10) was used, which was truncated to only positive values. In
each model run there were four independent Markov chains. A total of 20,000 iterations were used for
each chain. Convergence of the chains was ensured by checking the Rhat value (Sturtz et al., 2005),
which is a summary statistic on the convergence of the Bayesian models from the four Markov chains
used in model calibration (Stan Development Team, 2018). Specifically, an Rhat value much greater
than 1 indicates that the independent Markov chains have not been mixed well, and a value of below 1.1

is recommended (Stan Development Team, 2018).

2.2 Model performance evaluation and sensitivity analyses

Performance evaluation of the model was undertaken on several aspects of the model results (Section.
3.2). Since the model was calibrated in a Box-Cox transformation scale (see justification in Section
2.1.2), the Box-Cox transformation scale was used for model evaluation to enable a clear investigation
on the influences of a wide range of factors that can influence model performance. Detailed performance

evaluations include:

1. Ability to capture total spatio-temporal variability. Firstly, the simulations from the fitted model

and the corresponding observed concentrations were compared at 102 sites altogether to
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understand how the overall spatio-temporal variabilities were captured. For each constituent,
this evaluation was performed with: 1) these above-DL data to focus only on data used for
calibration (as detailed in Section. 2.1.2); and 2) the full dataset including the below-DL data
(set to half of the DL of the specific constituent), to understand how well the model represents
the full distribution of constituent concentrations. A good model performance when including
the below-DL data would suggest that the calibrated model is transferable to below-DL data
too. All performance assessments were based on both visual inspection of model fitting as well
as the Nash-Sutcliffe efficiency (NSE), which quantified the proportion of variability that was

explained by the model (Nash and Sutcliffe, 1970).

Proportions of spatial and temporal variability explained. This involved a decomposition of the
total observed variability using Eq. 2., into proportions contributed by spatial variability
(variations in all site-mean concentrations from the grand average of site-mean concentrations)
and temporal variability (variations in all concentrations from the corresponding site-mean
concentrations). The corresponding modelled values were then used to calculate NSE for each

variability component of each constituent.

Ability to capture variation in ambient conditions across space, and temporal variation
(including trends) across multiple catchments. These were evaluated by a) comparing all
simulated and observed site-averaged long-term mean concentrations; and b) comparing the
simulated and observed time-series and long-term trends at representative sites. Further to a),
performance was also evaluated on a real measurement scale by first back-transforming all
modelled sample concentrations, calculating the back-transformed site-level means and then
compared those to the corresponding observations. A further analysis to b) was also performed
by comparing the estimated Sen’s slope (Akritas et al., 1995) for the observations and
simulations at all sites, and then computing the percentage of sites where the observed trends as

indicated by the Sen’s slope have been correctly represented by the model.

Additional evaluations of model sensitivity were conducted with calibration and validation on subsets

of the full data (Section. 3.3), to understand model transferability and stability:

Model sensitivity to the monitoring sites used for calibration. We randomly selected 80% of the
13
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sites for calibration and used the remaining 20% for validation, and repeated this validation
process 50 times. We compared all calibration and validation performances of these ‘partial
models’ with each other, as well as with the performance of the full model, to obtain a

comprehensive evaluation of the sensitivity of model performance to calibration sites.

2. Model sensitivity to calibration data period. Since the study region was greatly influenced by a
prolonged drought from 1997 to 2009 — known as the Millennium Drought (van Dijk et al.,
2013), we also investigated model robustness for before, during and after this drought period.
Specifically, we calibrated the model to each pre-, during- and post-drought period (1994-1996,
1997-2009 and 2010-2014, respectively) with model validation on the remaining data. For
example, when calibrating to the pre-drought period (1997-2009), validation was performed on
the merged during and post-drought period (1994-1996 plus 2010-2014). The corresponding
calibration and validation performances were compared with each other as well as against that

of the full model, to identify potential impacts of the drought on model robustness.

3. Results

3.1 Spatial variation in the impact of temporal factors

The key controls of the spatial and temporal variations in water quality have been identified in our two
preceding studies (Lintern et al. 2018b, Guo et al. 2019) and briefly summarized in Section 2.1.3. and
are thus not discussed here. As also detailed in Section 2.1.3, to achieve full spatio-temporal predictive
capacity, the model developed in this study considers the spatial variation in the strength of each
temporal predictor by using two additional catchment spatial characteristics (STy4,j and STy j in Eq.
6). on the Spearman’s correlations. Here we focus on the most important temporal predictor for each
constituent, streamflow, where Table 2 shows the two spatial characteristics identified that are most
closely related to the spatial variation of the effects of impact of streamflow on water quality. The full
list of the selected key catchment characteristics for all temporal predictors of each constituent is
summarized in Table S5 and visualized in Figure S4.

Table 2. The key catchment landscape characteristics that are related to the varying relationships of water

quality and same-day streamflow across space, which were selected as the two predictors for the

streamflow effect in our model. The corresponding Spearman’s correlation (p at p<0.05) between the
effect of streamflow and each catchment characteristic is presented.

TSS, TP and TKN show consistent patterns of the spatial variation in the effects of streamflow on water
14
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quality, which are strongly driven by the differences in average rainfall conditions across catchments.
Specifically, streamflow generally has a larger effect on water quality in catchments with higher average
annual rainfall. Since the streamflow effects are positive for the majority of catchments (as shown in
Figure S5), these correlations indicate that for the same increase in transformed streamflow, a greater
increase in transformed concentrations of TSS, TP and TKN will occur at a catchment with higher annual
average rainfall. Given that the Box-Cox lambda values (Table S4) are close to zero, the transformation
is log-like and hence changes in transformed flow and concentration approximately correspond to
proportional changes in the real values of flow and concentration. In contrast, for FRP, NOy and EC, the
spatial patterns of streamflow effects are specific to each constituent. This difference in the model results
between TSS, TP and TKN against the other constituents might be related to the distinct transport
pathways of particulate and dissolved constituents. The former is predominantly related to surface flow
and thus relies heavily on rainfall contribution. Dissolved constituents are likely transported along the
subsurface pathway. Apart from streamflow, the spatial patterns in other key temporal drivers of water
quality (e.g. antecedent streamflow, soil moisture etc.) are less consistent across different constituents

(Figure S4).

3.2 Model performance evaluation

The spatio-temporal water quality models show varying performances between the constituents. When
assessed with only the above-DL data (Fig. 2), the best performing models are those for EC and TKN,
which capture 90.7% and 65.8% of the total observed spatio-temporal variability. The modelling
performance is lowest for FRP, NOy and TSS, with NSE values of -1.92, 0.216 and 0.225, respectively.
When evaluated against the entire dataset (i.e., including both below- and above DL data), the models
explain 19.9% (FRP) to 88.6% (EC) of spatio-temporal variability (Table 3). Model performances for
FRP, NOy and TSS improve notably compared with the previous evaluation of above-DL data, however,
they remain as the three constituents that are most difficult to predict. We further discuss the possible

factors influencing their model performance in Section 4.1.
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Figure 2. Performance of the spatio-temporal models for each of the six constituents,
represented by the simulated median concentrations and corresponding observations of above-
DL records across all 102 calibration sites, in Box-Cox transformed space. Darker regions
represent denser distribution of simulation and observation points. Dashed red lines show the
1:1 lines whereas dashed blue lines show the DL levels. For each constituent, the percentage of
data below the DL and the model performance (NSE) are also specified.

Table 3. Comparison of model performance for all records and only the above-DLEOR records

for each constituent.

The model performance to predict spatial and temporal variability is summarized in Figure 3, which

compares the observed and explainable variability for each of the spatial and temporal components

(detailed in Section 2.1.4). Regarding the observed variability (lighter colours), EC is strongly

dominated by spatial variability (91.8%), highlighting that within-site variation in water quality is

minimal compared to between-site variation. To a lesser extent, spatial variability also contributes to

major proportions of total variability for TP and TKN (60.8% and 66.6%, respectively). TSS, FRP and

NOy are more influenced by temporal variability (57.4%, 56.6%, 60.5%, respectively).

16



403

404
405
406
407
408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

TP -
variability_component

FRP Spatial Total
Temporal Total

TKM A Spatial Explained

. Temporal Explained
0

ECA

100 50 50 100

% total variability

Figure 3. Observed spatial and temporal variabilities as proportions of the total variability (total
width of each bar, 100%). The dashed line differentiates temporal variability (left side) with
spatial variability (right side), and the darker colours highlight the proportions of spatial and
temporal variabilities that are explainable by the model. All values were estimated in Box-Cox
transformed space.

The explained variability (darker colours) show that, across all catchments, temporal variability is much
more difficult to model compared with spatial variability. It also appears that a substantial part of the
model’s overall performance is driven by its ability to capture spatial variability in ambient water quality
conditions. For example, the models for TSS, FRP and NOy show poorer overall performance (Fig. 2,
with NSE values of 0.225, -1.92 and 0.216, respectively)), because the total variability for each of these
is dominated by temporal variability (57.4%, 56.6%, 60.5%, respectively), which largely remains
unexplained by the model (Fig. 3). In contrast, the EC model shows a very good fit with 90.7% of total
variability explained — 91.8% of the total observed variability is due to spatial variability, of which
94.7% is explained by the model. Therefore, although the EC model can only explain a small portion of

temporal variability (20% out of 8.2% of total variability), the overall model performance remains high.

As highlighted in Fig. 3, the model has good capacity to capture spatial variability in water quality. This
is further evaluated in Fig. 4 by comparing the simulated and observed site-level mean concentrations.
The highest model performance is for EC and lowest performance is for FRP (explaining 94.7% and
44.2% spatial variability, respectively). At the back-transformed scale, the model shows greater biases
for sites with higher concentrations (approximately the highest 10% sites for each constituent) (Fig. 5).
This is not surprising as the model was fitted to a Box-Cox transformed space that reduces focus on high

values and increases the focused on low values. This compromised its ability to represent sites with
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Figure 4. Model fit for site-level mean concentration at the 102 calibration sites for six
constituents, with the 95% lower and upper bounds of posterior simulations shown in vertical
grey lines. All simulations and observations are presented in in Box-Cox transformed space. The

NSE for each constituent is also shown and red dash lines show the 1:1 lines.
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Figure 5. Back-transformation of the model simulations to the measurement scale emphasizes lack of fit
for the highest concentrations, illustrated by simulated against observed site-level mean concentrations of
each constituent in a back-transformed scale. The 95% lower and upper bounds of all posterior
simulations shown in vertical grey lines. The NSE for each constituent is also shown and red dash lines

show the 1:1 lines.

As also noted in Fig. 3, the ability of the spatio-temporal model to explain temporal variability remains

relatively limited. This is further explored in Fig. 6, where the observed and simulated time-series are

presented for one monitoring site for each constituent, at which the model performance (NSE) was the

highest. These results show that even for catchments where the model has the highest ability to capture

temporal variability, the model consistently underestimated temporal variability for all constituents.
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Figure 6. Model fit of the within-site (temporal) water quality variability, illustrated with the
observed and simulated time-series for the best-performing site for each constituent. All values
are presented in Box-Cox transformed space. The NSE for each constituent is also shown. The

red line indicates the corresponding mean of all posterior simulations, while the pink bands
show the corresponding 95% lower and upper bounds (only visible for FRP).

Fig. 6 also illustrates that, although the model shows substantial underestimation of temporal variability
within site, long-term temporal trends in the time-series are well captured at the best sites (except for
FRP). Table 4 summarizes the ability of the model to capture observed trends across all 102 catchments
for each constituent. In general, the model is able to capture observed trends in most sites for NOy and
EC and for both positve and negative trends. For TP and TKN, positive trends are well captured while

for TSS the negative trends are better captured.

Table 4. Model ability to capture observed water quality trends across all monitoring sites for
each constituent. The percentages of sites where observed positive and negative trends are
captured by the model are presented separately. Values in brackets indicate numbers of sites
where corresponding positive or negative trends are observed. For detailed estimation of these
percentages please refer to Sect. 2.2.

3.3 Model sensitivity analyses

We first compare the performance of each spatio-temporal model fitted with the full dataset with those
obtained from the 50 corresponding “partial” models that were calibrated to only 80% of the monitoring
sites. Note that in this comparison, the FRP model was not assessed due to its poor performance (Section

3.2). The calibration and validation results for the 50 partial models are summarized in Table 5 along
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with the performance of the full model calibrated to all 102 sites (see Figs. S6 and S7 in the
Supplementary Material for detailed comparison of model residuals of the partial calibration/validation).
Across constituents, the calibration performance of the full model was comparable with the 50 partial

models. Note the slightly higher calibration performance for the partial models of NOx compared to the

full model. This seems to be related to the generally lower percentages of below-DL data in the 50

randomly-chosen partial calibration datasets (14.1%-17.9%) compared to the full dataset (17.3%) — we

further discuss the impacts of below-DL data on model performance in Section 4.1. In addition, model

performance is highly consistent between corresponding calibration and validation, with most
differences in NSEs less than 0.1. These suggest that the spatio-temporal model performance is highly
robust and unaffected by the choice of calibration sites.

Table 5. Comparison of model performances (as NSE) of the full model (Column 2) and the 50
partial models (Columns 3 to 5) with each calibrated to 80% randomly selected monitoring sites.
Columns 3 to 5 summarize the mean, minimum and maximum NSE values across the 50 runs,
where for each constituent, the top row showing calibration performance and the bottom row
showing the validation performance (i.e. at the 20% sites that were not used for calibration).
The performance of the full model for each constituent is also compared with that of the three models
calibrated to the pre-, during and post-drought periods. In general, we observe consistent performance
for each constituent, across calibrations to the three periods of contrasting hydrological conditions
(Table 6, see Figs. S8 to S13 in the Supplementary Material for detailed model fittings). One notable
common pattern is that the performance for calibration and validation is more consistent during the
drought period than either the pre- and post-drought periods. However, this is most likely explained by

relative sizes of the calibration data sets, which are 3, 13 and 5 years for the pre-, during and post-

drought periods respectively.

Of all constituents (excluding FRP), TSS shows greater differences in model performances across
periods — especially when comparing the pre-drought calibration with its validation for the site-level
mean concentrations (Fig. 7). Notably, when calibrated to the pre-drought period and validated on both

the during- and post-drought periods, the validated model over-estimates most of the data (Fig. 7 (b));
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and when calibrated to the during-drought period, the validated model slightly under-estimates pre-

Table 6. Comparison of model performances (as NSE) of the full model and the three models

that were calibrated to the pre-drought (1994-1996), drought (1997-2009) and the post-drought

(2010-2014) periods. For each of the models, the calibration performance is shown on the top

row and the validation performance (i.e. over the periods that were not used for calibration) is

shown on the bottom row. See Section 2.1.4 for details of the calibration and validation

approach.
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Figure 7. Comparison of the TSS model performance, as the simulated against observed site-
level mean concentrations in Box-Cox transformed space. The left column shows calibration

performance for the model calibrated to the pre-drought (1994-1996), drought (1997-2009) and
the post-drought (2010-2014) periods, respectively; the right column shows the corresponding
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The potential impacts of drought on TSS dynamics are further illustrated with the performance of the
spatio-temporal model (calibrated to the full dataset with all sites and all data from 1994 to 2014) over
the pre-, during and post-drought periods (Fig. 8). Both the during- and post-drought periods have
consistently good performances, while the model underestimates most sites for the pre-drought period.
This is consistent with Fig. 7 in suggesting a systematic decrease in TSS concentration since the drought
began. The better performance of the full model during and after drought (Fig. 8) can be a result of the
calibration period of the full spatio-temporal model — between 1994 and 2014 — which was dominated

by the during- and post-drought periods.

In summary, Figs 7 and 8 together with Figs. S13-S17 suggest that whilst model performance for most
constituents are not affected by the hydrological periods used for calibration and validation, the

calibration period did have notable impact on TSS. Some possible causes are discussed in Section 4.3.

(a)T55 pre-drought validation, NSE = 0.54 (2)TSS post-drought validation, NSE = 0,664

(b)T S5 during-drought validation, NSE=0.772
-

Sim. (Box-Cox)
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Figure 8. Comparison of the performance of the full spatio-temporal TSS model calibrated to all
data across a) pre-drought (1994-1996), b) during drought (1997-2009) and c) post-drought
(2010-2014) periods, as represented by the simulated against observed site-level mean
concentrations in Box-Cox transformed space. The 95% lower and upper bounds of simulations
shown in vertical grey lines and red dash lines show the 1:1 lines.

4. Discussion
4.1 Implications for statistical water quality modelling
In this study, we developed the first process-informed statistical model that is capable of explaining a
reasonable proportion of water quality variability for a large spatial area of over 130,000km?. Although

the calibration data have relatively low sampling frequency (i.e. monthly), our model generally performs
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satisfactorily in explaining the total variability in water quality. This demonstrates the effectiveness of

the Bayesian hierarchical modelling framework in predicting spatio-temporal variability in water quality

across large scales. The Bayesian hierarchical model is: a) more advantageous than other simpler

statistical water quality models with its more comprehensive and process-informed approach, and

capacity to represent varying temporal relationships across large-scale regions; b) less demanding for

input data compared with those required by fully-distributed, processes-based models. From a practical

perspective, this model has the potential to contribute to a number of management activities including

catchment planning, management and policy-making activities, specifically:

1)

2)

3)

The spatial predictive capacity can be used to identify pollution hot-spots and the catchment
conditions that are likely causes of high concentrations. This can be used to help identify target

catchment(s) to prioritize future water quality monitoring and management (Figs. 4 and 5);

Further to 1), since water quality has been linked with catchment characteristics in this model,
it can also be used to assess potential impacts of alternative options of land use and land cover

change, as well as potential effects of climate change, on ambient water quality conditions;

The model’s temporal predictive capacity can identify changes in water quality due to changes
in hydro-climatic conditions and vegetation cover, and thus enabling attribution of detected
trends. On the other hand, any ‘unexpected’ trends can be identified to prompt further
investigation to identify causes (Figure 6 and Table 4). The model could also be used for

assessing the impacts of long-term catchment changes on water quality (Figures 7 and 8).

Despite the opportunities highlighted above, the model’s performance also suggests some current

limitations of the modelling framework in the following situations:

+H—High within-site temporal variability. In Section 3.2 we have identified a general lack of

predictive power for temporal variability. The potential impacts of high temporal variability on
model performance is particularly evident for results of TSS, NO and FRP in Fig. 3. Since our
model has already included hydro-climatic conditions and vegetation cover to explain temporal
variability, the unexplained temporal variability is likely due to other uncaptured temporal

drivers. These could be: changes in land use and land management, bio-geochemical processes,
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1)

or transit time of water through catchments.-

2) Presence of high proportions of below-DL data. The full datasets for the three poorly modelled

constituents (FRP, TSS and NO,) all have higher proportions of data below the detection limit
(38.2% 17.3% and 15% of all data, respectively) compared with other constituents. As
illustrated in Fig. 2, for each of these constituents, removal of below-DL data before model
calibration had created clear a truncation on the left-hand side of the distribution. This
substantially increases the degrees of skewness and discontinuity of the data, essentially
violating the assumption of normally distributed residuals and thus limiting model performance.
The model capacity to handle truncated data might be improved by model fitting approaches
explicitly designed for this issue. For example, Wang and Robertson (2011) and Zhao et al.
(2016) illustrated an approach to resolving the discontinuity of the likelihood estimation in

model fitting to data with presence of a lower bound such as zero rainfall values.

3) Non-conservativeness of constituents. The results indicate that the reactivity of the constituent

is broadly associated with performance, which suggest that bio-geochemical processes (e.g.
phosphorus cycling, nitrification/de-nitrification) can make water quality dynamics more
difficult for the model to capture. To better capture changes in reactive constituents, the model
may require greater consideration of and more extensive spatial and temporal data to represent
bio-geochemical processes. Examples include improvements on the process representation for
nitrogen cycling and the desorption and adsorption of phosphorus (Granger et al., 2010;Smyth

et al., 2013;Tian and Zhou, 2007).
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As previously noted, our model was developed in a Box-Cox transformed scale to ensure the validity of
the statistical assumptions (see details on data transformation in Sect. 2.1.2), which shows limited
performance for high constituent concentrations when simulations are back-transformed to the
measurement scale (Figs. 4 and 5). However, our model approximately represents proportional changes
in water quality', which can thus help managers to understand proportional changes to inform practical

catchment management.

For future implementations, the established model structure and parameterization would be best suited
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to within the study region. Before performing new simulations (e.g. for new monitoring sites or for
current study sites over a different time-period), the statistical properties of the new input datasets should
be checked to ensure that they are similar to the calibration datasets. To model new catchments outside
of the study region, a re-calibration of the model is required. This would involve extensive selection of
key predictors and model calibration, much as performed in this study and the two preceding ones
(Lintern et al., 2018b; Guo et al., 2019). A sufficiently long record length (e.g. 20 years) is ideal for such

modelling, as it ensures a reasonable understanding of the temporal variability to be obtained.

4.2 Implications for water guality monitoring programs

The current spatio-temporal model extracts water quality temporal variability from monthly data.
Utilizing data with higher temporal resolution may further strengthen the model capacity to explain
temporal variability, especially by capturing more information on water quality dynamics during flow
events. This may be possible into the future; however, current high-frequency water quality sensors
(Bende-Michl and Hairsine, 2010;Outram et al., 2014;Lannergard et al., 2019;Pellerin et al., 2016) still

have very high resourcing requirements that limits widespread deployment in operational networks.

Furthermore, changes in land use and management over time are currently not considered here as
predictors of temporal variability in water quality, which include but not limit to land clearing,
urbanization, tillage, fertiliser application and irrigation. This is due to a complete lack, or inconsistency
of available data. However, changes in land use/land management practices can occur over short time
periods, which can lead to increases in pollutant sources and changes to runoff generation processes

(e.g. Tang et al., 2005;DeFries and Eshleman, 2004;Smith et al., 2013). Therefore, our modelling
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transformations are similar to a log transformation.



610 -framework can potentially be improved by having additional monitoring data on the temporal patterns

611  ofland use/land management to better capture their impacts on water quality.

612 4.3 Potential impacts of long-term drought on water quality dynamics

613  Results of model calibration and validation to different time periods suggest a systematic decrease in
614  TSS concentrations during and after the prolonged drought, in comparison with the pre-drought period
615  under the same spatial and temporal conditions. Such a shift is not observed for any other five

616  constituents analyzed (nutrients and salts) (Section 3.3).

617 A further analysis of the calibrated model parameters for pre-, during and post-drought periods suggest
618  that the effects of key spatial predictors do not vary much across periods (Figure S14). In contrast, the
619  effects of key temporal predictors highlight a clear shift in the role of antecedent flow (prior 7-day flow)
620  across different time periods (Figure 9). Specifically, the antecedent flow effects are mostly positive
621  across catchments before the drought, and shift to mostly negative during the drought. After the drought,
622  the antecedent flow effects have mixed directions among different catchments. Considering the limited
623  performance of the TSS model (i.e. substantial under-estimation of temporal variability in Section 3.1),
624  these changing relationships suggested in the calibrated parameters might be unreliable. However, this
625  should not affect the reliability of the observed change in TSS since the drought (Section 3.3), which
626  was based on the systematic differences of model fitting between different periods, revealing a broad-

627  scale patterns across the state on the drought influences.
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629 Figure 9. Effects of the five key predictors for the temporal variability in TSS across 102 sites,

630 summarized by the posterior mean of the calibrated parameter values for each predictor (box
631 shows values across all sites), from left: flow, 7-day antecedent flow, water temperature, root-
632 zone soil moisture and deep soil moisture.

633  In the literature, impacts of the Millennium Drought on the hydrology and runoff regimes of south-

634 eastern Australia are well understood (van Dijk et al., 2013;Leblanc et al., 2012;Saft et al., 2015).
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However, less is known about how this major and prolonged drought event has impacted water quality
(Bond et al., 2008). Previous studies on other drought events around the world mainly focused on
changes in water quality as responses to the reduced streamflow during drought. For example, reduction
in sediment levels during drought has been reported and attributed to lower erosion from the contributing
catchment, together with lower rates of solid transport associated with reduced flows (Murdoch et al.,
2000;Caruso, 2002). At a more local scale, increasing sediment concentrations during drought have also
been observed in streams adjacent to land with high densities of livestock and bushland, which both
constantly contribute to sediment load during drought, leading to elevated concentrations with lower
dilution rate (Caruso, 2002). Similar to sediments, the impact of droughts on stream nutrient and salt
concentrations have also commonly been understood as responses to reduced runoff generation and
streamflow. In catchments with no significant point-source pollution, nutrient concentrations typically
decreased during droughts (Mosley, 2015) with less nutrient leaching and overland flow, but may also
increase due to increasing livestock inputs at more local scales (Caruso, 2002). In contrast, catchments
with significant point-source pollution generally experience water quality deterioration during drought
due to reduced dilution (van Vliet and Zwolsman, 2008;Mosley, 2015). For salinity, concentration often
increases during drought with reduced dilution and increased evaporation (Caruso, 2002). This is
particularly evident for catchments that are more influenced by saline groundwater input as the relative

contribution of groundwater increased during drought (Costelloe et al., 2005).

In contrast to these previous studies, our findings suggest additional possible pathways along which
drought can affect stream water quality, that prolonged drought might have altered the relationships
between sediments and its predictors (Figs. 7 and 8). In contrast to sediments, our model suggests no
clear shifts in the dynamics of nutrients and salts in a regional scale. Our findings are in line with a few
previous studies which reported temporal changes in the concentration-discharge relationships for
sediments and nutrients, specifically, when comparing high- and low-flow conditions (Zhang,
2018;Moatar et al., 2017), as well as drought and recovery period (Burt et al., 2015). Our findings
provide extra dimensions to what would be offered by simple trend analyses using approaches such as
Mann Kendall test or Sen’s slope (e.g. Smith et al., 1987;Chang, 2008;Hirsch et al., 1991;Bouza-Deafio

et al., 2008). Those approaches are only capable of indicating direction and magnitude of observed
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trends. In contrast, our model was able to attribute the consistent upward shift in TSS concentration to

change in relationships between water quality and its key driving factors since the start of drought.

In addition, we also acknowledge that our ability to represent the pre- and post-drought conditions in
this study may be limited by the record length, since only 2 years of pre-drought and 4 years of post-
drought data were available. Once longer records build up, they will enable us to update our
understanding of the impact of this prolonged drought. We would be also able to conduct more
sophisticated investigations, such as comparing the impacts of long-term droughts versus individual dry

and wet years and events (e.g. Saft et al., 2015;0utram et al., 2014;Burt et al., 2015).

5. Conclusions

This study aims to address the current lack of water quality models that operate at large scales across
multiple catchments. To achieve this, we used long-term stream water quality data collected from 102
sites in south-eastern Australia, and developed a Bayesian hierarchical statistical model to simulate the
spatio-temporal variabilities in six key water quality constituents: TSS, TP, FRP, TKN, NOy and EC.
The choice of model predictors was guided by previous studies on the same dataset (Lintern et al.,
2018b; Guo et al., 2019). The model generally well captures the spatio-temporal variability in water
quality, where spatial variability between catchments is much better represented than temporal
variability. The model is best used to predict proportional changes in water quality in a Box-Cox
transformed scale, and can have substantial bias if used to predict absolute values for high
concentrations. Cross-validation shows that the spatio-temporal model can predict water quality in non-
monitored locations under similar conditions to the historical period and the calibration catchments that
we investigated. This can assist management by (1) identifying hot-spots and key temporal periods for
waterway pollution; (2) testing effects of catchment changes e.g. urbanization or afforestation; and (3)

identifying and attributing major water quality trends and changes.

Based on the above model evaluations, we discussed potential ways to further enhance the model
performance. In improving the modelling framework, alternative statistical approaches could be
considered to reduce the impact of below detection limit data on model performance. In addition, the
models could be extended to consider some key bio-geochemical processes to better dynamics in non-

conservative constituents (e.g., FRP or NOx). Regarding data availability, the current models could
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potentially benefit from improved monitoring of changes in land use intensity and management to be
able to include these drivers in the model. The inclusion of high-frequency water quality sampling data
may also extend the model’s ability to represent temporal variability. However, high-frequency water
quality data are also typically highly variable with large noise. Therefore, the implication of such data
for the spatio-temporal modelling framework remains an open question, which needs further

investigation in future applications of this modeling framework.

Data availability

All data used in this study were extracted from public domain. All stream water quality data were

extracted from the Victorian Water Measurement Information System (via http://data.water.vic.gov.au/,

provided by the Department of Environment Land Water and Planning Victoria). The catchments
corresponding to these water quality monitoring sites were delineated using the Geofabric tool provided

by the Bureau of Meteorology, via ftp:/ftp.bom.gov.au/anon/home/geofabric/. We have listed the

sources of all other data for the spatial and temporal predictors of our models in Tables S1 and S2 in the

Supplementary Materials.
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Tables

Table 1. Key factors affecting the spatial and temporal variability for each of six constituents, as identified
in Lintern et al. (2018) and Guo et al. (2019b), respectively.

Constituent

Key factors that affect spatial variability

Key factors that affect

TSS Hottest month maximum temperature Same-day streamflow
Percentage area covered by grass 7-day antecedent streamflow
Percentage area covered by shrub Water temperature
Percentage cropping area Soil moisture root
Maximum elevation Soil moisture deep
Dam storage
Percentage clay area
TP Erosivity Same-day streamflow
Percentage area covered by grass 30-day antecedent streamflow
Percentage area covered by shrub Water temperature
Percentage area made up of roads Soil moisture root
Percentage cropping area Soil moisture deep
Average soil TP content
FRP Percentage area covered by shrub Same-day streamflow
Percentage cropping area Water temperature
Catchment area Soil moisture deep
Average soil TP content
Mean channel slope
TKN Percentage clay area Same-day streamflow
Warmest quarter mean temperature 30-day antecedent streamflow
Coldest quarter rainfall NDVI
Percentage cropping area Water temperature
Percentage pasture area Soil moisture root
Average soil TP content Soil moisture deep
NOx Annual radiation Same-day streamflow
Warm quarter rainfall 30-day antecedent streamflow
Hottest month maximum temperature NDVI
Average soil TP content Water temperature
Mean channel slope Soil moisture root
Soil moisture deep
EC Annual radiation Same-day streamflow

Annual rainfall

Wettest quarter rain

Hottest month maximum temperature
Percentage agriculture area
Percentage cropping area

Percentage area covered by shrub
Average soil TN content

14-day antecedent streamflow
Water temperature
Soil moisture root
Soil moisture deep

Table 2. The key catchment landscape characteristics that are related to the varying relationships of water

quality and same-day streamflow across space, which were selected as the two predictors for the
streamflow effect in our model. Two characteristics were selected to summary the variability of

streamflow effects across space for each constituent, see Section 2.3 for details of the selection method. The

corresponding Spearman’s correlation (R, at p<0.05) between the effect of streamflow and each

catchment characteristic is presented.

Constituent

Key factors that affect

Spearman’s p

spatial variability in temporal effects (p<0.05)
TSS Annual rainfall 0.722
Hottest month maximum temperature -0.575
TP Annual rainfall 0.695
Percentage area used for cropping -0.556
FRP Percentage agriculture area 0.392
Percentage area underlain by mixed igneous bedrock 0.314
TKN Annual rainfall 0.713
Hottest month maximum temperature -0.618
NOx Total storage capacity of dams in catchment -0.493
Mean soil TN content 0.458
EC Percentage area covered by grassland -0.347
Percentage area covered by woodland -0.317
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Table 3. Comparison of model performance for all records and only the above-DL records for
each constituent.

Constituent Above-DL records only All records
TSS 0.225 0.397
TP 0.433 0.445
FRP -1.920 0.199

TKN 0.658 0.630
NOx 0.216 0.382
EC 0.907 0.886

Table 4. Model ability to capture observed water quality trends across all monitoring sites for
each constituent. The percentages of sites where observed positive and negative trends are
captured by the model are presented separately. Values in brackets indicate numbers of sites
where corresponding positive or negative trends are observed. For detailed estimation of these
percentages please refer to Sect. 2.2.

Constituent % positive trends captured % negative trends captured
TSS 33.3(12) 85.0 (20)
TP 82.1 (28) 16.7 (12)
FRP 47.1 (17) 55.6 (9)
TKN 81.1 (37) 40.0 (10)
NOx 68.6 (35) 66.7 (27)
EC 82.6 (23) 77.3(22)

Table 5. Comparison of model performances (as NSE) of the full model (Column 2) and the 50
partial models (Columns 3 to 5) with each calibrated to 80% randomly selected monitoring sites.
Columns 3 to 5 summarize the mean, minimum and maximum NSE values across the 50 runs,
where for each constituent, the top row showing calibration performance and the bottom row
showing the validation performance (i.e. at the 20% sites that were not used for calibration).

Constituent Full model 50 CV mean 50 CV min 50 CV max
TSS 6-2250.397 0.413 0.376 0.439
0.382 0.292 0.513
TP 0:4330.445 0.461 0.427 0.501
0.411 0.151 0.575
FRP -1920.199 0.168 0.067 0.232
0.129 -0.078 0.272
TKN 0-6580.630 0.654 0.622 0.670
0.622 0.468 0.691
NOx 0-2160.382 0.453 0.414 0.489
0.397 0.258 0.563
EC 0-9670.886 0.893 0.882 0.903
0.875 0.809 0.924

Table 63. Comparison of model performances (as NSE) of the full model and the three models
that were calibrated to the pre-drought (1994-1996), drought (1997-2009) and the post-drought
(2010-2014) periods. For each of the models, the calibration performance is shown on the top
row and the validation performance (i.e. over the periods that were not used for calibration) is
shown on the bottom row.

Constituent Full model Pre-drought During drought Post-drought
calibration calibration calibration
TSS 0.3976-225 0.495 0.399 0.499
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0.208 0.402 0.390
TP 0.4450-433 0.477 0.438 0.525
0.421 0.474 0.411
FRP 0.199-1.92 -1.336 0.187 0.204
-1.406 0.197 0.024
TKN 0.6300-658 0.649 0.650 0.711
0.566 0.648 0.610
NOx 0.3820-216 0.443 0.426 0.509
0.394 0.471 0.393
EC 0.8860-907 0.854 0.901 0.901
0.887 0.873 0.884
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1  Supplementary Materials

2 Table S1. Data sources of the potential spatial predictors for water quality (i.e. catchment
3 characteristics). See Lintern et al. (2018b) for details.

Catchment characteristic

Data Source

Climate Average annual radiation (MJ mday?) (Geoscience Australia, 2011)
Average temperature (°C) (Geoscience Australia, 2011)
Average temperature of warmest quarter (°C) (Geoscience Australia, 2011)
Average temperature of coldest quarter (°C) (Geoscience Australia, 2011)
Maximum temperature of hottest month (°C) (Geoscience Australia, 2011)
Minimum temperature of coldest month (°C) (Geoscience Australia, 2011)
Annual average rainfall (mm) (Geoscience Australia, 2011)
Average rainfall of the wettest quarter (mm) (Geoscience Australia, 2011)
Average rainfall of the driest quarter (mm) (Geoscience Australia, 2011)
Average rainfall of the coldest quarter (mm) (Geoscience Australia, 2011)
Average rainfall of the warmest quarter (mm) (Geoscience Australia, 2011)
Annual average catchment rainfall erosivity (MJ mm- (Geoscience Australia, 2011)
thathrlyr?)
Hydrology Average annual runoff (mm) (Geoscience Australia, 2011)
Average of average daily flow (ML d?) Calculated using instantaneous flows
from DELWP (2016)
Standard deviation of average daily flow (ML d?) Calculated using instantaneous flows
from DELWP (2016)
Pereniality of runoff (%) (proportion of “contribution to | (Geoscience Australia, 2011)
mean annual discharge by the driest six months of the
year” (Geoscience Australia, 2011))
Mean number of days where there is no flow annually Calculated using daily flows from
(days year?) DELWP (2016)
Mean 7-day low flow (ML d?) Calculated using instantaneous flows
from DELWP (2016)
Mean Base Flow Index Calculated using method outlined in
Grayson et al. (1996)
Maximum distance upstream to dam wall or reservoir (Geoscience Australia, 2011)
(km)
Area of catchment comprised of farm dams (%) (Department of Environment Land
Water and Planning Victoria, 2016)
Total storage capacity of dams in catchment normalized | (Geoscience Australia, 2004)
to average daily flow (ML ML*d™)
Land use Area of catchment urbanized (%) (Bureau of Rural Sciences, 2010)
Area of catchment made up of roads (%) (Bureau of Rural Sciences, 2010)
Area of catchment used for horticulture (%) (Bureau of Rural Sciences, 2010)
Area of catchment used for agriculture (%)* (Bureau of Rural Sciences, 2010)
Area of catchment used for pastures (grazing) (%) (Bureau of Rural Sciences, 2010)
Area of catchment used for cropping (%)? (Bureau of Rural Sciences, 2010)
Land cover Mean width of vegetated riparian zone (m) (Department of Environment Land

Water and Planning, 2014)

Average fragmentation of riparian zone (%)

(Department of Environment Land
Water and Planning, 2014)

Area of catchment covered with grass (%)3

(Geoscience Australia, 2011)

Area of catchment covered with forest (%)*

(Geoscience Australia, 2011)

Area of catchment covered with shrubs (%)°

(Geoscience Australia, 2011)

Area of catchment covered with woodland (%)®

(Geoscience Australia, 2011)

Area of catchment bare (%)

(Geoscience Australia, 2011)




Soil type and

Area of catchment underlain by unconsolidated bedrock | (Geoscience Australia, 2011)

geology (%)
Area of catchment underlain by igneous bedrock (%) (Geoscience Australia, 2011)
Area of catchment underlain by sedimentary bedrock (Geoscience Australia, 2011)
(%)
Area of catchment underlain by mixed igneous and (Geoscience Australia, 2011)

sedimentary bedrock (%)

Average soil TP content (mg kg™?) (Terrestrial Ecosystem Research

Network, 2016)

Average soil TN content (mg kg?) (Terrestrial Ecosystem Research

Network, 2016)

Average soil clay content (%)

(Terrestrial Ecosystem Research
Network, 2016)

Area of catchment with saline aquifers (%) (Department of Agriculture and

Water Resources, 2013)

Topography | Catchment area (km?

(Geoscience Australia, 2011)

Mean catchment elevation (m)

(Geoscience Australia, 2011)

Maximum catchment elevation (m) (Geoscience Australia, 2011)

Area of catchment made up of valley bottoms (%) (Geoscience Australia, 2011)

Total catchment length (km)

(Geoscience Australia, 2011)

Mean catchment slope (%)

(Geoscience Australia, 2011)

Mean channel slope (%)

Calculated using BOM (2012)

[
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15
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17
18

1. Agricultural activities include all primary production activities including plantation forests, grazing pastures, cropping and
horticulture. This includes both dryland and irrigation agricultural activities.
2. Cropping refers to the production of commodities such as cereals, beverage and spice crops, hay, oilseeds, sugar, cotton,
alkaloid poppies and pulses.
3. Grass refers to grasslands with tussock, hummock, reeds/rushes.
4. Forest refers to rainforests, Eucalypt forests, mangroves and low closed forests (e.g., Acacia, Melaleuca or Banksia species).
Areas with high density of vegetation (>30% cover) and tall trees (>10 m).
5. Shrubs refers to open and dry woodlands and shrublands with hummock or tussock grass, Melaleuca shrublands, lignum
shrublands, saltbush and chenopods. Areas with vegetation <2 m tall.
6. Woodlands refer to areas with medium trees (<10 m) at medium density (<30% cover).
Table S2. Data sources of the potential temporal predictors for water quality. See Guo et al. (2019) for
details.
Data Source
Daily rainfall (mm) Australian Water Availability Project (AWAP) (Raupach et al., 2009,
Daily average temperature (°C) 2012)
Available from: http://www.csiro.au/awap;

http://www.bom.gov.au/jsp/awap/index.jsp

Daily actual ET (mm)

Daily average root zone soil moisture

Daily average deep soil moisture

Australian Water Resources Assessment (Frost et al., 2016)
Available from: http://www.bom.gov.au/water/landscape

Monthly January 1994 — December 1999
NDVI

Advanced Very High Resolution Radiometer product (AVHRR)
(Eidenshink, 1992)
Available from: https://earthdata.nasa.gov/

January 2000 — December 2013

Moderate Resolution Imaging Spectroradiometer (MODIS);
MODI13A3 (NASA LP DAAC, 2017) Available from:
https://earthdata.nasa.gov/
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19 Table S3. Log-sinh transformation parameter (a and b) values for 50 potential spatial predictors for

20 stream water quality (i.e. catchment characteristics).
Catchment characteristics a b
Annual radiation (MJ m-2day™) 3.458 2.052
Annual temperature (°C) 2.425 3.133
Annual rainfall (mm) 0.008 0.001
Erosivity (MJ mm~*hathrlyr?) 0.030 0.000
Driest quarter rain (mm) 0.099 0.003
Wettest quarter rain (mm) 0.002 0.003
Warmest quarter rainfall (mm) 0.039 0.005
Coldest quarter rainfall (mm) 0.001 0.001
Coldest month minimum temperature (°C) 4.999 0.000
Hottest month maximum temperature (°C) 0.000 0.002
Coldest quarter mean temperature (°C) 4.986 4.996
Warmest quarter mean temperature (°C) 3.805 2.193
Average of average daily flow (ML d?) 0.002 0.001
Average of average daily flow (ML d?) 0.034 0.002
Standard deviation of average daily flow (ML d*) 0.012 0.430
Pereniality of runoff (%) (proportion of ‘contribution to mean annual
discharge by the driest six months of the year’ 0.106 0.152
Mean number of days where there is no flow annually (days year™) 0.000 0.066
Mean 7-day low flow (ML d?) 0.045 3.319
Mean Base Flow Index 4.896 0.000
Maximum distance upstream to dam wall or reservoir (km) 0.034 0.006
Area of catchment comprised of farm dams (%) 0.000 5.000
Total storage capacity of dams in catchment normalized to average daily
flow (ML ML"1d?) 0.003 0.002
Area of catchment urbanized (%) 0.000 0.135
Area of catchment made up of roads (%) 0.055 0.729
Area of catchment used for agriculture (%) 4.998 4.995
Area of catchment used for pastures (grazing) (%) 0.174 0.114
Area of catchment used for cropping (%) 0.000 0.079
Area of catchment used for horticulture (%) 0.000 0.373
Mean width of vegetated riparian zone (m) 0.293 0.013
Average fragmentation of riparian zone (%) 0.174 0.132
Area of catchment covered with grass (%) 0.000 0.158
Area of catchment covered with forest (%) 0.238 0.020
Area of catchment covered with shrubs (%) 0.000 0.403
Area of catchment covered with woodland (%) 0.002 0.108
Area of catchment bare (%) 0.000 5.000
Area of catchment underlain by unconsolidated bedrock (%) 0.024 0.050
Area of catchment underlain by igneous bedrock (%) 0.034 0.068
Area of catchment underlain by sedimentary bedrock (%) 4.998 4.995
Area of catchment underlain by mixed igneous and sedimentary bedrock (%) | 0.000 0.032
Average soil TP content (mg kg?) 0.044 4.744
Average soil TN content (mg kg?) 0.213 1.733
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22
23
24

25

26
27
28
29

Average soil clay content (%) 0.000 0.021
Area of catchment with saline aquifers (%) 0.001 0.000
Catchment area (km?) 0.177 0.001
Mean catchment elevation (m) 0.044 0.001
Area of catchment made up of valley bottoms (%) 0.002 0.074
Total catchment length (km) 0.003 0.001
Mean catchment slope (%) 0.078 0.068
Mean channel slope (%) 0.029 4.899
Average soil clay content (%) 0.103 0.040

Table S4. Box-Cox transformation parameter (A) values for the six water quality constituents and the
nineteen potential temporal predictors. Values in bracket show the standard deviation of individual site-

level A.

Water Quality Constituent

A

TSS -0.249 (0.287)
TP -0.058 (0.181)
FRP -0.836 (1.056)
TKN 0.141 (0.342)
NOy 0.107 (0.305)
EC -0.024 (0.921)
Temporal predictors A

Rainfall (mm)

0.106 (0.041)

Rainfall on previous day (mm)

0.108 (0.028)

Averaged rainfall over previous 3 days (mm)

0.157 (0.022)

Averaged rainfall over previous 7 days (mm)

0.220 (0.025)

Averaged rainfall over previous 14 days (mm)

0.192 (0.046)

Averaged rainfall over previous 30 days (mm)

0.116 (0.075)

Streamflow (mm d1)

-0.015 (0.225)

Streamflow on previous day (mm d?)

-0.027 (0.207)

Averaged Streamflow over previous 3 days (mm d?)

-0.032 (0.207)

Averaged Streamflow over previous 7 days (mm d?) -0.030 (0.2)

Averaged Streamflow over previous 14 days (mm d?) -0.021 (0.198)
Averaged Streamflow over previous 30 days (mm d?) -0.004 (0.195)
Dry spell length in the past 14 days (days) 0.257 (0.089)
NDVI for the month 3.715 (1.998)
Water temperature (°C) 0.357 (0.269)
Air temperature (°C) 0.231 (0.244)
Evaporation (mm) 0.019 (0.13)

Root zone soil moisture (%) 0.913 (0.648)
Deep soil moisture (%) 0.357 (0.269)

Table S5. The key temporal predictor for each water quality constituent, and the two key factors that are
mostly closely related to the spatial variation of each temporal predictor (see Section 2.3 in the main text
for detailed selection process). The corresponding Spearman’s correlation coefficients (R) are also shown

in the last column.

Constituent | Key factors that affect Key factors that affect Spearman’s
temporal variability spatial variability in temporal effects R
TSS Same-day streamflow Annual rainfall 0.722
Hottest month maximum temperature -0.575
7-day antecedent streamflow Annual runoff -0.536




Mean elevation

-0.465

Water temperature Daily flow standard deviation 0.204
Total catchment length 0.177
Soil moisture root Percentage area with saline aquifers 0.507
Hottest month maximum temperature 0.495
Soil moisture deep Maximum distance upstream to dam wall or reservoir -0.275
Percentage area covered by grassland -0.24
TP Same-day streamflow Annual rainfall 0.695
Hottest month maximum temperature -0.556
30-day antecedent streamflow | Erosivity -0.675
Percentage cropping area 0.626
Water temperature Percentage agricultural area 0.382
Percentage area used for roads 0.274
Soil moisture root Percentage pasture area 0.564
Hottest month maximum temperature 0.557
Soil moisture deep Percentage area underlain by mixed igneous bedrock -0.23
Maximum distance upstream to dam wall or reservoir -0.21
FRP Same-day streamflow Percentage agriculture area 0.392
Percentage area underlain by mixed igneous bedrock 0.314
Water temperature Total catchment length -0.28
Coldest quarter mean temperature 0.232
Soil moisture deep Percentage area used for roads -0.21
Percentage aea covered by woodland 0.204
TKN Same-day streamflow Annual rainfall 0.713
Hottest month maximum temperature -0.618
30-day antecedent streamflow | Erosivity -0.823
Percentage cropping area 0.694
NDVI Mean_7daylowflow 0.42
Maximum distance upstream to dam wall or reservoir -0.366
Water temperature Coldest quarter rainfall -0.386
Maximum distance upstream to dam wall or reservoir 0.374
Soil moisture root Warmest quarter mean temperature 0.6
Percentage pasture area 0.588
Soil moisture deep Hottest month maximum temperature -0.274
Warmest quarter mean temperature -0.269
NOXx Same-day streamflow Total storage capacity of dams in catchment -0.493
Mean soil TN content 0.458
30-day antecedent streamflow | Coldest quarter rainfall -0.413
Hottest month maximum temperature 0.396
NDVI Percentage area covered by woodland -0.442




30

Maximum elevation -0.428
Water temperature Percentage area underlain by mixed igneous bedrock 0.266
Percentage urbanized area -0.2
Soil moisture root Annual temperature 0.44
Warmest quarter average temperature 0.338
Soil moisture deep Percentage horticulture area 0.341
Wettest quarter rainfall -0.334
EC Same-day streamflow Percentage area covered by grassland -0.347
Percentage area covered by woodland -0.317
14-day antecedent streamflow | Percentage area covered by forest 0.324
PerForest_Ext 0.276
Water temperature Coldest month minimum temperature -0.328
Mean catchment slope 0.28
Soil moisture root Mean 7-day low flow 0.33
Average soil TN content 0.303
Soil moisture deep Maximum elevation 0.366
Percentage area covered by woodland 0.312
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Figure S1. Distribution of the raw water quality data across all catchments. Each panel shows one constituent with only the above-DL data. To help visualizing the highly skewed
data, the top percentile of data for each constituent were not plotted, while the maximum value was shown in text.
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35 Figure S2. Distribution of the transformed water quality data across all catchments. Each panel shows one constituent with only the above-DL data.
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37 Figure S3. Distribution of the raw data for catchment characteristics included as potential spatial predictors in the model.
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Figure S4. Distribution of the transformed data for catchment characteristics included as potential spatial predictors in the model.
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Figure S5. Distribution of the raw data for hydro-climatic and vegetation variables included as potential temporal predictors in the model.
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Figure S6. Distribution of the transformed data for transformed (Box-Cox) hydro-climatic and vegetation variables included as potential temporal predictors in the model.
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Figure S4. The two key factors that are mostly closely related to the spatial variation of each temporal predictor of each water quality constituents, as highlighted in the coloured
cells (see Section 2.3 in the main text for detailed selection of the two key factors). Colours indicate the corresponding Spearman’s correlation coefficients (R) from -1 (red) to 1
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Figure S5. Effects of streamflow across catchments against the two most important catchment landscape characteristics, for each constituent (see Section 2.3 in the main text for
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54
55 Figure S6. Annual average residuals of the models for TSS, TP and FRP, as % of long-term average. All

56 values are presented in a Box-Cox transformed scale.
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57

58 Figure S7. Annual average residuals of the models for TKN, NOx and EC, as % of long-term average. All
59 values are presented in a Box-Cox transformed scale.



(a) pre-drought cal, NSE = 0.796 (b) during and post-drought val, NSE = 0.5
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60
61 Figure S8. Comparison of the TSS model performance, as the simulated against observed site-level mean
62 concentrations across three different calibration/validation periods for calibrations on the pre-drought
63 (1994-1996), drought (1997-2009) and the post-drought (2010-2014) periods, respectively, see Section 2.4
64 for details of the calibration and validation approach.

65



(a) pre-drought cal, NSE = 0.607 (b) during and post-drought val, NSE = 0.655
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67 Figure S9. Comparison of the TP model performance, as the simulated against observed site-level mean
68 concentrations across three different calibration/validation periods for calibrations on the pre-drought
69 (1994-1996), drought (1997-2009) and the post-drought (2010-2014) periods, respectively, see Section 2.4
70 for details of the calibration and validation approach.
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(a) pre-drought cal, NSE = -1.686

(b) during and post-drought val, NSE = -1.954
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73 Figure S10. Comparison of the FRP model performance, as the simulated against observed site-level mean
74 concentrations across three different calibration/validation periods for calibrations on the pre-drought
75 (1994-1996), drought (1997-2009) and the post-drought (2010-2014) periods, respectively, see Section 2.4
76 for details of the calibration and validation approach. Note that the unstable performance can be resulted
77 by the poor performance for the full model, see Section 3.1.
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(a) pre-drought cal, NSE = 0.869 (b) during and post-drought val, NSE = 0.809
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80 Figure S11. Comparison of the TKN model performance, as the simulated against observed site-level
81 mean concentrations across three different calibration/validation periods for calibrations on the pre-
82 drought (1994-1996), drought (1997-2009) and the post-drought (2010-2014) periods, respectively, see

83 Section 2.4 for details of the calibration and validation approach.



(a) pre-drought cal, NSE = 0.545 (b) during and post-drought val, NSE = 0.53
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(c) during drought cal, NSE = 0.54 (d) pre- and post-drought val, NSE = 0.609
o - s (=T r
// s ’
- -~
- -
// "’/
-~ - ~ — - . 4
s .
=% o T
o . ¥ P
O o R o o - L
>'< . er R L
o w, At b
e- o .";,’ o .
- . r
E S . 27
A -
0) - /r - - jr .
// //
< <
/’ /’
o 7 w J.,7
T T T T T T T T T T T T
5 -4 -3 -2 -1 0 5 -4 -3 -2 -1 0
(e) post-drought cal, NSE = 0.614 (f) pre- and during drought val, NSE = 0.523
o 2] = 2]
Ed Ed
- -
- // //
- — e - - e’
g g
i 0
. v/:- /9
? LT R LA
{?‘ . AT
- ,f- % IV'."
® : . o e
. = //— r
. s -’_
Lo <
- _| ,"/ - _| ,’,
' s ' ,
/f //
F, //
A L
| I I I I I | I I I I I
S -4 3 2 -1 0 5 -4 3 2 -1 0

Obs (Box-Cox)
84

85 Figure S12. Comparison of the NOx model performance, as the simulated against observed site-level mean
86 concentrations across three different calibration/validation periods for calibrations on the pre-drought
87 (1994-1996), drought (1997-2009) and the post-drought (2010-2014) periods, respectively, see Section 2.4
88 for details of the calibration and validation approach.



(a) pre-drought cal, NSE = 0.869 (b) during and post-drought val, NSE = 0.809
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89
90 Figure S13. Comparison of the EC model performance, as the simulated against observed site-level mean
91 concentrations across three different calibration/validation periods for calibrations on the pre-drought
92 (1994-1996), drought (1997-2009) and the post-drought (2010-2014) periods, respectively, see Section 2.4
93 for details of the calibration and validation approach.
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Calibrated spatial effects
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96 Figure S14. Effects of the seven key predictors for the spatial variability in TSS across 102 sites,
97 summarized by the posterior mean of the calibrated parameter values for each predictor, to the
98 pre-, during- and post-drought periods (differentiated by colour). The seven key predictors are,

99 from left: hottest month maximum temperature, percentage catchment area as grassland,
100 percentage catchment area as shrub, percentage catchment area as cropping land, maximum
101 catchment elevation, percentage catchment area made up of valley bottoms, and average soil
102 clay content.
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