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Abstract. This paper, as a part of Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b), assesses the impacts of 

different levels of global warming on the thermal structure of Lake Erken (Sweden). The GOTM one-dimensional 

hydrodynamic model was used to simulate water temperature when using ISIMIP2b bias-corrected climate model 

projections as input. These projections have a daily time step, while lake model simulations are often forced at hourly or 10 

shorter time steps. Therefore, it was necessary to first test the ability of GOTM to simulate Lake Erken water temperature 

using daily vs hourly meteorological forcing data. In order to do this three data sets were used to force the model: 1) hourly 

measured data; 2) daily average data derived from the first data set and; 3) synthetic hourly data created from the daily data 

set using Generalized Regression Artificial Neural Network methods. This last data set is developed using a method that 

could also be applied to the daily time step ISIMIP scenarios to obtain hourly model input if needed. The lake model was 15 

shown to accurately simulate Lake Erken water temperature when forced with either daily or synthetic hourly data. Long-

term simulations forced with daily or synthetic hourly meteorological data suggest that by 2099 the lake will undergo clear 

changes in thermal structure, for RCP 2.6 surface water temperature was projected to increase from 0.87 to 1.48 ⁰C and from 

0.69 to 1.20 ⁰C when the lake model was forced at daily and hourly resolutions respectively, and for RCP 6.0 these increases 

were projected to range from 1.58 to 3.58 ⁰C and from 1.19 to 2.65 ⁰C when the lake model was also forced at daily and 20 

hourly resolutions. Changes in lake stability were projected to increase significantly and the stratification duration was 

projected to be longer by 9 to 16 days and from 7 to 13 days under RCP 2.6 scenario and from 20 to 33 days and from 17 to 

27 under RCP 6.0 scenario for daily and hourly resolutions. Model trends were very similar when using either the daily or 

synthetic hourly forcing, suggesting that the original climate model projections at a daily time step can be sufficient for the 

purpose of simulating water temperature in the lake sector in ISIMIP. 25 

1 Introduction 

The thermal structure of lakes is controlled by heat and energy exchange across the air-water interface, which is in turn 

determined by meteorological forcing (Woolway et al., 2017). Climate change will affect air-water energy exchanges and 

alter the temperature regime and mixing of lakes (Mesman et al., 2019 submitted). For example, increases in air temperature 
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results in a consequent warming of lake water temperature (Sahoo et al. 2015) causing shorter ice-cover periods (Kainz et al., 30 

2017; Butcher et al. 2015), longer stratified period (Ficker et al., 2017; Woolway et al., 2017; Magee and Wu, 2017) and 

increased lake stability (Rempfer et al., 2010; Hadley et al., 2014). Decreasing wind speed can induce more stable and long-

lasting stratification (Woolway et al. 2017) and increased epilimnetic temperature (Stefan et al., 1996).  

The most direct effect of climate change on lakes is a warming of the lake surface temperature. For example, global average 

warming rates of 0.34°C decade-1 have been observed between 1985 and 2009 by O'Reilly et al. (2015). Hypolimnetic 35 

temperature responds less clearly to warming and has been observed to be warming, cooling or not changing significantly 

with increasing air temperature (Shimoda et al., 2011; Butcher et al., 2015; Winslow et al. 2017). And, these changing water 

temperatures have also led to an increased stability and duration of stratification (Butcher et al., 2015; Kraemer et al., 2015). 

A final consequence of warming lake temperature is projected to be the shift in the mixing regime (Krillin, 2010; Shimoda et 

al., 2011; Shatwell et al., 2019; Woolway and Merchant, 2019). For example, loss of ice cover in deep lakes is likely to turn 40 

amictic lakes into cold monomictic lakes, and cold monomictic lakes into dimictic lakes (Nõges et al., 2009). 

These changes in lake water temperature and thermal stratification influence lake ecosystem dynamics (MacKay et al., 

2009). Increases in stratification stability and duration can intensify hypolimnetic oxygen depletion (Foley et al., 2012; 

Schwefel et al., 2016) and hence induce enhanced internal phosphorous loading (North et al., 2014), increase the release of 

dissolved iron and manganese from sediments (Schultze et al., 2017) and also increase methane emissions (Grasset et al., 45 

2018). Warming lake temperature affects biological rates of metabolism, growth and reproduction (Rall et al., 2012) and can 

promote cyanobacterial blooms (Paerl and Paul, 2012). When coupled to a reduction in oxygen-rich water, warming water 

temperature leads to a lower fish populations (O'Reilly et al., 2003; Yankova et al., 2017). 

Numerical modeling plays a key role in estimating the sensitivity of the lakes to changes in the climate. One-dimensional 

lake models are widely used due to their computational efficiency and the realistic temperature profiles they produce. 50 

Several studies have investigated the impacts of climate change on lake water temperature under Regional Climatic Model 

(RCM)/Global Climatic Model (GCM) projections (Persson et al., 2005; Kirillin, 2010; Perroud and Goyette, 2010; Samal et 

al., 2012; Ladwig et al., 2018; Shatwell et al., 2019; Woolway and Merchant, 2019). Commonly when undertaking climate 

change impact studies, hydrodynamic lake models are driven by daily resolution RCM/GCM outputs. Bruce et al. (2018) 

undertook a comparative analysis of model performance using daily and hourly resolution meteorological forcing data, and 55 

found a better agreement between observations and predictions of full-profile temperature when the lakes were modelled 

using hourly meteorological input. This reinforces the importance of diurnal forcing on 1-D model predictive capability. 

The purpose of this study is therefore (1) to test the ability of a one dimensional-hydrodynamic model (GOTM) to simulate 

the water temperature of Lake Erken (Sweden) using daily vs hourly meteorological forcing data for the period 2006-2016, 

(2) develop a reliable method to disaggregate daily meteorological data to a hourly synthetic product that can be used to 60 

force the GOTM model and  (3) convert daily GCM outputs available from the ISIMIP project into hourly meteorological 

variables and assess the impacts on the thermal structure of Lake Erken at different levels of global warming when GOTM is 
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driven by hourly and daily model projections. In fulfilling these objectives this study provides the first evaluation of 

modelling methods that will be used by the lake sector within the ISIMIP. 

2 Material and Methods 65 

2.1 Study site 

Lake Erken (59°51’N, 18°36’E) is a mesotrophic lake located in east central Sweden, with a maximum depth of 21 m, a 

mean depth of 9 m and a surface area of 23.7 km2. The lake is dimictive with summer stratification usually occurring 

beginning in May-June and ending in August-September, while ice cover occurs from December-February to April-May 

(Persson and Jones, 2008). It is the lake’s relatively shallow depth and large surface area, which leads to large inter-annual 70 

variability in the timing and patterns of thermal stratification. The lake has a retention time of approximately 7 years and 

shows annual variations in water level that are less the 1 m (Pierson et al., 1992; Moras et al., 2019 in review).  

2.2 Lake model 

General Ocean Turbulence Model (GOTM) is a one dimensional water column model that simulates the most important 

hydrodynamic and thermodynamics processes related to vertical mixing in natural waters (Umlauf et al. 2005). GOTM was 75 

developed by Burchard et al. (1999) for modelling turbulence in the oceans, but it has been recently adapted for use in 

hydrodynamic modelling of lakes (Sachse et al., 2014). The strength of GOTM is the vast number of well-tested turbulence 

models that have been implemented spanning from simple prescribed expressions for the turbulent diffusivities up to 

complex Reynolds-stress models with several differential transport equations. Typically GOTM is used as a stand-alone 

model for investigating the dynamics of boundary layers in natural waters but it can also be coupled to a biogeochemical 80 

model using the Framework for Aquatic Biogeochemical Models (FABM) (Bruggeman and Bolding, 2014). 

2.3 Data sets 

Meteorological data required to drive GOTM were wind speed (m s-1), atmospheric pressure (hPa), air temperature (⁰C), 

relative humidity (%), cloud cover (dimensionless, 0-1), short-wave radiation (W m-2) and precipitation (mm day-1). Local 

meteorological variables were collected either from a small island 500 m offshore from the Erken Laboratory, or the 85 

Swedish Meteorological Hydrological Institute (SMHI) Svanberga Station just behind the laboratory. The Malma Island 

meteorological Station (59.83909⁰ N, 18.629558⁰ E) measured air temperature at 2 m above water surface, wind speed at 10 

m above the water surface and short-wave radiation. These data were measured at one minute intervals and saved as 60 min 

mean values. Mean sea level pressure relative humidity and precipitation were measured at the Svanberga Meteorological 

Station at 800 m from the Malma Island Meteorological Station (59.8321⁰ N, 18.6348⁰ E) with a frequency of 60 minutes. 90 

Hourly cloud cover was recorder from Svenska Högarna Station (59.4445 N, 19.5059 E) at 69 km south-east of Lake Erken.  
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The measured hourly meteorological data were used to construct two other data sets that would replicate the data resolution 

that could potentially be used to force the GOTM model with ISIMIP scenarios. First to test running the model at a daily 

resolution a daily data set was created by averaging the hourly one (except for precipitation which was summed). Secondly, 

this mean daily data set was disaggregated to form a synthetic hourly data set. Hourly estimations of air temperature wind 95 

speed, relative humidity and short wave radiation were estimated using the GRNN methods described below. For 

atmospheric pressure and cloud cover, mean daily values were assumed to be constant over the day. Precipitation was 

disaggregated assuming a uniform distribution of the daily total (Waichler and Wigmosta, 2003). 

Since both of these data sets are based on the same measured hourly data, comparison of model simulations of lake water 

temperature, allow the importance of hourly vs daily temporal resolution in the forcing data to be evaluated, and also the 100 

improvements in model performance that can be obtained from daily data (as in the ISIMIP scenarios) when imposing a 

diurnal cycle on the mean daily data. 

Water temperature data needed to calibrate the model was monitored from an automated floating station (59.84297⁰ N, 

18.635433⁰ E). During ice-free conditions measurements were made every 0.5 m from 0.5m to a depth of 15 m. 

Measurements were made every minute, and a mean of these measurements was stored every 30 minutes. 105 

2.4 Climate scenarios 

The ISIMIP climate scenarios are bias-corrected global climate model (GCM) (Hempel et al., 2013) data made available at 

daily temporal and 0.5⁰ horizontal resolution for the variables listed in Table 1. Data from the grid box overlying Lake Erken 

were available from the GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR and MIROC5 GCM models that were each run 

under four emission scenarios. These included a scenario having historical levels of atmospheric CO2 between 1861 and 110 

2005, and two future scenarios (RCP 2.6 and RCP 6.0) from 2006 to 2099. RCP 2.6 is the strongest mitigation pathway that 

is expected to limit mean global warming to between 1.5 and 2 ⁰C. RCP 6.0 is a low mitigation pathway where global 

warming is projected to rise to between 2.5 and 4 ⁰C by the end of century compared to the pre-industrial period (Frieler et 

al., 2017). 

2.5 Temporal disaggregation of meteorological forcing data 115 

The GCM scenarios have a daily time step, while lake model simulations are often forced with meteorological data at hourly 

or shorter time steps. Therefore, it was necessary to test the ability of the GOTM model to simulate Lake Erken water 

temperature using daily vs hourly meteorological forcing data, and to evaluate the need to disaggregate the daily GCM 

scenarios to a shorter time step.   

Kathib and Elmernreich (2015) proposed a generalized regression artificial neural network (GRNN) model for predicting 120 

hourly variations in short-wave radiation from daily average measurements. Using the GRNN model to predict hourly solar 

radiation required ten geographical and climatic variables as input including hour, day, month, latitude, longitude, daily 
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average short-wave radiation, daily precipitation, the solar elevation associated with the hour, and time of sunrise and sunset. 

Precipitation was used to define wet and dry status that affected atmospheric attenuation (Waichler and Wigmosta, 2003). 

There are also empirical models developed for calculating hourly air temperature, wind speed and relative humidity. Parton 125 

and Logan (1981) proposed a model for predicting diurnal variations in air temperature. Daylight air temperature was 

modelled using a sine wave with the minimum value at sunrise, maximum value at solar noon and mean value at sunset. 

Night-time air temperature was modelled as a linear interpolation between air temperature of the previous day and sunrise air 

temperature of the following day. Guo et al. (2013) generated hourly values of wind speed by computing a cosine function 

dependent on the mean daily wind speed, the maximum daily wind speed and the hour of the day when the wind speed is 130 

maximum. Waichler and Wigmosta (2003) estimated hourly values relative humidity from daily maximum and minimum air 

temperature and daily maximum and minimum relative humidity. Using these studies as guidance, we developed GRNN 

models to predict hourly a) air temperature, b) wind speed and c) relative humidity. The input parameters for each GRNN 

model were: a) hour, day, month, latitude, longitude, mean daily air temperature, daily maximum and minimum air 

temperature, daily precipitation, hourly solar angle, and time of sunrise and sunset  for predicting hourly air temperature; b) 135 

hour, day, month, latitude, longitude and daily wind speed for predicting wind speed; and c) hour, day, month, latitude, 

longitude, mean daily relative humidity, daily precipitation, hourly air temperature and hourly short-wave radiation for 

predicting relative humidity. More detailed description of the GRNN methods and models are given in the supplementary 

material to this paper. 

2.6 Model calibration and validation 140 

Calibration of the GOTM model was conducted to adjust the model parameters within their feasible range in order to 

minimize the error between measured and modelled temperature (Huang and Liu, 2010). A period of 8 years was selected for 

the calibration of GOTM, 2006-2014 (included 1 year spin-up followed by 7 years for calibration). The model parameters 

that were calibrated were surface heat-flux factor (shf_factor), short-wave radiation factor (swr_factor), wind factor 

(wind_factor), minimum turbulent kinetic energy (k_min) and e-folding depth for visible fraction of light (g2). The program 145 

used to calibrate the model was ACPy (Auto-Calibration Python), developed by Bolding and Bruggeman (https://bolding-

bruggeman.com/portfolio/acpy/), it uses a differential evolution algorithm which calculates a log likelihood function based 

on comparing the modelled and measured water temperature (Storn and Price, 1997). The validation period was 2 years 

2015-2016.  

For both calibration and validation, daily average water temperatures were simulated when GOTM was forced using the 150 

three meteorological data sets described above: measured average daily, measured average hourly and synthetic hourly data. 

Model simulated profiles of mean daily water temperature were then compared to mean daily measured water temperature. 

During calibration the model was run approximately 10000 times to obtain a stable solution specifying the optimal parameter 

set, for each meteorological forcing data set. The details of the feasible range of model parameters and calibrated parameters 

are given in Table 2. The same calibrated parameters were used to predict the thermal structure under GCM scenarios. 155 
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Model performance was evaluated by comparing average daily modelled and measured temperature profiles and other 

metrics describing the lake thermal structure (surface and bottom temperature, volumetrically weighted averaged whole lake 

temperature, Schmidt stability and thermocline depth). The model efficiency coefficients used were mean bias error (MBE), 

root mean squared error (RMSE) and Nash-Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970). 

2.7 Thermal indices 160 

A range of thermal metrics: surface temperature, bottom temperature and thermocline depth were derived on a daily bases 

from the daily simulated lake temperature profiles. Also from these profiles, Schmidt stability and volumetric weighted mean 

whole lake temperature were estimated using Lake Analyzer (Read et al., 2011). The duration of thermal stratification was 

calculated as the longest continuous period when the water column density difference from the bottom to surface of the lake 

was greater than 0.1 kg m-3 (according to ISIMIP2b lake sector protocol). The date of the onset and loss of the thermal 165 

stratification was defined as the first time that this density difference persisted for more than 5 days or was absent for at least 

5 days (Kraemer et al., 2015). 

3 Results 

3.1. Hourly meteorological modelling 

Air temperature, short-wave radiation, relative humidity and wind speed were temporarily disaggregated into hourly values 170 

from mean daily data, using the GRNN models. A database was constructed using 8 years of measurements. From this whole 

set of data, the first 5-years of data, that is, from 2008 to 2012, were used for training, and 3-years of data from 2013 to 2015 

were used for validating the results obtained. The accuracy of the trained network was assessed by comparing the predicted 

output with actual measured hourly data. The results are presented in Supplementary Fig. 1,2,3,4. The performance index for 

training and validating sets of GRNN models are given in terms of MBE, RMSE and NSE (see Table 3). 175 

There was a close agreement between GRNN model predictions and measured meteorological data as shown in Fig. 1 for a 

single year data. For air temperature we obtained a NSE of 0.999 and 0.940 and RMSEs of 0.256 and 0.318 ⁰C for the 

training and validate data sets. The MBE values indicated a slightly cold temperature bias (MBE of -1.70 10-4 and -0.057 ⁰C). 

Short-wave radiation and relative humidity predictions for the training data set also show an accurate model performance 

with a NSE of 0.999 and 0.998 (RMSEs of 6.345 W m-2 and 0.790 %) respectively. For the validation data set the GRNN 180 

models performed somewhat worse, NSE of 0.870 and 0.686 (RMSE of 8.196 W m-2 and 1.021 %) for the short-wave 

radiation and relative humidity predictions. Wind speed was the variable showing the poorest performance with a NSE of 

0.779 and 0.584 (RMSE of 1.060 and 1.370 m s-1) for the training and validate data sets. In general, the calculated MBE 

values in supplementary Fig. 5 show that the GRNN model tended to overestimate wind speed (MBE of 0.63±0.92 m s-1) 

when the observed wind speed is lower than or equal to 3.84 m s-1, whereas projected wind speed tends to be underestimated 185 

(MBE of -0.78±1.17 m s-1) when the observations are greater than 3.84 m s-1. 
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3.2. Lake model performance 

Temperature observations and simulations, for the three configurations of meteorological forcing data for both calibration 

and validation periods, are shown in Fig. 2. Model performance metrics associated with these simulations are provided in 

Fig. 3 and Table 4. 190 

These data demonstrate that GOTM was able to accurately reproduce the measured temperature profiles. For an average of 

all three calibration data sets a RMSE of 0.81 ⁰C and NSE of 0.96 was obtained. Temperature simulations for the validation 

period were more accurate (average RMSE of 0.66 ⁰C and NSE of 0.97) than for the calibration period (average RMSE of 

0.95 ⁰C and NSE of 0.94), but in both periods the model performance was considered acceptable. When comparing the 

metrics of model fit associated with simulations forced with the three different input data sets the RMSEs for calibration 195 

period ranged from 0.88 to 1.04 ⁰C, with lower error levels associated with simulations driven by hourly meteorological data 

sets, whereas for the validation period the RMSEs were comparable for all data sets, with slightly lower RMSE 0.63 ⁰C for 

the temperature simulations driven by daily meteorological data. The MBE values indicated a slight cold temperature bias 

(average MBE of -0.05 ⁰C). 

The model performance predicting just surface temperatures (average RMSE of 0.63 ⁰C and NSE of 0.98) was better that 200 

estimations of the full temperature profiles. The MBE, showed that GOTM tended to produce a cold temperature bias 

(average MBE of -0.10 ⁰C). As would be expected the simulations of bottom temperature were slightly less accurate having 

average RMSE of 0.96 ⁰C and NSE of 0.90, with lower RMSE values for the validation period (average RMSE of 0.67 ⁰C) 

than the calibration period (average RMSE of 1.25 ⁰C), but in contrast to the surface temperature, there was a slight warm 

temperature bias (average MBE of 0.06 ⁰C). The best fits in the bottom temperature simulations were those driven by  the 205 

measured hourly meteorological data set during the validation period (RMSE of 0.59 ⁰C  and NSE of 0.97) and the synthetic 

hourly meteorological data, during the calibration period (RMSE of 1.16 ⁰C and NSE of 0.87). When evaluating the 

simulations of volumetrically weighted averaged whole lake temperatures we found that model errors were of a similar 

magnitude with an average RMSE of 0.53 ⁰C and NSE of 0.98, tending to a slight cold temperature bias (average MBE of -

0.08 ⁰C).  210 

The calculation of Schmidt stability, the resistance to mechanical mixing due to the potential energy inherent in the density 

stratification of the water column (Read et al., 2011), was also well simulated for  using all three data sets (average RMSE of 

17.24 J m-2and NSE of 0.88). The lowest RMSE values were for the validation period (average RMSE of 13.34 J m-2) 

whereas during the calibration period values were slightly greater (average RMSE of 21.14 J m-2). Thermocline depth, 

defined as the depth of the maximum density gradient, was the parameter with the poorest performance (average RMSE of 3 215 

m). The MBE values (average MBE of 0.80 m) indicate a bias towards under prediction of thermocline depth (shallower 

thermocline depths).  
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3.3. Long-term modelled changes in thermal stratification 

The lake model was forced by four climate model projections and three emissions scenarios (historical, RCP 2.6 and RCP 220 

6.0) available from ISIMIP for GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR and MIROC5 using their original daily 

resolution and also at hourly resolution using meteorological disaggregated data developed using the GRNN models describe 

above. Simulated water temperatures for the historical, RCP 2.6 and RCP 6.0 scenarios under daily IPSL-CM5A-LR 

projections are presented as temperature isopleths in Fig. 4. These were created by averaging the daily temperature profiles 

for all years associated with each of the emission scenarios. These mean scenario temperature isopleths provide a clear 225 

visualization of how for future scenarios surface and bottom water temperatures are projected to increase with stronger and 

deeper stratification, an earlier stratification onset and later fall overturn and consequently longer stratification period. 

Anomalies were calculated to further evaluate these impacts on lake water temperature and thermal stratification. The 

anomalies were computed for each GCM by taking the difference between the annual average of each year (2006-2099) from 

RCP 2.6 and 6.0 scenarios and the average for the entire period 1975-2005 from the historical scenario. From these average 230 

yearly values were calculated using the months between April and September, due to the fact that the GOTM model was not 

able to simulate lake ice and winter water temperatures at the same level of accuracy as during the remainder of the year. The 

slope of the significant trends were evaluated by least-squares linear regression, except when the residuals did not follow a 

normal distribution. Then the non-parametric Mann-Kendall test for the significance of trends and the Theil-Sen method 

(Theil, 1950; Sen, 1968) to estimate the slope of the significant trends were used instead. 235 

In general there were significant changes in all the metrics describing thermal stratification evaluated in this study as can be 

seen from the frequency distribution of yearly anomalies in Fig. 5,6 and the detailed statistics presented in Table 5. The 

exception to this is the GFDL-ESM2M model which showed lower or non-significant changes.  The other three models 

showed more consistent and larger anomalies as compared to GFDL-ESM2M. Similar trend in the anomaly distributions 

were seen when the GOTM model was forced with either mean daily or synthetic hourly data. Detailed comparison of the 240 

results derived using the two different forcings (Table 5) suggest that the simulated changes are slightly greater when 

simulations are forced with the mean daily data. However, in both cases the same direction in the trends and the same overall 

descriptions of change is found. 

Rates of change in whole-lake temperature calculated for over the length for RCP2.6 and 6.0 scenarios were projected to 

increase except in the case of GFDL-ESM2M which showed weaker or non-significant changes for all measures of thermal 245 

stratification. Simulated changes were generally slight less for the simulations driven by daily forcing data as shown by the 

figures in parentheses For RCP 2.6 rate of change ranged from 0.06 to 0.10 ⁰C decade-1 (0.05 to 0.08 ⁰C decade-1), the values 

in bracket refer to future projections when the lake model was forced at hourly resolutions. For RCP 6.0, the projected rate of 

change ranged from 0.15 to 0.27 ⁰C decade-1 (0.11 to 0.19 ⁰C decade-1). IPSL-CM5A-LR projected the largest increase being 

0.59 ⁰C (0.43 ⁰C) under RCP 2.6 ⁰C and 2.51 ⁰C (1.79 ⁰C) under RCP 6.0. 250 
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Surface temperature is warmed significantly, with rates of change ranging from 0.09 to 0.16 ⁰C decade-1 (0.07 to 0.13 ⁰C 

decade-1) and from 0.17 to 0.39 ⁰C decade-1 (0.13 to 0.29 ⁰C decade-1) for RCP 2.6 and 6.0 respectively. These warming rates 

are consistent with the increase in the air temperature, with rates of change ranging from 0.10 to 0.18 ⁰C decade-1 (0.08 to 

0.15 ⁰C decade-1) for RCP 2.6 and from 0.20 to 0.44 ⁰C decade-1 (0.15 to 0.33 ⁰C decade-1) for RCP 6.0. For RCP 2.6 

HadGEM2-ES projected the largest increases in surface temperature of 1.48 ⁰C (1.20 ⁰C), whereas for RCP 6.0 IPSL-CM5A-255 

LR and HadGEM2-ES both projected similar large increases in surface temperature of 3.59 ⁰C (2.66 ⁰C) and 3.52 ⁰C (2.58 

⁰C) respectively. Significant rates of change in bottom temperature were not predicted during the RCP 2.6 scenario, but for 

the RCP 6.0 scenario bottom temperature did undergone significant warming rates in most projections, ranging from 0.07 to 

0.11 ⁰C decade-1. 

There were also projected changes in the resistance to mechanical mixing. For RCP 2.6 rates of change in Schmidt stability 260 

were significant for IPSL-CMR5A-LR and HadGEM2-ES, corresponding to the same projections that experienced the 

largest increases in surface temperature, being 2.52 J m-2 decade-1 (1.87 J m-2 decade-1) and 2.60 J m-2 decade-1 (2.21 J m-2 

decade-1) respectively. For RCP 6.0 a significant rate of change was projected in all projections, ranging from 2.50 to 7.93 J 

m-2 decade-1 (1.89 to 6.14 J m-2 decade-1). For RCP 2.6 a significant rate of change in the duration of stratification was 

projected to be 1.73 and 1.01 days decade-1 (1.37 and 0.80 day decade-1), which increased the stratification period by 16 and 265 

9 days (13 and 7 days) for IPSL-CM5A-LR and HadGEM2-ES projections respectively. This resulted from changes in both 

the onset and loss of stratification (Table 5). For RCP 6.0, there was a further  rate of change in the duration of stratification 

from 2.19 to 3.55 day decade-1 (1.78 to 2.94 day decade-1), which resulted in a  20 to 33 days (17 to 27 days) longer 

stratification period.  Thermocline depth is expected to be shallower under future conditions. However, for RCP 2.6 

significant rates of change were not simulated, but for RCP 6.0 significant rates of change were found to be 0.08 and 0.12 m 270 

decade-1 (0.08 and 0.12 m decade-1) or rather 0.74 and 1.13 m shallower (0.78 and 1.14 m) for IPSL-CM5A-LR and 

HadGEM2-ES. 

Extreme changes also showed a pronounced increase during the future scenarios. For the RCP 6.0 scenario, the 95th 

percentile from the distribution of surface temperature anomalies ranged from 2.46 ⁰C (1.87 ⁰C) for GFDL-ESM2M to 5.02 

⁰C (3.76 ⁰C) for HadGEM2-ES (Fig. 5). The HadGEM2-ES projection also showed the highest increase in stability, 95th 275 

percentile of 112.51 J m-2 (89.05 J m-2), and the shallowest thermocline depth, 95th percentile of 1.99 m (1.78 m). Extreme 

changes in the duration of stratification were least for GFDL-ESM2 and greatest for HadGEM2-ES. Longer stratification 

periods were projected for both models with the 95th percentile of change in duration increasing 51 days (38 days) for 

HadGEM2-ES and 22 days (21 days) GFDL-ESM2M projection. These increases in duration were dominated by earlier 

onset of stratification for GFDL-ESM2M and by both earlier onset and later fall overturn for HadGEM2-ES (Table 5). 280 

4. Discussion 

The GOTM model was able to produce a good agreement between the model output and observed data during both the 

calibration and the validation period (Fig. 3, Table 4). Water temperature simulations for the validation period (2015-2016) 
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were more accurate than for the calibration period (2006-2014) due the higher variability in observed water temperature 

during the long calibration period. Bottom water temperature RMSEs showed better agreement between simulations and 285 

observations when the lake model was forced using measured average hourly meteorological data instead of measured 

average daily meteorological data. This could be attributed to a more confident prediction of the diurnal heating and cooling 

cycles, and hence the downward flow of heat into the hypolimnion. Thermocline depth was harder to predict, simulated 

thermocline depths differed from the observed values contributing to additional errors in water temperature for depths near 

the thermocline. Bruce et al. (2018) detected a strong correlation between accuracy of the extinction coefficient and model 290 

simulations of full-profile temperature and thermocline depth, and thus the importance of light extinction in the prediction of 

thermocline depth. A single calibrated value of e-folding depth for the visible fraction of the light (the inverse of the 

extinction coefficient) were used in the GOTM which prevented the evaluation of seasonal effects (Perroud et al., 2009). 

Also it should be noted that the internal seiche movement observed in the measured data (Fig. 2) is not simulated by a 1D 

model such as GOTM. Thus errors in thermocline depth are at least in part due to limitations in the 1D model framework. 295 

The performance of the GOTM model are comparable to those reported in other 1-D modelling studies. Moras et al. (2019, 

in review) ran GOTM using hourly measured meteorology for a 56-year period and RMSE for daily full-profile water 

temperature was 1.12 ⁰C, Magee and Wu (2017) reported RMSEs of 0.30 and 0.53⁰C (lake Mendota) and 1.45 and 1.94 ⁰C 

(Fish lake) for DYRESM temperature simulations in the epilimnion and hypolimnion respectively, and Perroud et al. (2009) 

simulated water temperature profiles of lake Geneva for a 10-year period with RMSEs of < 2 ⁰C for DYRESM and 3 ⁰C for 300 

SIMSTRAT. For our simulations with GOTM, model performance was slightly more accurate for the calibration data set 

when GOTM was forced with synthetic hourly meteorological input, rather than measured hourly meteorological input.  

Similar levels of performance using the two different data sets was in part caused by changes in the calibrated parameters 

used to characterize the lake thermal structure. Apparently calibration can in part compensate for the lack of diurnal 

variability in the daily forcing data. 305 

The model parameters adjusted during the calibration processes were nondimensional scaling factors (shf_factor, swr_factor 

and wind_factor) and physical parameters with strong influence in the vertical distribution of light and temperature (k_min 

and g2). These parameters are key for the determination of the heat budget in the water column. Wind is the dominant driver 

of mixing in lakes, increases or decreases of wind speed (wind_factor) changes the amount of turbulence kinetic energy 

available for mixing. The wind scaling factor is often important when wind station is located some distance from the lake 310 

and/or to consider wind sheltering effects (Markfort et al., 2010). One would not expect that these factors would be 

important for Lake Erken where wind was measured on an island in the lake. However, the dominant wind along the lake’s 

longest east-west fetch (Yang et al., 2014), this could explain the need to scale up the unidirectional wind speed 

measurements that were used as an input to GOTM. Furthermore, since it is the cube of wind speed that affects lake mixing, 

use of longer averaging periods will underestimate the effects of gusting and variable winds. This could explain why we 315 

obtain higher calibrated values of the wind factor when forcing the model with measured daily rather than hourly data (Table 

2). Higher values of the wind_factor were also obtained when GOTM was forcing with synthetic hourly meteorological 
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drivers. This is due to an underestimation of the faster wind speed predictions from GRNN model (Fig. 1, supplementary 

Fig. 5). During the ACPy calibration each of these parameters were calibrated while simultaneously influencing each other; 

shf_factor, swr_factor, wind_factor and g2 have a strong influence on heat and energy exchange across the air-water 320 

interface. There is to some extent an unavoidable tendency for some error in one parameter to be cancelled out by opposite 

errors in another parameter. When GOTM was forcing with measured daily average and synthetic hourly meteorological 

drivers a large wind_factor led to surface cooling, but on the other hand a lower shf_factor and smaller values of g2 

(equivalent to higher extinction coefficient) promoted an increase in surface water temperature. When GOTM was forcing 

with measured hourly average meteorological drivers, g2 had the larger values (equivalent to lower extinction coefficient) 325 

and shf_factor was closer to 1 showing that a deeper penetration of energy entering into the lake provided more realistic 

warming of the surface, a lower wind factor was also found, which means that less surface cooling is to be offset. 

In general, surface water temperature was projected to increase at a rate that is 83-93 % of that of the air temperature 

increase. This conclusion is in close agreement with other modelling studies which found a relationship between the surface 

water  and air warming rates of 75-90% (Schmidt et al., 2014) and 70-85% (Shatwell et al., 2019). However, one exception 330 

was observed for the IPSL-CM5A-LR projection under RCP 2.6 scenario using daily resolution in the forcing inputs when 

increase of 0.109 ⁰C decade-1 in surface water temperature slightly exceeded the increase of 0.105 ⁰C decade-1 in air 

temperature. The reasons for that this scenario shows a somewhat different behaviour is probably related to some 

inconsistencies in the GCM models and also bias correction that was applied to the ISIMIP data. 

4. Conclusion 335 

This study showed the ability of the GOTM model to simulate accurately Lake Erken water temperature when the model was 

forced using either daily or hourly temporal resolution inputs. Neuronal networks were shown to be an effective method to 

disaggregate different weather variables such as air temperature, and short-wave radiation, in order to generate synthetic 

hourly meteorological data from the daily data that is typically available from GCM models. Model performance was 

slightly improved when using the synthetic hourly data, and climate change effects were somewhat greater when using such 340 

data to drive future climate simulations. However, it is not clear that data disaggregation is needed given the computational 

costs of developing such data sets and running long-term simulations at an hourly time step. Future climate simulations 

showed similar trends in the anomaly distributions when the GOTM model was forced with both mean daily or synthetic 

hourly meteorological data, and we also found evidence that the calibration procedure partly compensates for differences in 

the temporal resolution of the model input. 345 

In this study changes in Lake Erken’s surface temperature was projected to increase from 0.87 to 1.48 ⁰C for RCP 2.6 and 

from 1.59 to 3.59 for RCP 6.0, and the length of the stratification also was projected to be longer from 9 to 16 days for RCP 

2.6 and from 20 to 33 days for RCP 6.0. We also extensively document coinciding changes in water column temperatures, 

water column stability and mixed layer depth both in this paper and the supplementary material. Combined these results 

suggest important changes in the factors affecting lake biogeochemistry directly through changes in temperature and 350 
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indirectly by influencing the availability of light and nutrients. By providing an initial test for the simulations that will be 

carried out by the ISIMIP lake sector this paper sets the stage for more extensive world-wide evaluation of the effects of 

climate change on lake thermal structure.  

Code and data availability 

The source code of the model GOTM is freely available online at https://gotm.net/. The input data, model configuration, 355 

output and observed data for calibration are stored in HydroShare at 

https://doi.org/10.4211/hs.ace98c3bc72b44f1834a58ec8b3af310. The ISIMIP climate scenarios are available online at 

https://www.isimip.org/. Future projections of simulated water temperature derived from both the original ISIMIP input data 

and synthetic hourly projections are stored in HydroShare at 

https://doi.org/10.4211/hs.2b4cfe0f02bf4375bcd0b62e45c61b19. Matlab codes, R codes and all the datasets produced during 360 

this study are available upon request from the corresponding author. 

Competing interests 

The authors declare that they have no conflict of interest. 

Acknowledgements 

We are grateful to ISIMIP for their roles in producing, coordinating, and making available the ISIMIP climate scenarios, we 365 

acknowledge the support of the ISIMIP cross sectoral science team. We acknowledge funding from the EU and FORMAS in 

the frame of the collaborative international Consortium PROGNOS financed under the ERA-NET WaterWorks2014 

Cofunded Call. This ERA-NET is an integral part of the 2015 Joint Activities developed by the Water Challenges for a 

Changing World Joint Programme Initiative (Water JPI). We also acknowledge funding from the European Union’s Horizon 

2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement H2020-MSCA-ITN-2016 No 370 

722518 for the Project MANTEL, and the project WATExR which is part of ERA4CS, an ERA-NET initiated by JPI 

Climate, and funded by MINECO (ES),FORMAS (SE), BMBF (DE), EPA (IE), RCN (NO), and IFD (DK),with co-funding 

by the European Union (Grant 690462) and FORMAS grant 2017-01738. 

References 

Bruce, L. C., Frassl, M. A., Arhonditsis, G. B., Gal, G., Hamil-ton, D. P., Hanson, P. C., Hetherington, A. L., Melack, J. 375 

M.,Read, J. S., Rinke, K., Rigosi, A., Trolle, D., Winslow, L., Adrian, R., Ayala, A. I., Bocaniov, S. A., Boehrer, B., Boon, 

C.,Brookes, J. D., Bueche, T., Busch, B. D., Copetti, D., Cortés,A., de Eyto, E., Elliott, J.A., Gallina, N., Gilboa, Y., Guyen-

non, N., Huang, L., Kerimoglu, O., Lenters, J.D., MacIntyre, S.,Makler-Pick, V., McBride, C. G., Moreira, S., Özkundakci, 

D.,Pilotti, M., Rueda, F. J., Rusak, J. A., Samal, N. R., Schmid, M.,Shatwell, T., Snorthheim, C., Soulignac, F., Valerio, G., 

van derLinden, L., Vetter, M., Vinçon-Leite, B., Wang, J., Weber, M.,Wickramaratne, C., Woolway, R. I., Yao, H., and 380 

https://doi.org/10.5194/hess-2019-335
Preprint. Discussion started: 8 July 2019
c© Author(s) 2019. CC BY 4.0 License.



13 

 

Hipsey, M. R.: A multi-lake comparative analysis of the General Lake Model(GLM): Stress-testing across a global 

observatory network, Environ. Modell. Softw., 102, 274–291, https://doi.org/10.1016/j.envsoft.2017.11.016, 2018. 

Bruggeman, J., and Bolding, K.: A general framework for aquatic biogeochemical models, Environ. Model Softw., 61, 249–

265, https://doi.org/10.1016/j.envsoft.2014.04.002, 2014. 

Burchard, H., Bolding, K., and Ruiz-Villarreal, M.: GOTM, a General Ocean Turbulence Model. Theory, implementation 385 

and test cases, Technical Report, 1999. 

Butcher, J. B., Nover, D., Johnson, T. E., and Clark, C. M.: Sensitivity of lake thermal and mixing dynamics to climate 

change, Clim. Change, 129, 295-305, https://doi.org/10.1007/s10584-015-1326-1, 2015. 

Frieler, K., Lange, S., Piontek, F., Reyer, C. P. O., Schewe, J., Warszawski, L., Zhao, F., Chini, L., Denvil, S., Emanuel, K., 

Geiger, T., Halladay, K., Hurtt, G., Mengel, M., Murakami, D., Ostberg, S., Popp, A., Riva, R., Stevanovic, M., Suzuki, T., 390 

Volkholz, J., Burke, E., Ciais, P., Ebi, K., Eddy, T. D., Elliott, J., Galbraith, E., Gosling, S. N., Hattermann, F., Hickler , T., 

Hinkel, J., Hof, C., Huber, V., Jägermeyr, J., Krysanova, V., Marcé, R., Müller Schmied, H., Mouratiadou, I., Pierson, D., 

Tittensor, D. P., Vautard, R., van Vliet, M., Biber, M. F., Betts, R. A., Bodirsky, B. L., Deryng, D., Frolking, S., Jones, C. 

D., Lotze, H. K., Lotze-Campen, H., Sahajpal, R., Thonicke, K., Tian, H., and Yamagata, Y.: Assessing the impacts of 

1.5 °C global warming – simulation protocol of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b), 395 

Geosci. Model Dev., 10, 4321-4345, https://doi.org/10.5194/gmd-10-4321-2017, 2017. 

Ficker, H., Luger, M., and Gassner, H.: From dimictic to monomictic: Empirical evidence of thermal regime transitions in 

three deep alpine lakes in Austria induced by climate change, Fresh. Biol., 62, 1335-1345, 

https://doi.org/10.1111/fwb.12946, 2017. 

Foley, B., Jones, I.D., Maberly, S.C., and Rippey, B.: Long‐term changes in oxygen depletion in a small temperate lake: 400 

effects of climate change and eutrophication. Freshwater Biol., 57, 278-289, https://doi.org/10.1111/j.1365-

2427.2011.02662.x, 2012. 

Grasset, C., Mendonça, R., Villamor Saucedo, G., Bastviken, D., Roland, F., and Sobek, S.: Large but variable methane 

production in anoxic freshwater sediment upon addition of allochthonous and autochthonous organic matter, Limnol. 

Oceanogr., 63, 1488-1501, https://doi.org/10.1002/lno.10786, 2018. 405 

Guo, Z., Chang, C., Wang, R.: A Novel Method to Downscale Daily Wind Statistics to Hourly Wind Data for Wind Erosion 

Modelling, in: Geo-Informatics in Resource Management and Sustainable Ecosystem, GRMSE 2015, Wuhan, China, 16-18 

October 2015, 611-619, 2015. 

Hadley, K. R., Paterson, A. M. , Stainsby, E. A., Michelutti , N. , Yao, H. , Rusak, J. A., Ingram, R.,  McConnell, C.,  and  

Smol, J. P.: Climate warming alters thermal stability but not stratification phenology in a small north-temperature lake, 410 

Hydrol. Process., 28, 6309-6319, https://doi.org/10.1002/hyp.10120, 2013.  

Hempel, S., Frieler, K., Warszawski, L., Schewe, J., and Piontek, F.: A trend-preserving bias correction – the ISI-MIP 

approach, Earth Syst. Dynam., 4, 219-236, https://doi.org/10.5194/esd-4-219-2013, 2013. 

https://doi.org/10.5194/hess-2019-335
Preprint. Discussion started: 8 July 2019
c© Author(s) 2019. CC BY 4.0 License.



14 

 

Huang, Y. T., and Liu, L.: Multiobjective water quality model calibration using a hybrid genetic algorithm and neural 

network-based approach, J. Environ. Eng., 136, 1020-1031, https://doi.org/10.1061/(ASCE)EE.1943-7870.0000237, 2010. 415 

Kainz, M. J., Ptacnik, R., Rasconi, S., and Hager, H. H.: Irregular changes in lake surface water temperature and ice cover in 

subalpine Lake Lunz, Austria, Inland Waters, 7, 27-33, http://dx.doi.org/10.1080/20442041.2017.1294332, 2017. 

Khatib, T., and Elmenreich, W.: A Model for Hourly Solar Radiation Data Generation from Daily Solar Radiation Data 

Using a Generalized Regression Artificial Neural Network, Int. J. Photoenergy, 968024,1–13, 

https://doi.org/10.1155/2015/968024, 2015. 420 

Kirillin, G.: Modeling the impact of global warming on water temperature and seasonal mixing regimes in small temperate 

lakes. Boreal Enviro. Res., 15, 279-293, 2010. 

Kraemer, B. M., Anneville, O., Chandra, S., Dix, M., Kuusisto, E., Livingstone, D. M., Rimmer, A., Schladow, S. G., Silow, 

E., Sitoki, L. M., Tamatamah, R., Vadeboncoeur, Y., and McIntyre, P. B.: Morphometry and average temperature affect lake 

stratification responses to climate change, Geophys. Res. Lett., 42, 4981–4988, https://doi.org/10.1002/2015GL064097, 425 

2011. 

Ladwig, R., Furusato, E., Kirillin, G., Hinkelmann, R., and Hupfer, M.: Climate change demands adaptative management of 

urban lakes: model-based assessment of management scenarios for lake Tegel (Berlin, Germany), Water, 10, 186, 

https://doi.org/10.3390/w10020186, 2018. 

MacKay, M. D., Neale, P. J., Arp, C. D., De Senarpont Domus, L. N., Fang, X., Gal, G., Jöhnk, K. D., Kirillin, G., Lenters, 430 

J. D., Litchman, E., MacIntyre, S., Marsh, P., Melack, J., Mooij, W. M., Peeters, F., Quesada, A., Schladow, S. G., Schmid, 

M., Spence, C., and Stokes, S. L.: Modeling lakes and reservoirs in the climate system, Limnol. Oceanogr., 54, 2315–2329, 

https://doi.org/10.4319/lo.2009.54.6_part_2.2315, 2009. 

Magee, M. R., and Wu, C. H.: Response of water temperatures and stratification to changing climate in three lakes with 

different morphometry, Hydrol. Earth Syst. Sci., 21, 6253-6274, https://doi.org/10.5194/hess-21-6253-2017, 2017. 435 

Markfort, C. D., Perez, A. L. S., Thill, J. W., Jaster, D. A., Porte-Agel, F., and Stefan, H. G.: Wind sheltering of a lake by a 

tree canopy or bluff topography. Water Resour. Res. 46, 1-13, https://doi.org/10.1029/2009WR007759, 2010. 

Mesman, J. P., Stelzer, J. A. A., Dakos, V., Goyette, S., Jones, I. D., Kasparian, J., McGinnis, D. F., and Ibelings, B. W.: The 

role of internal feedbacks in shifting deep lake mixing regimes under a warming climate, submitted to Glob. Chang. Biol., 

2019.  440 

Moras, S., Ayala, A. I., and Pierson, D. C.: Historical modelling of changes in Lake Erken thermal conditions, Hydrol. Earth 

Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-199, in review, 2019. 

Nash, J. E., and Sutcliffe, J. V.: River flow forecasting through conceptual models part I - A discussion of principles. J.  

Hydrol., 10, 282–290. https://doi.org/10.1016/0022-1694(70)90255-6, 1970. 

Nõges, T., Nõges, P., Jolma, A., and Kaitaranta, J.: Impacts of climate change on physical characteristics of lakes in Europe. 445 

European Commission Joint Research Centre Report EUR 24064 EN, Office for Official Publications of the European 

Communities, Luxembourg, 2009. 

https://doi.org/10.5194/hess-2019-335
Preprint. Discussion started: 8 July 2019
c© Author(s) 2019. CC BY 4.0 License.



15 

 

North, R. P., North, R. L., Livingstone, D. M., Köster, O., and Kipfer, R.: Long‐term changes in hypoxia and soluble 

reactive phosphorus in the hypolimnion of a large temperate lake: consequences of a climate regime shift. Glob. Chang. 

Biol., 20, 811-823, https://doi.org/10.1111/gcb.12371, 2013. 450 

O’Reilly, C., Sharma, S., Gray, D. K., Hampton, S. E., Read, J. S., Rowle,y R. J., Schneider, P., Lenters, J. D., McIntyre, 

P.B., Kraemer, B. M., Weyhenmeyer, G. A., Straile, D., Dong, B., Adrian, R., Allan, M. G., Anneville, O., Arvola, L., 

Austin, J., Bailey, J. L., Baron, J. S., Brookes, J. D., de Eyto, E., Dokulil, M. T., Hamilton, D. P., Havens, K., Hetherington, 

A. L., Higgins, S. N., Hook, S., Izmest’eva, L. R., Joehnk, K. D., Kangur, K., Kasprzal, P., Kumagai, M., Kuusisto, E., 

Leshkevich, 20 G., Livingtone, D. M., McIntyre, S., May, L., Melack, J. M., Mueller-Navarra, D. C, Naumenko, M., Noges, 455 

P., Noges, T., North, R. P., Plisnier, P. D., Rigosi, A., Rimmer, A., Rogora, M., Rudstam, L. G., Rusak, J. A., Salmaso, N., 

Samal, N. R., Schindler, D. E., Schladow, S. G., Schmid, M., Schmidt, S. R., Silow, E., Soylu, M. E., Teubner, K., Verburg, 

P., Voutilainen, A., Watkinson, A., Wiliamson, C. E., and Zhang G.: Rapid and highly variable warming of lake surface 

waters around the globe, Geophys. Res. Lett., 42, 10773–10781, https://doi.org/10.1002/2015GL066235, 2015. 

Shimoda, Y., Azim, M.E., Perhar, G., Ramin, M., Kenney, M.A., Sadraddini, S., Gudimov, A., and Arhonditsis, G.B.: Our 460 

current understanding of lake ecosystem response to climate change: What have we really learned from the north temperate 

deep lakes?, J. Great Lakes Res., 37, 173-193, https://doi.org/10.1016/j.jglr.2010.10.004, 2011. 

O'Reilly, C. M., Alin, S. R., Plisnier, P. D., Cohen, A. S., and McKee, B. A.: Climate change decreases aquatic ecosystem 

productivity of Lake Tanganyika, Africa, Nature, 424, 766-768, https://doi.org/10.1038/nature01833, 2003. 

Parton, W. J., and Logan, J. A.: A model for diurnal variation in soil and air temperature, J. Agric. Meteorol., 23, 205-2016, 465 

1981. 

Pearl, H.W. and Paul, V.J.: Climate change: links to global expansion of harmful cyanobacteria. Water Res., 46, 1349-1363, 

https://doi.org/10.1111/j.1758-2229.2008.00004.x, 2012. 

Perroud, M., and Goyette, S.: Impact of warmer climate on Lake Geneva water-temperature profiles, Boreal Environ. Res., 

15, 255-278, 2010. 470 

Perroud, M., Goyette, S., Martynov, A., Beniston, M., and Anneville, O.: Simulation of multiannual thermal profiles in deep 

Lake Geneva: A comparison of one-dimensional lake models, Limnol. Oceanogr., 54, 1574-1594, 

https://doi.org/10.4319/lo.2009.54.5.1574, 2009. 

Persson, I., and Jones, I.D.: The effect of water colour on lake hydrodynamics: A modelling study, Freshwater Biol., 53, 

2345-2355, https://doi.org/10.1111/j.1365-2427.2008.02049.x, 2008. 475 

Pierson, D. C., Petterson, K., and Istvanovics, V.: Temporal changes in biomass specific photosynthesis during the summer: 

regulation by environmental factors and the importance of phytoplankton succession, Hydrobiologia, 243, 119-135, 1992. 

Read, J. S., Hamilton, D. P., Jones, I. D., Muraoka, K., Winslow, L. A., Kroiss, R., Wu, C. H., and Gaiser, E.: Derivation of 

lake mixing and stratification indices from high-resolution lake buoy data, Environ. Model Softw., 26 1325-1336, 

https://doi.org/10.1016/j.envsoft.2011.05.006, 2011. 480 

https://doi.org/10.5194/hess-2019-335
Preprint. Discussion started: 8 July 2019
c© Author(s) 2019. CC BY 4.0 License.



16 

 

Rempfer, J., Livingstone D. M., Blodau, C., Niederhauser, P., Forster R., and Kipfer, R.: The effect of the exceptionally mild 

European winter of 2006–2007 on temperature and oxygen profiles in lakes in Switzerland: a foretaste of the future?, 

Limnol. Oceanogr., 55, 2170–2180, https://doi.org/10.4319/lo.2010.55.5.2170, 2010. 

Sachse, R., Petzoldt, T., Blumstock, M., Moreira Martinez, S., Pätzig, M., Rücker, J., Janse, J., Mooij, W. M., and Hilt, S.: 

Extending one-dimensional models for deep lakes to simulate the impact of submerged macrophytes on water quality, 485 

Environ. Model Softw., 61, 410–423, https://doi.org/10.1016/j.envsoft.2014.05.023, 2014. 

Sahoo, G. B., Forrest, A. L., Schladow, S. G., Reuter, J. E., Coats, R., and Dettinger, M.: Climate change impacts on lake 

thermal dynamics and ecosystem vulnerabilities, Limnol. Oceanogr., 61, 496-507, https://doi.org/10.1002/lno.10228, 2019. 

Samal, N. R., Pierson, D. C., Schneiderman, E., Huang, Y., Read, J. S., Anandhi, A., and Owens, E. M.: Impact of climate 

change on Cannonsville Reservoir thermal structure in the New York City water supply, Water Qual. Res. J. Can., 47, 389-490 

405, https://doi.org/10.2166/wqrjc.2012.020, 2010. 

Schmid, M., Hunziker, S. and Wüest, A.: Lake surface temperatures in a changing climate: a global sensitivity analysis, 

Clim. Change, 124, 301-315. https://doi.org/10.1007/s10584-014-1087-2, 2014. 

Schultze, M., Boehrer, B., Wendt-Potthoff, K., Katsev, S., and Brown, E. T.: Chemical Setting and Biogeochemical 

Reactions in Meromictic Lakes. Ecology of Meromictic Lakes, Springer, 35-59 pp., 2017. 495 

Schwefel, R., Gaudard, A., Wüest, A., and Bouffard, D.: Effects of climate change on deepwater oxygen and winter mixing 

in a deep lake (Lake Geneva): Comparing observational findings and modeling. Water Resour. Res., 52, 8811-8826, 

https://doi.org/10.1002/2016WR019194, 2016. 

Sen, P. K.: Estimates of the regression coefficient based on Kendall’s Tau, J. Am. Stat. 5 Assoc., 63, 1379–1389, 

https://doi.org/10.1080/01621459.1968.10480934, 1968. 500 

Shatwell, T., Thiery, W., and Kirillin, G.: Future projections of temperature and mixing regime of European temperate lakes, 

Hydrol. Earth Syst. Sci., 23, 1533-1551, https://doi.org/10.5194/hess-23-1533-2019, 2019. 

Storn, R., and Price K.: Differential Evolution – A Simple and Efficient Heuristic for Global Optimization over Continuous 

10 Spaces, J. Global Optim., 11, 341–359, https://doi.org/10.1023/A:1008202821328, 1997. 

Theil, H.: A rank invariant method of linear and polynomial regression analysis, I, II, III, Proc. K. Ned. Akad. Wet., Ser. A 505 

Math. Sci., 53, 386–392, 1950. 

Umlauf, L., and Burchard, H.: Second-order turbulence closure models for geophysical boundary layers. A review of recent 

work. Continental Shelf Research, 25,795–827. https://doi.org/10.1016/j.csr.2004.08.004, 2005. 

Waichler, S. R., and Wigmosta, M. S.: Development of hourly meteorological values from daily data and significance to 

Hydrological Modeling at H. J. Andrews Experimental Forest, J. Hydrometeorol., 4, 251-263, https://doi.org/10.1175/1525-510 

7541(2003)4<251:DOHMVF>2.0.CO;2, 2003. 

Winslow, L. A., Hansen, G. J. A, Read J. S., and Notaro, M.: Large-scale modeled contemporary and future water 

temperature estimates for 10774 Midwestern U.S. Lakes, Sci. Data, https://doi.org/10.1038/sdata.2017.53, 2017. 

https://doi.org/10.5194/hess-2019-335
Preprint. Discussion started: 8 July 2019
c© Author(s) 2019. CC BY 4.0 License.



17 

 

Woolway, R.I., and Merchant, C.J.: Worldwide alteration of lake mixing regimes in response to climate change. Nature 

Geoscience, 12, 271-276, https://doi.org/10.1038/s41561-019-0322-x, 2019. 515 

Woolway, R. I., Meinson, P., Nõges, P., Jones, I. D., and Laas, A.: Atmospheric stilling leads to prolonged thermal 

stratification in a large shallow polymictic lake. Clim. Change, 141, 759-773, https://doi.org/10.1007/s10584-017-1909-0, 

2017. 

Yang, Y., Colom, W., Pierson, D. C, and Pettersson, K.: Water column stability and summer phytoplankton dynamics in a 

temperate lake (Lake Erken, Sweden), Inland Waters, 6, 499-508, https://doi.org/10.1080/IW-6.4.874, 2016. 520 

Yankova, Y., Neuenschwander, S., Köster, O., and Posch, T.: Abrupt stop of deep water turnover with lake warming: Drastic 

consequences for algal primary producers. Sci. Rep., 7, 13770, https://doi.org/10.1038/s41598-017-13159-9, 2017. 

Tables 

Table 1: Bias-corrected variables in the ISIMIP dataset 

variable name abbreviation units 

precipitation pr kg m-2 s-1 

surface pressure  ps Pa 

surface downwelling shortwave radiation rsds W m-2 

near-surface wind speed sfcWind m s-1 

near-surface air temperature tas K 

daily maximum near-surface air temperature tasmax K 

daily minimum near-surface air temperature tasmin K 

relative humidity hurs % 

 525 

Table 2: Lake model parameters and calibrated values 

model parameter feasible range 
calibrated values 

24 h met 1h met  synthetic 1h met  

shf_factor 0.5–1.5 0.69 0.81 0.77 

swr_factor 0.8–1.2 1.15 0.90 0.91 

wind_factor 0.5–2.0 1.55 1.37 1.51 

k_min 1.4 10-7–1.0 10-5 1.47 10-6 1.40 10-6 1.29 10-6 

g2 0.5–3.5 1.99 2.30 1.62 
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 530 

Table 3: GRNN models performance evaluation. 

 

GRNN model 

training validation 

MBE RMSE NSE MBE RMSE NSE 

Air temperature (⁰C) -1.70 10-4 0.256 0.999 -0.057 0.318 0.940 

Short wave radiation (W m-2) 5.76 10-4 6.345 0.999 -0.037 8.196 0.870 

Relative humidity (%)  -7.94 10-4 0.790 0.998 0.341 1.021 0.686 

Wind speed (m s-1) -5.67 10-3 1.060 0.779 -0.009 1.370 0.584 

 

Table 4: Lake model performance evaluation: MBE, RMSE and NSE for full profiles temperature, surface temperature, bottom 

temperature, volumetrically weighted averaged whole lake temperatures, Schmidt stability and thermocline using simulated 

results from running GOTM driven by daily (24h met), hourly (1h met) and synthetic hourly (synthetic 1h met) meteorological 535 
data sets. 

 

calibration 

 

24h met 1h met synthetic 1h met 

 

MBE RMSE NSE MBE RMSE NSE MBE RMSE NSE 

full-profile temp (⁰C) -0.08 1.04 0.93 -0.02 0.94 0.94 -0.02 0.88 0.95 

surface temp (⁰C) -0.04 0.69 0.97 0.04 0.72 0.97 -0.01 0.61 0.98 

bottom temp (⁰C) -0.06 1.33 0.83 0.07 1.24 0.85 -0.11 1.16 0.87 

whole lake temp (⁰C) -0.07 0.57 0.98 -0.03 0.52 0.98 -0.01 0.49 0.98 

Schmidt stability (J m-2) 0.53 22.09 0.85 0.59 21.69 0.85 0.76 19.64 0.88 

thermocline depth (m) 0.58 2.77 0.32 0.84 3.07 0.22 0.43 2.84 0.32 

 

validation 

 

24h met 1h met synthetic 1h met 

 

MBE RMSE NSE MBE RMSE NSE MBE RMSE NSE 

full-profile temp (⁰C) -0.07 0.63 0.98 -0.12 0.69 0.97 0.00 0.68 0.97 

surface temp (⁰C) -0.24 0.54 0.99 -0.19 0.64 0.98 -0.15 0.54 0.99 

bottom temp (⁰C) 0.16 0.68 0.96 0.09 0.59 0.97 0.23 0.74 0.95 

whole-lake temp (⁰C) -0.13 0.48 0.99 -0.17 0.59 0.98 -0.06 0.51 0.98 

Schmidt stability (J m-2) -5.26 13.27 0.90 -3.26 13.50 0.90 -4.47 13.26 0.90 

thermocline depth (m) 0.89 2.86 0.07 1.07 3.27 -0.07 0.98 3.18 -0.14 

 

 

 

 540 
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Table 5. Projected trends of change (2006–2099) in air temperature, surface temperature, bottom temperature, whole-lake 

temperature, Schmidt stability, thermocline depth, duration, onset and loss of stratification (ns: not significant). 545 

 RCP 2.6 

 

GFDL-ESM2M 

 

24 h met 1h met 

air temperature ns ns 

surface temperature ns ns 

bottom temperature ns ns 

whole-lake temperature ns ns 

Schmidt stability ns ns 

thermocline depth ns ns 

duration ns ns 

onset ns ns 

loss ns ns 

 

HadGEM2-ES 

 

24 h met 1h met 

air temperature 0.18 ⁰C decade-1 (p-value < 0.001) 0.15 ⁰C decade-1 (p-value < 0.001) 

surface temperature 0.16 ⁰C decade-1 (p-value < 0.001) 0.13 ⁰C decade-1 (p-value < 0.001) 

bottom temperature ns ns 

whole-lake temperature 0.10 ⁰C decade-1 (p-value < 0.001) 0.08 ⁰C decade-1 (p-value < 0.001) 

Schmidt stability 2.60 J m-2 decade-1 (p-value < 0.001) 2.21 J m-2 decade-1 (p-value < 0.001) 

thermocline depth ns ns 

duration 1.01 day decade-1 (p-value = 0.014) 0.80 day decade-1 (p-value = 0.034) 

onset 0.63 day decade-1 (p-value = 0.047) ns 

loss ns 0.43 day decade-1 (p-value = 0.015) 

 

IPSL-CM5A-LR 

 

24 h met 1h met 

air temperature 0.11 ⁰C decade-1 (p-value = 0.005) 0.09 ⁰C decade-1 (p-value = 0.004) 

surface temperature 0.11 ⁰C decade-1 (p-value = 0.003) 0.08 ⁰C decade-1 (p-value = 0.004) 

bottom temperature ns ns 

whole-lake temperature 0.06 ⁰C decade-1 (p-value = 0.038) 0.05 ⁰C decade-1 (p-value = 0.049) 

Schmidt stability 2.52 J m-2 decade-1 (p-value = 0.012) 1.87 J m-2 decade-1 (p-value = 0.024) 

thermocline depth ns ns 

duration 1.73 day decade-1 (p-value < 0.001) 1.37 day decade-1 (p-value = 0.002) 

onset ns 0.93 day decade-1 (p-value = 0.004) 

loss 0.85 day decade-1 (p-value = 0.005) 0.45 day decade-1 (p-value = 0.049) 

 

MIROC5 

 

24 h met 1h met 
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air temperature 0.10 ⁰C decade-1 (p-value = 0.007) 0.08 ⁰C decade-1 (p-value = 0.008) 

surface temperature 0.09 ⁰C decade-1 (p-value = 0.001) 0.07 ⁰C decade-1 (p-value = 0.002) 

bottom temperature ns ns 

whole-lake temperature 0.08 ⁰C decade-1 (p-value < 0.001) 0.06 ⁰C decade-1 (p-value < 0.001) 

Schmidt stability ns ns 

thermocline depth ns ns 

duration ns ns 

onset ns 0.60 day decade-1 (p-value = 0.018) 

loss ns ns 

 RCP 6.0 

 

GFDL-ESM2M 

 

24 h met 1h met 

air temperature 0.20 ⁰C decade-1 (p-value  < 0.001) 0.15 ⁰C decade-1 (p-value  < 0.001) 

surface temperature 0.17 ⁰C decade-1 (p-value < 0.001) 0.13 ⁰C decade-1 (p-value < 0.001) 

bottom temperature ns ns 

whole-lake temperature 0.15 ⁰C decade-1 (p-value < 0.001) 0.11 ⁰C decade-1 (p-value < 0.001) 

Schmidt stability 2.50 J m-2 decade-1 (p-value = 0.003) 1.89 J m-2 decade-1 (p-value = 0.008) 

thermocline depth ns ns 

duration ns 0.81 day decade-1 (p-value = 0.031) 

onset ns ns 

loss ns ns 

 

HadGEM2-ES 

 

24 h met 1h met 

air temperature 0.44 ⁰C decade-1 (p-value < 0.001) 0.33 ⁰C decade-1 (p-value < 0.001) 

surface temperature 0.38 ⁰C decade-1 (p-value < 0.001) 0.28⁰C decade-1 (p-value < 0.001) 

bottom temperature 0.07 ⁰C decade-1 (p-value = 0.010) ns 

whole-lake temperature 0.25 ⁰C decade-1 (p-value < 0.001) 0.17 ⁰C decade-1 (p-value < 0.001) 

Schmidt stability 7.79 J m-2 decade-1 (p-value < 0.001) 6.22 J m-2 decade-1 (p-value < 0.001) 

thermocline depth 0.12 m decade-1 (p-value < 0.001) 0.12 m decade-1 (p-value < 0.001) 

duration 3.55 day decade-1 (p-value < 0.001) 2.94 day decade-1 (p-value < 0.001) 

onset 1.90 day decade-1 (p-value < 0.001) 1.41 day decade-1 (p-value < 0.001) 

loss 1.80 day decade-1 (p-value < 0.001) 1.38 day decade-1 (p-value < 0.001) 

 

IPSL-CM5A-LR 

 

24 h met 1h met 

air temperature 0.43 ⁰C decade-1 (p-value < 0.001) 0.33 ⁰C decade-1 (p-value < 0.001) 

surface temperature 0.39 ⁰C decade-1 (p-value < 0.001) 0.29 ⁰C decade-1 (p-value < 0.001) 

bottom temperature 0.08 ⁰C decade-1 (p-value = 0.033) ns 

whole-lake temperature 0.27 ⁰C decade-1 (p-value < 0.001) 0.19 ⁰C decade-1 (p-value < 0.001) 

Schmidt stability 7.93 J m-2 decade-1 (p-value < 0.001) 6.14 J m-2 decade-1 (p-value < 0.001) 

thermocline depth 0.08 m decade-1 (p-value = 0.003) 0.08 m decade-1 (p-value < 0.001) 
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duration 3.06 day decade-1 (p-value < 0.001) 2.39 day decade-1 (p-value < 0.001) 

onset 1.87 day decade-1 (p-value < 0.001) 1.38 day decade-1 (p-value < 0.001) 

loss 1.26 day decade-1 (p-value < 0.001) 1.02 day decade-1 (p-value < 0.001) 

 

MIROC5 

 

24 h met 1h met 

air temperature 0.32 ⁰C decade-1 (p-value < 0.001) 0.25 ⁰C decade-1 (p-value < 0.001) 

surface temperature 0.28 ⁰C decade-1 (p-value < 0.001) 0.21⁰C decade-1 (p-value < 0.001) 

bottom temperature 0.11 ⁰C decade-1 (p-value < 0.001) 0.09 ⁰C decade-1 (p-value = 0.002) 

whole-lake temperature 0.22 ⁰C decade-1 (p-value < 0.001) 0.17 ⁰C decade-1 (p-value < 0.001) 

Schmidt stability 3.99 J m-2 decade-1 (p-value < 0.001) 2.77 J m-2 decade-1 (p-value = 0.005) 

thermocline depth ns ns 

duration 2.19 day decade-1 (p-value < 0.001) 1.78 day decade-1 (p-value < 0.001) 

onset 1.71 day decade-1 (p-value = 0.002) 1.39 day decade-1 (p-value = 0.017) 

loss 0.69 day decade-1 (p-value < 0.001) 0.43 day decade-1 (p-value < 0.001) 

Figures 

 

Figure 1. Measured vs predicted (a) air temperature, (b) short-wave radiation, (c) relative humidity and (d) wind speed for 2015 

(validation data set). 

 550 
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Figure 2. Daily averaged water temperature in Lake Erken for the validation (a)-(c)-(e)-(g) and calibration (b)-(d)-(f)-(h) periods: 

observations (a)-(b), simulations driven by daily meteorological data (c)-(d), hourly meteorological data (e)-(f) and synthetic hourly 

meteorological data (g)-(h). 

 555 

Figure 3. GOTM model performance metrics for prediction of (a) full-profile temperature which compared simulated and 

measured data at all possible depths, (b) surface temperature, (c) bottom temperature, (d) whole-lake temperature, (e) Schmidt 

stability and (f) thermocline depth. The mean (horizontal line) is also shown 
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Figure 4. Temperature isopleth diagrams for the (a) historical, (b) RCP 2.6 and (c) RCP 6.0 scenarios showing results from the 560 
lake model forced with daily IPSL-CM5A-LR projections. The temperature matrix used to make these plots was created by 

averaging the simulated daily temperature profiles for every year in each scenario. 
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Figure 5. Changes in anomalies calculated from annually averaged (from April to September) (a)-(b) whole-lake temperature, (c)-

(d) surface temperature, (e)-(f) bottom temperature, (g)-(h) Schmidt stability, (i)-(j) thermocline depth under (a)-(c)-(e)-(g)-(i) RCP 565 
2.6 and (b)-(d)-(f)-(h)-(j) RCP 6.0, showing results from the lake model forced with daily GFDL-ESM2M, HadGEM2-ES, IPSL-

CM5A-LR  and MIROC5 projections. All changes are for 2006-2099 relative to 1975-2005. The median (vertical line) is also 

shown. 
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Figure 6. Changes in the calculated annual anomalies of the (a)-(b) duration, (c)-(d) onset and (e)-(f) loss of stratification under (a)-570 
(c)-(e) RCP 2.6 and (b)-(d)-(f) RCP 6.0, showing results from the lake model forced with daily GFDL-ESM2M, HadGEM2-ES, 

IPSL-CM5A-LR and MIROC5 projections. All changes are for 2006-2099 relative to 1975-2005. The median (vertical line) is also 

shown. 
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