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Anonymous Referee 1 

General comments 

The manuscript entitled “Simulations of future changes in thermal structure of Lake Erken: Proof of concept for 

ISIMIP2b lake sector local simulation strategy” aims to assess the impacts global warming on the thermal 

characteristics of Lake Erken. Since future projections of global warming are at a daily time step, the authors first 5 

analyses the need to disaggregate the input variables to the hourly time step. The manuscript is well written. The topic 

is scientifically relevant. 

Response: We thank the Referee 1 for the positive comments about the text. The paper was edited very carefully and 

modifications and improvements were made. Below, we address every comment and explain the corresponding 

changes in the manuscript.  10 

Specific comments 

 Line 70-71: “It is the lake’s relatively shallow depth and large surface area, which leads to large inter-annual 

variability in the timing and patterns of thermal stratification.” Why is this? Perhaps explain in one or two sentences 

how this works and why this is different for relatively deep lakes or lakes with a small surface area. 

Response: Mixing and stratification change in response to lake morphometry. Shallow lakes have lower heat storage, 15 

responding more directly to short-term variations in the weather conditions and heat can be transferred through the 

water column by wind mixing (Magee and Wu, 2017). However, deep lakes required greater wind speeds to complete 

the mix. Large surface areas or fetch increase the effects of mixing and vertical transfer of heat to the bottom (Rueda 

and Schladow, 2009).  

Changes in manuscript: P19 L74-76. 20 

 

Line 138-139: “More detailed description of the GRNN methods and models are given in the supplementary material 

to this paper.” I was hoping to find equations on how the GRNN model calculates hourly estimations based on daily 

input, however, I could not find a detailed description of the GRNN methods in the supplementary materials. 

Response: GRNN description was added in the supplement material section S1.  25 

Changes in supplement: Section S1. 

 

Line 158: “Schmidt stability”, perhaps give a definition or equation of the Schmidt stability. 

Response: The following Schmidt stability definition was added: resistance to mechanical mixing due to the potential 

energy inherent in the density stratification of the water column (Schmidt, 1928; Idso, 1973). 30 

Changes in manuscript: P22 L190-191. 

 

Line 170-174: “Air temperature, short-wave radiation, relative humidity and wind speed were temporarily 

disaggregated into hourly values from mean daily data, using the GRNN models. A database was constructed using 8 

years of measurements. From this whole set of data, the first 5-years of data, that is, from 2008 to 2012, were used for 35 
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training, and 3-years of data from 2013 to 2015 were used for validating the results obtained.” This sentence was 

confusing. After reading the methods section I first assumed this was about the calibration/validation of GOTM. 

However, later I realized it was about the calibration/validation of GRNN. I would expect these sentences in the 

methods section. Moreover, it would be good to mention clearly that there are two types of calibration/validation: that 

of GOTM and that of GRNN. 40 

Response: It has been moved from Results section 3.1. Hourly meteorological modelling to Material and Methods 

section 2.5. Temporal disaggregation of meteorological forcing data.  

Changes in manuscript: P21 L147-154. 

 

Line 192-193: “Temperature simulations for the validation period were more accurate (average RMSE of 0.66 ⁰C and 45 

NSE of 0.97) than for the calibration period (average RMSE of 0.95 ⁰C and NSE of 0.94), but in both periods the 

model performance was considered acceptable.” I would expect that the validation period would be less accurate than 

the calibration period. Therefore, my first thought was then that perhaps the legend was swapped between calibration 

and validation. Yet, the authors later mention that this is “due the higher variability in observed water temperature 

during the long calibration period.” (Line 284-285). Then the question raises, which data set is more representative? 50 

Was the high variability during the calibration period actually quite normal and the validation period exceptionally 

uniform? And what does this mean for the validity of the output? 

Response: Water temperature simulations were apparently more accurate for the validation period (2015-2016) than 

for the calibration period (2006-2014), which may appear unusual, but is due to the higher variability in observed 

water temperature during the longer calibration period. Years with a longer duration of stratification and stronger 55 

stability, generally had higher simulation errors. Half of the eight-year calibration period exhibited these conditions, 

while the two-years used for validation both exhibited shorter duration of stratification and weaker stability. 

 
 

year 
RMSE (⁰C) thermal stratification Schmidt 

stability (J m-2) 
 

24h met 1h met synthetic 1h met duration (days) onset loss 

Calibration 2007 0.58 0.59 0.83 23 176 230 17.42 

2008 1.42 1.13 1.04 103 124 227 31.52 

2009 0.75 0.68 0.63 69 122 242 35.17 

2010 1.10 0.92 0.99 111 139 254 80.77 

2011 0.92 0.79 0.81 90 152 252 43.77 

2012 0.71 0.66 0.77 38 141 244 32.98 

2013 1.42 1.52 1.08 124 129 259 79.48 

2014 0.83 0.73 0.79 55 137 263 52.40 

Validation 2015 0.59 0.66 0.65 71 162 240 17.60 

2016 0.69 0.73 0.71 67 173 239 47.25 

  

Changes in manuscript: P30 L432-437. 60 
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Line 202: “As would be expected the simulations of bottom temperature were slightly less accurate” Why would this 

be expected? 

Response:  Higher errors were found at the lowest depth (15 m depth), part of this might have been caused by the 

presence of internal seiches in lake Erken which cannot be reproduced by 1D models such as GOTM. 65 

 

Line 349-351: “Combined these results suggest important changes in the factors affecting lake biogeochemistry 

directly through changes in temperature and indirectly by influencing the availability of light and nutrients.” The 

presented results only indicate an increase in temperature and stratification period. Since the presented data does not 

show how this affects biogeochemistry and the availability of light and nutrients, could the authors be a bit more 70 

specific on this in the conclusion? How do the authors think/speculate it will change (perhaps refer to the introduction 

where a short explanation is already given)? 

Response: As mentioned in the introduction the projected changes in thermal stratification can influence many aspects 

of the lake ecosystem. Increases in thermal  stability and duration of stratification can intensify hypolimnetic oxygen 

depletion (Foley et al., 2012; Schwefel et al., 2016) and hence induce enhanced internal phosphorous loading (North 75 

et al., 2014), increase the release of dissolved iron and manganese from sediments (Schultze et al., 2017) and also 

increase methane emissions (Grasset et al., 2018). Warming lake temperature affects biological rates of metabolism, 

growth and reproduction (Rall et al., 2012) and can promote cyanobacterial blooms (Paerl and Paul, 2012). When 

coupled to a reduction in oxygen-rich water, warming water temperature leads to a lower fish populations (O'Reilly et 

al., 2003; Yankova et al., 2017). Increase in evaporation associated with warming can lead to declines in lake water 80 

level (Hanrahan et al., 2010) with implications for water security. So these changes are expected in Lake Erken. 

The expected changes in the lake ecosystem caused by changes in thermal stratification have been moved from 1. 

Introduction to 4. Discussion section and so our conclusions can be more understandable. 

Changes in manuscript: P34-35 L580-587. 

Technical corrections  85 

Figures in general; 1) it would be good to have comparable axes per figure. For example, figure 3a has a y-axis going 

from 0-1.2 ⁰C, while figure 3b goes from 0-0.8 ⁰C. I suggest that the authors uniform the axis and perhaps use the 

normalized RMSE to compare the different subfigures 2).From the figures caption, it is not always clear if the 

predicted output is with GOTM or with GRNN. Perhaps include this information in the figure’s caption. General: 

sometimes I read “wind_factor” and sometimes “wind factor” without “_”. Is there a difference in meaning? 90 

Response: 

Figure 3 has been removed because GOTM model performance had been shown in twice (Figure 3 and Table 4). 

GRNN and GOTM has been added to the figure captions to indicate if models have been used to disaggregate 

meteorological forcing data or to simulated water temperature. 

Wind factor is the meaning of the parameter wind_factor.  95 

 

Line 246-247: “Simulated changes were generally slight less for the simulations driven by daily forcing data as shown 

by the figures in parentheses”. Put a dot after parentheses and change “slight” to “slightly” 
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Response: Change made. 

 100 

Line 284: “were more accurate than for the calibration period (2006-2014) due the higher variability in observed water 

temperature” add “to” after “due”. 

Response: change made. 

 

Figure 2: 1) the caption says that validation is figure 2a, 2c, 2e and 2g, however, the title of the figures suggest that 105 

validation is figure 2b, 2d, 2f and 2h. This is confusing. 2) Perhaps include the words “observations”, “daily data”, 

“hourly data”, “synthetic hourly data” on the left side of/ or under the figure. It is now quite a puzzle to find which 

subfigure tells what. 3) Perhaps also include a difference graph where the difference between “observations” and 

respectively “daily data”, “hourly data”, “synthetic hourly data” is shown. From figure 2, it is now hard to see the 

differences. (The same holds for figure 4, where it is hard to see the differences between historical and the rcp’s) 110 

Response: 

Figure 2 has been renumbered and a subtitle added to each subfigure. Changes in manuscript: P54. 

Figure S7 has been added to the supplementary material showing the differences between simulated (when the lake 

model was forced with daily, hourly and synthetic hourly meteorological forcing data) and observed water 

temperature. Changes in supplement: Section S2. 115 

Figure S14 has been added to the supplementary material showing the differences between the historical and RCP 2.6 

scenarios, and the historical and RCP 6.0 scenarios for the IPSL-CM5A-LR projection (when the lake model was 

forced at daily resolutions). Changes in supplement: Section S4. 

 

Figure 5 and 6: In figure 5i, the authors indicate the words “deeper” and “shallower” with arrows. This really increases 120 

the readability of that specific subfigure and the same would help the reader in all other subfigures. 

Response: In Figures 6 and 7 (in the latest version of the manuscript), the arrow and the words “deeper” and 

“shallower” have been removed for easy viewing of the figure. However, in the figure caption was added the meaning 

of values greater or less than 0 of each of the thermal indices: changes in thermal metrics greater than 0 show an 

increase and lower than 0 show a decrease.  125 

Changes in manuscript: P62-63. 

Changes in supplement: Sections S3-S4. 

References: 

Idso, S. B.: On the concept of lake stability, Limnol. Oceanogr., 18, 681–683, 1973. 

Magee, M. R., and Wu, C. H.: Response of water temperatures and stratification to changing climate in three lakes 130 

with different morphometry, Hydrol. Earth Syst. Sci., 21, 6253-6274, https://doi.org/10.5194/hess-21-6253-2017, 

2017. 

Rueda, F., and Schladow, G.: Mixing and stratification in lakes of varying horizontal length scales: Scaling arguments 

and energy partitioning, Limnol. Oceanogr., 54, 2003-2017, https://doi.org/10.4319/lo.2009.54.6.2003, 2009. 

Schmidt, W.: Über Temperatur und Stabilitätsverhaltnisse von Seen, Geogr. Ann., 10, 145–177, 1928135 

https://doi.org/10.5194/hess-21-6253-2017
https://doi.org/10.4319/lo.2009.54.6.2003
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Anonymous Referee 2 

General comments 

The article “Simulations of future changes in thermal structure of Lake Erken: Proof of concept for ISIMIP2b lake sector local 

simulation strategy” presents impacts of changing climate on lake water temperature. The article is of very high interest and 

very well written, the work is thoroughly executed and discussion is relevant. The authors used a hydrodynamic lake model 5 

GOTM with 4 GCM/RCMs, using Generalized Regression Artificial Neural Network to disaggregate daily climate into hourly 

data. The GOTM model was able to reproduce observed lake temperature data for current time period (8 years). The model 

was then executed with climate forcing data from 4 GCM/RCMs. 

Response: We thank the Referee 2 for the positive comments about the text. The paper was edited very carefully and 

modifications and improvements were made. Below, we address every comment and explain the corresponding changes in the 10 

manuscript. 

Specific comments 

I would recommend expanding on the Methods section to provide more information that is critical in understanding the study, 

its aims, and results. It is unclear why the authors chose to consider 2006-2099 as the future even though the period begins 13 

years ago. It is also unclear why this full period is evaluated without any consideration of the changes that occur from 2006 to 15 

2099 based on the trend analyses also included in the manuscript. It seems that changes that can occur during this “future” 

period are considered representative of changes that will occur by 2099. The averages from this 94-year period are compared 

to averages from a 30-year period of 1975-2005. The variability during a 30-year period and during a 94-year period with a 

significant trend is expected to differ and this affects the projected changes.  

A more typical approach in many climate impact studies is to select two 30-year periods, one that represents a current climate 20 

(reference period, e.g. 1981-2010) and one that represents a future climate (e.g., mid-century 2041-2010 or late century 2071-

2100). Forcing data from the same climate model would then be used as model inputs for both time periods; the difference 

between these results would represent the projected impact. It is also not clear from the manuscript how were the reference 

period values calculated for calculation of anomalies from the respective GCM/RCMs during the reference time period. 

The results for the mid-century and late century should be added to the manuscript to evaluate how the change progresses; 25 

alternatively, the current results can be replaced with the late century period as that seem to be the focus of the “proof of 

concept” study.  

It is also important to include information on the variability of the simulated thermal indices due to the climate model selection, 

i.e. present information for all 4 GCM/RCMs for the reference time period. That can give indication to the significance of the 

projected impact. 30 
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Response:  

Climate impact studies can be approached in two ways: (1) assessing the difference in mean lake conditions (for example, 

mean surface temperature) between the reference periods and both mid-century and late-century (Woolway and Merchant, 

2019) or  (2) long-term trend analysis (O’Reilly et al., 2015; Shatwell et al, 2019; Moras et al., 2019). The use of anomalies or 35 

absolute values in trend analysis does not change the value of the slope. The use of anomalies in frequency distribution figures 

provide an alternative method of comparing the changes simulated by the future climate scenarios. So we consider it 

appropriate to combine both approaches. We have also added information about the reference period and the same analysis 

has been made to the meteorological variables in order to understand the variability of the projected thermal metrics derived 

from GCMs. 40 

Changes in manuscript: Material and methods: section 2.8 Statistical analysis P25 L255-278, Results: section 3.3 Climate 

data projections P27 L323-342, section 3.4 Long-term modelled changes in thermal stratification P27-30 L343-4219 and 

section 3.5 Comparison between long-term thermal metrics derived from daily and hourly climate data P30 L420-427. 

Discussion: P32-34 L499-579. 

Changes in supplement: Sections S3-S5. 45 

 

The information on the GOTM model for Lake Erken is very limited; the methods section should be expanded to include more 

details on the model structure, e.g. vertical resolution, inflow and outflow from the lake, etc. 

Response:  The GOTM model version 5.1 was used in this study. The meteorological parameters for running the model were 

air temperature (⁰C), wind speed (m s-1), short-wave radiation (W m-2), cloud cover (dimensionless, 0-1), relative humidity 50 

(%), atmospheric pressure (hPa) and precipitation (mm day-1or mm hour-1). Inflows and outflows were not included in this 

study, and water level was considered fixed in the simulations. This version of GOTM did not have the ability to simulate lake 

ice, so for this study the inverse stratification period was not analysed. Moras et al., (2019), has shown that despite this 

limitation, the mode is able to accurately simulate water temperature and the phenology of thermal stratification during the 

remainder of the year. The initial conditions for water temperature were derived from a measured vertical profile. GOTM was 55 

run at hourly model computational time step, and simulated water temperature was saved as daily mean values each 0.5 m (42 

layers). 

Changes in manuscript: P21-22 L155-163. 

 

Some relevant parts should be moved from Results to Methods (e.g., the beginning of section 3.1 and 3.3. Also, the periods 60 

used in the calibration (training) & validation periods for GOTM and GRNN should be put into the context between these two 

models. It is not readily apparent from the manuscript. 

Response:  

The beginning of sections 3.1 and 3.3 have been moved to 2. Materials and Methods section 2.5 Temporal disaggregation of 

meteorological forcing data 2.8 Statistical analysis respectively. 65 
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The GRNN training and validation periods do not fit into GOTM calibration periods. Putting these periods in context does not 

produce significant changes in the GRNN models performance (see table below) but it would entail a high computational cost 

since changing the GRNN models would require all the GCM scenarios to be disaggregated a second time and all GCM 

scenarios to be run again using these alternative data. 

 70 

 
Air temperature (⁰C) Relative humidity (%) Wind speed (m s-1) Short-wave rad (W m-2) 

 
BIAS RMSE  NSE BIAS RMSE  NSE BIAS RMSE  NSE BIAS RMSE  NSE 

Training:  

2006-2014 
0.00 0.32 1.00 0.00 0.96 1.00 -0.01 1.15 0.74 0.00 8.39 1.00 

Validation:  

2015-2016 
0.03 0.70 0.95 0.44 2.09 0.69 -0.07 2.50 0.60 0.08 18.15 0.86 

Training:  

2008-2012 
0.00 0.26 1.00 0.00 0.79 1.00 -0.01 1.06 0.78 0.00 6.35 1.00 

Validation:  

2013-2015 
-0.06 0.32 0.94 0.34 1.02 0.69 -0.01 1.37 0.58 -0.04 8.20 0.87 

 

Changes in manuscript: P21 L147-154 and P25 L255-263. 

 

It should be emphasized that training the temperature disaggregation algorithm on the current diurnal patterns means those 

current patterns will be projected to the future time series and any potential changes in diurnal pattern from the changing 75 

climate are ignored. 

Response: GRNNs proved to be an effective method to disaggregate daily GCM forcing to an hourly temporal resolution for 

different weather variables such as air temperature, short-wave radiation, etc. However, GRNNs require a training phase, in 

which the diurnal patterns to be learned are presented to the network from historical meteorological measurements, and 

therefore if there are future changes in diurnal patterns, these cannot be reproduced. In addition, there is a high computational 80 

cost of disaggregating and storing the long-term daily climate data into an hourly data set. 

Changes in manuscript: P33 L539-544. 

Technical comments  

Increases are given to 0.01 ⁰C – what is the accuracy of the measurement and of the simulations? Is this accuracy adequate? 

Response: The accuracy of thermocouple sensor is approximately ± 0.1 ⁰C and can at times be somewhat better than 0.1. The 85 

simulated water temperature is given with 7 decimals. So two decimal places in the GOTM model performance are adequate, 

and match the best expected performance of our monitoring data. 
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L 68 –dimictic? 90 

Response: Change made. 

 

L89 Mean sea level (,) pressure (,) relative humidity and precipitation were measured – missing commas?  

Response: Change made. 

Section 2.6. It would be useful to include model performance for other thermal indices used for evaluation of change, e.g. 95 

duration of thermal stratification 

Response:  

Response: The model performance for the duration, onset and loss of stratification has been added to the section 3.2 Lake 

Model performance (Table 4). 

Changes in manuscript: P26-27 L 318-322. 100 

L 162: Schmidt’s stability – needs a reference/ brief explanation 

Response: The following Schmidt stability definition was added: resistance to mechanical mixing due to the potential energy 

inherent in the density stratification of the water column (Schmidt, 1928; Idso, 1973). 

Changes in manuscript: P6 L190-191 and P44. 

 105 

L 231: this model handicap and any other should be described in section 3.2 

Response: The GOTM model version 5.1 did not have the ability to simulate lake ice, so for this study the inverse stratification 

period was not analysed. Moras et al., (2019), has shown that despite this limitation, the mode is able to accurately simulate 

water temperature and the phenology of thermal stratification during the remainder of the year. A new GOTM model version 

5.4 with ice-module was released after this project was submitted, allowing to evaluate the effect of the lack of ice module on 110 

the onset of the direct stratification. The onset of direct stratification was derived from simulations of water temperature with 

GOTM version 5.1 and 5.4 from 2006 to 2016. The RMSE between the onset of direct stratification from GOTM version 5.1 

and 5.4 was 5.22 days showing a slight impact the lack of ice-module on the onset of the direct stratification. 

 

onset of direct stratification 

GOTM v5.1 GOTM v5.4 

2007-04-27 2007-04-16 

2008-04-27 2008-04-26 

2009-04-27 2009-04-27 

2010-05-01 2010-05-13 

2011-04-24 2011-04-25 

2012-05-03 2012-05-01 
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2013-05-09  2013-05-09 

2014-04-21 2014-04-21 

2015-05-22 2015-05-22 

2016-05-04 2016-05-03 

 115 

Changes in manuscript: P22 L159-162. 

 

L 312-314 However, the dominant wind (is) along : : : missing word? 

Response: Change made. 

L 322, 324 When GOTM was forcing with : : : forced? 120 

Response: Change made. 

L 350: it would be good to put the statement into context; what kind of changes can be expected with these increases in 

temperature? 

Response: The expected changes in the lake ecosystem caused by an increase in water temperature have been moved from 1. 

Introduction to 4. Discussion section. 125 

Changes in manuscript: P34-35 L580-587. 

 

Figure 2 heading: figure shows calibration as plots a, c, e, and g, but the caption says these are validations. I would 

recommend including a similar plot but with model residuals (perhaps in Supplementary materials); that would make any 

differences much easier to see especially on the timing.  130 

Response: 

Figure 2 has been renumbered and a subtitle added to each subfigure. Changes in manuscript: P54. 

Figure S7 has been added to the supplementary material showing the differences between simulated (when the lake model was 

forced with daily, hourly and synthetic hourly meteorological forcing data) and observed water temperature. Changes in 

supplement: Section S2. 135 

 

Figure 3: it would be helpful if the scale on y axis with the same units had the same range (a-d) 

Figure 3 has been removed because GOTM model performance had been shown in twice (Figure 3 and Table 4). 

References: 

Idso, S. B.: On the concept of lake stability, Limnol. Oceanogr., 18, 681–683, 1973. 140 

Moras, S., Ayala, A. I., and Pierson, D. C.: Historical modelling of changes in Lake Erken thermal conditions, Hydrol. Earth 

Syst. Sci., 23, 5001–5016, https://doi.org/10.5194/hess-23-5001-2019, 2019. 

https://doi.org/10.5194/hess-23-5001-2019
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O’Reilly, C., Sharma, S., Gray, D. K., Hampton, S. E., Read, J. S., Rowle,y R. J., Schneider, P., Lenters, J. D., McIntyre, P.B., 

Kraemer, B. M., Weyhenmeyer, G. A., Straile, D., Dong, B., Adrian, R., Allan, M. G., Anneville, O., Arvola, L., Austin, J., 

Bailey, J. L., Baron, J. S., Brookes, J. D., de Eyto, E., Dokulil, M. T., Hamilton, D. P., Havens, K., Hetherington, A. L., 145 

Higgins, S. N., Hook, S., Izmest’eva, L. R., Joehnk, K. D., Kangur, K., Kasprzal, P., Kumagai, M., Kuusisto, E., Leshkevich, 

20 G., Livingtone, D. M., McIntyre, S., May, L., Melack, J. M., Mueller-Navarra, D. C, Naumenko, M., Noges, P., Noges, T., 

North, R. P., Plisnier, P. D., Rigosi, A., Rimmer, A., Rogora, M., Rudstam, L. G., Rusak, J. A., Salmaso, N., Samal, N. R., 

Schindler, D. E., Schladow, S. G., Schmid, M., Schmidt, S. R., Silow, E., Soylu, M. E., Teubner, K., Verburg, P., Voutilainen, 

A., Watkinson, A., Wiliamson, C. E., and Zhang G.: Rapid and highly variable warming of lake surface waters around the 150 

globe, Geophys. Res. Lett., 42, 10773–10781, https://doi.org/10.1002/2015GL066235, 2015. 

Schmidt, W.: Über Temperatur und Stabilitätsverhaltnisse von Seen, Geogr. Ann., 10, 145–177, 1928. 

Shatwell, T., Thiery, W., and Kirillin, G.: Future projections of temperature and mixing regime of European temperate lakes, 

Hydrol. Earth Syst. Sci., 23, 1533–1551, https://doi.org/10.5194/hess–23–1533–2019, 2019. 

Woolway, R.I., and Merchant, C.J.: Worldwide alteration of lake mixing regimes in response to climate change, Nature 155 

Geoscience, 12, 271–276, https://doi.org/10.1038/s41561–019–0322–x, 2019 

https://doi.org/10.1002/2015GL066235
https://doi.org/10.5194/hess-23-1533-2019
https://doi.org/10.1038/s41561-019-0322-x
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Anonymous Referee 3 

General comments 

The manuscript entitled “Simulations of future changes in thermal structure of Lake Erken: Proof of concept for ISIMIP2b 

lake sector local simulation strategy” showed the effects of different time-scale forcing data and 4 model forcing and also the 

2 RCP future scenario on the simulation with GOTM lake model over Lake Erken. It projected the similar future changing 5 

trends of thermal conditions and is helpful for local to understand the effects of climate change and adapt it. 

Response: We thank the Referee 3 for the positive comments about the text. The paper was edited very carefully and 

modifications and improvements were made. Below, we address every comment and explain the corresponding changes in the 

manuscript. 

Specific comments 10 

The work focused on daily characteristics of future thermal contracture in Figure 4-6. The simulated future changing trends 

are mostly similar with hourly or daily forcing. But lots of work were done to compare the simulation results with different 

historical data which may be simplified or removed. Then the work could pay more attention to the future changing 

characteristics. 

Response: The purpose of this paper is twofold: (1) evaluate the importance of diurnal forcing in 1D lake model and (2) assess 15 

the long-term impacts of climate change on the thermal structure of Lake Erken. Therefore, we do not consider it appropriate 

to simplify or remove the first purpose. The difference in mean lake conditions between the reference periods and both mid-

century and late-century and long-term trend analysis has been analysed for the climate data and thermal metrics. And also the 

differences of each meteorological variable and thermal metric were evaluated when the lake model was forced at daily and 

hourly resolutions respectively. 20 

Changes in manuscript: Material and methods: section 2.8 Statistical analysis P25 L255-278, Results: section 3.3 Climate 

data projections P27 L323-342, section 3.4 Long-term modelled changes in thermal stratification P27-30 L343-4219 and 

section 3.5 Comparison between long-term thermal metrics derived from daily and hourly climate data P30 L420-427. 

Discussion: P32-34 L499-579. 

Changes in supplement: Sections S3-S5. 25 

 

L244-246 “Rates of change in whole-lake temperature calculated for over the length for RCP2.6 and 6.0 scenarios were 

projected to 245 increase except in the case of GFDL-ESM2M which showed weaker or non-significant changes for all 

measures of thermal stratification.” did not match with Table 5. 

Response: We do not agree with this comment. Table S8 and Table 5 show the trend analysis under RCP 2.6 and 6.0 30 

respectively for the period 2011-2100. For RCP 2.6 the whole-lake temperature projected under GFDL-ESM2M shows a non-
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significant increase, and for RCP 6.0 the project increase associated with GFDL-ESM2M was the lowest of the GCMs. For 

RCP 6.0 the increase in whole-lake temperature ranged from 0.26 to 0.14 ⁰C decade-1. 

 

Some parts were hardly understood, such as “For RCP 6.0, the projected rate of change ranged from 0.15 to 0.27 ⁰C decade-1 35 

(0.11 to 0.19 ⁰C decade-1). IPSLCM5A- LR projected the largest increase being 0.59 ⁰C (0.43 ⁰C) under RCP 2.6 ⁰C and 2.51 

⁰C (1.79 ⁰C) under RCP 6.0”. And IPSL-CM5A-LR did not project the largest temperature increase under RCP 2.6 as showed 

in Table 5. 

Response: We totally agree, sometimes it's hard to understand. The results have been rewritten, reducing the large amount of 

numbers in the text, making it more readable. All the results can be found in the Figures and Tables of both the manuscript 40 

and the supplement material. IPSL-CM5A-LR did not project the largest temperature increase under RCP 2.6, under scenario 

future RCP 2.6 HadGEM2-ES projected the largest increase in surface temperature, being 0.15 ⁰C decade-1. The trend analysis 

has been carefully reviewed and the results rewritten. 

Changes in manuscript: P25-27 L281-322, P30-32 L429-498. 

 45 

Because the lake model parameters are different for different forcing in Table 2. It’s hard to know the source of the simulation 

difference in Table 4 and to evaluate the effects of the time-scale of forcing. 

Response: One of the purposes of this study was to test the ability of a 1D lake model (GOTM) to simulate daily water 

temperature using daily vs hourly meteorological data, i.e. evaluate the importance of diurnal forcing in 1D lake model. In all 

cases the lake model was ran at hourly model computational time step when the meteorological forcing was provided at either 50 

daily or hourly frequencies. In each case a separate calibration was run using the same observed data for comparison, simulated 

output derived from the models forced at daily and hourly resolution. We felt that this was the fairest and most representative 

way to test how the model would actually be applied with the different forcing data. When GOTM was forced at daily 

resolutions, there is no diurnal variability in the input, which leads to changes in heat fluxes. However it became apparent that 

variations in model parameters resulting from the different calibrations compensated for some of the differences between 55 

observations and simulations based on the different time-scale of forcing.  We now point this out more clearly in the paper. 

Changes in the manuscript: P33 L529-539. 

 

L230 “From these average yearly values were calculated using the months between April and September, due to the fact that 

the GOTM model was not able to simulate lake ice and winter water temperatures at the same level of accuracy as during the 60 

remainder of the year”. Does the inaccurate simulation of lake temperature in winter affect the temperature simulation without 

ice? L68 “The lake is dimictic with summer stratification usually occurring beginning in May-June and ending in August-

September, while ice cover occurs from December-February to April-May.” Why the average yearly values were calculated 

including April? 
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Response: The GOTM model version 5.1 did not have the ability to simulate lake ice, so for this study the inverse stratification 65 

period was not analysed. Moras et al., (2019), has shown that despite this limitation, the mode is able to accurately simulate 

water temperature and the phenology of thermal stratification during the remainder of the year. A new GOTM model version 

5.4 with ice-module was released after this project was submitted, allowing to evaluate the effect of the lack of ice module on 

the onset of the direct stratification. The onset of direct stratification was derived from simulations of water temperature with 

GOTM version 5.1 and 5.4 from 2006 to 2016. The RMSE between the onset of direct stratification from GOTM version 5.1 70 

and 5.4 was 5.22 days showing a slight impact the lack of ice-module on the onset of the direct stratification. 

 

onset of direct stratification 

GOTM v5.1 GOTM v5.4 

2007-04-27 2007-04-16 

2008-04-27 2008-04-26 

2009-04-27 2009-04-27 

2010-05-01 2010-05-13 

2011-04-24 2011-04-25 

2012-05-03 2012-05-01 

2013-05-09  2013-05-09 

2014-04-21 2014-04-21 

2015-05-22 2015-05-22 

2016-05-04 2016-05-03 

 

Annual ice cover observations of the onset and loss of ice cover made at lake Erken since 1941 (Moras et al., 2019) showed a 

decreased since 1941 by 7.34 day decade-1 (57 days from 1941 to 2017), consistent with changes in air temperature. For this 75 

reason, we consider relevant in our long-term study to include April in our analysis. 

 

The manuscript was submitted in 2019. It’s confused to compare 2006-2099 with 1975-2005 to get the future change. 

Response: we totally agree, the choice of reference period is always controversial because the projected impact depends on it. 

Initially we used as a reference period the last 30 years of the historical scenario (1975-2005) for each GCM, since from 2006 80 

they were already future projections. However, we have decided to slightly update our reference period to 1981-2010. 

The table shows the trend analysis for the period 2006-2100 relative to 1975-2005 and for the period 2011-2100 relative to 

1981-2010 for HadGEM2-ES under RCP 6.0. The differences are almost unnoticeable, so we do not consider it necessary to 

update our reference period to 1990-2019. 

 85 
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HadGEM2-ES RCP 6.0 

 
reference period: 1975-2005 reference period: 1981-2010 

 
24h met 1h met 24h met 1h met 

air temperature (⁰C) 0.44 ⁰C dec-1 0.33 ⁰C dec-1 0.43 ⁰C dec-1 0.32 ⁰C dec-1 

surface temperature (⁰C) 0.38 ⁰C dec-1 0.28 ⁰C dec-1 0.38 ⁰C de-1 0.27 ⁰C dec-1 

bottom temperature (⁰C) 0.07 ⁰C dec-1 ns 0.06 ⁰C dec-1 ns 

whole-lake temperature (⁰C) 0.25 ⁰C dec-1 0.17 ⁰C dec-1 0.25 ⁰C dec-1 0.16 ⁰C dec-1 

Schmidt stability (J m-2) 7.79 J m-2 dec-1 6.22 J m-2 dec-1 7.97 J m-2 dec-1 6.50 J m-2 dec-1 

thermocline depth (m) 0.12 m dec-1 0.12 m dec-1 0.13 m dec-1 0.13 m dec-1 

 

Does the lake model need downward longwave radiation drive? What’s the usage of the cloud cover when there is the 

downward shortwave radiation? 90 

GOTM internally calculates net long-wave radiation from cloud cover according to Clark et al. (1974). Cloud cover for long-

term water temperature simulations was estimated from bias-corrected model data according to Martin and McCutcheon 

(1999): 

𝐻𝑆𝑊 = 𝐻0 ∙ 𝑎𝑡 ∙ (1 − 𝑅𝑠) ∙ 𝐶𝑎 

where Hsw is the short-wave solar radiation (W · m-2), H0 is the amount of radiation reaching the earth’s outer atmosphere (W 95 

· m-2), at is an atmospheric transmission term, Rs albedo or reflection coefficient, and Ca is the fraction of solar radiation not 

absorbed by clouds. 

𝐶𝑎 = 1 − 0.65 ∙ 𝐶𝑙
2 

where Cl is the fraction of the sky covered by clouds. 

Cloud cover would be: 100 

𝐶𝑙 =
√
1 −

𝐻𝑆𝑊

𝐻0 ∙ 𝑎𝑡 ∙ (1 − −𝑅𝑠)

0.65
 

 

Usually the simulation in the calibration period is better. Why temperature simulations in the validation period were more 

accurate in the manuscript? 

Response: Water temperature simulations were apparently more accurate for the validation period (2015-2016) than for the 105 

calibration period (2006-2014), which may appear unusual, but is due to the higher variability in observed water temperature 

during the longer calibration period. Years with a longer duration of stratification and stronger stability, generally had higher 

simulation errors. Half of the eight-year calibration period exhibited these conditions, while the two-years used for validation 

both exhibited shorter duration of stratification and weaker stability. 
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year 
RMSE (⁰C) thermal stratification Schmidt 

stability (J m-2) 
 

24h met 1h met synthetic 1h met duration (days) onset loss 

Calibration 2007 0.58 0.59 0.83 23 176 230 17.42 

2008 1.42 1.13 1.04 103 124 227 31.52 

2009 0.75 0.68 0.63 69 122 242 35.17 

2010 1.10 0.92 0.99 111 139 254 80.77 

2011 0.92 0.79 0.81 90 152 252 43.77 

2012 0.71 0.66 0.77 38 141 244 32.98 

2013 1.42 1.52 1.08 124 129 259 79.48 

2014 0.83 0.73 0.79 55 137 263 52.40 

Validation 2015 0.59 0.66 0.65 71 162 240 17.60 

2016 0.69 0.73 0.71 67 173 239 47.25 

 110 

Changes in manuscript: P30 L432-437. 

 

L 110 “under four emission scenarios“. As shown in the manuscript, there were only 2 emission scenarios. 

Response: Change made. 

 115 

If the years for calibration and validation match the years for training and validating, it may be better. 

The GRNN training and validation periods do not fit into GOTM calibration periods. Putting these periods in context does not 

produce significant changes in the GRNN models performance (see table below) but it would entail a high computational cost 

since changing the GRNN models would require all the GCM scenarios to be disaggregated a second time and all GCM 

scenarios to be run again using these alternative data. 120 

 

 
Air temperature (⁰C) Relative humidity (%) Wind speed (m s-1) Short-wave rad (W m-2) 

 
BIAS RMSE  NSE BIAS RMSE  NSE BIAS RMSE  NSE BIAS RMSE  NSE 

Training:  

2006-2014 
0.00 0.32 1.00 0.00 0.96 1.00 -0.01 1.15 0.74 0.00 8.39 1.00 

Validation:  

2015-2016 
0.03 0.70 0.95 0.44 2.09 0.69 -0.07 2.50 0.60 0.08 18.15 0.86 

Training:  

2008-2012 
0.00 0.26 1.00 0.00 0.79 1.00 -0.01 1.06 0.78 0.00 6.35 1.00 

Validation:  

2013-2015 
-0.06 0.32 0.94 0.34 1.02 0.69 -0.01 1.37 0.58 -0.04 8.20 0.87 
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Abstract. This paper, as a part of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b), assesses the impacts 

of different levels of global warming on the thermal structure of Lake Erken (Sweden). The GOTM one-dimensional 

hydrodynamic model was used to simulate water temperature when using ISIMIP2b bias-corrected climate model projections 

as input. These projections have a daily time step, while lake model simulations are often forced at hourly or shorter time steps. 10 

Therefore, it was necessary to first test the ability of GOTM to simulate Lake Erken water temperature using daily vs hourly 

meteorological forcing data. In order to do this three data sets were used to force the model: 1) hourly measured data; 2) daily 

average data derived from the first data set and; 3) synthetic hourly data created from the daily data set using Generalized 

Regression Artificial Neural Network methods. This last data set is developed using a method that could also be applied to the 

daily time step ISIMIP scenarios to obtain hourly model input if needed. The lake model was shown to accurately simulate 15 

Lake Erken water temperature when forced with either daily or synthetic hourly data. Long-term simulations forced with daily 

or synthetic hourly meteorological data suggest that by 2099late 21st century the lake will undergo clear changes in thermal 

structure, for.  For RCP 2.6 surface water temperature was projected to increase from 0.87 toby 1.48 79 ⁰C and from 0.69 to 

1.2036 ⁰C when the lake model was forced at daily and hourly resolutions respectively, and for RCP 6.0 these increases were 

projected to range from 1.58 to be 3.5808 ⁰C and from 1.19 to 2.6531 ⁰C when the lake model was also forced at daily and 20 

hourly resolutions.. Changes in lake stability were projected to increase significantly and the stratification duration was 

projected to be longer by 9 to 16 days and from 7 to 13 days and 11 days under RCP 2.6 scenario and from 20 to 3322 days 

and from 17 to 2718 under RCP 6.0 scenario for daily and hourly resolutions. Model trendschanges in thermal indices were 

very similar when using either the daily or synthetic hourly forcing, suggesting that the original ISIMIP climate model 

projections at a daily time step can be sufficient for the purpose of simulating lake water temperature in the lake sector in 25 

ISIMIP. 

1 Introduction 

The thermal structure of lakes is controlled by heat and energy exchange across the air-water interface, which is in turn 

determined by meteorological forcing (Woolway et al., 2017). Climate change will affect air-water energy exchanges and alter 
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the temperature regime and mixing of lakes (Mesman et al.,Woolway and Merchant, 2019 submitted). For example, increases 30 

in air temperature results in a consequent warming of lake water temperature (Sahoo et al. 2015) causing shorter ice-cover 

periods (Kainz et al., 2017; Butcher et al. 2015), longer stratified period (Ficker et al., 2017; Woolway et al., 2017; Magee and 

Wu, 2017) and increased lake stability (Rempfer et al., 2010; Hadley et al., 2014). Decreasing wind speed can induce more 

stable and long-lasting stratification (Woolway et al. 2017) and increased epilimnetic temperature (StefanWoolway et al. 2017; 

Woolway et al., 1996). 2019). 35 

The most direct effect of climate change on lakes is a warming of the lake surface temperature. For example, global average 

warming rates of 0.34°C decade-1 have been observed between 1985 and 2009 by O'Reilly et al. (2015). Hypolimnetic 

temperature responds less clearly to warming and has been observed to be warming, cooling or not changing significantly with 

increasing air temperature (Shimoda et al., 2011; Butcher et al., 2015; Winslow et al. 2017). And, these changing water 

temperatures have also led to an increased stability and duration of stratification (Butcher et al., 2015; Kraemer et al., 2015). 40 

A final consequence of warming lake temperature is projected to be the shift in the mixing regime (KrillinKirillin, 2010; 

Shimoda et al., 2011; Shatwell et al., 2019; Woolway and Merchant, 2019). For example, loss of ice cover in deep lakes is 

likely to turn amictic lakes into cold monomictic lakes, and cold monomictic lakes into dimictic lakes (Nõges et al., 2009). 

 These changes in lake water temperature and thermal stratification influence lake ecosystem dynamics (MacKay et al., 2009). 

Increases in stratification stability and duration 45 

 can intensify hypolimnetic oxygen depletion (Foley et al., 2012; Schwefel et al., 2016) and hence induce enhanced internal 

phosphorous loading (North et al., 2014), increase the release of dissolved iron and manganese from sediments (Schultze et 

al., 2017) and also increase methane emissions (Grasset et al., 2018). Warming lake temperature affects biological rates of 

metabolism, growth and reproduction (Rall et al., 2012) and can promote cyanobacterial blooms (Paerl and Paul, 2012). When 

coupled to a reduction in oxygen-rich water, warming water temperature leads to a lower fish populations (O'Reilly et al., 50 

2003; Yankova et al., 2017). 

Numerical modeling plays a key role in estimating the sensitivity of the lakes to changes in the climate. One-dimensional lake 

models are widely used due to their computational efficiency and the realistic temperature profiles they produce. Several 

studies have investigated the impacts of climate change on lake water temperature under Regional Climatic Model 

(RCM)/Global Climatic Model (GCM) projections (Persson et al., 2005; Kirillin, 2010; Perroud and Goyette, 2010; Samal et 55 

al., 2012; Ladwig et al., 2018; Shatwell et al., 2019; Woolway and Merchant, 2019). Commonly when undertaking climate 

change impact studies, hydrodynamic lake models are driven by daily resolution RCM/GCM outputs. Bruce et al. (2018) 

undertook a comparative analysis of model performance using daily and hourly resolution meteorological forcing data, and 

found a better agreement between observations and predictions of full-profile temperature when the lakes were modelled using 

hourly meteorological input. This reinforces the importance of diurnal forcing on 1-D model predictive capability. 60 

The purpose of this study is therefore (1) to test the ability of a one dimensional-hydrodynamic model (GOTM) to simulate 

the water temperature of Lake Erken (Sweden) using daily vs hourly meteorological forcing data for the period 2006-2016, 

(2) develop a reliable method to disaggregate daily meteorological data to a hourly synthetic product that can be used to force 
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the GOTM model and  (3) convert the daily GCM outputs available from the ISIMIP project into hourly meteorological 

variablesdata sets and (3) assess the impacts on the thermal structure of Lake Erken at different levels of global warming when 65 

GOTM is driven by hourly and daily model projections. In fulfilling these objectives this study provides the first evaluation of 

modelling methods that will be used by the lake sector within the ISIMIP. 

2 Material and Methods 

2.1 Study site 

Lake Erken (59°51’N, 18°36’E) is a mesotrophic lake located in east central Sweden, with a maximum depth of 21 m, a mean 70 

depth of 9 m and a surface area of 23.7 km2. The lake is dimictivedimictic with summer stratification usually occurring 

beginning in May-June and ending in August-September, while the onset of ice cover occurs frombetween December-February 

toand ice loss is in April-May (Persson and Jones, 2008). It is the lake’s relatively shallow depth and large surface area, which 

leads to large inter-annual variability in the timing and patterns of thermal stratification., since heat can be readily transferred 

through the shallow water column by wind mixing (Magee and Wu, 2017), and since the lake has a relatively low heat storage, 75 

and therefore, responds more directly to short-term variations in weather. The lake has a retention time of approximately 7 

years and shows annual variations in water level that are less the 1 m (Pierson et al., 1992; Moras et al., 2019 in review).  

2.2 Lake model 

General Ocean Turbulence Model (GOTM) is a one dimensional water column model that simulates the most important 

hydrodynamic and thermodynamics processes related to vertical mixing in natural waters (Umlauf et al. 2005). GOTM was 80 

developed by Burchard et al. (1999) for modelling turbulence in the oceans, but it has been recently adapted for use in 

hydrodynamic modelling of lakes (Sachse et al., 2014). The strength of GOTM is the vast number of well-tested turbulence 

models that have been implemented spanning from simple prescribed expressions for the turbulent diffusivities up to complex 

Reynolds-stress models with several differential transport equations. Typically GOTM is used as a stand-alone model for 

investigating the dynamics of boundary layers in natural waters but it can also be coupled to a biogeochemical model using 85 

the Framework for Aquatic Biogeochemical Models (FABM) (Bruggeman and Bolding, 2014). 

2.3 Data sets 

Meteorological data required to drive GOTM were wind speed (m s-1), atmospheric pressure (hPa), air temperature (⁰C), 

relative humidity (%), cloud cover (dimensionless, 0-1), short-wave radiation (W m-2) and precipitation (mm day-1). Local 

meteorological variables were collected either from a small island 500 m offshore from the Erken Laboratory, or the Swedish 90 

Meteorological Hydrological Institute (SMHI) Svanberga Station just behind the laboratory. The Malma Island meteorological 

Station (59.83909⁰ N, 18.629558⁰ E) measured air temperature at 2 m above water surface, wind speed at 10 m above the water 

surface and short-wave radiation. These data were measured at one minute intervals and saved as 60 min mean values. Mean 
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sea level, pressure, relative humidity and precipitation were measured at the Svanberga Meteorological Station at 800 m from 

the Malma Island Meteorological Station (59.8321⁰ N, 18.6348⁰ E) with a frequency of 60 minutes. Hourly cloud cover was 95 

recorder from Svenska Högarna Station (59.4445 N, 19.5059 E) at 69 km south-east of Lake Erken.  

The measured hourly meteorological data were used to construct two otheradditional data sets that would replicate the data 

resolution that could potentially be used to force the GOTM model with ISIMIP scenarios. First to test running the model at a 

daily resolution, a daily data set was created by averaging the hourly one (except for precipitation which was summed). 

Secondly, this mean daily data set was disaggregated to form a synthetic hourly data set. Hourly estimations of air temperature 100 

wind speed, relative humidity and short wave radiation were estimated using the GRNN methods described below. For 

atmospheric pressure and cloud cover, mean daily values were assumed to be constant over the day. Precipitation was 

disaggregated assuming a uniform distribution of the daily total (Waichler and Wigmosta, 2003). 

Since both of these data sets are based on the same measured hourly data, comparison of model simulations of lake water 

temperature, allow the importance of hourly vs daily temporal resolution in the forcing data to be evaluated, and also the 105 

improvements in model performance that can be obtained from daily data (as in the ISIMIP scenarios) when imposing a diurnal 

cycle on the mean daily data. 

Water temperature data needed to calibrate the model was monitored from an automated floating station (59.84297⁰ N, 

18.635433⁰ E). During ice-free conditions measurements were made every 0.5 m from 0.5m to a depth of 15 m. Measurements 

were made every minute, and a mean of these measurements was stored every 30 minutes. 110 

2.4 Climate scenarios 

The ISIMIP climate scenarios are bias-corrected global climate model (GCM) (Hempel et al., 2013) data made available at 

daily temporal and 0.5⁰ horizontal resolution for the variables listed in Table 1. All data needed as input to the GOTM model 

are available in these climate scenarios with the exception of cloud cover, which was estimated from shortwave radiation 

(Martin and McCutcheon, 1999). Data from the grid box overlying Lake Erken were available from the GFDL-ESM2M, 115 

HadGEM2-ES, IPSL-CM5A-LR and MIROC5 GCM models that were each run under fourthree emission scenarios. These 

included a scenario having historical levels of atmospheric CO2 between 1861 and 2005, and two future scenarios (RCP 2.6 

and RCP 6.0) from 2006 to 20992100. RCP 2.6 is the strongest mitigation pathway that is expected to limit mean global 

warming to between 1.5 and 2 ⁰C. RCP 6.0 is a lowan intermediate mitigation pathway where global warming is projected to 

rise to between 2.5 and 4 ⁰C by the end of century compared to the pre-industrial period (Frieler et al., 2017). 120 

2.5 Temporal disaggregation of daily meteorological forcing data 

The GCM scenarios have a daily time step, while lake model simulations are often forced with meteorological data at hourly 

or shorter time steps. Therefore, it was necessary to test the ability of the GOTM model to simulate Lake Erken water 

temperature using daily vs hourly meteorological forcing data, and to evaluate the need to disaggregate the daily GCM 

scenarios to a shorter time step.   125 
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Kathib and Elmernreich (2015) proposed a generalized regression artificial neural network (GRNN) model for predicting 

hourly variations in short-wave radiation from daily average measurements. Using the GRNN model to predict hourly solar 

radiation required ten geographical and climatic variables as input including hour, day, month, latitude, longitude, daily 

average short-wave radiation, daily precipitation, the solar elevation associated with the hour, and time of sunrise and sunset. 

Precipitation was used to define wet and dry status that affected atmospheric attenuation (Waichler and Wigmosta, 2003). 130 

There are also empirical models developed for calculating hourly air temperature, wind speed and relative humidity. Parton 

and Logan (1981) proposed a model for predicting diurnal variations in air temperature. Daylight air temperature was modelled 

using a sine wave with the minimum value at sunrise, maximum value at solar noon and mean value at sunset. Night-time air 

temperature was modelled as a linear interpolation between air temperature of the previous day and sunrise air temperature of 

the following day. Guo et al. (2013) generated hourly values of wind speed by computing a cosine function dependent on the 135 

mean daily wind speed, the maximum daily wind speed and the hour of the day when the wind speed is maximum. Waichler 

and Wigmosta (2003) estimated hourly values of relative humidity from daily maximum and minimum air temperature and 

daily maximum and minimum relative humidity. Using these studies as guidance, we developed GRNN models to predict 

hourly a) air temperature, b) wind speed and c) relative humidity. The input parameters for each GRNN modelmodels were: 

a) hour, day, month, latitude, geographical variables: longitude, mean daily air temperature, daily maximum and minimum air 140 

temperature, daily precipitation, hourly latitude, solar angle, and elevation associated with the hour, time of sunrise and sunset  

for predicting hourly air temperature; b), hour, day, month, latitude, longitude and daily  and month; and meteorological 

variables: average, maximum and minimum daily air temperature, daily wind speed for predicting wind speed; and c) hour, 

day, month, latitude, longitude, mean daily , daily relative humidity, daily precipitation, hourly air temperature and hourly 

short-wave radiation for predicting relative humidity. More detailed description of the GRNN methods and models are given 145 

in the supplementary material to this paper and daily precipitation. 

 The GRNN models were constructed using 8 years of data. From this whole set of data, the first 5-years, from 2008 to 2012, 

were used for training, and the final 3-years of data from 2013 to 2015 were used for validating the results. The accuracy of 

the trained network was assessed by comparing the simulated output with actual observed hourly data. The performance index 

for training and validating sets of GRNN models are given in terms of mean bias error (MBE), root mean squared error (RMSE) 150 

and Nash-Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970). More detailed description of the GRNN methods and models 

are given in the Supplemental section S1to this paper.  The GRNN models were used to disaggregate the mean daily measured 

data, used to evaluate the necessity of disaggregation (section 3.2) and also for all GCM scenarios (section 3.3) to further 

evaluate the effects of disaggregation on the results of simulations of future changes in lake thermal structure. 

 2.6 Model set-up, calibration and validation 155 

The GOTM model version 5.1 was used in this study. The meteorological parameters for running the model were air 

temperature (⁰C), wind speed (m s-1), short-wave radiation (W m-2), cloud cover (dimensionless, 0-1), relative humidity (%), 

atmospheric pressure (hPa) and precipitation (mm day-1or mm hour-1). Inflows and outflows were not included in this study, 
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and water level was considered fixed in the simulations. This version of GOTM did not have the ability to simulate lake ice, 

so for this study the inverse stratification period was not analysed. Moras et al., (2019) has shown that despite this limitation, 160 

the mode is able to accurately simulate water temperature and the phenology of thermal stratification during the remainder of 

the year.  The initial conditions for water temperature were derived from a measured vertical profile. GOTM was run at hourly 

model computational time step, and simulated water temperature was saved as daily mean values each 0.5 m (42 layers). 

Calibration of the GOTM model was conducted to adjust the model parameters within their feasible range in order to minimize 

the error between measured and modelled temperature (Huang and Liu, 2010). A period of 89 years was selected for the 165 

calibration of GOTM, 2006-2014 (included 1 year spin-up followed by 78 years for calibration). The model parameters that 

were calibrated were surface heat-flux factor (shf_factor), short-wave radiation factor (swr_factor), wind factor (wind_factor), 

minimum turbulent kinetic energy (k_min) and e-folding depth for visible fraction of light (g2). The program used to calibrate 

the model was ACPy (Auto-Calibration Python), developed by Bolding and Bruggeman (https://bolding-

bruggeman.com/portfolio/acpy/), it uses a differential evolution algorithm which calculates a log likelihood function based on 170 

comparing the modelled and measured water temperature (Storn and Price, 1997). The validation period was 2 years 2015-

2016.  

For both calibration and validation, daily average water temperatures were simulated when GOTM was forced using the three 

meteorological data sets described above: measured average daily, measured average hourly and synthetic hourly data. Model 

simulated profiles of mean daily water temperature were then compared to mean daily measured water temperature.  Three 175 

separate model calibrations were made, based on simulations forced with the different meteorological data sets. During 

calibration the model was run approximately 10000 times to obtain a stable solution specifying the optimal parameter set, for 

each meteorological forcing data set.. The details of the feasible range of model parameters and calibratedthe parameters 

associated with each calibration are given in Table 2. The same calibrated parameters were used to predict the thermal structure 

under GCM scenarios. 180 

Model performance was evaluated by comparing average daily modelled and measured temperature profiles and other metrics 

describing the lake thermal structure (surface and bottom temperature, volumetrically weighted averaged whole lake 

temperature, Schmidt stability and, thermocline depth)., duration, onset and loss of thermal stratification). The model 

efficiency coefficients used to quantify the strength of model fit were mean bias error (MBE), root mean squared error (, 

RMSE) and Nash-Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970).. 185 

2.7 Thermal indices 

A range of thermal metrics: surface temperature, (shallowest observation), bottom temperature (deepest observation) and 

thermocline depth (depth of the maximum density gradient) were derived on a daily basesbasis from the daily simulated lake 

temperature profiles. (temperature data with a vertical resolution of 0.5 m from 0.5 to 15 m depth). Also from these profiles, 

Schmidt stability (resistance to mechanical mixing due to the potential energy inherent in the density stratification of the water 190 

column; Schmidt, 1928; Idso, 1973) and whole-lake temperature (volumetric weighted mean whole lake temperature) were 

https://bolding-bruggeman.com/portfolio/acpy/
https://bolding-bruggeman.com/portfolio/acpy/
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estimated using Lake Analyzer (Read et al., 2011).  were estimated using Lake Analyzer (Read et al., 2011). The duration of 

thermal stratification was calculated as the longest continuous period when the water column density difference from the 

bottom to surface of the lake was greater than 0.1 kg m-3 (according to ISIMIP2b lake sector protocol). The date of the onset 

and loss of the thermal stratification was defined as the first time that this density difference persisted for more than 5 days or 195 

was absent for at least 5 days (Kraemer et al., 2015). 

3 Results 

3.1. Hourly meteorological modelling 

Air temperature, short-wave radiation, relative humidity and wind speed were temporarily disaggregated into hourly values 

from mean daily data, using the GRNN models. A database was constructed using 8 years of measurements. From this whole 200 

set of data, the first 5-years of data, that is, from 2008 to 2012, were used for training, and 3-years of data from 2013 to 2015 

were used for validating the results obtained. The accuracy of the trained network was assessed by comparing the predicted 

output with actual measured hourly data. The results are presented in Supplementary Fig. 1,2,3,4. The performance index for 

training and validating sets of GRNN models are given in terms of MBE, RMSE and NSE (see Table 3). 

There was a close agreement between GRNN model predictions and measured meteorological data as shown in Fig. 1 for a 205 

single year data. For air temperature we obtained a NSE of 0.999 and 0.940 and RMSEs of 0.256 and 0.318 ⁰C for the training 

and validate data sets. The MBE values indicated a slightly cold temperature bias (MBE of -1.70 10-4 and -0.057 ⁰C). Short-

wave radiation and relative humidity predictions for the training data set also show an accurate model performance with a NSE 

of 0.999 and 0.998 (RMSEs of 6.345 W m-2 and 0.790 %) respectively. For the validation data set the GRNN models performed 

somewhat worse, NSE of 0.870 and 0.686 (RMSE of 8.196 W m-2 and 1.021 %) for the short-wave radiation and relative 210 

humidity predictions. Wind speed was the variable showing the poorest performance with a NSE of 0.779 and 0.584 (RMSE 

of 1.060 and 1.370 m s-1) for the training and validate data sets. In general, the calculated MBE values in supplementary Fig. 

5 show that the GRNN model tended to overestimate wind speed (MBE of 0.63±0.92 m s-1) when the observed wind speed is 

lower than or equal to 3.84 m s-1, whereas projected wind speed tends to be underestimated (MBE of -0.78±1.17 m s-1) when 

the observations are greater than 3.84 m s-1. 215 

3.2. Lake model performance 

Temperature observations and simulations, for the three configurations of meteorological forcing data for both calibration and 

validation periods, are shown in Fig. 2. Model performance metrics associated with these simulations are provided in Fig. 3 

and Table 4. 

These data demonstrate that GOTM was able to accurately reproduce the measured temperature profiles. For an average of all 220 

three calibration data sets a RMSE of 0.81 ⁰C and NSE of 0.96 was obtained. Temperature simulations for the validation period 

were more accurate (average RMSE of 0.66 ⁰C and NSE of 0.97) than for the calibration period (average RMSE of 0.95 ⁰C 



24 

 

and NSE of 0.94), but in both periods the model performance was considered acceptable. When comparing the metrics of 

model fit associated with simulations forced with the three different input data sets the RMSEs for calibration period ranged 

from 0.88 to 1.04 ⁰C, with lower error levels associated with simulations driven by hourly meteorological data sets, whereas 225 

for the validation period the RMSEs were comparable for all data sets, with slightly lower RMSE 0.63 ⁰C for the temperature 

simulations driven by daily meteorological data. The MBE values indicated a slight cold temperature bias (average MBE of -

0.05 ⁰C). 

The model performance predicting just surface temperatures (average RMSE of 0.63 ⁰C and NSE of 0.98) was better that 

estimations of the full temperature profiles. The MBE, showed that GOTM tended to produce a cold temperature bias (average 230 

MBE of -0.10 ⁰C). As would be expected the simulations of bottom temperature were slightly less accurate having average 

RMSE of 0.96 ⁰C and NSE of 0.90, with lower RMSE values for the validation period (average RMSE of 0.67 ⁰C) than the 

calibration period (average RMSE of 1.25 ⁰C), but in contrast to the surface temperature, there was a slight warm temperature 

bias (average MBE of 0.06 ⁰C). The best fits in the bottom temperature simulations were those driven by  the measured hourly 

meteorological data set during the validation period (RMSE of 0.59 ⁰C  and NSE of 0.97) and the synthetic hourly 235 

meteorological data, during the calibration period (RMSE of 1.16 ⁰C and NSE of 0.87). When evaluating the simulations of 

volumetrically weighted averaged whole lake temperatures we found that model errors were of a similar magnitude with an 

average RMSE of 0.53 ⁰C and NSE of 0.98, tending to a slight cold temperature bias (average MBE of -0.08 ⁰C).  

The calculation of Schmidt stability, the resistance to mechanical mixing due to the potential energy inherent in the density 

stratification of the water column (Read et al., 2011), was also well simulated for  using all three data sets (average RMSE of 240 

17.24 J m-2and NSE of 0.88). The lowest RMSE values were for the validation period (average RMSE of 13.34 J m-2) whereas 

during the calibration period values were slightly greater (average RMSE of 21.14 J m-2). Thermocline depth, defined as the 

depth of the maximum density gradient, was the parameter with the poorest performance (average RMSE of 3 m). The MBE 

values (average MBE of 0.80 m) indicate a bias towards under prediction of thermocline depth (shallower thermocline depths).  

3.3. Long-term modelled changes in thermal stratification 245 

The lake model was forced by four climate model projections and three emissions scenarios (historical, RCP 2.6 and RCP 6.0) 

available from ISIMIP for GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR and MIROC5 using their original daily resolution 

and also at hourly resolution using meteorological disaggregated data developed using the GRNN models describe above. 

Simulated water temperatures for the historical, RCP 2.6 and RCP 6.0 scenarios under daily IPSL-CM5A-LR projections are 

presented as temperature isopleths in Fig. 4. These were created by averaging the daily temperature profiles for all years 250 

associated with each of the emission scenarios. These mean scenario temperature isopleths provide a clear visualization of 

how for future scenarios surface and bottom water temperatures are projected to increase with stronger and deeper 

stratification, an earlier stratification onset and later fall overturn and consequently longer stratification period. 
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2.8 Statistical analysis 

Anomalies were calculated to further evaluate thesethe impacts on lake water temperature and thermal stratification. The 255 

anomalies were computed for each GCM by taking the difference between the annual average of each year (2006-20992011-

2100) from RCP 2.6 and 6.0 scenarios and the average for the entire period 1975-20051981-2010 from the historical scenario. 

From theseThese average yearly values were calculated using the months between April and September, due to the fact that 

the GOTM model was not able to simulate lake ice and winter water temperatures at the same level of accuracy as during the 

remainder of the year. The slope of the significant trends were evaluated by least-squares linear regression, except when the 260 

residuals did not follow a normal distribution. Then the non-parametric Mann-Kendall test for the significance of trends and 

the Theil-Sen method (Theil, 1950; Sen, 1968) to estimate the slope of the significant trends were used instead. The t-Student 

mean difference test was used to compare average values of each of the thermal indices. Distribution normality and variance 

homoscedasticity were assessed by the Shapiro-Wilk test and Fisher’s F test respectively. When thermal indices time series 

did not follow a normal distribution the non-parametric Mann-Whitney U test (equal variances) or Kolmogorov Smirnov test 265 

(different variances) were used instead. The statistical analysis was carried out using R version 3.4.4. The progress of climate-

related impacts on the thermal stratification of the lake over the 21st century was assessed as the difference in mean conditions 

between the reference period (1981-2010) and both mid-century (2041-2070) and late-century (2071-2100). Climate model 

data followed the same statistical analysis.  

In general there were significant changes in all the metrics describing thermal stratification evaluated in this study as can be 270 

seen from the frequency distribution of yearly anomalies in Fig. 5,6 and the detailed statistics presented in Table 5. The 

exception to this is the GFDL-ESM2M model which showed lower or non-significant changes.  The other three models showed 

more consistent and larger anomalies as compared to GFDL-ESM2M. Similar trend in the anomaly distributions were seen 

when the GOTM model was forced with either mean daily or synthetic hourly data. Detailed comparison of the results derived 

using the two different forcings (Table 5) suggest that the simulated changes are slightly greater when simulations are forced 275 

with the mean daily data. However, in both cases the same direction in the trends and the same overall descriptions of change 

is found. 

Rates of change in whole-lake temperature calculated for over the length for RCP2.6 and 6.0 scenarios 

3 Results 

3.1. Hourly meteorological modelling 280 

There was a close agreement between GRNN model predictions and measured meteorological data as shown in Fig. 1 for a 

single year and in Supplemental section S1. For air temperature, short wave radiation and humidity the statistics of model 

performance always suggested a strong model fit in the training data sets and also remained strong, but somewhat lower in the 

validation data sets (Table 3). NSEs were 1.00 for the training data sets and ranged from to 0.69 to 0.94 for the validation data 

sets. Estimates of bias were very small. Wind speed was the variable showing the poorest performance with a NSE of 0.78 and 285 
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0.58, and RMSE values of 1.06 and 1.37 m s-1 for the training and validate data sets. In general, the GRNN model tended to 

overestimate wind speed (MBE of 0.63±0.92 m s-1) when the observed wind speed is lower than or equal to 3.84 m s-1, whereas 

projected wind speed tends to be underestimated (MBE of -0.78±1.17 m s-1) when the observations are greater than 3.84 m s-

1. 

3.2. Lake model performance 290 

Temperature observations and simulations, for the three configurations of meteorological forcing data for both calibration and 

validation periods, are shown in Fig. 2 and Supplemental section S2. Model performance metrics associated with these 

simulations are provided in Table 4. These data demonstrate that GOTM was able to accurately reproduce the measured 

temperature profiles. For an average of all three calibration data sets a RMSE of 0.95 ⁰C and NSE of 0.94 were obtained. 

Temperature simulations in the shorter and less variable validation period (RMSE of 0.66 ⁰C and NSE of 0.97) were more 295 

accurate than for the calibration period, but in both periods the model performance was considered strong. For full profile 

temperature the maximum RMSE value was 1.04 ⁰C and the minimum NSE was 0.93. Bottom temperature was least accurately 

simulated with RMSE and NSE values reaching 1.33 ⁰C and 0.83 respectively. 

When comparing the metrics of model fit associated with simulations forced with the three different input data sets the 

simulations forced with mean daily input were slightly less accurate than those forced with either the measured or synthetic 300 

hourly input. As an example, full profile RMSE values for calibration period ranged from 0.88 to 1.04 ⁰C, with the lower error 

levels associated with simulations driven by hourly meteorological data sets, whereas for the validation period the RMSEs 

were comparable for all data sets. The MBE values of the full temperature profiles indicated a slight cold temperature bias 

(average MBE of -0.05 ⁰C). The model performance predicting just surface temperatures was similar for all of the three 

calibrations (average RMSE of 0.67 ⁰C and NSE of 0.97), and were more accurate than the estimations of the full temperature 305 

profiles. The MBE, showed that for surface temperature GOTM also tended to produce a small cold temperature bias (average 

MBE of -0.10 ⁰C). The simulations of bottom temperature were slightly less accurate having average RMSE of 0.96 ⁰C and 

NSE of 0.90, and also showed a tendency have a slightly higher RMSE values for calibrations forced with daily input. Also 

the bottom temperature showed lower RMSE values for the validation period (average RMSE of 0.67 ⁰C) than the calibration 

period (average RMSE of 1.25 ⁰C), but in contrast to the surface temperature, there was a slight warm temperature bias (average 310 

MBE of 0.06 ⁰C). When evaluating the simulations of volumetrically weighted averaged whole lake temperatures we found 

that model errors were of a similar magnitude for all simulations in both the calibration and validation periods with an average 

RMSE of 0.53 ⁰C and NSE of 0.98, tending to a slight cold temperature bias (average MBE of -0.08 ⁰C).  

The calculation of Schmidt stability was also well simulated using all three data sets (average RMSE of 17.24 J m-2and NSE 

of 0.88). The lowest RMSE values were for the validation period (average RMSE of 13.34 J m-2) whereas during the calibration 315 

period values were slightly greater (average RMSE of 21.14 J m-2). Thermocline depth was the parameter with the poorest 

performance (average RMSE of 3 m). The MBE values (average MBE of 0.80 m) indicate a bias towards under prediction of 

thermocline depth (shallower thermocline depths). The RMSE associated with the prediction of the duration of stratification 
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was, on average, 10.43 days. With lower RMSE values for the validation period (average RMSE of 8.04 days) than the 

calibration period (average RMSE 12.81 days). The simulations of onset of the stratification were more accurate having 320 

average RMSE of 2.64 days, but in contrast predictions of the loss of stratification was less accurate (average RMSE of 7.99 

days). 

3.3. Climate data projections  

The lake model simulations undertaken here were forced by four climate model projections (GFDL-ESM2M, HadGEM2-ES, 

IPSL-CM5A-LR and MIROC5) that were in turn forced with three emissions scenarios (historical, RCP 2.6 and RCP 6.0). 325 

Average annual air temperature of the climate model ensemble for the reference period (1981-2010) was 11.88 ⁰C  

Disaggregation of the climate input to an hourly time-step resulted in a slightly warmer temperature  (12.05 ⁰C)1. Under future 

scenario RCP 2.6 the average increase was projected to be 2.22 ⁰C (1.71 ⁰C) by mid-century (2041-2070) with a negligible 

change after mid-century, as would be expected from this scenario with the strongest mitigation.  During the period up to 2070 

air temperature increased at a rate of 0.08 to 0.17 ⁰C decade-1 (0.06 to 0.14 ⁰C decade-1).  In contrast, under RCP 6.0 average 330 

air temperature increased by 2.61 ⁰C (2.01 ⁰C) by mid-century and continued rising to 3.61 ⁰C (2.76 ⁰C) by late-century. For 

RCP 6.0 the trend in air temperature increased, over the entire 2011-2100 period, on average, by 0.34 ⁰C decade-1 (0.26 ⁰C 

decade-1) over all GCMs with the individual trends ranging from 0.18 to 0.43 ⁰C decade-1 (0.14 to 0.33 ⁰C decade-1). For the 

remaining meteorological variables there were less distinct changes between the historical and future periods. Under the RCP 

2.6 scenario the overall annual mean change in wind speed was negligible, while under RCP 6.0 two options were projected, 335 

an increase (GFDL-ESM2M and MIROC5) and decrease (HadGEM2-ES and IPSL-CM5A-LR). Relative humidity was 

projected to decrease for future scenarios RCP 2.6 and 6.0. For RCP 6.0 significant trends ranged from 0.29 to 0.36 % decade-

1 in the interval 2011-2100. An increase in short-wave radiation was projected for all RCP scenarios by late-century, with a 

negligible mean change after mid-century under RCP 6.0. The increase in short-wave radiation is coupled with a decrease in 

cloud cover. By late-century the mean decrease in cloud cover was projected to be 0.06 for RCP 2.6, and 0.07 for RCP 6.0. 340 

More detailed evaluations of the differences in the climate projection based on the original ISIMIP daily time step and the 

hourly disaggregated data are given in the Supplemental section S3. 

3.4. Long-term modelled changes in thermal stratification    

Lake model simulations were made using both the original daily resolution of the ISIMIP GCM scenarios and also at hourly 

resolution using disaggregated data developed using the GRNN models. Simulated water temperatures for the historical, RCP 345 

2.6 and 6.0 scenarios under daily IPSL-CM5A-LR projections are presented as temperature isopleths in Fig. 3 and 

Supplemental section S4. These were created by averaging the daily temperature profiles for all years associated with each of 

the emission scenarios. These mean scenario temperature isopleths provide a clear visualization of how for future scenarios 

                                                           
1 Results based on the hourly disaggregated data are always shown in parenthesis 
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surface and bottom water temperatures are projected to increase with stronger and shallower stratification, an earlier 

stratification onset, a later fall overturn and consequently a longer stratification period. 350 

In Figs. 4-5 we show the long-term trends in the anomalies in lake thermal metrics simulated to occur over the RCP 2.6 and 

6.0 emission scenarios. Trends in whole-lake temperature calculated for over a period of 90 years (2011-2100) were projected 

to increase except in the case of GFDL-ESM2M which showed weaker or non-significant changes for all measures of thermal 

stratification. Simulated changes were generally slight less for the simulations driven by daily forcing data as shown by the 

figures in parentheses For (Table 5 and Supplemental section S4). Under RCP 2.6 rate of change significant trends ranged 355 

from 0.0607 to 0.10 ⁰C decade-1 (0.05 to 0.08 ⁰C decade-1), but most of the change occurred in the first half of the values in 

bracket refer to future projections when the lake model was forced at hourly resolutions.century. For RCP 6.0, the projected 

rate of change ranged from 0.1514 to 0.2726 ⁰C decade-1 (0.1110 to 0.19 ⁰C decade-1). IPSL-CM5A-LRBy late-century, the 

mean projected the largest increase being 0.59in whole-lake temperature was 1.34 ⁰C (0.431.00 ⁰C) underfor RCP 2.6 ⁰C, and 

2.5139 ⁰C (1.75 ⁰C (1.79 ⁰C) under) for RCP 6.0., with a negligible change after mid-century under RCP 2.6 (Fig. 6, Table 6 360 

and Supplemental section S4).  

Surface temperature is warmed significantly, with rates of change ranging from 0.09 to 0.16 ⁰C decade-1 (0.07 to 0.13 ⁰C 

decade-1) and from 0.17 to 0.39 ⁰C decade-1 (0.13 to 0.29 ⁰C decade-1) for RCP 2.6 and 6.0 respectively. These warming rates 

are consistent with the increase Changes in the air temperature, with rates of change ranging from 0.10 to 0.18 ⁰C decade-1 

(0.08 to 0.15 ⁰C decade-1) for RCP 2.6 and from 0.20 to 0.44 ⁰C decade-1 (0.15 to 0.33 ⁰C decade-1) for RCP 6.0. For RCP 2.6 365 

HadGEM2-ES projected the largest increases inlake surface temperature of 1.48 ⁰C (1.20 ⁰C), whereas for RCP 6.0 IPSL-

CM5A-LR and HadGEM2-ES both projected similar large increases in were, as expected, greater than for whole lake 

temperature. For the reference period the mean April-September surface temperature of 3.59 ⁰C (2.66 ⁰C) and 3.52 ⁰C (2.58 

⁰C) respectively. was on average 13.61 ⁰C (13.84 ⁰C) warming up significantly over 21st century, so that by late-century the 

average projected increase was 1.79 ⁰C (1.35 ⁰C) for RCP 2.6, and 3.08 ⁰C (2.31 ⁰C) for RCP 6.0.  From 2011 to 2100 there 370 

was a significant long-term trend for RCP 2.6 surface temperature which increased at a rate of 0.07 to 0.15 ⁰C decade-1 (0.06 

to 0.13 ⁰C decade-1). Under RCP 6.0 the mean surface temperature increase of the ensemble was 0.30 ⁰C decade-1 (0.23 ⁰C 

decade-1) ranging between 0.16 to 0.38 ⁰C decade-1 (0.12 to 0.29 ⁰C decade-1).The projected increase in bottom temperature 

was not as marked as it was for the other metrics of lake temperature. On average, the bottom temperature increased from 9.20 

⁰C (9.67 ⁰C) in the reference period to 9.77 ⁰C (9.99 ⁰C) and 10.32 ⁰C (10.34 ⁰C) by late-century for RCP 2.6 and 6.0 375 

respectively. Significant rates of change in bottom temperature were not predicted during the RCP 2.6 scenario, but for the 

RCP 6.0 scenario bottom temperature did undergone significant warming rates in mostfor HadGEM2-ES and MIROC5 

projections, ranging from being  0.07 to06 ⁰C decade-1 and 0.11 ⁰C decade-1 (0.09 ⁰C decade-1) respectively. 

 There were also projected changes in the resistance to mechanical mixing. For For the reference period, an average of 68.65 

J m-2 (65.56 J m-2) was required to completely mix the water column, while by late-century it increased by 29.08 J m-2 (22.74 380 

J m-2) for RCP 2.6 rates of change in Schmidt stability were significant for IPSL-CMR5A-LR and HadGEM2-ES, 

corresponding to the same projections that experienced the largest increases in surface temperature, being 2.52 J m-2 decade-
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49.22 J m-2 (38.07 J m-2) for RCP 6.0 (Fig. 4, Table 6 and Supplemental section S4). This greater stability also corresponds to 

a longer duration of stratification. From 2011 to 2100, a significant increase in the duration stratification was projected for 

both future scenarios RCP 2.6 and 6.0, ranging from 1 (.13 to 1.70 day decade-1 (0.87 J m-2to 1.30 day decade-1) for RCP 2.6 385 

and 2.60 J m-245 to 3.56 day decade-1 (2.21 J m-200 to 3.08 day decade-1) for RCP 6.0 (Fig. 5, Table 5 and Supplemental section 

S4.),which led to a mean change of was 13 days (11 days) and 22 days (18 days) for RCP 2.6 and 6.0 respectively. For RCP 

6.0 a significant rate of change was projected in all projections, ranging from 2.50 to  (Fig. 7.93 J m-2 decade-1 (1.89 to 6.14 J 

m-2 decade-1). For RCP 2.6 a significant rate of change in the duration , Table 6 and Supplemental section S4.). The longer 

period of stratification was projected to be 1.73 and 1.01 days decade-1 (1.37 and 0.80 day decade-1), which increased the 390 

stratification period by 16 and 9 days (13 and 7 days) for IPSL-CM5A-LR and HadGEM2-ES projections respectively. This 

resulted from changes in both the onset and loss of stratification (Table 5). For RCP 6.0, there was a further  rate of change in 

the duration of both an earlier onset of thermal stratification from 2.19 to 3.55 day decade-1 (1.78 to 2.94 day decade-1), which 

resulted in a  20 to 33 days (17 to 27 days) longer and a later loss of thermal stratification period.  Thermocline depth(Figs 5, 

7, Table 5-6 and Supplemental section S4). Mean annual thermocline depth is expected was simulated to be shallower under 395 

future conditions. However, for RCP 2.6 significant rates of change were not simulated, but for RCP 6.0 significant rates of 

change were found to be 0.08 and 0.12 m decade-1 (0.08 and 0.12 m decade-1) or rather 0.74 and 1.13 m shallower (By late-

century the reduction in thermocline depth was projected to be 0.38 m (0.41 m) for RCP 2.6 and 0.49 m (0.57 m) for RCP 6.0, 

although a significant trend in the decline were only found for the later scenario0.78 and 1.14 m) for IPSL-CM5A-LR and 

HadGEM2-ES. 400 

Extreme changes also showed a pronounced increase during the future scenarios. For the RCP 6.0 scenario, the 95th percentile 

from the distribution of surface temperature anomalies ranged from 2.46 ⁰C (1.87 ⁰C) for GFDL-ESM2M to 5.02 ⁰C (3.76 ⁰C) 

for HadGEM2-ES (Fig. 5). The HadGEM2-ES projection also showed the highest increase in stability, 95th percentile of 112.51 

J m-2 (89.05 J m-2), and the shallowest thermocline depth, 95th percentile of 1.99 m (1.78 m). Extreme changes in the duration 

of stratification were least for GFDL-ESM2 and greatest for HadGEM2-ES. Longer stratification periods were projected for 405 

both models with the 95th percentile of change in duration increasing 51 days (38 days) for HadGEM2-ES and 22 days (21 

days) GFDL-ESM2M projection. These increases in duration were dominated by earlier onset of stratification for GFDL-

ESM2M and by both earlier onset and later fall overturn for HadGEM2-ES (Table 5). 

The trends in Figs. 4-5 are quite variable from year to year, and as would be expected there is no direct correspondence in the 

temporal variations of one GCM relative to another. To provide an alternative method of comparing the changes simulated by 410 

the future climate scenarios shown in Figs. 4-5, the daily anomalies for each trend line are also presented as frequency 

distributions in the Figs. 6-7 for the simulations made under the RPC 6.0 scenario.  These show that for all metrics there is a 

clear shift in the lake thermal conditions that are consistent with a warmer climate, but that also there are extremes in the 

distributions that can lead to unrepresentative results, when for example future conditions briefly return to historical levels, or 

when the effects of warming are much greater that would be expected on average.  This later case can cause important changes 415 

in lake ecology if the extreme conditions result in a change in lake state by the passing of a tipping point.  Figs. 6-7 also clearly 
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shows the differences in simulations forced by different GCMs. Most obvious is the difference in the results from GFDL-

ESM2M, which consistently simulated smaller changes in lake thermal structure during the mid and late century periods, 

despite having a data distribution that was similar to the other models during the historical period. 

3.5. Comparison between long-term thermal metrics derived from daily and hourly climate data 420 

Future changes in thermal metrics based on both RCP 2.6 and RCP 6.0 were slightly greater when the GOTM model was 

forced at daily resolutions (Tables 5-6 and Supplemental section S4) than at an hourly resolution. This included changes in 

mean surface temperatures and also in annual average whole-lake temperature (Supplemental section S5). However, under 

RCP 2.6 non-significant differences were found for bottom temperature, Schmidt stability, thermocline depth, or the duration, 

onset and loss of stratification. In all cases where differences were found between the simulations forced with daily vs. hourly 425 

data there were no change in direction and only minor changes in the magnitude of the change suggested by the simulations 

(Supplemental sections S4-S5). 

4. Discussion 

The GOTM model was able to produce a goodsimulated water temperature and related metrics of thermal stratification were 

in excellent agreement between the model output and observed data during both the with the extensive set of measured water 430 

temperature data that were available for model calibration and the validation period (at Lake Erken (Moras 2019 Fig. 3, Table 

43). Water temperature simulations were apparently more accurate for the validation period (2015-2016) were more accurate 

than for the calibration period (2006-2014) due), which may appear unusual, but is due to the higher variability in observed 

water temperature during the longlonger calibration period. Bottom water temperature RMSEs showed better agreement 

between simulationsYears with a longer duration of stratification and stronger stability, generally had higher simulation errors. 435 

Half of the eight-year calibration period exhibited these conditions, while the two-years used for validation both exhibited 

shorter duration of stratification and observations when weaker stability. The thermocline depth was the lake model thermal 

metric that was forced using measured average hourly meteorological data instead of measured average daily meteorological 

data.predicted with the greatest uncertainty. This could be attributed to a more confident prediction of the diurnal heating and 

cooling cycles, and hence is in part caused by the downward flow of heat into the hypolimnion. Thermocline depth was harder 440 

to predict, simulated thermocline depths differed from presence of internal seiches in Lake Erken, which result in the measured 

temperatures in the observed values contributing to additional errors in water temperature for depths near region of the 

thermocline. having a level of variability that cannot be reproduced by 1D models such as GOTM. Bruce et al. (2018) detected 

a strong correlation between accuracy of the extinction coefficient and model simulations of full-profile temperature and 

thermocline depth, and thuswhich shows the importance of light extinction in the prediction of thermocline depth. ASince a 445 

single calibratedfixed value of e-folding depth (Table 2) for the visible fraction of the light (the inverse of the extinction 

coefficient) werewas used in the GOTM which preventedsimulations, the evaluationeffects of seasonal effects variations in 

light extinction (Perroud et al., 2009). Also it should be noted that the internal seiche movement observed in the measured data 
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(Fig. 2) is not simulated by a 1D model such as GOTM. Thus errors in ), on thermocline depth are at least in part due to 

limitations in the 1D model frameworkwere not evaluated. 450 

The performance of the GOTM model are comparable to those reported in other 1-D modelling studies. Moras et al. (2019, in 

review) ran GOTM using hourly measured meteorology for a 56-year period and RMSE for daily full-profile water temperature 

was 1.12 ⁰C, Magee and Wu (2017) reported RMSEs of 0.30 and 0.53⁰C (lake Mendota) and 1.45 and 1.94 ⁰C (Fish lake) for 

DYRESM temperature simulations in the epilimnion and hypolimnion respectively, and Perroud et al. (2009) simulated water 

temperature profiles of lake Geneva for a 10-year period with RMSEs of < 2 ⁰C for DYRESM and 3 ⁰C for SIMSTRAT. For 455 

our simulations with GOTM, model performance was slightly more accurate for the calibration data set when GOTM was 

forced with synthetic hourly meteorological input, rather than measured hourly meteorological input.  Similar levels of 

performance using the two different data sets was in part caused by changes in the calibrated parameters used to characterize 

the lake thermal structure. Apparently calibration can in part compensate for the lack of diurnal variability in the daily forcing 

data. 460 

The model parameters adjusted during the calibration processes were nondimensionalnon-dimensional scaling factors 

(shf_factor, swr_factor and wind_factor) and physical parameters with strongwhich strongly influence in the vertical 

distribution of light and temperature (k_min and g2). These parameters are key for the determination of the heat budget in the 

water column. Wind is the dominant driver of mixing in lakes, and increases or decreases of wind speed (wind_factor) changes 

the amount of turbulenceturbulent kinetic energy available for mixing. The wind scaling factor is often important when wind 465 

station is locatedmeasurements occur some distance from the lake and/or to consideraccount for wind sheltering effects 

(Markfort et al., 2010). One would not expect that these factors would be important forthe wind factor to deviate greatly from 

1.0 at Lake Erken where wind wasis measured on an island in the lake. However, the dominant wind direction is along the 

lake’s longest east-west fetch (Yang et al., 2014), thiswhich could explain the need to scale up the unidirectional wind speed 

measurements that were used as an input to GOTM. Furthermore, since it is the cube of wind speed that affects lake mixing, 470 

use of longer averaging periods will underestimate the effects of gusting and variable winds. This could explain why we obtain 

higher calibrated values of the wind _factor when forcing the model with measured daily rather than hourly data (Table 2). 

Higher values of the wind_factor were also obtained when GOTM was forcing with synthetic hourly meteorological drivers. 

This is due to an underestimation of the faster wind speed predictions from the GRNN model (Fig. 1, supplementary Fig. 5). 

and Supplemental section S1.). During the ACPy calibration each of these parameters were calibrated while simultaneously 475 

influencing each other; shf_factor, swr_factor, wind_factor and g2 have a strong influence on heat and energy exchange across 

the air-water interface. There is to some extent an unavoidable tendency for some error in one parameter to be cancelled out 

by opposite errors in another parameter. When GOTM was forcing with measured daily average and synthetic hourly 

meteorological drivers a large wind_factor led to surface cooling, but on the other hand a lower shf_factor and smaller values 

of g2 (equivalent to higher extinction coefficient) promoted an increase in surface water temperature. When GOTM was 480 

forcing with measured hourly average meteorological drivers, g2 had the larger values (equivalent to lower extinction 

coefficient) and shf_factor was closer to 1 showing that a deeper penetration of energy entering into the lake provided more 
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realistic warming of the surface, a lower wind factor was also found, which means that less surface cooling is to be offsetthe 

error in one parameter to be cancelled out by opposite errors in another parameter.  This also illustrates how, to some extent, 

the calibration process can compensate for some of the limitations related to the temporal resolution of the model forcing data. 485 

The performance of the GOTM model obtained in this study is comparable with results reported by others. Moras et al. 

(2019) who ran GOTM using hourly measured meteorology for a 57-year period obtained a RMSE for daily full-profile water 

temperature of 1.09 ⁰C. Using the DYRESM model Magee and Wu (2017) reported RMSE values of 0.30 and 0.53⁰C for lake 

Mendota and 1.45 and 1.94 ⁰C for Fish lake for temperature estimates of the epilimnion and hypolimnion respectively.  Perroud 

et al. In general, surface water temperature was projected to increase at a rate that is 83-93 % of that of the air temperature 490 

increase. This conclusion is in close agreement with other modelling studies which found a relationship between the surface 

water  and air warming rates of 75-90% (Schmidt et al., 2014) and 70-85% (Shatwell et al., 2019). However, one exception 

was observed for the IPSL-CM5A-LR projection under RCP 2.6 scenario using daily resolution in the forcing inputs when 

increase of 0.109 ⁰C decade-1 in surface water temperature slightly exceeded the increase of 0.105 ⁰C decade-1 in air 

temperature. The reasons for that this scenario shows a somewhat different behaviour is probably related to some 495 

inconsistencies in the GCM models and also bias correction that was applied to the ISIMIP data. 

(2009) simulated water temperature profiles of lake Geneva over a 10-year period and obtained RMSE values of < 2 ⁰C for the 

DYRESM model and < 3 ⁰C for the SIMSTRAT model.  

The projected changes in lake thermal metrics depends on the selected GCM model and the future scenario or representative 

concentration pathway (RCPs) that was simulated. The range of greenhouse gas (GHG) emissions include in this study were 500 

a stringent mitigation scenario (RCP 2.6) and an intermediate scenario (RCP 6.0). Consistent with the ISIMIP2b simulation 

strategy that is intended to evaluate RCP 2.6 as a scenario that aims to keep global warming below 2°C above pre-industrial 

temperatures by 2100. In contrast for RCP 6.0 increased levels of GHG emissions suggest that the global mean temperature 

will continually increase by 2.5 and 4 ⁰C by the end of the century. The effects of the mitigation measures that were adopted 

in RCP 2.6 on lake thermal structure become most apparent in the late century. For example, for MIROC5 (when the lake 505 

model was forced at daily resolutions) the projected surface temperature change for mid-century was similar for the two RCPs 

(2.10 ⁰C for RCP 2.6 and 1.98 ⁰C for RCP 6.0), but for the late-century period the projected change in surface temperature 

diverge among RCPs. Under RCP 2.6 the surface temperature change declines from 2.10 to 1.80 ⁰C, while under RCP 6.0 the 

change in surface temperature was projected to further increase from 1.98 to 2.97 ⁰C. Similar changes were projected for all 

thermal metrics. Under RCP 6.0 there was also an increase in bottom temperature but at rates that were slower than surface 510 

temperature, changes in lake stability increased from 38.67 J m-2 by mid-century to 64.62 J m-2 by late-century, increasing the 

duration of stratification (from 16 to 22 days). While the there was a general agreement among the models in the direction and 

relative magnitude of change in many of the metrics of lake thermal structure there were also some differences among GCMs 

(Figs. 4-7 and Supplemental section S4) especially in relation to the GFDL-ESM2M model which consistently estimated lower 

levels of change. For example, by late century largest changes in surface temperature were projected for HadGEM2-ES (4.04 515 

⁰C) and the lowest for GFDL-ESM2M (1.67 ⁰C) under future scenario RCP 6.0 when the lake model was forced at daily 
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resolutions. However, the increase in the projected bottom temperature for GFDL-ESM2M (1.24 ⁰C) was greater than for 

HadGEM2-ES (0.91 ⁰C). This could be in part due to the projected changes in wind speed. The wind speed was projected to 

increase by 0.18 m s-1 for GFDL-ESM2M transferring heat to the lake bottom, but for HadGEM2-ES the wind speed decrease 

by 0.15 m s-1 (atmospheric stilling; Woolway et al, 2017; Woolway et al., 2019) reducing the magnitude of vertical mixing. 520 

Resulting in a greater gradient between surface and bottom temperatures and higher increases in the Schmidt stability (77.57 

J m-2). This increased thermal gradient for HadGEM2-ES promoted shallower thermocline depth (1.26 m), but for GFDL-

ESM2M a lower change in lake stability was projected (12.26 J m-2) thereby a deeper thermocline depth (0.22 m). Higher 

surface water temperature and stronger Schmidt stability can explain why the increased duration of stratification was projected 

to be longer for HadGEM2-ES (34 days) than for GFDL-ESM2M (6 days). The small change in thermal stability also explains 525 

why no change in loss of stratification was projected for GFDL-ESM2M. This illustrates the complexity of climate model – 

lake model interaction, and clearly shows the importance of ensemble model simulations, as adopted by ISIMIP, to evaluate 

the effects of climate change on lakes. 

When calibrating the GOTM model we found that model errors between simulated and measured water temperature were 

similar when GOTM was forced with either measured hourly or synthetic hourly meteorological data, and that the results 530 

obtained from the calibrations forced with mean daily metrological input were also similar to those obtained from the 

calibrations based on hourly input. This suggests that the daily time step of the ISIMIP climate scenarios is sufficient for 

forcing the GOTM model and that for most studies within the ISIMIP lake sector disaggregation to hourly time step will not 

be necessary. For example, changes in surface water temperature was on the order of 0.29 ⁰C decade-1, with simulations forced 

with daily inputs 0.22 ⁰C decade-1 degrees with hourly input data for MIROC5 under RCP 6.0. These differences are of the 535 

same magnitude as the differences simulated using different GCM models. Similar levels of model performance using daily 

or hourly forcing data were obtained in part because of separate calibrations when the GOTM model was forced with the 

different data sets. Changes in the calibrated parameters used to characterize the lake thermal structure (Table 2), apparently 

can compensate for the lack of diurnal variability in the daily forcing data. GRNNs proved to be an effective method to 

disaggregate daily GCM forcing to an hourly temporal resolution for different weather variables such as air temperature, short-540 

wave radiation, etc. However, GRNNs require a training phase, in which the diurnal patterns to be learned are presented to the 

network from historical meteorological measurements, and therefore if there are future changes in diurnal patterns, these cannot 

be reproduced. In addition, there is a high computational cost of disaggregating and storing the long-term daily climate data 

into an hourly data set. 

The projected changes in thermal metrics were strongly influenced by the GMCs used to drive the water temperature 545 

simulations. Due to the high interannual variability long periods of simulation were needed to ensure that the uncertainty is 

fully represented (Figs 4-7 and Supplemental sections S3-S4). Under RCP 6.0 trends in surface temperature calculated for the 

period 2011-2100 were projected to increase 0.38 ⁰C decade-1 for both HadGEM2-ES and IPSL-CM5A-LR when the lake 

model was forced at daily resolutions. However, 5th, 50th and 95th percentiles for surface temperature anomalies differ between 

models, being 0.84, 2.93 and 4.86 ⁰C for HadGEM2-ES and 0.33, 2.56 and 4.37 ⁰C for IPSL-CM5A-LR. Placing the probability 550 
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density function (PDF) for HadGEM2-ES to the right of the PDF for IPSL-CM5A-LR, illustrating that more extreme increases 

in surface temperature were projected by HadGEM2-ES. Projected bottom temperatures differed between HadGEM2-ES and 

IPSL-CM5A-LR. HadGEM2-ES PDF was left-skewed and the median was 0.58 ⁰C while IPSL-CM5A-LR PDF was right-

skewed and the median was 1.16 ⁰C, as a consequence lake stability was stronger for HadGEM2-ES (5th and 95th percentiles 

were 5.22 and 110.55 J m-2) than for IPSL-CM5A-LR (5th and 95th percentiles were -18.77 and 90.64 J m-2), even though the 555 

Schmidt stability medians were similar for both GCMs. Similarly, when projecting longer duration of stratification for 

HadGEM2-ES (5th, 50th and 95 percentiles were -0.63, 26.37 and 49.42 days) than IPSL-CM5A-LR (5th, 50th and 95 percentiles 

were -10.33, 17.67 and 40.92 days). GCMs are useful for assessing climate change impacts on lakes, but GCMs configurations 

vary from one to another. Therefore, it is crucial to assess different GCMs in a probabilistic manor (Figs. 4-7) to encapsulate 

the uncertainty in the lake thermal metrics without compromising the variability 560 

The study carried out by Moras et al. (2019) found changes in the phenology of Lake Erken thermal stratification from 1961 

to 2017. A significant increase in summer epilimnetic and whole-lake temperature of 0.35 ⁰C decade-1and 0.24 ⁰C decade-1 

occurred over the entire study period. While in spring and autumn larger significant positive trends were detected over the 

subinterval 1989-2017. In the present work future changes under the RCP 6.0 emission scenario found trends that were of a 

similar magnitude. The summer trends for the period 2011-2100 projected a significant increase in epilimnetic and whole-lake 565 

temperature ranging from 0.19 to 0.45 ⁰C decade-1 and 0.15 to 0.26 ⁰C decade-1, respectively, when the lake model was forced 

at daily resolutions, while changes in summer hypolimnetic temperature was non-significant. During the spring and autumn 

significant increases in epilimnetic whole-lake temperature were also projected under RCP 6.0 when the lake model was forced 

at daily resolutions, but they were somewhat lower than the ones detected by Moras et al. (2019). The increase in spring 

epilimnetic and whole-lake temperature ranged from 0.15 to 0.38 ⁰C decade-1 and 0.15 to 0.30 ⁰C decade-1, while those in 570 

Moras et al. (2019) showed a higher rate of warming (0.44 ⁰C decade-1and 0.40 ⁰C decade-1 for epilimnetic and whole-lake 

temperature, respectively), and the GCM simulations promoted shorter duration in stratification. The projected increase in 

spring and autumn hypolimnetic temperature were similar in magnitude and in summer non-significant trends were detected 

either in this study or in Moras et al. (2019). The simulations made here and by Moras et al (2019) are for the same lake using 

the same lake model.  The fact that the simulations presented here using the RCP 6.0 emission scenarios showed similar or 575 

slightly lower rates of change compared to the simulations made by Moras et al (2019) when the model was forced with 

measured historical data, are unexpected given that the RCP 6.0 scenario would project an accelerated rate of climate change 

compared to the historical period.  This suggests that, at least for Lake Erken, future changes in lake thermal structure based 

on the ISIMIP2b GCM projections may to some extent underestimate the actual changes that will occur.  

The projected changes in thermal stratification can influence many aspects of the lake ecosystem. Increases in thermal  stability 580 

and duration of stratification can intensify hypolimnetic oxygen depletion (Foley et al., 2012; Schwefel et al., 2016) and hence 

induce enhanced internal phosphorous loading (North et al., 2014), increase the release of dissolved iron and manganese from 

sediments (Schultze et al., 2017) and also increase methane emissions (Grasset et al., 2018). Warming lake temperature affects 

biological rates of metabolism, growth and reproduction (Rall et al., 2012) and can promote cyanobacterial blooms (Paerl and 
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Paul, 2012). When coupled to a reduction in oxygen-rich water, warming water temperature leads to a lower fish populations 585 

(O'Reilly et al., 2003; Yankova et al., 2017). Increase in evaporation associated with warming can lead to declines in lake 

water level (Hanrahan et al., 2010) with implications for water security. 

4. Conclusion 

This study showed the ability of the GOTM model to simulate accurately Lake Erken water temperature when the model was 

forced using either daily or hourly temporal resolution inputs. Neuronal networks were shown to be an effective method to 590 

disaggregate different weather variables such as air temperature, and short-wave radiation, in order to generate synthetic hourly 

meteorological data from the daily data that is typically available from GCM models. Model performance was slightly 

improved when using the synthetic hourly data, and climate change effects were somewhat greater when using such data to 

drive future climate simulations. However, it is not clear that data disaggregation is needed given the computational costs of 

developing such data sets and running long-term simulations at an hourly time step. Future climate simulations showed similar 595 

trends in the anomaly distributions when the GOTM model was forced with both mean daily or synthetic hourly meteorological 

data, and we also found evidence that the calibration procedure partly compensates for differences in the temporal resolution 

of the model input. 

In this study, which was the first test simulating lake hydrothermal structure following ISIMIP2b protocols, ensemble 

simulations show that changes in Lake Erken’s surface temperature was projected to increase from 0.87 toon average by 1.4879 600 

⁰C for RCP 2.6 and from 1.59 toby 3.5908 ⁰C for RCP 6.0, and the length of the stratification also was projected to be longer 

from 9 to 16by 13 days for RCP 2.6 and from 20 to 33by 22 days for RCP 6.0 by the end of the 21st century. Most changes in 

the RCP 2.6 scenario occurred during the first half of the century suggesting that the aggressive mitigation methods represented 

in this scenario would be effective at reducing future changes in lake thermal structure. We also extensively document 

coinciding changes in water column temperatures, water column stability and mixed layerthermocline depth both in this paper 605 

and the supplementary material. Combined these results suggest important changes in the factors affecting lake 

biogeochemistry directly through changes in temperature and indirectly by influencing the availability of light and nutrients. 

By providing an initial test for the simulations that will be carried out by the ISIMIP lake sector this paper sets the stage for 

more extensive world-wide evaluation of the effects of climate change on lake thermal structure.  

This study showed the ability of the GOTM model to simulate accurately Lake Erken water temperature when the model was 610 

forced using either daily or hourly temporal resolution inputs. Neural networks were shown to be an effective method to 

disaggregate different weather variables such as air temperature and short-wave radiation, in order to generate synthetic hourly 

meteorological data from the daily data that are typically available from GCM models. Model performance was slightly 

improved when using the synthetic hourly data, and climate change effects were somewhat lower when using such data to 

drive future climate simulations. However, it is not clear that data disaggregation is needed given the computational costs of 615 

developing such data sets and running long-term simulations at an hourly time step. Future climate simulations showed similar 

trends in the anomaly distributions when the GOTM model was forced with mean daily or synthetic hourly meteorological 
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data, and we also found evidence that the calibration procedure partly compensates for differences in the temporal resolution 

of the model input. 
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Tables 

Table 1: Bias-corrected variables in the ISIMIP dataset 805 

variable name abbreviation units 

precipitation pr kg m-2 s-1 

surface pressure  ps Pa 

surface downwelling shortwave radiation rsds W m-2 

near-surface wind speed sfcWind m s-1 

near-surface air temperature tas K 

daily maximum near-surface air temperature tasmax K 

daily minimum near-surface air temperature tasmin K 

relative humidity hurs % 

 

Table 2: GOTM lLake model parameters and calibrated values 

model parameter feasible range 
calibrated values 

24 h met 1h met  synthetic 1h met  

shf_factor 0.5–1.5 0.69 0.81 0.77 

swr_factor 0.8–1.2 1.15 0.90 0.91 

wind_factor 0.5–2.0 1.55 1.37 1.51 

k_min 1.4 10-7–1.0 10-5 1.47 10-6 1.40 10-6 1.29 10-6 

g2 0.5–3.5 1.99 2.30 1.62 

 

 

 810 
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Table 3: GRNN models performance evaluation.  

 

GRNN model 

training validation 

MBE RMSE NSE MBE RMSE NSE 

Air temperature (⁰C) -1.70 10-4 0.256 0.999 -0.057 0.318 0.940 

Short wave radiation (W m-2) 5.76 10-4 6.345 0.999 -0.037 8.196 0.870 

Relative humidity (%)  -7.94 10-4 0.790 0.998 0.341 1.021 0.686 

Wind speed (m s-1) -5.67 10-3 1.060 0.779 -0.009 1.370 0.584 

 815 

 MBE RMSE NSE 

 training validation training validation training validation 

air temperature (⁰C) -1.70 10-4 -0.06 0.26 0.32 1.00 0.94 

short wave radiation (W m-2) 5.76 10-4 -0.04 6.35 8.20 1.00 0.87 

relative humidity (%) -7.94 10-4 0.34 0.79 1.02 1.00 0.69 

wind speed (m s-1) -5.67 10-3 -0.01 1.06 1.37 0.78 0.58 

 

Table 4: LakeGOTM lake model performance evaluation: MBE , RMSE and NSE for full profiles temperature, surface temperature, bottom temperature, 

volumetrically weighted averaged whole lake temperatures, Schmidt stability and, thermocline, and duration, onset and loss of stratification using 

simulated results from running GOTM driven by daily (24h met), hourly (1h met) and synthetic hourly (synthetic 1h met) meteorological data sets. 

 calibration 

 24h met 1h met synthetic 1h met 

 MBE RMSE NSE MBE RMSE NSE MBE RMSE NSE 

full-profile temp (⁰C) -0.08 1.04 0.93 -0.02 0.94 0.94 -0.02 0.88 0.95 

surface temp (⁰C) -0.04 0.69 0.97 0.04 0.72 0.97 -0.01 0.61 0.98 

bottom temp (⁰C) -0.06 1.33 0.83 0.07 1.24 0.85 -0.11 1.16 0.87 

whole lake temp (⁰C) -0.07 0.57 0.98 -0.03 0.52 0.98 -0.01 0.49 0.98 

Schmidt stability (J m-2) 0.53 22.09 0.85 0.59 21.69 0.85 0.76 19.64 0.88 

thermocline depth (m) 0.58 2.77 0.32 0.84 3.07 0.22 0.43 2.84 0.32 

 validation 

 24h met 1h met synthetic 1h met 

 MBE RMSE NSE MBE RMSE NSE MBE RMSE NSE 
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full-profile temp (⁰C) -0.07 0.63 0.98 -0.12 0.69 0.97 0.00 0.68 0.97 

surface temp (⁰C) -0.24 0.54 0.99 -0.19 0.64 0.98 -0.15 0.54 0.99 

bottom temp (⁰C) 0.16 0.68 0.96 0.09 0.59 0.97 0.23 0.74 0.95 

whole-lake temp (⁰C) -0.13 0.48 0.99 -0.17 0.59 0.98 -0.06 0.51 0.98 

Schmidt stability (J m-2) -5.26 13.27 0.90 -3.26 13.50 0.90 -4.47 13.26 0.90 

thermocline depth (m) 0.89 2.86 0.07 1.07 3.27 -0.07 0.98 3.18 -0.14 

 820 

 calibration 

 MBE RMSE NSE 

 24h met 1h met synthetic 1h met 24h met 1h met synthetic 1h met 24h met 1h met synthetic 1h met 

full-profile temp (⁰C) -0.08 -0.02 -0.02 1.04 0.94 0.88 0.93 0.94 0.95 

surface temp (⁰C) -0.04 0.04 -0.01 0.69 0.72 0.61 0.97 0.97 0.98 

bottom temp (⁰C) -0.06 0.07 -0.11 1.33 1.24 1.16 0.83 0.85 0.87 

whole lake temp (⁰C) -0.07 -0.03 -0.01 0.57 0.52 0.49 0.98 0.98 0.98 

Schmidt stability (J m-2) 0.53 0.59 0.76 22.09 21.69 19.64 0.85 0.85 0.88 

thermocline depth (m) 0.58 0.84 0.43 2.77 3.07 2.84 0.32 0.22 0.32 

duration (day) 0.25 3.75 6.63 9.25 14.25 14.94 - - - 

onset (day) -0.63 -0.50 -0.13 1.54 1.12 1.17 - - - 

loss (day) -0.63 -2.00 -2.88 1.54 5.87 9.13 - - - 

 validation 

 MBE RMSE NSE 

 24h met 1h met synthetic 1h met 24h met 1h met synthetic 1h met 24h met 1h met synthetic 1h met 

full-profile temp (⁰C) -0.07 -0.12 0.00 0.63 0.69 0.68 0.98 0.97 0.97 

surface temp (⁰C) -0.24 -0.19 -0.15 0.54 0.64 0.54 0.99 0.98 0.99 

bottom temp (⁰C) 0.16 0.09 0.23 0.68 0.59 0.74 0.96 0.97 0.95 

whole lake temp (⁰C) -0.13 -0.17 -0.06 0.48 0.59 0.51 0.99 0.98 0.98 

Schmidt stability (J m-2) -5.26 -3.26 -4.47 13.27 13.50 13.26 0.90 0.90 0.90 

thermocline depth (m) 0.89 1.07 0.98 2.86 3.27 3.18 0.07 -0.07 -0.14 

duration (day) -4.50 -3.50 -4.50 8.75 8.28 7.11 - - - 

onset (day) 0.50 -7.50 0.50 0.71 10.61 0.71 - - - 

loss (day) -4.00 13.00 -4.00 8.94 15.26 7.21 - - - 
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Table 5. Projected trends of change (2006–2099) in air temperature,Table 5.Trend analysis from 2011-2100 for surface temperature, bottom temperature, 

whole-lake temperature, Schmidt stability, thermocline depth, duration, onset and loss of stratification (ns: not significant).) for RCP 6.0. 

 RCP 2.6 

 GFDL-ESM2M 

 24 h met 1h met 

air temperature ns ns 

surface temperature ns ns 

bottom temperature ns ns 

whole-lake temperature ns ns 

Schmidt stability ns ns 

thermocline depth ns ns 

duration ns ns 

onset ns ns 

loss ns ns 

 HadGEM2-ES 

 24 h met 1h met 

air temperature 0.18 ⁰C decade-1 (p-value < 0.001) 0.15 ⁰C decade-1 (p-value < 0.001) 

surface temperature 0.16 ⁰C decade-1 (p-value < 0.001) 0.13 ⁰C decade-1 (p-value < 0.001) 

bottom temperature ns ns 

whole-lake temperature 0.10 ⁰C decade-1 (p-value < 0.001) 0.08 ⁰C decade-1 (p-value < 0.001) 

Schmidt stability 2.60 J m-2 decade-1 (p-value < 0.001) 2.21 J m-2 decade-1 (p-value < 0.001) 

thermocline depth ns ns 

duration 1.01 day decade-1 (p-value = 0.014) 0.80 day decade-1 (p-value = 0.034) 

onset 0.63 day decade-1 (p-value = 0.047) ns 

loss ns 0.43 day decade-1 (p-value = 0.015) 

 IPSL-CM5A-LR 

 24 h met 1h met 

air temperature 0.11 ⁰C decade-1 (p-value = 0.005) 0.09 ⁰C decade-1 (p-value = 0.004) 

surface temperature 0.11 ⁰C decade-1 (p-value = 0.003) 0.08 ⁰C decade-1 (p-value = 0.004) 

bottom temperature ns ns 

whole-lake temperature 0.06 ⁰C decade-1 (p-value = 0.038) 0.05 ⁰C decade-1 (p-value = 0.049) 

Schmidt stability 2.52 J m-2 decade-1 (p-value = 0.012) 1.87 J m-2 decade-1 (p-value = 0.024) 

thermocline depth ns ns 
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duration 1.73 day decade-1 (p-value < 0.001) 1.37 day decade-1 (p-value = 0.002) 

onset ns 0.93 day decade-1 (p-value = 0.004) 

loss 0.85 day decade-1 (p-value = 0.005) 0.45 day decade-1 (p-value = 0.049) 

 MIROC5 

 24 h met 1h met 

air temperature 0.10 ⁰C decade-1 (p-value = 0.007) 0.08 ⁰C decade-1 (p-value = 0.008) 

surface temperature 0.09 ⁰C decade-1 (p-value = 0.001) 0.07 ⁰C decade-1 (p-value = 0.002) 

bottom temperature ns ns 

whole-lake temperature 0.08 ⁰C decade-1 (p-value < 0.001) 0.06 ⁰C decade-1 (p-value < 0.001) 

Schmidt stability ns ns 

thermocline depth ns ns 

duration ns ns 

onset ns 0.60 day decade-1 (p-value = 0.018) 

loss ns ns 

 RCP 6.0 

 GFDL-ESM2M 

 24 h met 1h met 

air temperature 0.20 ⁰C decade-1 (p-value  < 0.001) 0.15 ⁰C decade-1 (p-value  < 0.001) 

surface temperature 0.17 ⁰C decade-1 (p-value < 0.001) 0.13 ⁰C decade-1 (p-value < 0.001) 

bottom temperature ns ns 

whole-lake temperature 0.15 ⁰C decade-1 (p-value < 0.001) 0.11 ⁰C decade-1 (p-value < 0.001) 

Schmidt stability 2.50 J m-2 decade-1 (p-value = 0.003) 1.89 J m-2 decade-1 (p-value = 0.008) 

thermocline depth ns ns 

duration ns 0.81 day decade-1 (p-value = 0.031) 

onset ns ns 

loss ns ns 

 HadGEM2-ES 

 24 h met 1h met 

air temperature 0.44 ⁰C decade-1 (p-value < 0.001) 0.33 ⁰C decade-1 (p-value < 0.001) 

surface temperature 0.38 ⁰C decade-1 (p-value < 0.001) 0.28⁰C decade-1 (p-value < 0.001) 

bottom temperature 0.07 ⁰C decade-1 (p-value = 0.010) ns 

whole-lake temperature 0.25 ⁰C decade-1 (p-value < 0.001) 0.17 ⁰C decade-1 (p-value < 0.001) 

Schmidt stability 7.79 J m-2 decade-1 (p-value < 0.001) 6.22 J m-2 decade-1 (p-value < 0.001) 
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thermocline depth 0.12 m decade-1 (p-value < 0.001) 0.12 m decade-1 (p-value < 0.001) 

duration 3.55 day decade-1 (p-value < 0.001) 2.94 day decade-1 (p-value < 0.001) 

onset 1.90 day decade-1 (p-value < 0.001) 1.41 day decade-1 (p-value < 0.001) 

loss 1.80 day decade-1 (p-value < 0.001) 1.38 day decade-1 (p-value < 0.001) 

 IPSL-CM5A-LR 

 24 h met 1h met 

air temperature 0.43 ⁰C decade-1 (p-value < 0.001) 0.33 ⁰C decade-1 (p-value < 0.001) 

surface temperature 0.39 ⁰C decade-1 (p-value < 0.001) 0.29 ⁰C decade-1 (p-value < 0.001) 

bottom temperature 0.08 ⁰C decade-1 (p-value = 0.033) ns 

whole-lake temperature 0.27 ⁰C decade-1 (p-value < 0.001) 0.19 ⁰C decade-1 (p-value < 0.001) 

Schmidt stability 7.93 J m-2 decade-1 (p-value < 0.001) 6.14 J m-2 decade-1 (p-value < 0.001) 

thermocline depth 0.08 m decade-1 (p-value = 0.003) 0.08 m decade-1 (p-value < 0.001) 

duration 3.06 day decade-1 (p-value < 0.001) 2.39 day decade-1 (p-value < 0.001) 

onset 1.87 day decade-1 (p-value < 0.001) 1.38 day decade-1 (p-value < 0.001) 

loss 1.26 day decade-1 (p-value < 0.001) 1.02 day decade-1 (p-value < 0.001) 

 MIROC5 

 24 h met 1h met 

air temperature 0.32 ⁰C decade-1 (p-value < 0.001) 0.25 ⁰C decade-1 (p-value < 0.001) 

surface temperature 0.28 ⁰C decade-1 (p-value < 0.001) 0.21⁰C decade-1 (p-value < 0.001) 

bottom temperature 0.11 ⁰C decade-1 (p-value < 0.001) 0.09 ⁰C decade-1 (p-value = 0.002) 

whole-lake temperature 0.22 ⁰C decade-1 (p-value < 0.001) 0.17 ⁰C decade-1 (p-value < 0.001) 

Schmidt stability 3.99 J m-2 decade-1 (p-value < 0.001) 2.77 J m-2 decade-1 (p-value = 0.005) 

thermocline depth ns ns 

duration 2.19 day decade-1 (p-value < 0.001) 1.78 day decade-1 (p-value < 0.001) 

onset 1.71 day decade-1 (p-value = 0.002) 1.39 day decade-1 (p-value = 0.017) 

loss 0.69 day decade-1 (p-value < 0.001) 0.43 day decade-1 (p-value < 0.001) 

 825 

  RCP 6.0 

  24h met 1h met 

  rate (decade-1) p-value rate (decade-1) p-value 

surface temperature (⁰C) GFDL-ESM2M 0.16 < 0.001 0.12 < 0.001 

HadGEM2-ES 0.38 < 0.001 0.27 < 0.001 

IPSL-CM5A-LR 0.38 < 0.001 0.29 < 0.001 



48 

 

MIROC5 0.29 < 0.001 0.22 < 0.001 

bottom temperature (⁰C) GFDL-ESM2M ns ns 

HadGEM2-ES 0.06 < 0.05 ns 

IPSL-CM5A-LR ns ns 

MIROC5 0.11 < 0.001 0.09  < 0.01  

whole-lake temperature (⁰C) GFDL-ESM2M 0.14 < 0.001 0.10 < 0.001 

HadGEM2-ES 0.25 < 0.001 0.16 < 0.001 

IPSL-CM5A-LR 0.26 < 0.001 0.19 < 0.001 

MIROC5 0.23 < 0.001 0.18 < 0.001 

Schmidt stability (J m-2) GFDL-ESM2M 2.69  < 0.01  1.92  < 0.01  

HadGEM2-ES 7.97 < 0.001 6.50 < 0.001 

IPSL-CM5A-LR 8.15 < 0.001 6.36 < 0.001 

MIROC5 4.23  < 0.01  2.93  < 0.01  

thermocline depth (m) GFDL-ESM2M 0.07 < 0.05 ns 

HadGEM2-ES 0.13 < 0.001 0.13 < 0.001 

IPSL-CM5A-LR 0.05 0.06 0.09  < 0.01  

MIROC5 ns ns 

duration (days) GFDL-ESM2M ns ns 

HadGEM2-ES 3.56 < 0.001 3.08 < 0.001 

IPSL-CM5A-LR 3.16 < 0.001 2.50 < 0.001 

MIROC5 2.45 < 0.001 2.00 < 0.001 

onset (day) GFDL-ESM2M ns ns 

HadGEM2-ES -1.95 < 0.001 -1.43 < 0.001 

IPSL-CM5A-LR -1.98 < 0.001 -1.48 < 0.001 

MIROC5 -1.80 < 0.001 -1.45 < 0.001 

loss (day) GFDL-ESM2M ns ns 

HadGEM2-ES 1.83 < 0.001 1.42 < 0.001 

IPSL-CM5A-LR 1.31 < 0.001 1.06 < 0.001 

MIROC5 0.83 < 0.001 0.52  < 0.01  
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Table 6. Average thermal metrics for reference period (1981-2010), and average projected change in thermal metrics for mid-century and late-century 

for RCP 6.0. 830 

  RCP 6.0 

  24h met 1h met 

  reference period mid-century late century reference period mid-century late century 

surface temperature (⁰C) GFDL-ESM2M 13.71 1.03 1.67 13.89 0.81 1.28 

HadGEM2-ES 13.56 3.04 4.04 13.84 2.29 2.98 

IPSL-CM5A-LR 13.64 2.60 3.62 13.86 1.92 2.69 

MIROC5 13.41 1.98 2.97 13.69 1.52 2.28 

ensemble 13.58 2.16 3.08 13.82 1.64 2.31 

bottom temperature (⁰C) GFDL-ESM2M 9.23 0.94 1.24 9.66 0.68 0.90 

HadGEM2-ES 9.32 0.42 0.91 9.75 0.15 0.42 

IPSL-CM5A-LR 9.29 1.18 1.19 9.61 0.88 0.79 

MIROC5 8.94 0.98 1.18 9.34 0.77 0.90 

ensemble 9.19 0.88 1.13 9.59 0.62 0.75 

whole-lake temperature (⁰C) GFDL-ESM2M 12.44 1.06 1.61 12.83 0.79 1.20 

HadGEM2-ES 12.44 1.96 2.81 12.89 1.45 1.98 

IPSL-CM5A-LR 12.36 2.12 2.75 12.72 1.57 1.99 

MIROC5 12.11 1.69 2.41 12.59 1.27 1.84 

ensemble 12.34 1.71 2.39 12.76 1.27 1.75 

Schmidt stability (J m-2) GFDL-ESM2M 69.90 4.94 12.26 65.42 4.50 9.79 

HadGEM2-ES 66.43 59.78 77.57 63.18 48.50 61.43 

IPSL-CM5A-LR 67.52 38.67 64.62 65.73 28.06 49.23 

MIROC5 68.96 23.08 42.42 66.39 17.49 31.83 

ensemble 68.20 31.62 49.22 65.18 24.64 38.07 

thermocline depth (m) GFDL-ESM2M -7.82 -0.39 -0.22 -8.50 -0.17 -0.08 

HadGEM2-ES -8.23 1.02 1.26 -8.77 0.98 1.23 

IPSL-CM5A-LR -7.83 0.28 0.59 -8.26 0.24 0.64 

MIROC5 -7.83 0.09 0.34 -8.51 0.28 0.49 

ensemble -7.93 0.25 0.49 -8.51 0.33 0.57 

duration (days) GFDL-ESM2M 126 -9 -8 129 -10 -9 

HadGEM2-ES 123 -8 -8 126 -9 -9 

IPSL-CM5A-LR 123 -8 -8 126 -9 -8 
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MIROC5 124 -8 -8 128 -9 -9 

ensemble 124.08 -11 -11 127 -12 -12 

onset (day) GFDL-ESM2M 131 -10 -10 131 -11 -11 

HadGEM2-ES 133 -10 -10 133 -11 -11 

IPSL-CM5A-LR 133 -10 -10 133 -11 -11 

MIROC5 134 -11 -10 133 -11 -11 

ensemble 133 -65 -58 133 -61 -56 

loss (day) GFDL-ESM2M 257 -7 11 263 -15 -2 

HadGEM2-ES 255 -29 -3 258 -38 -16 

IPSL-CM5A-LR 260 -46 -27 263 -49 -35 

MIROC5 257 -37 -19 260 -41 -27 

ensemble 257 7 8 261 8 8 
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 835 

Figure 1. MeasuredGRNN temporal disaggregation of meteorological forcing data. Observations vs predictedsimulations (a) air temperature, (b) short-

wave radiation, (c) relative humidity and (d) wind speed for 2015 (validation data set). 
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 840 

Figure 2. GOTM water temperature simulations. Daily averaged water temperature in Lake Erken for the validation (a)-(c)-(e)-(g) and calibration (b)-

(d)-(f)-(h1a)-(1b)-(1c)-(1d) and validation (2a)-(2b)-(2c)-(2d) periods: observations (a)-(b1a)-(2a), simulations driven by daily meteorological data (c)-

(d1b)-(2b), hourly meteorological data (e)-(f1c)-(2c) and synthetic hourly meteorological data (g)-(h1d)-(2d). 
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Figure 3. GOTM model performance metrics for prediction of (a) full-profile temperature which compared simulated and measured data at all possible 845 
depths, (b) surface temperature, (c) bottom temperature, (d) whole-lake temperature, (e) Schmidt stability and (f) thermocline depth. The mean (horizontal 

line) is also shown 
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Figure 3.Figure 4. Temperature isopleth diagrams for the (a) historical, (b) RCP 2.6 and (c) RCP 6.0 scenarios showing results from the lake model forced 850 
with daily IPSL-CM5A-LR projections. The temperature matrix used to make these plots was created by averaging the simulated daily temperature 

profiles for every year in each scenario. 
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Figure 4.  855 
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 Evolution of annual average projected Figure 5. Changes in anomalies calculated from annually averaged (from April to September) (a)-(b for (1a)-(2a) 

whole-lake temperature, (c)-(d1b)-(2b) surface temperature, (e)-(f1c)-(2c) bottom temperature, (g)-(h1d)-(2d) Schmidt stability, (i)-(j and (1e)-(2e) 

thermocline depth under (a)-(c)-(e)-(g)-(i) RCP 2.6 and (b)-(d)-(f)-(h)-(j) RCP 6.0, showing results fromwhen the lake model was forced with daily GFDL-

ESM2M, HadGEM2-ES, IPSL-CM5A-LR  and MIROC5 projections. All changes are for 2006-2099  from 2011 to 2100 under RCP 2.6 and 6.0. Anomalies 

are relative to 1975-2005. The median (vertical line) is also shown.reference period (1981-2010). 860 
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Figure 5.  

Evolution ofFigure 6. Changes in the calculated annual average projected anomalies of the (a)-(b(from April to September) for (1a)-(2a) duration, (c)-

(d1b)-(2b) onset and (e)-(f1c)-(2c) loss of stratification under (a)-(c)-(e) RCP 2.6 and (b)-(d)-(f) RCP 6.0, showing results fromwhen the lake model was 

forced with daily GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR and MIROC5 projections from 2011 to 2100 under RCP 2.6 and 6.0. Anomalies are 865 
relative to reference period (1981-2010). 
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Figure 6. . Changes in annually averaged thermal metrics (from April to September) (2a)-(3a) whole-lake temperature, (2b)-(3b) surface temperature, 

(2c)-(3c) bottom temperature, (2d)-(3d) Schmidt stability and (2e)-(3e) thermocline depth under RCP 6.0, showing results when the lake model was forced 

with daily GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR and MIROC5 projections. All changes are for mid-century (2041-2070) and late-century 870 
(2071-2100) are relative to reference period (1981-2011). The mean (vertical line) is also shown. Changes in thermal metrics greater than 0 show an increase 

and lower than 0 show a decrease.  
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Figure 7. Changes in annually averaged thermal metrics (from April to September) (2a)-(3a) duration, (2b)-(3b) onset and (2c)-(3c) loss of stratification 

under RCP 6.0, showing results when the lake model was forced with daily GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR and MIROC5 projections. 875 
All changes are for 2006-2099 relative to 1975-2005.mid-century (2041-2070) and late-century (2071-2100) are relative to reference period (1981-2011). 

The medianmean (vertical line) is also shown. Changes in thermal metrics greater than 0 show and increase and lower than 0 show a decrease.  
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