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Abstract. During the past decades, the increased impact of anthropogenic interventions on river basins has prompted hydrol-

ogists to develop various approaches for representing human-water interactions in large-scale hydrological and land surface

models. The simulation of water reservoir storage and operations has received particular attention, owing to the ubiquitous

presence of dams. Yet, little is known about (1) the effect of the representation of water reservoirs on the parameterization of

hydrological models, and, therefore, (2) the risks associated to potential flaws in the calibration process. To fill in this gap,5

we contribute a computational framework based on the Variable Infiltration Capacity (VIC) model and a Multi-Objective Evo-

lutionary Algorithm, which we use to calibrate VIC’s parameters. An important feature of our framework is a novel variant

of VIC’s routing module that allows us to simulate the storage dynamics of water reservoirs. Using the upper Mekong river

basin as a case study, we calibrate two instances of VIC—with and without reservoirs. We show that both model instances

have the same accuracy in reproducing daily discharges (over the period 1996–2005); a result attained by the model without10

reservoirs by adopting a parameterization that compensates for the absence of these infrastructures. The first implication of

this flawed parameter estimation stands in a poor representation of key hydrological processes, such as surface runoff, infil-

tration, and baseflow. To further demonstrate the risks associated to the use of such model, we carry out a climate change

impact assessment (for the period 2050–2060), for which we use precipitation and temperature data retrieved from five Global

Circulation Models (GCMs) and two Representative Concentration Pathways (RCPs 4.5 and 8.5). Results show that the two15

model instances (with and without reservoirs) provide different projections of the minimum, maximum, and average monthly

discharges. These results are consistent across both RCPs. Overall, our study reinforces the message about the correct repre-

sentation of human-water interactions in large-scale hydrological models.

Copyright statement. This work is distributed under the Creative Commons Attribution 4.0 License.

1 Introduction20

Hydrological systems consist of multiple physical, chemical, and biological processes, most of which are profoundly altered

by anthropogenic interventions (Nazemi and Wheater, 2015a, b). Land cover modifications or hydraulic infrastructures, for

1



instance, affect both surface and sub-surface hydrological processes by redistributing water over time and space (Haddeland

et al., 2006; Bierkens, 2015). Such alterations are expected to amplify in the near future, owing to the increase in water and

energy consumption (Abbaspour et al., 2015). In this context, hydrological models play a key role, as they help plan the use

of water resources in a sustainable way, so as to avoid adverse impacts on ecosystems and livelihoods (Bunn and Arthington,

2002; Yassin et al., 2019). A detailed and accurate representation of the anthropogenic interventions within hydrologic models5

is thus of paramount importance: successful water management plans must necessarily build on reliable models.

Water reservoirs are arguably one of the most common infrastructures altering hydrological processes at the catchment scale;

yet, their representation in hydrological and land surface models is challenged by multiple factors. First, the vast majority of

the models currently available was initially conceived to study and understand the behaviour of natural systems, so the added

representation of water reservoirs entails the partial modification of the model structure. Second, the existing databases (e.g.,10

GRanD; Lehner et al. (2011)) provide details on dam design specifications, but no information on the management aspects,

such as the operating rules or flood contingency plans. Third, the installation of dams is generally combined with impoundment

(or filling) strategies, which may largely differ from the steady-state operating rules and last from a few months to several years

(Gao et al., 2010; Zhang et al., 2016). Although the complexity of these factors varies with the study site at hand, one might

imagine that the representation of water reservoir storage and operations is particularly challenging for large-scale models,15

simply because of the number of dams deployed over time in large river basins. It is perhaps not surprising to observe that

water reservoirs—and their corresponding operations—have not been consistently accounted for across the broad number of

large-scale hydrological modelling studies available in literature.

A simple and popular approach stands in the exclusion of large impounds from the streamflow routing modules; a modelling

choice that has been adopted in many regions across the globe (Maurer et al., 2002; Jayawardena and Mahanama, 2002; Akter20

and Babel, 2012; de Paiva et al., 2013; Leng et al., 2016). Such approach can support the investigation of various physical

processes (e.g., emergence of new hydrological regimes, generation of land surface fluxes), but obviously prevents the applica-

tion of the hydrological models to downstream water management problems, such as investigating the impact of regime shifts

on hydropower production. Another potential issue with this approach stands in the model parameterization, which might be

affected by a calibration process carried out with hydrological time series altered by anthropogenic interventions. de Paiva et al.25

(2013), for instance, implemented the MGB-IPH hydrologic/hydraulic model to the Amazon River basin—a region character-

ized by the presence of hydroelectric dams (Finer and Jenkins, 2012)—and yet obtained reliable calibration performance at

multiple gauging stations. A similar example is represented by Abbaspour et al. (2015), who simulated hydrological and water

quality processes for the entire European continent. Despite neglecting the presence of hydraulic infrastructures, the model

yielded acceptable values for the goodness of fit statistics. One may thus wonder whether the calibration process somehow30

compensates for a deficiency in the model structure.

With the goal of striking a balance between an accurate representation of reservoirs and the ‘costs’ due to the modification of

the model structure, several researchers have adopted an hybrid approach, in which the output of hydrologic/hydraulic models

(e.g., runoff or streamflow at multiple locations) is post-processed with the aid of water management (or reservoir operation)

models. The very first efforts employed data on water uses to correct the output of global models, such as WaterGAP (Alcamo35
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et al., 1997) or WBM (Vörösmarty et al., 1998). Using a similar concept, Hanasaki et al. (2006) accounted for 452 reservoirs

in a global river routing model. More sophisticated post-processing techniques are based on optimization algorithms, which

are used to design either reservoir operating rules or sequences of reservoir discharges that meet pre-defined objectives (e.g.,

hydropower production). Lauri et al. (2012) and Hoang et al. (2019), for example, first calibrated the distributed hydrological

model VMod for the Mekong river basin, and then post-processed its output using a linear programming algorithm that designed5

the discharge time series for 126 dams over a given simulation scenario. Similarly, Turner et al. (2017) and Ng et al. (2017)

examined the vulnerability of global hydropower production to climate changes and El Niño Southern Oscillation by correcting

the discharge simulated by WaterGAP. In this case, the correction entailed designing bespoke reservoir operating rules through

the use of a stochastic dynamic programming algorithm (Turner and Galelli, 2016). Other recent applications of post-processing

techniques were adopted in Masaki et al. (2017); Veldkamp et al. (2018); Zhou et al. (2018).10

Naturally, the most suitable approach stands in the direct representation of water storage and operations within a large-scale

hydrological model (Bellin et al., 2016). This approach requires not only to modify the model structure (or to develop a new

one), but also to gather information on the design specifications and operating rules of the water reservoirs. Because of these

challenges, the number of large-scale hydrological modelling studies adopting such approach is limited. A first attempt was

carried out by Pokhrel et al. (2012), who incorporated a water regulation module into the MATSIRO model to reproduce the15

dynamics of heavily regulated global river basins. More recently, Shin et al. (2019) integrated a reservoir storage dynamics

and release scheme into the continental hydrological model LEAF-Hydro-Flood to simulate ∼1,900 reservoirs within the

contiguous United States. In both studies, the authors gave particular emphasis to the calibration of the reservoir operating

scheme, and demonstrated that the hydrological model accurately represents some processes altered by human interventions,

such as the reservoir-floodplain inundation.20

While the relevance and needs for the description of human-water interactions in hydrological models are now well acknowl-

edged (Nazemi and Wheater, 2015a), less is know about the risks associated to a poor representation of such interactions. For

example, can the estimation of some hydrological parameters be flawed by an inaccurate representation of water reservoir

storage? What are the implications for the downstream applications of a flawed model? To answer these questions, we take the

upper Mekong river basin as a case study, for which we develop a computational framework based on the Variable Infiltration25

Capacity (VIC) model (Liang et al., 1994) and a Multi-Objective Evolutionary Algorithm (MOEA) tasked with the problem of

calibrating the model. A key feature of the framework is a novel variant of VIC—named VIC-Res—that allows us to represent

the reservoir storage dynamics and operating rules within the streamflow routing module. In a first experiment, we use this

framework to calibrate two instances of VIC—with and without reservoirs. As we shall see, both model instances attain the

same accuracy; a result obtained by the model instance without reservoirs by adopting a parameterization that compensates30

for the absence of these infrastructures. In turn, this leads to a poor representation of key hydrological processes, such as in-

filtration or baseflow. In our second experiment, we demonstrate the potential implications of these unintended consequences

by applying two selected model instances (with and without reservoirs) to a climate change impact assessment, for which we

obtain partially-diverging expectations on the hydrological alterations caused by global warming.
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In the remainder of the manuscript, we first describe the study area (Section 2) and then proceed by illustrating the compu-

tational framework (Section 3), including the data on dams and operating rules. In Section 4, we provide a detailed description

of the results obtained for the aforementioned experiments, whose implications are further discussed in Section 5.

2 Study area

The Mekong is a trans-boundary river that flows through China, Myanmar, Thailand, and Laos before pouring into one of the5

world’s largest delta located in Cambodia and Vietnam. The catchment area of about 795,000 km2 can be divided into two parts,

namely the upper Mekong, or Lancang, and the lower Mekong basins (Figure 1a). The upper Mekong stretches in a North-to-

South direction and drains an area of 167,400 km2. As shown in Figure 1b, the region is characterized by a complex orography,

with high mountains and deep valleys (the elevation ranges from 362 to 6,494 m). Because of these orographical conditions,

the spatio-temporal variability of rainfall and temperature is remarkable. The average annual precipitation across the basin10

ranges from 752 to 1,025 mm, 70% of which is concentrated in the monsoon season (May to November). The precipitation in

the Northwestern part of the basin is sometimes lower than 250 mm/year, making it dryer than the Southeastern part, which

receives an average of 1,600 mm/year (Han et al., 2019). The average annual temperature across the basin varies narrowly

(from 12.3 to 14.3 ◦C), but the latitudinal temporal gradient is much larger—about 2.2 ◦C/100 km (Wang et al., 2014). Climate

changes are expected to modify both rainfall and temperature patterns, making the region warmer, wetter, and more susceptible15

to extreme weather events (Tang et al., 2015).

The favourable orography and abundant water availability have attracted massive investments in the hydropower sector (see

the location of the dams in Figure 1b), with consequent impacts on the riverine ecosystems (Lauri et al., 2012; Dang et al.,

2018; Hoang et al., 2019). The impact of these dams goes beyond the upper Mekong basin (Zhao et al., 2012; Han et al., 2019):

the analysis of historical data shows that dams have already modified many indicators of hydrological alterations in the entire20

basin, including the Cambodian lowlands and river delta (Hecht et al., 2018). These alterations appear to be more evident since

the early 1990s, when Xi’er He 1 and Manwan dams started storing water (Cochrane et al., 2014; Lu et al., 2014; Dang et al.,

2016). Overall, the upper Mekong basin offers two desirable features for investigating the effect of water reservoir storage

and operations on the parameterization of hydrological models. First, the catchment is heavily regulated (Hecht et al., 2018).

Second, the catchment area is about 24% of the whole Mekong River basin, so this helps reduce the computational requirements25

of the optimization-based calibration process. The location of the gauging station (Chiang Saen) used for the calibration process

is illustrated in Figure 1a. This station provides a long and reliable daily time series, which has been adopted by several studies

on the Mekong basin (e.g., Lauri et al. (2012); Cochrane et al. (2014); Lauri et al. (2014); Hoang et al. (2016)). To validate the

model, we use monthly discharge values at Jiuzhou station (see Figure 1a), retrieved from He et al. (2009); Wang et al. (2018);

Tang et al. (2019). For both stations, we used data belonging to the period 1996–2005.30

The aforementioned orography and climate conditions are not particularly suitable for agricultural activities, which are

indeed limited. The basin is mountainous, with mostly rocks and a shallow Quaternary alluvium (Carling, 2009; Gupta, 2009).

Due to the impermeability of bedrock underneath isolated valleys, only a very small fraction of water leaks into the ground
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through karst aquifer units (Lee et al., 2017). As a result, subsurface water is mostly generated in the shallow loam layer in the

form of baseflow.

3 Materials and methods

The first goal of our study is to investigate the role of water reservoir storage and operations on the parameterization of large-

scale hydrological models. To this purpose, we adopt the computational framework illustrated in Figure 2, which consists of5

VIC’s rainfall-runoff and routing modules and the ε−NSGAII MOEA. In Section 3.1 we provide a detailed description of

VIC’s modules, including the proposed variant for representing reservoir storage dynamics. The data and experimental setup

of the framework are outlined in Section 3.2 and 3.3. In Section 3.4, we describe the climate change data used for our second

goal, that is, to demonstrate that different model parameterizations caused by the absence (presence) of water reservoirs can

affect the results of a climate change impact assessment.10

3.1 Hydrological-water resources management model

3.1.1 Variable Infiltration Capacity model

VIC is a large-scale, semi-distributed land hydrological model maintained and developed by the University of Washington

(http://www.hydro.washington.edu). The model consists of two core components, namely a rainfall-runoff and routing module

(Figure 2), which can be applied to multiple spatial scales and implemented with different temporal resolutions—daily, in our15

case. The rainfall-runoff module simulates the water and energy fluxes that govern the terrestrial hydrological cycle (Liang

et al., 1994). To this purposes, it takes as input climate forcings (precipitation and temperature), land use and soil maps, Leaf

Area Index and albedo, and a Digital Elevation Model (DEM). For each computational cell, the module uses one vegetation

layer and two (or three) soil layers: the upper soil layer controls evaporation, infiltration, and runoff, while the lower layer

controls the baseflow generation. These gridded variables are then used by the routing module (Lohmann et al., 1996, 1998),20

which simulates discharge throughout the river network using a linearized version of the Saint-Venant equations. Specifically,

the module first creates the impulse response functions for each grid cell, and then simulates the flow convolution by aggregat-

ing the flow contribution from all upstream cells at each time step lagged according the response functions (ibid).

Following the approach adopted in previous works on the calibration of VIC (e.g., Dan et al. (2012); Park and Markus (2014);

Xue et al. (2015)), we focus our attention on six main parameters that control the rainfall-runoff process (Table 1). These25

parameters are the thickness of the two soil layers (d1 and d2), the infiltration parameter (b), and three baseflow parameters

(Ds, Dmax, and Ws). The parameter b characterizes the shape of the Variable Infiltration Capacity curve, and therefore influences

the available infiltration capacity and quantity of runoff generated by each cell (for additional details, please refer to Ren-Jun

(1992) and Todini (1996)). A higher value of b leads to a lower infiltration rate and higher surface runoff. The three parameters

Ds, Dmax, and Ws determine the shape of the Baseflow curve (Franchini and Pacciani, 1991), which relates the soil moisture in30

the lower layer to the amount of baseflow. More specifically, Dmax is the maximum baseflow that can occur in the lower layer,
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while Ds is the fraction of Dmax associated to the transition from linear to non-linear (rapidly increasing) baseflow generation.

Ws is the fraction of the maximum soil moisture (in the lower layer) where non-linear baseflow occurs. Hence, higher values

of Ws increase the water content needed for rapidly increasing baseflow. The thickness of the two soil layers affects several

processes. In general, thicker layers delay the seasonal peak flow and increase the evaporation losses (since they increase the

water storage capacity).5

3.1.2 Water reservoir storage and operations

To represent the storage dynamics of water reservoirs, we modified VIC’s routing module (version 4.2) using the following

steps. First, we determine the location of all dams within the basin, and directly add them to the model using a dam cell

(Figure 3a-b). To avoid allocating multiple dams within the same cell, we adopt a high-spatial resolution of 0.0625 degree

(approximately 6.9 km). Then, we aggregate the reservoir storage in the dam cell, where we calculate the daily mass balance.10

From the dam cell, water is discharged using the rule curves described in the following paragraph. Since the construction of

a dam is likely to create an impoundment with surface area larger than the dam cell, we proceed by estimating the maximum

reservoir extent; an information used to determine the so-called reservoir cells, namely cells that are at least half-covered by

water (see Figure 3b). Although these cells do not contain the reservoir storage, they can affect the evaporation processes, so

their number and location must be determined accurately. The flow routing in these cells follows the information provided15

in the flow direction map (described in Section 3.2.1). We note that a more realistic way of representing a reservoir within a

hydrological model is to spread the reservoir storage over multiple upstream cells from the dam location (Shin et al., 2019). Yet,

a successful implementation of this method requires a detailed bathymetry of all reservoirs within the basin (an information

that may not always be available) and a 2D model of the reservoir, so as to accurately calculate the water fluxes between the

different reservoir cells.20

As for the reservoir operations, we adopt an approach similar to that of Piman et al. (2012), which relies on rule curves

conceived to maximize the hydropower production—an assumption justified by the fact that all dams within the upper Mekong

are operated for hydropower supply (Räsänen et al., 2017). Determining the rule curve for a given reservoir means determining

the daily target water levels. For the case of hydropower production in the Mekong basin, such rule should allow to (1)

drawdown the reservoir storage during the drier months (e.g., December to May) to maximize the production of electricity, (2)25

recharge the depleted storage during the monsoon season, and (3) avoid the risks of spilling water at the end of the monsoon

season (see the illustration in Figure 3c). Rule curves are tailored to each reservoir within the basin by determining the time at

which the minimum and maximum water levels are reached (May and November, in the Mekong; Piman et al. (2012)), setting

the value of the minimum and maximum water levels (the minimum and maximum elevation levels of each reservoir, in our

case), and finally connecting these points with a piecewise linear function that gives us the daily target level for each calendar30

day.

As shown in Figure 3c, there are three water levels that divide the storage into four zones. These levels are the dead water

(or minimum elevation) level, the target water level, and the full (or maximum elevation) level. If the water level falls below

the dead water level (Zone 1), the turbines are not operated. If the level is between the dead water and target level (Zone 2), the
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model first uses the information on the incoming daily inflow to solve a mass balance equation, in which the discharge from

the dam is kept at zero. This is aimed to understand whether the water level is expected to go beyond the target at the end of

the day. If that is the case, the model discharges through the turbines the amount of water needed to keep the level close to

the target. Otherwise, the turbines are not activated. In Zone 3 (between the target and full level), the turbines are used at their

maximum capacity, until the water reaches the target level. In Zone 4 (i.e., level above the maximum elevation), both turbines5

and spillways are used. The key advantage of the rule curves adopted here is that they do not require the calibration of any

parameter. Naturally, such approach is less applicable when the information on the operating objectives is not available, or

when dealing with multi-purpose water systems.

3.2 Data and preprocessing

3.2.1 Climate forcings and other input variables10

Climate forcings are represented by precipitation and air temperature (maximum and minimum), which must be provided at a

daily time step. As far as precipitation is concerned, we use the APHRODITE dataset (Asian Precipitation - Highly-Resolved

Observational Data Integration Towards Evaluation), developed by the University of Tsukuba, Japan, using rain-gauge data

(Yatagai et al., 2012). APHRODITE is available with a spatial resolution of 0.25 degree, and has been shown by Lauri et al.

(2014) to be the most suitable precipitation dataset available for the Mekong basin. A similar observation applies to the CFSR15

(Climate Forecast System Reanalysis) maximum and minimum temperature dataset (Saha et al., 2014). These data are then

interpolated to meet the spatial resolution of 0.0625 degrees adopted in our implementation. More specifically, we use the

bilinear interpolation method, which has found successful application in some recent studies (e.g., Hoang et al. (2016); Shin

et al. (2019)). We also bias correct APHRODITE dataset (using a multiplying factor of 1.26), as recommended by Lauri et al.

(2014).20

The monthly Leaf Area Index and albedo are derived from the Moderate Resolution Imaging Spectroradiometer (Terra

MODIS) satellite images, which represent changes in canopy and snow coverage over time. (It is worth noting that snowmelt

only marginally contributes to the streamflow of the Mekong River; Räsänen et al. (2016).) Land use and land cover data are

obtained from the Global Land Cover Characterization (GLCC) dataset, developed by the United States Geological Survey.

We choose this product because it was completed in 1993, close to the simulation period adopted in our study (1995–2005).25

With such choice, we make sure that the influence of land use dynamics on the model parameterization is minimized. Soil data

are extracted from the Harmonized World Soil Database (HWSD), developed by the International Institute for Applied System

Analysis and Food and Agriculture Organization, and last updated in 2013. Both land use and soil maps are generated with

the majority resampling technique, since their original spatial resolution is 30 arcsecond (approximately 1 km). This technique

assigns the most common values found from the group of involved pixels to the new cell. The resulting maps are illustrated30

in Figure 4a-b. The land use map shows that the upper reaches of the basin are characterized by the presence of grassland,

while the lower reaches—with complex terrain and large altitudinal variations—present mixed coniferous forest ecoregions.

Soil characteristics are also heterogeneous: in the central and northern part of the basin, soil is characterized by a shallow layer
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consisting of loam, sandy loam, and clay. At the border between China, Myanmar, and Laos (near Chiang Saen station), soil

characteristics are dominated by the presence of sandy clay loam.

To estimate the flow directions, we use the Global 30 Arc-Second Elevation (GTOPO30) DEM, which has been adopted

in several studies (e.g., Kite (2001); Wu et al. (2012); Li et al. (2013)). First, we mask this DEM with the shape of the upper

Mekong basin. Since GTOPO30 has a spatial resolution of 30 arcsecond, we then resample the DEM to the resolution of our5

VIC model using the average resampling technique (Hoang et al., 2019). Finally, we manually correct the flow direction map

generated by ArcGIS by comparing it to a detailed river network provided by the Mekong River Commission. Such correction is

necessary, since errors are to some extent unavoidable when automatically generating a flow direction map—because overland

runoff and interflow directions depend on the relation between hillslope characteristics and adopted spatial resolution. The

resulting flow direction map is illustrated in Figure 4c.10

3.2.2 Dams and reservoir informations

Our model requires detailed information on the reservoirs, namely location, storage capacity, dam height, dead storage, turbine

design discharge, and maximum and minimum elevation levels. Such information (summarized in Table 2) was retrieved by

cross-checking the databases provided by the Mekong River Commission, the International Commission On Large Dams, and

the Global Reservoir and Dam Database. Since data on reservoir bathymetry are not available, we modelled the storage-depth15

relationship with Liebe’s method, which assumes that the reservoir is shaped like a top-down pyramid cut diagonally in half

(Liebe et al., 2005). In other words, the relation between reservoir volume (V ) and depth (or level, h) is equal to V = ah3,

where a is a shape factor equal to Vcap/h3max (Vcap is the live storage capacity and hmax the maximum water depth). This

method has been adopted for regional and global studies (see Ng et al. (2017); Shin et al. (2019)).

As for the maximum reservoir extent (needed to determine the reservoir cells), the existing databases do not provide detailed20

information, such as the reservoir polygon, so we proceeded by analyzing remote sensed data. More specifically, we extracted

surface water profiles from Landsat TM and ETM+ imagery. Landsat images are raster grids with seven layers corresponding

to seven bands (excluding the panchromatic band). The Normalized Difference Water Index (NDWI) was calculated using

the near-infrared (NIR, Band 4) and Short-Wave infrared (SWIR, Band 5) bands: NDWI=(NIR-SWIR)/(NIR+SWIR). Water

bodies have NDWI values greater than 0.3 (McFeeters, 2013), so from the NDWI raster we can create a binary raster in which25

1 denotes a reservoir cell (and 0 a non-reservoir cell). This process can yield an accurate estimation of the reservoir cells, since

Landsat images have a spatial resolution of 30 x 30 m.

When calculating the daily mass balance for each reservoir, we consider three main processes, namely inflow, evaporation,

and release. Infiltration and seepage (via dam body, abutment, and foundation) are neglected. That is because of two reasons.

First, the Upper Mekong basin is a mountainous region, with mostly rocks and a shallow Quaternary alluvium (see Section 2),30

so infiltration losses are to some extent marginal as compared to inflow, release, and evaporation. Second, the dams considered

in our study are built with concrete (and with rocky abutments and foundations), so seepage is indeed limited.
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3.3 Experimental setup

To carry out the calibration exercise (with and without reservoirs), we couple VIC with the ε−NSGAII algorithm (Reed et al.,

2013), which has found successful application in many water resources problems—including model calibration (ibidem). In

our case, the decision variables are represented by the six parameters controlling the rainfall-runoff process in VIC (Section

3.1.1), and whose range of variability is reported in Table 1. As for the objective functions, we consider two goodness of fit5

statistics dependant upon the simulated streamflow, namely the Nash-Sutcliffe Efficiency (NSE) and Transformed Root Mean

Square Error (TRMSE), which assess the model performance on high and low flows, respectively (Dawson et al., 2007). The

NSE is defined as:

NSE = 1−
∑n
t=1(Qts−Qto)

2∑n
t=1(Qto−Qo)2

, (1)

where n is the number of time steps, Qts the simulated streamflow (at time t), Qto the observed streamflow (at Chiang Saen

station), and Qo the mean of the observed streamflow. The TRMSE is defined as:10

TRMSE =

√√√√ 1

n

n∑
t=1

(zs,t− zo,t)2, (2)

where zs,t and zo,t represent the value of the simulated and observed streamflow (at time t) transformed by the expression

z = (1+Q)λ−1
λ ,(λ= 0.3). In other words, λ scales down the values of the streamflow, and TRMSE thus emphasizes the errors

on the low flows. In this specific modelling problem, capturing both high and low flows is particularly important, since the

riverine ecosystems are sensitive to both dry and wet conditions (Hoang et al., 2016).

Both objective functions are calculated for the period 1996–2005—after a one-year spin-up period, 1995—and scaled be-15

tween 0 and 1, so we set only one value of ε (equal to 0.001). The other ε−NSGAII parameters to setup are the size of the initial

population and number of function evaluations, which are equal to 10 and 250—a setting that strikes a reasonable balance be-

tween the computational requirements of the calibration exercise and the quality of the solutions. Each calibration exercise

(with and without reservoirs) is solved with 20 different random seeds, so as to characterize the variability in the ε−NSGAII

stochastic search process. The final set of Pareto-efficient solutions (i.e., alternative parameterizations of VIC) thus corresponds20

to the set of Pareto-efficient solutions identified across all 20 seeds. All experiments are carried out on an Intel (R) Xeon (R)

W-2175 CPU 2.50 GHz with 128 GB RAM running Linux Ubuntu 16.04 (Xenial Xerus), using a Python implementation

of various MOEAs (Platypus) that allows to parallelize the optimization experiments. For each of the 20 seeds, we used four

cores, taking approximately 200 hours per core (wall-clock time).

Since six (out of eleven) dams became operational during the study period (see Table 2), the VIC simulation with reservoirs25

is implemented in such a way to activate the reservoirs at the right time. In this specific implementation, we do not use filling

strategies different from the rule curves described in Section 3.2.2, because all six dams reach a steady-state operation within

a few months (data not shown).
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3.4 Climate change data

For our second experiment, we used the CMIP5 climate projections to derive climate change scenarios for the period 2050–

2060. Since the data provided by the Coordinated Regional Climate Downscaling Experiment only cover one GCM for our

study site (Giorgi and Gutowski Jr, 2015), we followed the approach taken by previous studies (e.g., Hoang et al. (2016, 2019)),

and proceeded by using GCM projections as basis for our scenarios. As far as the GCMs are concerned, we used ACCESS1-5

0, CCSM4, CSIRO Mk3.6, HadGEM2-ES, and MPI-ESM-LR, whose reliability for this region has been evaluated in a few

previous studies (Sillmann et al., 2013; Huang et al., 2014; Ul Hasson et al., 2016; Hoang et al., 2016). The main characteristics

of the GCMs are summarized in Table 3. As for the Representative Concentration Pathways (RCPs), we chose RCPs 4.5 and

8.5. The former is a medium-to-low scenario that assumes a stabilization of radiative forcing to 4.5 W m−2 by 2100, while the

latter is a high emission scenario based on an increase of the radiative forcing to 8.5 W m−2 by 2100. These two RCPs should10

provide a broad range of climate variability for the region—and thus exclude RCP 2.6, which is characterized by the lowest

radiative forcings.

To prepare the precipitation and temperature data used by VIC, we then re-gridded and bias-corrected the GCMs outputs.

The first step is necessary to overcome the limited spatial resolution of the GCMs (our VIC implementation uses a resolution

of 0.0625◦ × 0.0625◦), and is carried with the bilinear interpolation method. The bias-correction is performed with the delta15

method (Diaz-Nieto and Wilby, 2005; Choi et al., 2009), which has already been applied to our study site (Lauri et al., 2012).

With this method, we calculate correcting factors for precipitation and temperature using the following expressions:

∆PRE =
P̄series,i

P̄ref,i
, (3)

∆TEMP =
T̄series,i− T̄ref,i

σref,i
, (4)

where P̄series,i and T̄series,i are the (11 year) average precipitation and temperature for month i produced by the GCM in our

control period (1995–2005), P̄ref,i and T̄ref,i the (11 year) average observed precipitation and temperature for month i in the20

period 1995–2005, and σref,i the standard deviation of the monthly average temperature during the same period for month i.

These factors were then used to correct the future climate projections for each time series (using the same factor for all daily

data in a given month).

The impact of climate change on hydrological processes are often assessed by studying changes in the flow regime, and,

in particular, changes in the monthly, seasonal, and annual river discharges (Lauri et al., 2012, 2014). More recently, some25

studies have focussed on hydrological extremes, such as high (Q5) and low flows (Q95) (Hoang et al., 2016). Since our goal is

to demonstrate that different model parameterizations caused by the absence (presence) of water reservoirs can largely impact

the results of climate change assessments—and not to push forward the boundaries of climate change impact assessments—we

chose a simple and established criterion, namely the annual and monthly river discharges at Chiang Saen and Jiuzhou stations.
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4 Results

To discuss about the impact of water reservoirs on the parameterization of hydrological models, we first compare the results

of the calibration exercise carried out with and without reservoirs, and then proceed by comparing the performance of two

selected parameterizations on the climate change impact assessment.

4.1 Model parameterization5

The optimization-based parameterization exercise yielded a total of 118 and 109 parameterizations (or Pareto-efficient so-

lutions) for the VIC implementations with and without reservoirs, respectively. To prove our hypothesis that the calibration

process may somehow compensate for a deficiency in the model structure—the absence of reservoirs, in our case—we begin

by analyzing the values of the goodness of fit statistics, namely NSE and TRMSE. Figure 5 reports the probability plots of

NSE and TRMSE values obtained for the two model setups: results show that the calibration exercise yields a reasonable mod-10

elling accuracy, with NSE and TRMSE varying in the ranges 0.68–0.79 and 8.10–16.69. More interestingly, these results show

that the NSE and TRMSE values of both model setups belong to the same range of variability and follow an almost identical

distribution. In addition, all NSE and TRMSE values of the models without reservoirs fall within the 95% confidence limits

calculated using the NSE and TRMSE values attained by the models with reservoirs. To corroborate this finding, we carried

out a Kolmogorov-Smirnov two sample test to reject the null hypothesis that the values of NSE (and TRMSE) produced by the15

two model setups come from the same distribution. For both goodness of fit statistics, the hypothesis cannot be rejected (with

a 5% significance level). Overall, this confirms that the accuracy of the models is not affected by the presence (absence) of the

reservoirs.

How does the parameterization compensate for the absence of water reservoirs? To answer this question, we visualize both

goodness of fit statistics (NSE and TRMSE) and model parameters (Ds, Dmax, Ws, b, d1 and d2) in a parallel-coordinate plot20

(Figure 6). These eight variables are shown in eight parallel axes, so each line connecting the axes represents a parameterization

(i.e., a solution of the optimization problem) along with the corresponding value of the goodness of fit statistics (i.e., the

objectives). Blue and red lines denote solutions obtained with and without reservoirs, respectively. First of all, one can notice

that while NSE and TRMSE spread over the same ranges (results discussed in the previous paragraph), the presence/absence

of reservoirs consistently yields different parameterizations. Let’s analyze them. The value of b—characterizing the shape25

of the Variable Infiltration Capacity curve—belongs to two distinct ranges (0.319–0.495 and 0.002–0.195) for the model

implementation with and without reservoirs, respectively, indicating that the model without reservoirs has higher infiltration

and lower surface runoff than the model with reservoir (recall that a higher value of b leads to a lower infiltration rate and

higher surface runoff; Section 3.1.1). A similar observation applies to the parameters Ds, Dmax, and Ws, which determine the

shape of the Baseflow curve. In this case, the model without reservoirs has higher values of Dmax (i.e., maximum baseflow) and30

lower values of Ds and Ws (i.e., fraction of Dmax where rapidly increasing baseflow begins, and fraction of the maximum soil

moisture in the lower layer where rapidly increasing baseflow occurs), suggesting that the absence of reservoirs leads to model

paramaterizations that favour the generation of baseflow in the lower layer. Finally, we can note that d1 (the thickness of the
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first layer) in the models without reservoirs tends to be larger, indicating that these model instances increase the water storage

capacity of the top layer. The only parameter that does not appear to depend on the absence (or presence) of water reservoirs

is d2, the thickness of the second soil layer. This result is corroborated by a global sensitivity analysis, which shows that d2 is

indeed the parameter with the least influence on the model output (Figure S1). Overall, it appears that the calibration process

compensates for the absence of water reservoirs by determining values of the soil parameters that can somehow ‘mimic’5

the alterations caused by water reservoirs, namely an increase in the evaporation and delay in the peak flows—obtained by

increasing infiltration, baseflow, and soil water storage capacity.

To further understand the unintended consequences of the absence of water reservoirs, we select two model parameterizations

(with and without reservoirs) characterized by the same performance over the period 1996–2005. The values of NSE, TRMSE,

and model parameters are illustrated in Figure 7a, while the simulated daily discharges produced by both models are compared10

in the scatter plot of Figure 7b. In Figure 8, we contrast the average values of simulated baseflow and runoff during the dry

(December–April) and wet (May–November) seasons of the period 1996–2005. Unsurprisingly, results show that during the

dry season the model without reservoirs generates more baseflow and runoff than the model with reservoirs (left four panels

of Figure 8): during the dry months, hydropower reservoirs release part of the water stored during the monsoon (recall the

rule curves described in Section 3.1.2); a process simulated by the model without reservoirs by increasing both baseflow and15

runoff—and, therefore, the discharge at the catchment outlet. During the wet season, we find an opposite trend: in these months,

hydropower reservoirs tend to store part of the water (thus reducing the discharge at the catchment outlet), so the model without

reservoirs slightly decreases the discharge by reducing baseflow and runoff (right four panels of Figure 8). We also note that the

difference between the two models is clearer during the dry season, when a larger amount of the water volumes is controlled

by the hydropower reservoirs. The effect of such flawed representation of baseflow and runoff is further demonstrated by20

validating the simulated discharge at Jiuzhou station. Figure 9 shows a macroscopic difference between the models calibrated

with and without reservoir. In particular we note that the model calibrated without reservoirs largely overestimates the dry

season flow and slightly underestimates the wet season one; a result confirmed by the values of NSE (equal to 0.82 and 0.79

for the model with and without reservoirs) and TRMSE (equal to 21.48 and 28.95). One may also suspect that these unintended

consequences could further propagate in downstream applications of the models, such as a climate change impact assessment.25

4.2 Climate change impact assessment

To begin the climate change impact assessment, we compare the data produced by the GCMs over the reference and future

period (1996–2005 and 2050–2060). In general, the total annual precipitation in the Lancang basin is projected to increase

under almost all climate change scenarios—only the CSIRO MK3-RCP 8.5 scenario projects a -3.12% decrease in the total

annual precipitation. Yet, we observe a large spatial variability in the total annual rainfall within each scenario (see Figure S2).30

For example, in ACCESS-RCP 4.5, rainfall changes vary between -2% in the central part of the basin to more than +10% in the

southern part. All scenarios (but for CSIRO MK3-RCP 8.5) tend to share a similar spatial pattern, in which the lower part of the

basin exhibits an increase in the projected precipitation. As for the temperature, we observe an increase in both minimum and

maximum temperature across all scenarios (see Figure S3), with higher warming for the RCP 8.5. Also in this case, we can note

12



some variability across the GCMs as well as the spatial domain. As discussed in Hoang et al. (2016), these precipitation and

temperature scenarios represent an improvement with respect to the CMIP3 ones, which shown a broader variability. However,

there still are some non-negligible differences across the scenarios that are likely to cause different projections of the annual

and monthly river discharges.

The expected climate change impacts on the annual river discharge at Chiang Saen are synthesized in Table 4, where we5

report the relative changes in discharge with respect to the period 1996–2005. Interestingly, it appears that the projections are

robust with respect to the representation of the water reservoirs. Indeed, the model with and without reservoirs yield comparable

ensemble means and ranges for the two RCPs. Specifically, we find that the annual discharge is predicted to increase in the vast

majority of the scenarios, in response to the increase in precipitation described above. Such similarity between the projections

is arguably attributable to the calibration process, which generates models producing similar aggregate performance measures10

at Chiang Saen station.

What is perhaps more interesting is a comparison between the monthly discharges at Chiang Saen predicted by the models

with and without reservoirs. While both models produce similar ensemble ranges (see Figure 10a-d), a closer analysis of

the data reveals a non-negligible difference in the minimum, maximum, and average monthly discharges (across the GCM

scenarios) produced by the two models (Figure 10e-f). In particular, the model with reservoirs predicts higher discharges in15

the July–September period and lower discharges in October and November. Note that such difference is consistent across both

RCPs. Since both models share the same rainfall and temperature scenarios, the only cause for this stark difference can stand

in the unintended consequences of the parameterization process. As explained in Section 4.1, the model without reservoirs

shows two ‘artefacts’ that help compensate for the absence of the hydropower reservoirs: first, it increases both baseflow

and runoff during the dry season (to account for the water discharged to sustain hydropower production in the dry months);20

second, it decreases baseflow and runoff (to account for part of the water stored by the dams during the wet months). The latter

artefacts is responsible for the macroscopic change in the hydrograph described above. In the wetter conditions depicted by the

GCM-RCP scenarios, the hydropower reservoirs of the Lancang basin receive larger inflows, part of which is directly spilled

into the downstream reaches (data not shown). This is an unprecedented situation for the model without reservoirs, which

cannot simulate an increase in the use of the spillways. In fact, this model tends to reproduce the dynamics learned during the25

calibration process, that is, storing part of the water (in the lower soil layer) during the monsoon season and slowly discharging

it in the following months.

Naturally, the difference between the monthly discharges predicted by the two models becomes even more apparent when we

consider Jiuzhou station, which was not used in the calibration process. As depicted in Figure 11, the model without reservoirs

consistently yields higher discharges in the pre-monsoon season and lower discharges in the monsoon season. Note that, in30

some months, the difference between the average monthly discharges produced by the two models causes an uncertainty larger

than the one surrounding the downscaled climate projections. For instance, the average monthly discharge in March (under

both RCPs) predicted by two models is about 500 and 750 m3/s, that is, a 50% difference.
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5 Discussion and Conclusions

This work contributes to the existing literature on large-scale hydrological modelling by studying the effect of water reser-

voir storage and operations on the parameterization of process-based models. To this purpose, we developed a computational

framework consisting of VIC and the Multi-Objective Evolutionary Algorithm ε−NSGAII, which we used to calibrate the

model parameters through a simulation-optimization process. Our framework also includes a novel variant of VIC that simu-5

lates both storage dynamics and operations of water reservoirs. Using the Lancang river basin as a case study, we calibrated

two implementations of VIC, with and without reservoirs. Inline with previous studies (e.g., de Paiva et al. (2013); Abbaspour

et al. (2015)), we found that the model without reservoirs attains a reasonable modelling accuracy. In fact, we found that the

calibration process of both model implementations yields de facto the same values of the goodness of fit statistics (NSE and

TRMSE), suggesting that the model parameterization helps compensates for a structural error, namely the absence of the water10

reservoirs. More specifically, this effect is achieved by determining the values of six soil parameters (Ds, Dmax, Ws, b, d1 and

d2) that let this model implementation emulate the presence of water reservoirs.

The first implication of a flawed parameter estimation stands in a poor representation of key hydrological processes, such

as surface runoff, infiltration, and baseflow. In our case, we found that, during the dry months, the models calibrated without

water reservoirs generate a higher amount of baseflow and runoff than the models with reservoirs. This is an artefact needed15

to reproduce the higher discharges of hydropower dams that sustain the production of hydro-electricity in the dry season. Vice

versa, baseflow and runoff are reduced during the wet months, so as to account for the decrease in peak flows caused by the

fact that dams store part of the water for the following dry season. A poor parameter estimation is also likely to affect several

downstream applications of a hydrological model. In our second experiment we exemplify this concept through a climate

change impact assessment, in which we contrasted the annual and monthly discharges projected by two selected models (with20

and without reservoirs). Both models show a similar trend in the flow regime—i.e., increased monthly discharges during the

monsoon season, caused by the projected increase in precipitation—a results found in previous studies (Lauri et al., 2012;

Hoang et al., 2016, 2019). Yet, one cannot neglect the different nuances of the flow regime alterations predicted by the two

models. In particular, the model with reservoirs presents higher discharges at the peak of the monsoon season than the model

without reservoirs. These nuances may impact some of the conclusions of a climate change impact assessment as well as other25

model-based studies depending on a reliable estimation of the flow regime.

Like any hydrological modelling study, also this work builds on a few modelling assumptions that should be properly dis-

cussed. First, our model calibration focuses solely on six main parameters controlling the rainfall-runoff process, and assumes

that they are homogeneously distributed across the basin. As explained in Section 3.1.1, the choice of these parameters is rather

established in the literature (Dan et al., 2012; Park and Markus, 2014; Xue et al., 2015); yet, it is reasonable to expect that the30

use of more parameters could further improve the model accuracy. As for the use of homogeneously-distributed parameters,

our modelling choice is justified by the fact that the use of heterogeneously-distributed parameters would largely impact the

computational requirements of the calibration process. We also note that there are no reasons to believe that the use of more

(or spatially-distributed) parameters would deeply alter the main findings of this work. Second, the large spatial domain—and
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associated soil water retention capacity—might be a factor controlling the capability of the calibration process to compensate

for the absence of water reservoirs. In other words, such capability might be dependant on the relation between soil water re-

tention capacity and total storage volume of the reservoirs. In a small basin regulated by a large dam, a modified representation

of runoff, infiltration, and baseflow may not be sufficient to compensate fully for a poor representation of reservoir storage and

operations. Third, we focussed our attention on water reservoirs, which are indeed the infrastructures affecting the flow regime5

in the Lancang. In the lower Mekong basin (not considered in our spatial domain), the flow regime has been modified not only

by hydropower reservoirs, but also by withdrawals for irrigation supply (Hoang et al., 2019). Looking forward, It would thus

be interesting to extend the spatial domain of our model and study how these withdrawals could affect its parameterization.

As the pervasiveness of water resources management in earth system models expands, so too does the need for a deeper

understanding of the mechanisms regulating the calibration process. The explicit representation of water reservoirs—and other10

infrastructure—is indeed likely to result in more realistic soil parameters; an hypothesis whose verification depends on the

availability of observations about soil physical properties for large spatial domains. In turn, this highlights the importance of

studies aimed to infer such properties from remotely sensed images (Chang and Islam, 2000; Chabrillat et al., 2019). A related

topic that may also deserve future research is the robustness of these models with respect to changes in the operations or

physical characteristics of dams. Variability in water and energy demand is a key driver for multiple management and planning15

interventions (e.g., modifications of the operating rules, construction on new storage), so it is paramount to know the extent to

which models can still capture key hydrological processes once these modifications are in place.

Overall, the findings of this study reinforce the message that water infrastructures—and their operational settings—play a

key role on the reliability of a hydrological modelling exercise, like the quality of the hydro-meteorological data, the model

structure, or the calibration process (Francés et al., 2007; Madsen, 2000). These findings gain further prominence if one20

considers the expected increase in hydropower development in several regions of the world (Zarfl et al., 2015).
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Figure 1. Mekong river basin (a); and elevation map and location of the hydropower dams in the upper Mekong basin (b). The red squares

denote dams built before 2005 (and therefore included in our study), while the yellow circles indicate dams built after 2005.
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Figure 2. Computational framework adopted in the first part of this study. The framework consists of VIC’s rainfall-runoff and routing

modules and the MOEA ε−NSGAII. The output of the rainfall-runoff module (i.e., gridded baseflow and runoff) is used by the routing

module, which simulates the streamflow at multiple locations within the upper Mekong basin. The simulated streamflow is then used to

calculate goodness of fit statistics, whose value is optimized with ε−NSGAII by calibrating the parameters of the rainfall-runoff module. In

other words, these parameters and goodness of fit statistics represent the decision variables and objective functions used by ε−NSGAII.
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Figure 3. Graphical representation of VIC’s spatial domain (adapted from http://www.hydro.washington.edu) (a), including the selection of

dam cell (black), reservoir cells (blue), and cells with other land use (white and white with green lines). The black and pink arrows indicate

the direction of the flow routing and discharge from the reservoir (b). Seasonal rule curve (c).
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Figure 4. Land use map derived from the Global Land Cover Characterization dataset (a); soil map (for the top layer) retrieved from the

Harmonized World Soil Database (b); flow direction map (c). The red triangles denote the position of the Chiang Saen and Jiuzhou gauging

stations.
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Figure 5. Probability plots for the NSE (left) and TRMSE (right) obtained in the model calibration process. The blue circles and red stars

specify the results obtained by the models with and without reservoirs, respectively. The dashed blue and red lines represent the theoretical

distributions. In both plots, we also report the 95% confidence limits for the models calibrated with reservoirs.
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Figure 6. Parallel coordinate plot illustrating the values of the goodness of fit statistics (NSE and TRMSE) and model parameters (Ds,

Dmax, Ws, b, d1 and d2) obtained through the optimization-based parameterization exercise. Each line connecting the axes represents a

parameterization, along with the corresponding model performance. Blue and red lines denote parameterizations obtained with and without

reservoirs.
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Figure 7. Radar chart illustrating the values of Nash-Sutcliffe Efficiency (NSE), Transformed Root Mean Square Error (TRMSE), and model

parameters (Ds, Dmax, Ws, b, d1 and d2) of the two selected models (a); scatter plot comparing the daily discharges at Chiang Sean station

simulated by the two models over the period 1996–2005 (b).
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Figure 8. Average values of simulated baseflow (top panels) and runoff (bottom panels) simulated by the selected models (with and without

reservoirs) during the dry (December–April) and wet (May–November) seasons of the period 1996–2005.
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Figure 9. Comparison between observed and simulated monthly discharges at Jiuzhou station over the period 1996–2005. Simulated data

are produced by the two selected models with and without reservoirs (blue and red dots, respectively).
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Figure 10. Projected monthly discharges at Chiang Saen under five GCMs and two RCPs for the two selected models calibrated without and

with reservoirs (a-d). Box plots highlighting the variability in monthly discharges predicted by the two models under RCP 4.5 (e) and RCP

8.5 (f).
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Figure 11. Variability in monthly discharges at Jiuzhou station predicted by the two selected models (with and without reservoirs) under

RCP 4.5 (left) and RCP 8.5 (right).
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Table 1. Main parameters controlling the rainfall-runoff process in VIC. The third column contains the range of each parameter value

considered during the calibration process. Note that these are the same ranges typically adopted for the implementation of VIC to large

basins (cfr., Dan et al. (2012); Xue et al. (2015); Wi et al. (2017)).

Name Unit Feasible range Description

d1 m [0.05, 0.25] Thickness of the upper soil layer

d2 m [0.3, 1.5] Thickness of the lower soil layer

b - (0, 0.9] Variable Infiltration Capacity curve parameter

Dmax mm/day (0, 30] Maximum baseflow

Ds - (0, 1) Fraction of Dmax where non-linear baseflow begins

Ws - (0, 1) Fraction of maximum soil moisture where non-linear baseflow occurs
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Table 2. Design specifications of the dams implemented in our VIC model (simulation period 1995–2005). The term Year denotes the time

at which each reservoir became operational.

No. Name Year Long. (◦E) Lat. (◦N) Height (m) Storage (Mm3) Design discharge (m3/s) Inst. cap. (MW)

1 Xi’er He 4 1971 100.066 20.000 20 14 283 50

2 Xi’er He 1 1989 100.202 30.000 30 1,501 60 105

3 Xi’er He 2 1987 100.131 25.562 37.25 0.2 168 50

4 Xi’er He 3 1988 100.108 20.700 20.70 0.09 304 50

5 Manwan 1992 100.446 24.625 136 257 1,700 1,670

6 Longdi 1997 99.724 26.221 95 13.30 12.34 10

7 Laoyinyan 1997 99.818 24.469 4.31 10.92 9.3 16

8 XunCun 1999 99.993 25.422 67 73.74 146 78

9 Jinfeng 1998 101.225 21.592 45 19.48 45 16

10 Dachaoshan 2003 100.370 24.025 115 367 2,109 1,350

11 Jinhe 2004 97.333 34.000 34 4.27 222 60
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Table 3. CMIP5 GCMs used for the climate change impact assessment.

GCM Spatial resolution (long × lat) Control baseline Developer

ACCESS1-0 1.875◦ × 1.25◦ 1850–2006 Commonwealth Scientific and Industrial Research Organization,

Australia

CCSM4 1.25◦ × 0.940 1850–2005 National Center for Atmospheric Research, USA

CSIRO Mk3.6 1.875◦ × 1.875◦ 1850–2005 Commonwealth Scientific and Industrial Research Organization

and the Queensland Climate Change Centre of Excellence, Aus-

tralia

HadGEM2 ES 1.875◦ × 1.24◦ 1861–2010 Met Office, UK

MPI-ESM-LR 1.875◦ × 1.875◦ 1850–2005 Max Planck Institute for Meteorology, Germany
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Table 4. Relative changes in annual river discharges at the Chiang Saen station for the future period (2050–2060) relative to the reference

one (1996–2005). The lowest and highest changes are presented with the corresponding scenarios. The results reported in the first and second

rows were produced by the selected models without and with reservoirs.

Scenario
RCP 4.5 RCP 8.5

Ensemble mean

(%)
Range (%)

Ensemble mean

(%)
Range (%)

Without reservoirs +13.62 +6.36 to +23.66 +13.92 -0.67 to +28.89

CSIRO–

ACCESS

CSIRO–

ACCESS

With reservoirs +13.56 +6.28 to +23.56 +13.83 -0.63 to +28.68

CSIRO–

ACCESS

CSIRO–

ACCESS
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