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Abstract: Assessing impacts of climate change on hydrologic systems is critical for developing 9 
adaptation and mitigation strategies for water resource management, risk control and ecosystem 10 
conservation practices. Such assessments are commonly accomplished using outputs from a 11 
hydrologic model forced with future precipitation and temperature projections. The algorithms 12 
used for the hydrologic model components (e.g., runoff generation) can introduce significant 13 
uncertainties in the simulated hydrologic variables. Here, a modeling framework was developed 14 
that integrates multiple runoff generation algorithms with a routing model and associated 15 
parameter optimizations. This framework is able to identify uncertainties from both hydrologic 16 
model components and climate forcings as well as associated parameterization. Three 17 
fundamentally different runoff generation approaches: runoff coefficient method (RCM, 18 
conceptual), variable infiltration capacity (VIC, physically-based, infiltration excess) and simple-19 
TOPMODEL (STP, physically-based, saturation excess), were coupled with the Hillslope River 20 
Routing model to simulate surface/subsurface runoff and streamflow. A case study conducted in 21 
Santa Barbara County, California, reveals increased surface runoff in February and March while 22 
decreased runoff in other months, a delayed (3 days, median) and shortened (6 days, median) wet 23 
season, and increased daily discharge especially for the extremes (e.g., 100-yr flood discharge, 24 
Q100). The Bayesian Model Averaging analysis indicates the probability of such increase can be 25 
up to 85%. For projected changes in runoff and discharge, general circulation models (GCMs) 26 
and emission scenarios are two major uncertainty sources, accounting for about half of the total 27 
uncertainty. For the changes in seasonality, GCMs and hydrologic models are two major 28 
uncertainty contributors (~35%). In contrast, the contribution of hydrologic model parameters to 29 
the total uncertainty of changes in these hydrologic variables is relatively small (<6%), limiting 30 
the impacts of hydrologic model parameter equifinality in climate change impact analysis. This 31 
study provides useful information for practices associated with water resources, risk control and 32 
ecosystems conservation and for studies related to hydrologic model evaluation and climate 33 
change impact analysis for the study region as well as other Mediterranean regions.   34 
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1. Introduction  35 

Streamflow is essential to human and ecosystems, supporting human’s life and economic 36 

activities, providing habitat for aquatic creatures, and exporting sediment/nutrients to coastal 37 

ecosystems (Feng et al., 2016;Barnett et al., 2005;Milly et al., 2005). Understanding streamflow 38 

characteristics is important for water-resources management, civil infrastructure design and 39 

making adaptation strategies for economic and ecological practices (Feng et al., 2019).  With 40 

economic development and population growth, the emission of greenhouse gas is likely to 41 

increase during 21st century (IPCC, 2014). The increase in global surface temperature is 42 

projected to exceed 2°C by the end of 21st century even under moderate emission scenarios (e.g., 43 

Representative Concentration Pathways, RCPs, 4.5 and 6.0) (IPCC, 2014). Intensified hydro-44 

meteorological processes, altered precipitation forms and patterns, and intensified atmospheric 45 

river events and oceanic anomalies (e.g. El Nino events) are projected and likely to cause 46 

substantial impacts on hydrologic fluxes (Barnett et al., 2005;Tao et al., 2011;Dai, 47 

2013;Dettinger, 2011;Vicky et al., 2018;Cai et al., 2014;Feng et al., 2019).  48 

The integration of climate projections and hydrologic models enables the investigation of 49 

hydrologic dynamics under the future climate conditions. However, the simulated hydrologic 50 

fluxes contain uncertainties from various sources. Due to the epistemic limitations (e.g., human’s 51 

lack of knowledge about hydrologic processes and boundary conditions) and the complexities in 52 

nature (e.g., temporal and spatial heterogeneity), hydrologic models are simplified 53 

representations of natural hydrologic processes (Beven and Cloke, 2012). Generally, hydrologic 54 

models have modules simulating water partitioning at land surface (named as runoff generation 55 

process in this study), evapotranspiration (ET), and water transportation along terrestrial 56 

hillslopes and channels (named as routing process here). Each process can be represented in 57 

different ways, which thus results in uncertainties in simulated variables. For the runoff 58 

generation process, surface runoff is mainly represented as infiltration excess overland flow (or 59 

Hortonian flow (Horton, 1933)) or saturation excess overland flow. Infiltration excess overland 60 

flow occurs when water falls on the soil surface at a rate higher than that the soil can absorb. 61 

Saturation excess overland flow occurs when precipitation falls on completely saturated soils. 62 

Surface runoff can also be quantified conceptually, for example, a runoff coefficient can be used 63 

to generate surface runoff as a proportion of precipitation rate. Subsurface runoff is generally 64 
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represented as functions of soil characteristics and topographic features. The complexity of these 65 

functions varies significantly, from simple linear to combinations of multiple non-linear. 66 

Parameterization can be another uncertainty source. Due to the nonlinearity of hydrologic 67 

processes, different combinations of model parameters can achieve similar, if not identical, 68 

model performance. Model parameter selections based on calibration metrics can result in 69 

different optimal parameter values (i.e., parameter equifinality). When it comes to hydrologic 70 

impact assessments, the climate forcings, which differ among General Circulation Models 71 

(GCMs) due to the model discrepancy and the uncertainty of future emission scenarios, also 72 

contribute to the uncertainties in hydrologic simulations. Without appropriate assessment of 73 

these uncertainties, standalone studies on the climate change impacts can be difficult to interpret. 74 

Systematic assessments of the relevant uncertainties associated with simulated hydrologic fluxes 75 

are needed.  76 

Some studies have been performed to investigate uncertainties mentioned above at both 77 

variable scales (for example, (Wilby and Harris, 2006;Vetter et al., 2015;Valentina et al., 78 

2017;Kay et al., 2009;Eisner et al., 2017;Su et al., 2017;Schewe et al., 2014;Hagemann et al., 79 

2013;Asadieh and Krakauer, 2017;Chegwidden et al., 2019;Hattermann et al., 2018;Addor et al., 80 

2014;Vidal et al., 2016;Giuntoli et al., 2018;Alder and Hostetler, 2019)). Most previous studies 81 

treated hydrologic models as a whole package. However, hydrologic models consist of multiple 82 

components (e.g., runoff generation, ET and routing). These components can be significantly 83 

different among models. When considering the hydrologic model as a whole, it is difficult to 84 

quantify relative uncertainty contributions from different components. Troin et al. (2018) tested 85 

the uncertainties from hydrologic model components for snow and potential ET. In this study, a 86 

consistent hydrologic modeling framework that integrates multiple runoff generation process 87 

models with surface, subsurface and channel routing processes and associated parameter 88 

uncertainties was developed. This framework enables uncertainties from different components 89 

representing hydrologic processes and associated model parameters as well as model forcings 90 

(e.g., precipitation and temperature) to be quantified and compared in a consistent manner. In 91 

this framework, three runoff generation process models which represent three fundamentally 92 

different approaches mentioned above were used. The conceptual frameworks were adapted from 93 

the variable infiltration capacity model (Wood et al., 1992;Liang et al., 1996) (infiltration 94 

excess), simple-TOPMODEL (Niu et al., 2005;Beven et al., 1995;Beven, 2000) (saturation 95 
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excess), and the runoff coefficient method (Feng et al., 2019) (conceptual). Each approach was 96 

coupled within one routing model (i.e., Hillslope River Routing model, HRR (Beighley et al., 97 

2009)) to simulate the terrestrial hydrological processes. This modeling framework was also 98 

integrated with a Bayesian model averaging (BMA) analysis to assess the performance of 99 

different model-forcing-parameter combinations and to provide actionable information (e.g., 100 

probability of estimated changes) for associated practices, such as water resource management 101 

and ecology conservation. 102 

A case study was presented for Santa Barbara County (SBC), CA, a biodiverse region 103 

under a Mediterranean climate with a mix of highly developed and natural watersheds. Previous 104 

studies (e.g., Feng et al., 2019) showed that the intensified storm events concentrated in a shorter 105 

and delayed wet season in SBC under future climate conditions will cause significant increase in 106 

discharge, especially the extremes (e.g., 100-yr discharge). The climate change impacts on the 107 

path and quantity of surface/subsurface runoff and discharge will impact the soil erosion, 108 

sediment/nutrients transport and subsequently affect the coastal ecosystems (Myers et al., 2019) 109 

Feng et al., 2019). The longer dry season may also contribute to the increased occurrence of 110 

droughts and wildfires (Myers et al., 2019). Therefore, changes in these hydrologic variables 111 

(e.g., runoff, discharge and seasonality) under future climate conditions and associated 112 

uncertainties are essential to assess the vulnerability of coastal region in CA and make adaptation 113 

strategies to accommodate climate change. In this study, we simulated future hydrologic 114 

variables using three hydrologic models forced with climate outputs from 10 GCMs that were 115 

selected for their good performance in representing historical meteorological characteristics in 116 

the study region, under 2 emission scenarios (RCP 4.5 and RCP 8.5) (Feng et al., 2019).  The 117 

main objectives of this study were to: (1) evaluate and compare the performance of hydrologic 118 

models with different approaches representing runoff generation process using a consistent 119 

modeling framework; (2) quantify the relative contributions of different sources (including 120 

hydrologic process models, parameterizations, GCM forcings and emission scenarios) to the total 121 

uncertainty in simulated surface/subsurface runoff, streamflow, and seasonality; and (3) provide 122 

actionable information and suggestions for studies and practices associated with hydrologic 123 

impacts of climate change. 124 
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2. Methods 125 

2.1 Study region 126 

The study region is located in coastal Santa Barbara County (SBC), California, where 127 

watersheds drain into the Santa Barbara Channel from just west of the Ventura River to just east 128 

of Point Conception (Figure 1). The combined land area is roughly 750 km2 with 135 watersheds 129 

ranging from 0.1 to 123 km2. The local climate is Mediterranean, with an average annual 130 

precipitation of roughly 600 mm (Feng et al., 2019). Most of the annual precipitation occurs in 131 

fall/winter with 85% of rainfall occurring in the November-March period. Thus, it is 132 

characterized by the intense and flashy floods in winter time. More than 80% of annual discharge 133 

occurs in only a few number of large events during January-March and a large fraction of annual 134 

discharge happens within one day (Beighley et al., 2003). River channels are typically filled with 135 

sediment during dry season (April-October) and are scoured with the initiation of wet season 136 

floods (Scott and Williams, 1978;Keller and Capelli, 1992). River flow is the major source of 137 

sediment exported to the coastal sandy beaches in SBC. Therefore, the timing of seasonality, 138 

path of runoff, and magnitudes of flood events are critical to both local community and coastal 139 

ecosystems. 140 

2.2 Data 141 

Daily precipitation and temperature with a spatial resolution of 0.0625° x 0.0625° 142 

(roughly 6 by 6 km) (Livneh et al., 2015), and daily streamflow from 4 USGS gauges for the 143 

period 1984-2013 were used to calibrate and validate the hydrologic models. The Global Soil 144 

Dataset for use in Earth system models (GSDE) was used to estimate saturated hydraulic 145 

conductivity and saturated moisture content. The 16-day composite albedo product (MCD43C3) 146 

with a spatial resolution of 0.05° x 0.05° and the monthly aerosol optical depth product 147 

(MOD08M3) with a spatial resolution of 1.0° x 1.0° both derived from NASA’s Moderate 148 

Resolution Imaging Spectroradiometer (MODIS) were used to determine net radiation for 149 

evapotranspiration (PET) estimation. The aerosol optical depth product was downscaled to 0.05° 150 

x 0.05° (Raoufi and Beighley, 2017). 151 
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For the historical (1986-2005) and future climate simulations (2081-2100), downscaled 152 

precipitation and temperature from ten climate models (please refer to Pierce et al. (2014) and 153 

Pierce et al. (2015) for model details) in Coupled Model Inter-Comparison Project, Phase 5, 154 

(CMIP5) (Taylor et al. 2012) for two emission scenarios RCP 4.5 and RCP 8.5 (Moss et al. 155 

2010) were used.  These 10 GCMs were selected because they have the best performance in 156 

representing historical climate dynamics at southwest U.S. and California state scales (Pierce et 157 

al., 2018).  158 

2.3 Hydrologic modeling framework 159 

2.3.1 Hydrologic model development 160 

This modeling framework was developed on the basis of the Hillslope River Routing 161 

model (HRR) (Beighley et al., 2009). The watersheds were delineated using the Digital Elevation 162 

Model (DEM) data with a resolution of 3" (~90 m at the equator) (Yamazaki et al., 2017). The 163 

sub-basins were irregular-shape catchments defined by the flow accumulation area threshold. In 164 

this study, the threshold was 1 km2, which means the sub-basins (model units) were in size of 165 

roughly 1 km2. The hydrogeological inputs of hydrologic models, including surface roughness, 166 

saturated hydraulic conductivity, soil thickness, porosity, plane slope, channel slope and channel 167 

roughness, were averaged over each sub-basin. This indicates these parameters were averaged 168 

for each model unit, the majority of which has an area of roughly 1 km2, with less than 1% 169 

having an area of <1 km2. The geometry of each sub-basin (plane length and width) was 170 

calculated based on an “open-book” assumption, which assumes each sub-basin is a rectangular 171 

divided by the river channel into two identical parts like an open book. Please refer to Beighley 172 

et al. (2009) for more details. The grid-based potential ET (PET) was estimated using the method 173 

of Raoufi and Beighley (2017). The precipitation and PET were extracted for each sub-basin 174 

using an area-weighted average method. Then the water-balance model (i.e., runoff generation 175 

method) was applied to each model unit to simulate runoff generation processes. Here, three 176 

runoff generation methods: runoff coefficient (Feng et al., 2019), and the methods used in 177 

Variable Infiltration Capacity (VIC) (Wood et al., 1992;Liang et al., 1996) and simple-178 

TOPMODEL model (Niu et al., 2005;Beven, 2000;Beven et al., 1995), were used to simulate the 179 

generation of surface and subsurface runoff excess. The routing methods within the HRR model 180 

(i.e., kinematic wave for surface and subsurface lateral routing and Muskingum-Cunge for 181 
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channel routing) were used to simulate the transport of runoff excess. To clarify, we denote the 182 

three runoff generation algorithms: runoff coefficient, runoff generation method used in Variable 183 

Infiltration Capacity and runoff generation method used in simple-TOPMODEL as RCM, VIC 184 

and STP, respectively. Three hydrologic models which integrate one of these runoff generation 185 

methods with HRR routing model are referenced as RCM-HRR, VIC-HRR and STP-HRR, 186 

respectively. The differences between simulations from these three models were considered as 187 

the uncertainty resulting from hydrologic models. The three runoff generation algorithms were 188 

described in the Supplemental material. 189 

The water movement between soil layers in the soil matrix was similar to that in the 190 

modified VIC-2L model (Liang et al., 1996). The soil was divided into 2 layers: upper layer (0.6 191 

m) and lower layer (1.2 m). The soil thickness data was from the Soil Survey Geographic 192 

(SSURGO) Data Base for Santa Barbara County (NRCS, 1995). After the surface runoff was 193 

determined, the infiltrated water was added to the upper soil layer, and the soil moisture was 194 

updated. If the upper soil was oversaturated, the excess water was returned to surface. The 195 

evapotranspiration was estimated using Eq. S15.  The interaction between upper and lower soil 196 

layers was simulated using the Clapper-Hornberger equation (Eq. S16-S17). Subsurface runoff 197 

was generated from the bottom of the lower soil layer. After the water fluxes (runoff, ET and 198 

water movement between soil layers) were determined, the soil moisture was updated which 199 

would be used for the water balance calculation in the next time step. After water excess for 200 

surface and subsurface runoff was quantified, the kinematic wave approach was applied to 201 

simulate the transport of runoff from the planes (surface and subsurface), and the Muskingum 202 

Cunge method was used for channel routing following the conservation equations (Eq.S18-S20) 203 

(Beighley et al., 2009). Two conceptual parameters Ks_all and Kss_all were used in the routing 204 

model, to account for spatial heterogeneity at the model unit scale and uncertainties in the hydro-205 

geologic inputs associated with the plane routing processes (e.g., surface roughness and saturated 206 

hydraulic conductivity). A conceptual illustration of the hydrologic models is shown in Figure 2. 207 

2.3.2 Model calibration 208 

After the models were setup, a state-of-the-art optimization algorithm, Borg 209 

Multiobjective Evolutionary Algorithm (Borg MOEA) (Hadka and Reed, 2013), was adopted to 210 
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optimize the model parameters (Table 1). The models spun up for one year to ensure the 211 

equilibrium status. For each model, there were 4 parameters calibrated for runoff generation 212 

processes and 2 parameters calibrated for routing processes. Ks_all and Kss_all are conceptual 213 

parameters, and they can be different for different model structures even for the same study 214 

region. Therefore, they were calibrated for each model separately. The Nash–Sutcliffe model 215 

efficiency coefficient (NSE) (Eq. (1)) was used to assess model performance, as it accounts for 216 

model performance in terms of both timing and magnitudes of peak flow and base flow that are 217 

particularly important in this study. The optimal parameter set was determined after the 218 

improvement of error was minimized (here it was defined as ΔNSE<0.005).  219 

 NSE = 1 −
∑ (𝑄!" − 𝑄#")$%
"&'

∑ (𝑄#" − 𝑄#++++)$%
"&'

 (1) 

where 𝑄!" and 𝑄#"  are simulated and observed discharge at time t, respectively, (m3 s-1); 220 

and 𝑄#++++ is the mean observed discharge during the study period of length T, (m3 s-1). 221 

To quantify the uncertainties from model parameters, we selected 10 parameter sets using 222 

the following criteria: (1) select 4 parameter sets with highest NSE based on the calibration 223 

results; (2) rank the rest parameter sets based on their performance (i.e., NSE), and randomly 224 

select 6 sets from the top 20% candidates. This parameter selection process enabled us to take 225 

both parameter dominance and variability into account, while maintaining the high model 226 

performance, which is important for the uncertainty analysis. These 10 parameter sets were then 227 

used for uncertainty analysis. 228 

2.4 Uncertainty Analysis 229 

The uncertainty was quantified by running each of the 30 hydrologic model-parameter 230 

sets (i.e., 3 hydrologic models and 10 parameter sets, 3x10 = 30) with each of the 20 forcing sets 231 

(i.e., 10 GCMs and 2 emission scenarios, 10x2=20) for a total of 600 simulations. Here, we used 232 

GCM outputs as the forcings of hydrologic models for both historical (1986-2005) and future 233 

(2081-2100) periods. For each simulation scenario (i.e., the combination of hydrologic model, 234 

parameter set, GCM and RCP), the historical and future daily streamflow and runoff were 235 

simulated, and the relative changes (%) were quantified. Note, there is no RCPs for historical 236 

period, and we used the same historical simulation for RCP 4.5 and 8.5. To evaluate the 237 
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uncertainty sources and their relative significance in these simulated changes in runoff, discharge 238 

and seasonality for the future period, the analysis of variance (ANOVA) (Vetter et al., 239 

2015;Addor et al., 2014;Hattermann et al., 2018;Chegwidden et al., 2019) was used. The 240 

contribution of each uncertainty source for a variable of interest (e.g., monthly runoff, 100-yr 241 

flood discharge or the duration of wet season) was defined as the fraction of its variance to the 242 

total variance. The total variance was quantified as the total sum of squares (SStotal) of 243 

differences between the simulations and the mean of all simulations (Eq. (2)): 244 

 𝑆𝑆%#"() = - - - -(𝑞*+,) − 𝑞####)$
-!"#

)&'

-$"%

,&'

-&'('

+&'

-)*+

*&'

 (2) 

where 𝑞*+,) is the simulated value of the variable of interest by ith hydrologic model with jth 245 

parameter set, forced by kth GCM projection under lth RCP scenario; 𝑞#### is the overall average 246 

of the simulated variable.  Next, the SSTotal can be divided into 15 parts representing the 4 main 247 

effects (or first-order effects), 6 second-order, 4 third-order and 1 fourth-order interaction effects. 248 

For clarity, the third and fourth orders of interaction effects were combined and represented as 249 

SS3.4 in Eq. (3). 250 

 

SS%#"() = 𝑆𝑆./0 + 𝑆𝑆1(2( + 𝑆𝑆345 + 𝑆𝑆647 + 𝑆𝑆./0.1(2( + 𝑆𝑆./0.345
+ 𝑆𝑆./0.647 + 𝑆𝑆1(2(.345 + 𝑆𝑆1(2(.647 + 𝑆𝑆345.647

+ 𝑆𝑆9.: 

(3) 

where 𝑆𝑆./0 , 𝑆𝑆1(2( , 𝑆𝑆345 	𝑎𝑛𝑑	𝑆𝑆647 are the main effects (i.e., uncertainties or variance) from 251 

hydrologic models, hydrologic model parameters, GCMs and RCPs, respectively; 252 

𝑆𝑆./0.1(2(,			𝑆𝑆./0.345, 		𝑆𝑆./0.647, 		𝑆𝑆1(2(.345, 	𝑆𝑆1(2(.647 and 	𝑆𝑆345.647 are uncertainties 253 

from interactions between the hydrologic models and parameterization, hydrologic models and 254 

GCMs, hydrologic models and RCPs, parameterization and GCMs, parametrization and RCPs, 255 

and GCMs and RCPs, respectively.  The calculation of each order is illustrated in Eq. S21-S23. 256 

To avoid bias from the difference in sample sizes of uncertainty sources (i.e., 3 257 

hydrologic models, 3 parameter sets, 10 GCMs and 2 RCPs), a subsampling step was performed 258 

by following Vetter et al. (2015). In the subsampling step, 2 samples (i.e., the minimum number 259 
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of uncertainty source, here it is RCPs) from each source were randomly selected, that is, 2 260 

hydrologic models, 2 parameter sets, 2 GCMs and 2 RCPs, which indicates 𝑁./0, 𝑁1(2(, 𝑁345 261 

and 𝑁647 in Eq. (2), (S21)-(S23) are all equal to 2. This generated 𝐶9$ × 𝐶';$ × 𝐶';$ × 𝐶$$=6075 262 

subsamples. For each subsample, the fractional sum of squares was calculated for each effect 263 

using Eq. S21-S23, and then the average of variance fractions of each source is used as the 264 

uncertainty contribution from that source using Eq. S24. 265 

2.5 Probability of estimated changes 266 

In addition to quantifying uncertainties and associated contributions from different 267 

sources, an evaluation on the probability of uncertain changes in discharge can be useful to 268 

provide actionable information for the stakeholders such as water resource managers. In this 269 

study, the Bayesian model averaging (BMA) (Duan et al., 2007) was used to evaluate the model 270 

performance in reproducing historical hydrologic conditions, and then weights were assigned to 271 

each of them based on their performance. A model with better performance was assigned a 272 

higher weight, assuming it has a higher probability to represent the truth. Note, there is no RCPs 273 

for historical period, so only combinations of hydrologic models, parameter sets and GCMs 274 

(3x10x10=300) were evaluated. Here the models’ performance in representing annual mean 275 

discharge (Qm) and annual maximum daily discharge (Qp) is evaluated. Here, the annual mean 276 

discharge was defined as the average of daily streamflow in a year. In this study region, there is 277 

typically no rain for most time of a year, and it is not uncommon in such a Mediterranean climate 278 

region that the annual runoff is mainly generated from one major storm event.  Therefore, the 279 

annual mean/max series are representative of the characteristics of the discharge dynamics. The 280 

details of this procedure can be found in the Supplemental material. After the weights of model 281 

ensemble were obtained using the BMA method, the statistics of posterior probability 282 

distribution (here it was assumed to be normal distribution) of estimated changes in Qm, Qp and 283 

Q100 in the future (2081-2100) relative to historical period 1986-2005 were calculated using Eq. 284 

S29-S34. 285 

2.6 Definition of hydrologic seasonality 286 

To quantify the onset and duration of hydrologic seasons, we calculated the accumulative 287 

discharge in the whole basin for each water year. Then the day showing the 10% of accumulative 288 
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annual discharge was defined as the onset of the wet season, and the number of days between the 289 

10 and 90% of the accumulated discharge series was defined as the duration of the wet season.  290 

3. Results and Discussion 291 

3.1 Hydrologic model performance 292 

The three hydrologic models performed well in representing streamflow dynamics in the study 293 

region. The NSE varies within 0.56-0.67 and 0.53-0.62 for calibration and validation periods, 294 

respectively, in Mission Creek (USGS gauge NO. 11119750) (Figure 3). At other calibrated 295 

watersheds, the models perform similarly well with NSE varying between 0.45-0.60 for 296 

calibration period and 0.42-0.62 for validation period (Figures S1-S3). Simulated streamflow 297 

from the three models matches the in-situ measurements in both magnitudes and timing of 298 

hydrographs at event scales (Figure 3b). At annual scale, simulated annual peak flows are 299 

comparable to the observations in most years. However, in some years with extreme events, for 300 

example in January 1995, February 1998 and January 2005 (highlighted in Figure 3c), the 301 

simulated peaks are much lower than the gauge records. This disparity can be attributed to the 302 

input bias (e.g., precipitation or streamflow measurements). This was identified using an 303 

‘extreme scenario’ simulation, which assumed 100% precipitation is transformed to surface 304 

runoff (i.e., without any loss due to, for example, infiltration or evapotranspiration) and 305 

transported immediately to river channels and represents the maximum streamflow considering 306 

groundwater is minimal in the study region (Beighley et al., 2003). Even in this extreme 307 

scenario, the simulated peaks were still lower (events highlighted in red in Figure 3c) or slightly 308 

higher (event highlighted in blue in Figure 3c) than the gauge observations. This is likely 309 

because that model forcings are biased low for these events. One possible source of this bias can 310 

be the grid-based precipitation dataset which averages the precipitation rates over the grid 311 

masking spatial heterogeneity and thus reducing precipitation rates at some locations. The 312 

uncertainties in gauge measurements can also be a bias source. For example, in typical 313 

conditions the uncertainty in streamflow measurements ranges between 6%-19% in small 314 

watersheds, but it can be higher during large storm events when accurate stage measurements are 315 

more difficult (Harmel et al., 2006). Beighley et al. (2003) also identified the overestimation of 316 

gauge records for the 1995 January event at Gauge 11119940. As for mean annual discharge, all 317 
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three models tend to overestimate it for the study period, mainly due to the overestimation of 318 

subsurface flow during dry seasons (Figure 3d). This highlights challenges of simulating 319 

hydrologic processes in semiarid regions under a Mediterranean climate.  320 

Among the three hydrologic models, STP-HRR has the best overall performance (i.e., 321 

highest average NSE), mainly due to its better ability for capturing flood peaks than the other 322 

two models (Figures 3, S1-S3). The peak performance is likely a result of the STP-HRR 323 

representing the runoff generation process as an exponential relationship between soil moisture 324 

and runoff rates, which makes runoff generation more sensitive to soil moisture dynamics as 325 

compared to the other two models. This algorithm is well suited to represent the significant 326 

nonlinearity of hydrologic response to rainfall in the study region. RCM-HRR and VIC-HRR 327 

have similar overall performance (i.e., similar average NSE), however, they represent hydrologic 328 

dynamics differently. VIC-HRR tends to perform better in representing small peak flows than 329 

RCM-HRR while worse in simulating mean flow (or total discharge volume) (Figures 3, S1-S3). 330 

This is because as the wet season proceeds, the lower soil layer is close to saturation (i.e., 331 

relative soil moisture is higher than the threshold Ws for VIC-HRR) which initiate the quadratic 332 

relationship between soil moisture and subsurface runoff in VIC-HRR. This quadratic response 333 

to soil moisture conditions can lead to much higher subsurface runoff (1~2 orders of magnitude 334 

higher than that of RCM-HRR), which contributes to the lower performance in reproducing the 335 

total volume of discharge. This also explains that VIC-HRR generates the highest subsurface 336 

runoff during the wet season (Figure 4). In addition, VIC-HRR also generates the most surface 337 

runoff during wet season (Figure 4). This is because when soil is almost saturated, surface runoff 338 

in VIC-HRR is almost a linear function of precipitation with a coefficient of 1 (much larger than 339 

RCM-HRR which is 0.2 (C2) and STP-HRR which is around 0.5 depending on the watershed 340 

topography).  The higher surface and subsurface runoff generated by VIC-HRR leads to the 341 

overestimation of mean annual flow (Figure 3d). However, there are no in-situ measurement of 342 

surface and subsurface runoff fluxes, and it is difficult to evaluate model performance for these 343 

quantities. In Figure 4, the simulated surface and subsurface runoff from National Land Data 344 

Assimilation Systems VIC model (NLDAS-VIC) (Xia et al., 2012) outputs are shown for the 345 

purpose of comparison. The NLDAS-VIC runoff simulations are from the same runoff 346 

generation model (i.e., VIC) as used in this work, and have similar spatial/temporal resolutions to 347 
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those in this study, which makes it a suitable reference for comparison. A similar pattern, i.e., a 348 

very high subsurface runoff, even higher than surface runoff, during wet season, can be found 349 

from NLDAS-VIC simulations. The surface runoff of NLDAS-VIC is lower than those 350 

generated by the models in this study, which is probably because of the difference in 351 

precipitation inputs. The NLDAS precipitation input is lower during wet season than that used in 352 

this study for the study region. In addition, the difference in spatial resolutions of precipitation 353 

(0.125° for NLDAS vs. 0.0625° for this study) can also contribute to the difference in simulated 354 

runoff.   355 

These results may suggest that STP-HRR is more suitable than VIC-HRR in representing 356 

hydrologic processes in Mediterranean regions where 80% annual precipitation is concentrated 357 

in a short period (roughly 3 months). As the wet season proceeds, the soil is close to saturation 358 

conditions, under which the saturation excess overland flow is dominant. That explains why 359 

STP-HRR performs best in this study region.  VIC-HRR is probably more suitable to the regions 360 

where precipitation events are sparsely distributed where soil is not easy to get saturated. 361 

Although RCM is an empirical method, it performs fairly well in this study, mainly because it 362 

captures the nonlinearity of hydrologic processes through a switch between dry and wet surface 363 

runoff coefficients (C1 and C2) based on the soil moisture conditions. 364 

Ten sets of parameters were selected for each model (Figure 5). Most optimal parameter 365 

sets (red circles in Figure 5) are very close, except for C1, Ks_all in RCM-HRR and Ks_all, Ds in 366 

VIC-HRR, suggesting that most parameters are important factors controlling model performance. 367 

For the randomly selected parameters (green circles in Figure 5), most of them spread over the 368 

whole range, suggesting sufficient space for uncertainty analysis. 369 

3.2 Impacts and Uncertainty analysis 370 

The projected changes in monthly runoff (surface, subsurface and total) during 2081-371 

2100 compared to 1986-2005 range between -100% and 300% (Figure 6a). The median changes 372 

indicate that surface runoff will probably increase in February and March, and decrease in other 373 

months (Figure 6a). This is because in the future, the onset of wet season will be delayed and 374 

more severe storm events will occur during the shorter wet season (mainly during February and 375 

March) (Feng et al., 2019). The decrease in subsurface runoff in all months is probably because 376 
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the decrease in the frequency (or total number) of storm events (Feng et al., 2019). The changes 377 

of monthly total runoff show similar pattern with the surface runoff, suggesting the more 378 

pronounced changes in surface runoff as compared to subsurface runoff. The major uncertainty 379 

sources are GCM and RCP, which account for ~45% of total uncertainty (Figure 6b). Hydrologic 380 

models contribute to ~10% of total uncertainty (Figure 6b). This suggests that the climate 381 

patterns (e.g., storm event frequency and intensity) are more important factors controlling the 382 

runoff generation than the hydrologic model algorithms. 383 

For the 28 major watersheds in SBC, the projected changes in Qm during 2081-2100 as 384 

compared to historical period 1986-2005, range from -100% to 220% (Figure S4). The median 385 

changes for each of these major watersheds are slightly above 0%, varying between 1% and 8%. 386 

The major uncertainty sources are GCM and RCP, which account for ~54% of the total 387 

uncertainty. Among the first order factors (i.e., GCM, RCP, hydrologic model and 388 

parameterization), hydrologic model ranks third after GCM and RCP, accounting for 10-15% of 389 

total uncertainty. In contrast, parameterization only induces less than 2% of the total uncertainty. 390 

The remaining 25-35% uncertainty is from the second, third and fourth order interactions 391 

between the four major sources. The projected relative changes in Qp and Q100 are similar in 392 

magnitudes, both varying from -90% to 250% (Figure S5 and Figure 7). The median changes in 393 

Qp and Q100 for each watershed are higher than those of Qm, ranging between 10-40%. For most 394 

of watersheds, GCM and RCP are the two major uncertainty contributors for Qp and Q100, 395 

accounting for ~45% of total uncertainties. Hydrologic model contributes ~14% of total 396 

uncertainties in Qp and Q100. Compared to Qm, Qp and Q100 get more uncertainty from the 397 

hydrologic models, which is likely due to highly nonlinear rainfall-runoff behavior and larger 398 

differences between runoff generation methods in generating peak flows as compared to average 399 

flow conditions.  400 

Changes in Qm, Qp and Q100 are higher under RCP 8.5, but the uncertainties are also 401 

higher (Figure 8), which suggests the higher contribution of RCP 8.5 in the uncertainties of 402 

higher-order interactions between RCP and other factors (i.e., GCM, hydrologic model and 403 

parameters). In Mission Creek watershed (USGS gauge No. 11119750), the probability of 404 

increase in Qm under RCP 4.5 is only 51%. However, this probability increases to 64% under 405 

RCP 8.5. For the less frequent events (Qp and Q100), the probabilities of positive changes are 406 
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higher: 78% and 85% for Qp and Q100, respectively, under RCP 8.5. This implies that if RCP 8.5 407 

happens in the future, the extreme events will probably get intensified.  408 

Consistent with the work of Feng et al. (2019), this study suggests a delayed onset and 409 

shorter duration of wet season (Figure 9a). The median changes show that the wet season will 410 

start later by 3 days, and become shorter by ~6 days. The major uncertainty sources for both 411 

onset and duration of wet season are GCM (~20%) and hydrologic models (~15%). Different 412 

from discharge and runoff, the seasonality shows more uncertainty from hydrological models 413 

(15% vs 12%) and model parameters (~6% vs 2%) (Figure 9b). This is because the seasonality 414 

integrates the runoff generation, paths and transport processes for both surface and subsurface 415 

runoff, which are important for the timing and quantity of simulated discharge.  416 

As the major carrier of nutrients/sediment, surface runoff and discharge are crucial for 417 

beach ecosystems in the study region (Myers et al., 2019;Aguilera and Melack, 2018). Nutrients 418 

and sediment build up over land surface and in channels during dry season, and get flushed with 419 

the initiation of wet season (Scott and Williams, 1978;Keller and Capelli, 1992;Bende-Michl et 420 

al., 2013;Aguilera and Melack, 2018). The nutrients/sediment fluxes are positively correlated 421 

with hydrologic variability, and the majority of them occurs at the beginning of the wet season 422 

(Aguilera and Melack, 2018;Homyak et al., 2014). Therefore, both timing and magnitude of 423 

runoff and discharge will impact the nutrients/sediment export to the coastal ecosystems. The 424 

findings in this study reveal that the surface runoff and river discharge (especially the extremes) 425 

will increase but get delayed during wet season (Figures 6 and 9), implying that the 426 

nutrients/sediment fluxes will likely increase and occur in a shorter and delayed period. The 427 

decrease in runoff (both surface and subsurface) during the dry season suggests that the soil 428 

moisture will be lower under future climate conditions in the study region. The longer and drier 429 

dry season will probably increase the occurrence of severe droughts and wildfires.  430 

Compared to previous studies (e.g., Vetter et al. (2015), Schewe et al. (2014),  Hagemann 431 

et al. (2013);Troin et al. (2018), and Asadieh and Krakauer (2017)), this work identifies 432 

relatively low uncertainty contributions from hydrologic models. The main reason for this is 433 

probably that the hydrologic model uncertainty in this study was only from runoff generation 434 

algorithms and associated parameters. As is, the three hydrologic models share common 435 

algorithms for ET and plane/channel routing, and the same model configuration (e.g., soil matrix 436 
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and model unit definition). These similarities among models likely reduced the differences in 437 

simulated runoff and discharge. In addition, the uniform calibration approach and parameter 438 

selection criteria were also likely to eliminate user/method bias which is common in studies that 439 

consider more than one hydrologic model. In contrast, the hydrologic models used in previous 440 

studies have their own model component algorithms (e.g., ET and routing algorithms), and 441 

model configurations. For example, the VIC model (here VIC refers to the original VIC model, 442 

and is different from the model used in this study; to clarify, in following text, VIC refers to the 443 

original VIC model while VIC-HRR refers to the model used in this study) applies an ET 444 

algorithm different from the one used in this study (Raoufi and Beighley, 2017), uses the grid-445 

based model units ignoring the spatial arrangement, and has its own routing scheme which 446 

adopts the synthetic unit hydrograph concept. When comparing models owning their own 447 

component algorithms, the differences between models likely resulted in larger uncertainties in 448 

the simulation from hydrologic models in previous studies.  449 

This study can also provide useful information for hydrologic model evaluation and 450 

selection. As discussed in section 3.1, the STP-HRR model is more suitable than the other two 451 

models for the study region, mainly due to its ability to represent the highly non-linear 452 

hydrological response to precipitation forcings. This implies hydrologic models adopting the 453 

saturation excess runoff generation algorithms may be more suitable for areas with a 454 

Mediterranean climate. The uncertainties from hydrologic models are larger than those from the 455 

hydrologic model parameters for all variables (i.e., discharge, runoff and seasonality), suggesting 456 

the inter-model variability is larger than the intra-model variability (from model parameters). 457 

This implies that model selection is more important than the parameter selection, and that the 458 

parameter equifinality (or non-uniqueness) is less of a concern when quantifying climate change 459 

impacts on hydrologic fluxes using an ensemble of GCM forcings. In this study, only the runoff 460 

generation algorithm was investigated. Other hydrologic model components, such as ET 461 

algorithms and routing methods, also have variants. The choice of these components may also 462 

make a difference in the total uncertainties in simulated runoff and streamflow. In addition, the 463 

methods for GCM downscaling can also contribute to the uncertainty in predicted changes in 464 

hydrology. Further study integrating different algorithms for hydrologic model components as 465 

well as GCM downscaling methods can be conducted in the future. Such analysis can be useful 466 
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to guide stakeholders to select appropriate hydrologic algorithms and to develop actionable 467 

adaptation and mitigation strategies to accommodate climate change.   468 

This is the first study investigating hydrologic model uncertainty solely from runoff 469 

generation algorithms for a region with the Mediterranean climate. The framework developed in 470 

this study can be potentially used to identify the internal uncertainties of hydrologic models, i.e., 471 

uncertainties from hydrologic model components (e.g., runoff generation algorithms, ET 472 

algorithms and routing models), which is particularly important for assessing model performance 473 

and quantifying the relative roles of different components in the uncertainty of simulations. This 474 

study region is a representative Mediterranean area characterized by dry summers and wet 475 

winters. This climate pattern and the highly non-linear relationship between climate and 476 

hydrology significantly impact local society, agriculture and ecosystems as discussed before. The 477 

findings in this study including the favorability of STP algorithm, the important role of GCM 478 

selection and the negligible role of hydrologic model parameters in the uncertainty, can be useful 479 

for studies associated with hydrologic model evaluation and climate change impact analysis for 480 

other Mediterranean regions.  481 

4. Conclusions 482 

A modeling framework which integrates multiple runoff generation algorithms (VIC, 483 

STP and RCM) with the HRR routing model was developed. Forced with an ensemble of GCM 484 

outputs under different emission scenarios, this framework is able to quantify the climate change 485 

impacts on surface and subsurface runoff, streamflow and hydrologic seasonality, and evaluate 486 

the associated uncertainties from different sources (i.e., RCPs, GCMs, hydrologic process 487 

models and parameterization). The results show that the surface runoff will likely increase in 488 

February and March, while decrease in other months, and the subsurface runoff will likely 489 

decrease due to changes in the patterns of storm events. The median changes in mean annual 490 

discharge for the major watersheds in SBC are 1-8%, with an uncertainty of 320% (here, 491 

uncertainty refers to the range of predicted relative changes among models, that is, from -100% 492 

to +220%); the median changes in annual peak discharge and 100-yr flood discharge are higher 493 

than those of mean annual discharge, varying between 10% and 40%, but with a higher 494 

uncertainty of 340% (-90% to +250%). The results based on the BMA analysis indicate that there 495 
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is a high probability (up to 85%) that streamflow, especially the extreme quantities (e.g., Q100) 496 

under RCP 8.5, will increase. The seasonality analysis shows that the wet season will be delayed 497 

(by 3 days, median) and shortened (by 6 days, median). For the uncertainties in the projected 498 

changes in runoff and discharge, GCM and RCP are the top two contributors, accounting for 499 

roughly 50% of total uncertainties at most major watersheds in SBC, while hydrologic process 500 

models (i.e., runoff generation modules) contribute ~12% on average with the remaining 30-40% 501 

of the uncertainty coming from the interactions between these individual sources. Hydrologic 502 

model parameters alone contribute less than 2% of the uncertainty. In contrast, for the changes in 503 

seasonality, the uncertainty contributions from hydrologic models (~15%) and hydrologic model 504 

parameters (~6%) are higher as compared to those for runoff and discharge, making GCMs and 505 

hydrologic models the two major uncertainty sources.  506 

Unique to the framework in this study, the uncertainties from different hydrologic model 507 

components (e.g., runoff generation process) and associated model parameterizations can be 508 

identified and quantified. The results can be useful for practices and studies in many fields, e.g., 509 

water resources, risk controls and ecosystem conservation, for the study region as well as other 510 

Mediterranean regions. 511 
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Table 1: Calibrated parameters for hydrologic models 691 

 692 
  693 

Parameters Description Unit Range RCM-
HRR 

VIC-
HRR 

STP-
HRR 

Ks_all 
coefficient to adjust surface 

roughness - 1-20 ü ü  ü 

Kss_all 
coefficient to adjust 
horizontal hydraulic 

conductivity 
- 10-200 ü ü  ü 

Ksat_all coefficient to adjust vertical 
hydraulic conductivity - 0.01-5.0  ü   

C1 dry runoff coefficient  - 0-0.3  ü   

C2 wet runoff coefficient  - 0.2-0.8  ü   

 qt 
soil moisture threshold 
separating dry and wet 

conditions 
- 0.2-0.8  ü    

bin Infiltration curve shape 
parameter - 0.005-0.5  ü  

Dm maximum baseflow m·d-1 0 -0.037  ü  

Ds fraction of DM where non-
linear baseflow begins - 0 -0.005  ü  

Ws 
fraction of the maximum soil 

moisture where non-linear 
baseflow occurs 

- 0.92-1.0  ü  

fover Surface runoff coefficient m-1 0.1-5    ü 

fdrain Subsurface runoff coefficient m-1 0.1-5    ü 

Qm maximum baseflow m·d-1 0.864-
1728 

   ü 

𝜑!"# 
Saturated suction head in the 

soil m -3.05–0    ü 
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Figure captions: 694 
Figure 1: Study region with USGS streamflow gauges. The inset figure indicates the location of 695 
SBC in the state of California (CA). 696 

Figure 2: The conceptual framework about the hydrologic models used in this study. Portions of 697 
this figure were adapted from the work of Beighley et al. (2009). (a) shows the grid-based climate 698 
inputs for hydrologic models; (b) shows water balance models; P is precipitation; ET is 699 
evapotranspiration; Es is soil evaporation; Ec is canopy evaporation; ET is transpiration; es is water 700 
available for surface runoff; ess is water available for subsurface runoff; qU is relative soil moisture 701 
in upper soil layer; qL is relative soil moisture in lower soil layer; I is infiltration; K is water flux 702 
from the upper layer to the lower layer; and D is diffusive water flux from the lower layer to the 703 
upper layer; and (c) shows HRR routing model; the “open-book” assumption: two identical planes 704 
(P1 and P2) with the channel (Ch) in the center of each sub-basin; qs is the surface runoff; qss is 705 
subsurface runoff; Q is discharge in the river channel, and WT is groundwater table. The 706 
parameters in red italic are for surface runoff generation, the parameters in blue italic are for 707 
subsurface runoff generation. The first columns in the tables indicate the models that the 708 
parameters are used for. The definition of these parameters can be found in the supporting 709 
information. 710 

Figure 3: Model performance for calibration and validation periods: (a) model performance 711 
(assessed by NSE) during calibration process, the x axis is the normalized calibration process; the 712 
“normalized calibration process” means the x axis range is normalized by the number of iterations 713 
during calibration; (b) hydrographs simulated by three calibrated models and measured by the 714 
USGS gauge; in order to show the details of the hydrographs, they are zoomed in to the wet season 715 
in 2001; the model performance is similar in other years; (c) simulated annual peak flow during 716 
calibration (water year 1985-2005) and validation (water year 2006-2011) periods as compared 717 
with in situ observations; black texts indicate model performance (i.e., NSE); the points 718 
highlighted in red arrows indicate the events were not reproduced by models due to the input (e.g., 719 
precipitation or discharge observation) bias; the point highlighted in blue arrow is similar to those 720 
in red but at a lower probability; and (d) simulated and observed annual mean flow during 721 
calibration and validation periods. For clarity, only results for the Mission Creek watershed (USGS 722 
gauge NO. 11119750) are shown here; results for other gauged watersheds are similar and can be 723 
found in the Supporting Information (Figure S1-S3). 724 

Figure 4: Simulated monthly surface and subsurface runoff for the Mission Creek watershed 725 
(USGS gauge NO. 11119750) by three models for the calibration period (water year 1985-2005). 726 
Surface runoff is denoted by ‘SR’ and subsurface runoff is denoted by ‘SS’ in this figure. 727 
Monthly surface and subsurface runoff from National Land Data Assimilation Systems 728 
(NLDAS) VIC model simulation for the same period are shown here for comparison purpose. 729 

Figure 5: Parameters (black circles) sampled during calibration process and their corresponding 730 
performance (assessed by NSE). The red circles indicate the 4 parameter sets with highest NSE 731 
values, and the green circles indicate 6 randomly selected parameter sets from the top 20% 732 
samples (ranked by NSE). These ten parameter sets were used for uncertainty analysis. In this 733 
figure, the parameter values are normalized by their ranges (shown in Table 1), so the range of 734 

 

H 
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the x axis is 0-1. The parameters were sampled throughout their whole ranges, however, for 735 
clarity, samples with NSE lower than 0.3 are not shown in this figure.  736 

Figure 6: (a) Projected relative changes (%) in monthly surface runoff, subsurface runoff and total 737 
runoff in the whole study region during 2081-2100 as compared to historical period (1986-2005); 738 
(b) Relative contributions (%) of the uncertainties for the projected changes in the monthly total 739 
runoff; Hydro = Hydrologic models; Para = hydrologic model parameters; GCM = General 740 
Circulation Models; RCP = Representative concentration pathways (emission scenarios); “other” 741 
is the uncertainty from the 3rd and 4th orders of interactions between the 4 major sources (i.e., 742 
GCMs, RCPs, Hydrologic models and parameters). 743 

Figure 7: (a) Projected relative changes (%) in 100-yr flood discharge (Q100) in the major SBC 744 
watersheds (indicated by the grey watersheds in the map) during 2081-2100 as compared to 745 
historical period (1986-2005); each bar depicts relative changes in minimum, maximum, median, 746 
1st and 3rd quartiles for the ensemble outputs; bars from left to right spatially corresponding to 747 
watersheds from west to east. For clarity, only watersheds with drainage areas larger than 7 km2, 748 
which account for roughly 83% of the study area, are shown. (b) Relative contributions (%) of the 749 
uncertainties in the projected changes at each of these watersheds; Hydro = Hydrologic models; 750 
Para = hydrologic model parameters; GCM = General Circulation Models; RCP = Representative 751 
concentration pathways (emission scenarios); “other” is the uncertainty from the 3rd and 4th orders 752 
of interactions between the 4 major sources (i.e., GCMs, RCPs, Hydrologic models and 753 
parameters). 754 

Figure 8: Probability of changes in Qm, Qp and Q100 at the Mission Creek watershed (No. 20 in 755 
Figure 7 map). The numbers in the plot are the probabilities of positive changes in Qm, Qp and Q100 756 
(areas of shaded regions) under each emission scenario (blue numbers are for RCP 4.5 and red 757 
numbers are for RCP 8.5). 758 

Figure 9: (a) Projected change (days) in the onset and duration of wet season in SBC; positive 759 
(negative) values indicate later (earlier) onset or longer (shorter) duration of the wet season; (b) 760 
relative contributions (%) of the uncertainties of the projected changes in seasonality. Hydro = 761 
Hydrologic models; Para = hydrologic model parameters; GCM = General Circulation Models; 762 
RCP = Representative concentration pathways (emission scenarios); “other” is the uncertainty 763 
from the 3rd and 4th orders of interactions between the 4 major sources (i.e., GCMs, RCPs, 764 
Hydrologic models and parameters). 765 


