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Dear Dr. McMillan, 
 

We thank you for your effort in collecting three valuable review reports for our paper entitled 
“Identifying uncertainties in hydrologic fluxes and seasonality from hydrologic model 
components for climate change impact assessments” (manuscript ID: HESS-2019-328). We 
appreciate all reviewers for their solid comments. We have addressed all of them to the extent 
possible.  

Particularly, we have expanded the study by adding analysis about runoff paths (surface and 
subsurface), magnitude and timing, and hydrologic seasonality (onset and duration of wet 
season). Dynamics of runoff and discharge are crucial to coastal ecosystems in the study region, 
as they are major carriers of nutrients/sediment exported to the coast. The nutrients/sediment 
fluxes are positively correlated with hydrologic variability, and most of them occur at the 
beginning of the wet season. Therefore, both timing and magnitude of runoff and discharge will 
impact the nutrients/sediment export. The runoff also impacts soil moisture, which thus affects 
the occurrence of droughts and wildfires. The findings with the new analysis reveal that the 
surface runoff and river discharge (especially the extremes) will increase but get delayed during 
wet season, while decrease during dry season. The uncertainty analysis reveals that GCMs and 
RCPs are two major uncertainty contributors for changes in runoff and discharge. In contrast, 
GCMs and hydrologic models are top two uncertainty sources for changes in seasonality. The 
identified changes in runoff, discharge and seasonality and associated uncertainties have 
significant implications for practices and studies in many fields, such as water resources, 
agriculture, ecosystems conservation, and risk control. In addition to the results of the new 
analysis, we have also added a detailed discussion in the Results and Discussion section. 

We have also improved the analysis about the hydrologic model parameters by developing and 
applying more sophisticated parameter selection procedure. Both parameter dominance and 
variability have been considered. The results with new parameter sets suggest that the 
uncertainty contribution of hydrologic model parameters for changes in seasonality is larger than 
those for runoff and discharge.  However, the contribution of hydrologic model parameters is 
small, as compared to other sources. We have added a detailed discussion about this finding and 
its implications. 

Finally, we have conceptualized this study with previous uncertainty analysis literature. The 
major contribution of this study is that it is the first study investigating hydrologic model 
uncertainty solely from runoff generation algorithms for a region with the Mediterranean 
climate. The framework developed in this study can be potentially used to identify internal 
uncertainties of hydrologic models, i.e., uncertainties from different model components (e.g., 
runoff generation algorithms, ET algorithms and routing models). This is particularly important 
for assessing model performance and enhancing our understanding of relative roles of model 
components in the uncertainty contribution. The unique climate pattern (i.e., Mediterranean, 
characterized by dry summers and cool, moist winters) and the highly non-linear relationship 



between precipitation and hydrologic fluxes in the study region lead to representative 
characteristics of hydrology in Mediterranean regions, which significantly impact local society, 
agriculture and ecosystems. The findings in this study, including the favorability of STP 
algorithm, the important role of GCM selection and the negligible role of hydrologic model 
parameters in terms of uncertainty analysis, can be informative for studies associated with 
hydrologic model assessment/selection and climate change impact analysis for other 
Mediterranean regions. 

We have provided specific responses to each comment in the follow text. We are certain that 
with these modifications, we have significantly improved the manuscript. 

If you have any further questions, please contact me. 

Sincerely, 

X
Dongmei Feng

 
 
Dongmei Feng, Ph.D. 
Department of Civil and Environmental Engineering  
University of Massachusetts, Amherst 
130 Natural Resources Road, Amherst, MA 01003  
Tel: (617) 697-8789 
Email: dmei.feng@gmail.com 
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RC1 
General Comments (overall quality of paper): 
Overall, I think the paper was well written as a climate impacts assessment and application of 
uncertainty methods provided elsewhere. As stated in the Introduction, the goals of the paper 
were threefold: 
1) Compare different hydrologic models 2) Quantify uncertainty associated with different 
modeling choices 3) Provide suggestions for studies looking at impacts of climate change 
The paper accomplished these three goals (aside for one point which I address in the paragraph 
below). However, the authors don’t make it clear how the field is moved forward even if all three 
goals are achieved. The authors’ study appears to be similar to the Vetter et al (2015) study but 
in a different, and more homogeneous, domain. As-is, the authors conducted a very detailed 
assessment of climate change impacts on streamflow in Santa Barbara County. Their assignment 
of uncertainty to different modeling components followed methods similar to those in previous 
studies like Addor et al (2014), Vetter et al (2015), Hattermann et al (2018), Chegwidden et al 
(2019). I did not see any truly novel methods proposed, thus making the paper seem more like 
an, albeit very rigorous, report. As is, the study is appropriate for a climate impacts assessment 
journal, but the findings are insufficiently new to warrant publication in HESS. 
To make the manuscript more relevant to HESS, I suggest a handful of other potential additions 
to deepen the analysis. Would it be possible to expand the analyses conducted here to other 
domains and thus do an intercomparison across different regions? For example, the findings in 
Figures 5 through 7 are relatively uniform across region and metric. Perhaps the authors could 
probe deeper into those comparisons by conducting more analyses in other regions or with other 
metrics? By expanding the analysis to other regions and metrics the study could test how 
sensitive the uncertainty analysis is to the research question of interest. 
Response: To deepen this study, we have expanded the analysis by adding metrics about runoff 
paths (surface and subsurface), magnitude and timing, and hydrologic seasonality (onset and 
duration of wet season). Dynamics of runoff and discharge impact nutrients/sediment transport, 
soil moisture, occurrence of flash floods, droughts and wildfires in the study region, which are 
thus crucial to local society, agriculture and coastal ecosystems. The new analysis reveals new 
interesting findings, including the increase in surface runoff during wet season while decrease in 
dry season, a decrease in subsurface runoff, a shortened and delayed wet season, and variable 
roles of hydrologic models and parameters for different variables (runoff, discharge, and 
seasonality) in terms of uncertainty contribution. We believe these findings will be useful for 
practices and studies in many fields, such as water resources, agriculture, ecosystems 
conservation, and risk control. We have also added a detailed discussion about this in the 
manuscript. The study region is a representative Mediterranean area. The findings in this study, 
such as the favorability of STP algorithm, the important role of GCM selection, and the 
negligible role of hydrologic model parameters in uncertainty, can be informative for studies 
associated with hydrologic model assessment and climate change impact analysis for other 
Mediterranean regions. We have added the new results (figures and text) and associated 
discussions in the manuscript. 

The corresponding changes are listed as below: 

L103-123: 



“…Previous studies (e.g., Feng et al., 2019) showed that the intensified storm events 
concentrated in a shorter and delayed wet season in SBC under future climate conditions will 
cause significant increase in discharge, especially the extremes (e.g., 100-yr discharge). The 
climate change impacts on the path and quantity of surface/subsurface runoff and discharge will 
impact the soil erosion, sediment/nutrients transport and subsequently affect the coastal 
ecosystems (Myers et al., 2019) Feng et al., 2019). The longer dry season may also contribute to 
the increased occurrence of droughts and wildfires (Myers et al., 2019). Therefore, changes in 
these hydrologic variables (e.g., runoff, discharge and seasonality) under future climate 
conditions and associated uncertainties are essential to assess the vulnerability of coastal region 
in CA and make adaptation strategies to accommodate climate change. In this study, we 
simulated future hydrologic variables using three hydrologic models forced with climate outputs 
from 10 GCMs that were selected for their good performance in representing historical 
meteorological characteristics in the study region, under 2 emission scenarios (RCP 4.5 and 
RCP 8.5) (Feng et al., 2019).  The main objectives of this study were to: (1) evaluate and 
compare the performance of hydrologic models with different approaches representing runoff 
generation process using a consistent modeling framework; (2) quantify the relative 
contributions of different sources (including hydrologic process models, parameterizations, 
GCM forcings and emission scenarios) to the total uncertainty in simulated surface/subsurface 
runoff, streamflow, and seasonality; and (3) provide actionable information and suggestions for 
studies and practices associated with hydrologic impacts of climate change.” 

 



 
Figure 6: (a) Projected relative changes (%) in monthly surface runoff, subsurface runoff and 
total runoff in the whole study region during 2081-2100 as compared to historical period (1986-
2005); (b) Relative contributions (%) of the uncertainties for the projected changes in the 
monthly total runoff; Hydro = Hydrologic models; Para = hydrologic model parameters; GCM 
= General Circulation Models; RCP = Representative concentration pathways (emission 
scenarios); “other” is the uncertainty from the 3rd and 4th orders of interactions between the 4 
major sources (i.e., GCMs, RCPs, Hydrologic models and parameters). 

L365-377: 

“The projected changes in monthly runoff (surface, subsurface and total) during 2081-
2100 compared to 1986-2005 range between -100% and 300% (Figure 6a). The median changes 
indicate that surface runoff will probably increase in February and March, and decrease in 
other months (Figure 6a). This is because in the future, the onset of wet season will be delayed 



and more severe storm events will occur during the shorter wet season (mainly during February 
and March) (Feng et al., 2019). The decrease in subsurface runoff in all months is probably 
because the decrease in the frequency (or total number) of storm events (Feng et al., 2019). The 
changes of monthly total runoff show similar pattern with the surface runoff, suggesting the more 
pronounced changes in surface runoff as compared to subsurface runoff. The major uncertainty 
sources are GCM and RCP, which account for ~45% of total uncertainty (Figure 6b). 
Hydrologic models contribute to ~10% of total uncertainty (Figure 6b). This suggests that the 
climate patterns (e.g., storm event frequency and intensity) are more important factors 
controlling the runoff generation than the hydrologic model algorithms.” 
 

Figure 9: (a) Projected change (days) in the onset and duration of wet season in SBC; positive 
(negative) values indicate later (earlier) onset or longer (shorter) duration of the wet season; (b) 
relative contributions (%) of the uncertainties of the projected changes in seasonality. Hydro = 
Hydrologic models; Para = hydrologic model parameters; GCM = General Circulation Models; 
RCP = Representative concentration pathways (emission scenarios); “other” is the uncertainty 
from the 3rd and 4th orders of interactions between the 4 major sources (i.e., GCMs, RCPs, 
Hydrologic models and parameters). 

L403-424: 

“Consistent with the work of Feng et al. (2019), this study suggests a delayed onset and shorter 
duration of wet season (Figure 9a). The median changes show that the wet season will start later 
by 3 days, and become shorter by ~6 days. The major uncertainty sources for both onset and 
duration of wet season are GCM (~20%) and hydrologic models (~15%). Different from 
discharge and runoff, the seasonality shows more uncertainty from hydrological models (15% vs 
12%) and model parameters (~6% vs 2%) (Figure 9b). This is because the seasonality integrates 
the runoff generation, paths and transport processes for both surface and subsurface runoff, 
which are important for the timing and quantity of simulated discharge.” 
“As the major carrier of nutrients/sediment, surface runoff and discharge are crucial for beach 
ecosystems in the study region (Myers et al., 2019;Aguilera and Melack, 2018). Nutrients and 



sediment build up over land surface and in channels during dry season, and get flushed with the 
initiation of wet season (Scott and Williams, 1978;Keller and Capelli, 1992;Bende-Michl et al., 
2013;Aguilera and Melack, 2018). The nutrients/sediment fluxes are positively correlated with 
hydrologic variability, and the majority of them occurs at the beginning of the wet season 
(Aguilera and Melack, 2018;Homyak et al., 2014). Therefore, both timing and magnitude of 
runoff and discharge will impact the nutrients/sediment export to the coastal ecosystems. The 
findings in this study reveal that the surface runoff and river discharge (especially the extremes) 
will increase but get delayed during wet season (Figures 6 and 9), implying that the 
nutrients/sediment fluxes will likely increase and occur in a shorter and delayed period. The 
decrease in runoff (both surface and subsurface) during the dry season suggests that the soil 
moisture will be lower under future climate conditions in the study region. The longer and drier 
dry season will probably increase the occurrence of severe droughts and wildfires.” 
Another potential avenue of analysis could be a deeper understanding of the parameter space. I 
am skeptical about the finding that parameterizations explained little of the uncertainty since it 
appeared (from Figure 4) that the values within the different parameter sets evaluated were 
actually quite similar. Since it appears that you have those parameter sets available, would it be 
possible to expand the analysis to include more parameter sets? That could buy more confidence 
in the current analyses. 
Response: We have modified the parameter sets analysis by implementing more sophisticated 
parameter selection criteria and selecting more parameter sets. We first selected 4 parameter sets 
with highest NSE as we did originally, and then we selected another 6 sets of parameters 
following the procedures: (1) rank the rest parameter sets based on their performance (assessed 
by NSE); (2) randomly select 6 sets of parameters from the top 20% samples. These 10 
parameter sets take both parameter dominance and variability into account. Then they were used 
for the uncertainty analysis. The associate figure and results have been updated.  

L220-226: 

“To quantify the uncertainties from model parameters, we selected 10 parameter sets 
using the following criteria: (1) select 4 parameter sets with highest NSE based on the 
calibration results; (2) rank the rest parameter sets based on their performance (i.e., NSE), and 
randomly select 6 sets from the top 20% candidates. This parameter selection process enabled us 
to take both parameter dominance and variability into account, while maintaining the high 
model performance, which is important for the uncertainty analysis. These 10 parameter sets 
were then used for uncertainty analysis.” 



 
 
  

Figure 5: Parameters (black circles) 
sampled during calibration process 
and their corresponding 
performance (assessed by NSE). The 
red circles indicate the 4 parameter 
sets with highest NSE values, and 
the green circles indicate 6 
randomly selected parameter sets 
from the top 20% samples (ranked 
by NSE). These ten parameter sets 
were used for uncertainty analysis. 
In this figure, the parameter values 
are normalized by their ranges 
(shown in Table 1), so the range of 
the x axis is 0-1. The parameters 
were sampled throughout their 
whole ranges, however, for clarity, 
samples with NSE lower than 0.3 are 
not shown in this figure. 



References not included in the current manuscript: 
Addor, N., Rössler, O., Köplin, N., Huss, M., Weingartner, R., & Seibert, J. (2014). Robust 
changes and sources of uncertainty in the projected hydrological regimes of Swiss catchments. 
Water Resources Research, 50(10), 7541–7562. https://doi.org/10.1002/2014WR015549 
Chegwidden, O. S., Nijssen, B., Rupp,D. E., Arnold, J. R., Clark, M. P.,Hamman, J. J., et al. 
(2019). How do modeling decisions affect the spread among hydrologic climate change 
projections? Exploring a large ensemble of simulations across a diversity of hydroclimates. 
Earth’s Future,7,623–637. https://doi.org/10.1029/2018EF001047 
Hattermann, F. F., Vetter, T., Breuer, L., Su, B., Daggupati, P., Donnelly, C., Krysnaova, V. 
(2018). Sources of uncertainty in hydrological climate impact assessment: A cross-scale study.  
Environmental Research Letters, 13(1). https://doi.org/10.1088/1748-9326/aa9938 
Response: They have been inserted to the manuscript in L77-81.  
================================== 
Specific Comments (individual scientific questions/issues): 
L14- In the abstract, you mention that identification and uncertainties are rarely studied. This is 
not true. It is increasingly common (see, for example, the three references above). 
Response: With that sentence, we meant the identification of uncertainties from the hydrological 
model components (not the whole hydrologic model) is rarely studied. We have modified the 
sentence as follows: 

L12-16: 

“Such assessments are commonly accomplished using outputs from a hydrologic model forced 
with future precipitation and temperature projections. The algorithms used for the hydrologic 
model components (e.g., runoff generation) can introduce significant uncertainties in the 
simulated hydrologic variables. Here, a modeling framework was developed that integrates 
multiple runoff generation algorithms with a routing model and associated parameter 
optimizations. This framework is able to identify uncertainties…” 
 
L139-141 – Is the monthly 1 degree aerosol optical depth product sufficient for calculating 
radiation at the scale you are working at? 
Response: The 1 degree aerosol optical depth product was downscaled to 0.05 degree for PET 
estimation. The following text has been inserted to the manuscript: 

L149-150: 

“The aerosol optical depth product was downscaled to 0.05° x 0.05° (Raoufi and Beighley, 
2017).” 
 
L154-156 – Should there be some discussion about the fact that, regardless of subbasin size 
(which, as the authors state, ranges between 0.1 and 135 kmˆ2) the parameters are averaged 
across each subbasin? 
Response: The “sub-basin” here refers to the model unit, which was indicated in Lines 162-164 
“The sub-basins are irregular-shape catchments defined by the flow accumulation area 
threshold. In this study, the threshold is 1 km2, which means the sub-basins (model units) are in 
size of roughly 1 km2.” So, the watershed with a drainage area of 135 km2 roughly consists of 
135 model units, and the model parameters are averaged over each model unit. For small 

https://doi.org/10.1088/1748-9326/aa9938
https://doi.org/10.1088/1748-9326/aa9938


watersheds with drainage areas less than 1 km2, the model parameters were averaged over each 
watershed. To clarify it, we have added the following text to the manuscript: 

 L166-168: 

“This indicates these parameters were averaged for each model unit, the majority of which had 
an area of roughly 1 km2, with less than 1% having an area of <1 km2.” 
L175-254 – I’m not sure the specificity is necessary for each of the hydrologic models in the 
main text. I would suggest moving the conceptual plot from the supplemental text to the main 
text and moving the mathematical explanations to the supplemental text. This would save you 
space in the main body of the text, improving readability, while letting your story come through 
easier. With that space you could fill in with more details on the calibration methods. 
Response: We have moved the text about hydrologic models to the Supporting Information and 
added a conceptual figure (Figure 2) to illustrate the framework.  

 

 

 
 

 

Figure 2: The conceptual framework about the hydrologic models used in this study. Portions of 
this figure were adapted from the work of Beighley et al. (2009). (a) shows the grid-based 
climate inputs for hydrologic models; (b) shows water balance models; P is precipitation; ET is 
evapotranspiration; Es is soil evaporation; Ec is canopy evaporation; ET is transpiration; es is 
water available for surface runoff; ess is water available for subsurface runoff; θU is relative soil 
moisture in upper soil layer; θL is relative soil moisture in lower soil layer; I is infiltration; K is 
water flux from the upper layer to the lower layer; and D is diffusive water flux from the lower 
layer to the upper layer; and (c) shows HRR routing model; the “open-book” assumption: two 
identical planes (P1 and P2) with the channel (Ch) in the center of each sub-basin; qs is the 
surface runoff; qss is subsurface runoff; Q is discharge in the river channel, and WT is 
groundwater table. The parameters in red italic are for surface runoff generation, the 
parameters in blue italic are for subsurface runoff generation. The first columns in the tables 
indicate the models that the parameters are used for. The definition of these parameters can be 
found in the supporting information. 



L260-263 – The definitions of Kss and Ks would probably best fit in the description of the 
routing model since they are from that model. 
Response: We have moved them to the routing model section L202-205. 
 
L268-269 – How are the three different optimal parameter sets selected? Are they very different 
parameter sets? As in, are they likely to be in very different parts of the overall calibration 
space/range of parameter values? Or are they likely to be relatively similar? If they are similar, 
does that explain the less than 1% uncertainty explained by parameterization referenced in L426 
in the results? I see in Figure 4 that some of the parameter values for some models are indeed 
quite similar (e.g. Kss_all for RCM-HRR). How does this affect your conclusions about the 
minimal contribution of parameterization toward total uncertainty? 
Response: We think the reviewer is right that some parameters are quite similar, which explains 
the small uncertainty contribution. We have modified the parameter selection process by 
applying the following criteria: (1) select 4 parameter sets with highest NSE based on the 
calibration results; (2) rank the rest parameter sets based on their performance (i.e., NSE), and 
randomly select another 6 sets from the top 20% samples. This parameter selection process 
enabled us to take both parameter dominance and variability into account while maintaining the 
high model performance. The results with these 10 parameter sets show that for changes in 
runoff and discharge, the hydrologic model parameters contribute about 2% to the total 
uncertainty, and for changes in seasonality (onset and duration of wet season), the parameters 
can contribute ~6% of the total uncertainty. The associated figures (Figures 5-9) and text (section 
3.2) have been updated.  
L320-324 – Do the authors conduct their performance weighting based upon the GCM 
simulations? Or do they do it using the historical meteorological forcing data (in this case Livneh 
et al)? The latter would be appropriate, since the former would not match the actual weather 
experienced by the region. 
Response: We did the performance weighting on the simulations from the 
GCMs+HydroModels+Parameters combinations, because we need to assess their performance in 
representing historical reality and then assign weights to them. The reviewer is right that GCMs 
don’t match the actual weather. To deal with this issue, we ranked the simulated discharge 
variable series (e.g., annual mean discharge or annual peak discharge) from each 
GCMs+HydroModels+Parameters simulation, and then compared them with the observations 
(also ranked). The details of this process have been provided in the Supporting Information.  

“In this study, the annual mean discharge and annual maximum daily discharge are the 
considered variables. Since these two variables are not normally distributed, a Box-Cox 
transformation is performed before applying the Expectation–Maximization method. 
Considering the GCMs’ predictions are not temporally consistent with reality (i.e., the GCMs’ 
prediction does not have correct timing), the observation and simulation are both ranked from 
high to low, and then 𝑙𝑙(𝜃𝜃) is maximized based on the ranked series. The procedure is as follows: 
Step I: Calculate the observed annual mean discharge (or annual maximum daily discharge) at 
each watershed of interest for the period 1986-2005 
Step II: Calculate the simulated annual mean discharge (or annual maximum daily discharge) 
for each simulation in the ensemble (3×10×10=300 models) for the same period 



Step III: Rank the observed and simulated annual mean discharge (or annual maximum daily 
discharge) in a descending order 
Step IV: Calculate the Box–Cox coefficient λ for each watershed by using the BoxCox.lambda 
function in R and transform the quantities by using Eq. S28: 

 𝑧𝑧𝑡𝑡 =
𝑦𝑦𝑡𝑡𝜆𝜆 − 1
𝜆𝜆

 (S28) 

Step V: Apply the EM process to the transformed series 𝑧𝑧𝑡𝑡 and estimate the weights and variance 
of all models 
Step VI: Calculate the probability of estimated changes in Qm, Qp and Q100 in the future (2081-
2100) relative to 1986-2005 using the weights obtained in Step V.” 
 
L360-363 – Is the climate data, even though it was downscaled to the 1/16th degree scale, 
appropriate for the scale of the subbasins the authors are evaluating (for instance the basin that is 
only 0.1 kmˆ2)? As the authors suggest in L360-363, they note substantial biases in the 
precipitation that, in one example case, doesn’t even provide enough water to account for 
streamflow in absence of ET. Did the authors modify precipitation at all to account for this? If 
not, do the authors think that some other modification of the precipitation forcing would be 
appropriate? Also, in Figure 2 caption: (a) what does “normalized calibration process” mean? 
Response: We agree with the reviewer that the 1/16th degree precipitation is too coarse for the 
0.1 km2 watershed. However, in this study region, such small basins only account for a small 
fraction of the total area (<1%). We were aware of this issue, so in this study we mainly focused 
on the results for the major watersheds (area>7 km2) which account for 83% of the total area 
(Figure 7). In terms of the precipitation scale, we didn’t make modifications to it. However, we 
do think it is a good point that merits further research efforts. In Figure 2 caption, the 
“normalized calibration process” means the x-axis range (i.e., 0-1) is normalized by the number 
of iterations during calibration. The termination of the calibration process was determined by an 
increment threshold (i.e., the improvement step in NSE), so the numbers of calibrations iterations 
among models were slightly different. For example, for the Mission Creek watershed (USGS 
gauge NO. 11119750), the numbers of calibration iterations for these three hydrologic models 
were 1494, 1460 and 1518, respectively. To normalize these numbers to the range of 0-1 for a 
better presentation, we divided them by 1494, 1460 and 1518, respectively. The following text 
has been inserted to the Fig.3 caption: 
L678-679: 
“the “normalized calibration process” means the x axis range is normalized by the number of 
iterations during calibration” 
 
L437-438 – “Changes in Qm, Qp and Q100 are higher under RCP 8.5, but the uncertainties are 
also higher (Fig. 8), which suggests the uncertainties from RCPs are mainly introduced by RCP 
8.5.” Could you clarify this statement? I think there may be some conflation in the sources of the 
uncertainties in this argument. In looking at Figure 8, we see that the distributions are very 
different between RCP45 and RCP85. However, in your ANOVA formulation, the comparison 
of the different model choices really just looks at the differences in the means. Thus, attributing 
the uncertainty to RCP 8.5 can’t be made by these figures alone, since you are only comparing 
two choices. If you are referring to the large standard deviation of the RCP85 distribution, then 



that uncertainty contribution would actually be a higher-order interaction of RCP and something 
else (perhaps GCM?). 
Response: We think the reviewer is right. We have modified this sentence to the following: 

L395-398: 

“Changes in Qm, Qp and Q100 are higher under RCP 8.5, but the uncertainties are also higher 
(Figure 8), which suggests the higher contribution of RCP 8.5 in the uncertainties of higher-
order interactions between RCP and other factors (i.e., GCM, hydrologic model and 
parameters).” 
L394-396 – I assume the reference to the National Land Data Assimilation System VIC model 
set-up is the one referenced at the following DOI? 
(https://doi.org/10.5067/ELBDAPAKNGJ9) If so, it needs a citation and perhaps some 
explanation as to why this is used as a suitable comparison. 
Response: Thanks for this information. We have added the reference in the text. We also have 
inserted the following text to explain the reason for selecting the NLDAS-VIC model outputs as 
a comparison. 
 L340-342: 
“The NLDAS-VIC runoff simulations are from the same runoff generation model (i.e., VIC) as 
used in this work, and have compatible spatial/temporal resolutions to those in this study, which 
makes it a suitable reference for comparison.” 
 
L446-449/456-457 – How can you justify that model configurations (e.g. irregular catchments or 
routing schemes) are the reason that hydrologic models played a smaller role in your uncertainty 
findings? 
Response: We have modified the text as follows: 
L425-443: 
“Compared to previous studies (e.g., Vetter et al. (2015), Schewe et al. (2014),  Hagemann et al. 
(2013);Troin et al. (2018), and Asadieh and Krakauer (2017)), this work identifies relatively low 
uncertainty contributions from hydrologic models. The main reason for this is probably that the 
hydrologic model uncertainty in this study was only from runoff generation algorithms and 
associated parameters. As is, the three hydrologic models share common algorithms for ET and 
plane/channel routing, and the same model configuration (e.g., soil matrix and model unit 
definition). These similarities among models likely reduced the differences in simulated runoff 
and discharge. In addition, the uniform calibration approach and parameter selection criteria 
were also likely to eliminate user/method bias which is common in studies that consider more 
than one hydrologic model. In contrast, the hydrologic models used in previous studies have 
their own model component algorithms (e.g., ET and routing algorithms), and model 
configurations. For example, the VIC model (here VIC refers to the original VIC model, and is 
different from the model used in this study; to clarify, in following text, VIC refers to the original 
VIC model while VIC-HRR refers to the model used in this study) applies an ET algorithm 
different from the one used in this study (Raoufi and Beighley, 2017), uses the grid-based model 
units ignoring the spatial arrangement, and has its own routing scheme which adopts the 
synthetic unit hydrograph concept. When comparing models owning their own component 



algorithms, the differences between models likely resulted in larger uncertainties in the 
simulation from hydrologic models in previous studies.” 
 
L449-451 – What do the authors mean by “a common calibration approach is also used to 
eliminate user/method bias”? 
Response: In this study, we performed the same calibration procedure for all hydrologic models 
including the same multi-objective optimization algorithm and the same final parameter selection 
criteria. Compared to the scenarios when different calibration processes and final parameter 
selection standards are applied, the calibration approach in this study may possibly generate a 
more consistent result. To make it clear, we have modified the sentence to: 

L432-434: 

“…the uniform calibration approach and parameter selection criteria were also likely to 
eliminate user/method bias which is common in studies that consider more than one hydrologic 
model.” 
L461-462 – Is reducing the uncertainty the goal for an impacts assessment? Would not the goal 
actually be to reveal the uncertainty present, and thus actually focus on multiple hydrologic 
models as the authors suggest that their selection accounts for a sizeable portion of the 
uncertainty space? 
Response: The uncertainty induced by hydrologic models is due to their limited capability in 
representing the real hydrological processes. We have multiple options for hydrologic models.  
Therefore, it is necessary to quantify the uncertainty caused by the hydrologic model choice, 
which is one of the main objectives of this study. On the other hand, the performances of 
different hydrologic models are not the same. For example, the results in this study showed that 
STP performs better than the other methods. This implies we need to treat these models 
differently. This is another objective of this study: evaluate and compare the performance of 
hydrologic models with different approaches representing runoff generation process. To make 
the statement more appropriate, we have modified the text as below: 

L444-454: 

“This study can also provide useful information for hydrologic model evaluation and selection. 
As discussed in section 3.1, the STP-HRR model is more suitable than the other two models for 
the study region, mainly due to its ability to represent the highly non-linear hydrological 
response to precipitation forcings. This implies hydrologic models adopting the saturation excess 
runoff generation algorithms may be more suitable for areas with a Mediterranean climate. The 
uncertainties from hydrologic models are larger than those from the hydrologic model 
parameters for all variables (i.e., discharge, runoff and seasonality), suggesting the inter-model 
variability is larger than the intra-model variability (from model parameters). This implies that 
model selection is more important than the parameter selection, and that the parameter 
equifinality (or non-uniqueness) is less of a concern when quantifying climate change impacts on 
hydrologic fluxes using an ensemble of GCM forcings.” 
L471-475 – At the relatively small scale which you are working, how is routing impactful?  
Response: We think the reviewer is right that the routing for small basins can be not very 
impactful. We have modified it to the following: 



L454-460: 

“In this study, only the runoff generation algorithm was investigated. Other hydrologic model 
components, such as ET algorithms and routing methods, also have variants. The choice of these 
components may also make a difference in the total uncertainties in simulated runoff and 
streamflow. In addition, the methods for GCM downscaling can also contribute to the 
uncertainty in predicted changes in hydrology. Further study integrating different algorithms for 
hydrologic model components as well as GCM downscaling methods can be conducted in the 
future…” 
 
L483 – How do you define uncertainty of 230%? Is that the range? Or +/- 2 standard deviations? 
etc): 
Response: The uncertainty was defined as the range of predicted changes, that is, max change - 
min change. To clarify this, we have added the following text: 

L485-487: 

“(here, uncertainty refers to the range of predicted relative changes among models, that is, from 
-100% to +220%)” 
 
L69-70, L81 – Confusing sentences/phrasing  
Response: We have modified the sentence in L69-70 to “Model parameter selections based on 
calibration metrics can result in different optimal parameter values (i.e., parameter 
equifinality).” 
We have modified the sentence in L81 to “Most previous studies treated hydrologic models as a 
whole package. However, hydrologic models consist of multiple components (e.g., runoff 
generation, ET and routing). These components can be significantly different among models. 
When considering the hydrologic model as a whole, it is difficult to quantify relative uncertainty 
contributions from different components.” 
================================== 
Technical Corrections (typing errors, etc.) 
L43 – “cause” not “causes”  
L220 – “matric” not “metric” – there are many other language typos (e.g. L222 “expresses” 
should be “expressed”) sprinkled throughout the text, but I imagine that with another read-
through these issues could be resolved.  
Overall, there are small language errors throughout the manuscript which the vast majority of the 
time don’t interfere with understanding but are somewhat distracting. A careful reading would 
help resolve these. 
Response: Thanks for pointing them out. A careful proofreading has been made to correct them. 
 
  



RC2 

This manuscript tries to investigate the uncertainties resulting from different hydrological model 
components when assessing the impacts of climate change on streamflow. To do so, they design 
a modeling framework that incorporates three runoff yield schemes, one runoff routing scheme, 
several GCM and RCP. I think the topic is interesting and the manuscript is overall well-
prepared. However, I think there are still several issues have to be addressed before considering 
for publication in HESS.  

The authors choose annual mean discharge, annual peak discharge or 100-yr flood discharge to 
analyze the uncertainties. I doubt if it’s meaningful to investigate annual mean values in a 750 
km2 catchment. In figure 5 they even investigate changes and uncertainties in much smaller sub-
basin. Because I think, according to their methodology, in such a small catchment the annual 
mean runoff is simply controlled by precipitation and evaporation. On the other hand, when 
investigate the annual peak values (here it’s not clear how they define ‘peak’ values, from daily 
or hourly?), the routing may play a more significant role in the timing and magnitude of 
simulated streamflow. My concern is if the authors can still reach the same conclusions if they 
use daily streamflow when perform uncertainties analysis because I believe in such small 
catchment different runoff yield schemes have more effects on daily streamflow instead annual 
streamflow.  

Response: The annual mean discharge was defined as the average of daily streamflow in a year.  
To clarify it, we have inserted the following sentence in the manuscript: 

L274-275: 

“Here, the annual mean discharge was defined as the average of daily streamflow in a year.”  
The annual peak discharge was defined as the maximum daily streamflow in a year. It was 
described in L274: “annual maximum daily discharge (Qp)” 
 

I also want to hear opinions from the authors regarding the choose of runoff yield scheme. When 
perform regional or global simulations using LSM, people usually can only use one runoff yield 
option, either saturation-excess (e.g. NoahMP, CLM) or infiltration-excess (e.g. VIC). However, 
when focus on the specific catchment, you can definitely choose a runoff yield scheme that is 
suitable for the hydrological regime of that catchment. I’m not challenging your work, just want 
to hear some discussion.  

Response: This is a good point. One of the main objectives of this study was to “evaluate and 
compare the performance of hydrologic models with different approaches representing runoff 
generation process…” (L117-119). The results in this study showed that STP performs better 
than the other two methods. This finding can be informative for future studies associated with 
hydrologic model selection. We have inserted the following discussion in the manuscript: 

L444-462: 



“This study can also provide useful information for hydrologic model evaluation and 
selection. As discussed in section 3.1, the STP-HRR model is more suitable than the other two 
models for the study region, mainly due to its ability to represent the highly non-linear 
hydrological response to precipitation forcings. This implies hydrologic models adopting the 
saturation excess runoff generation algorithms may be more suitable for areas with a 
Mediterranean climate. The uncertainties from hydrologic models are larger than those from the 
hydrologic model parameters for all variables (i.e., discharge, runoff and seasonality), 
suggesting the inter-model variability is larger than the intra-model variability (from model 
parameters). This implies that model selection is more important than the parameter selection, 
and that the parameter equifinality (or non-uniqueness) is less of a concern when quantifying 
climate change impacts on hydrologic fluxes using an ensemble of GCM forcings. In this study, 
only the runoff generation algorithm was investigated. Other hydrologic model components, 
such as ET algorithms and routing methods, also have variants. The choice of these components 
may also make a difference in the total uncertainties in simulated runoff and streamflow. In 
addition, the methods for GCM downscaling can also contribute to the uncertainty in predicted 
changes in hydrology. Further study integrating different algorithms for hydrologic model 
components as well as GCM downscaling methods can be conducted in the future. Such analysis 
can be useful to guide stakeholders to select appropriate hydrologic algorithms and to develop 
actionable adaptation and mitigation strategies to accommodate climate change.” 
 

Line 134-141. The authors use MODIS products to estimate the PET, However, they don’t 
provide any detail regarding how to convert PET into ET for runoff yield simulation. In 
eq(1)~(7) I don’t see any variable related to ET.  

Response: The ET was extracted from soil at each time step, and then the soil content was 
updated which was used for water balance calculation in next time step. We have added the 
following content to the manuscript: 

L193-198: 

“The evapotranspiration was estimated using Eq. S15…. After the water fluxes (runoff, ET and 
water movement between soil layers) were determined, the soil moisture was updated which 
would be used for the water balance calculation in the next time step.” 

Supporting information: 

𝐸𝐸𝐸𝐸 = 𝑚𝑚𝑚𝑚𝑚𝑚 (𝑃𝑃𝐸𝐸𝐸𝐸,𝑊𝑊 −𝑊𝑊𝑚𝑚𝑚𝑚𝑚𝑚)       (S15) 

where PET is the potential evapotranspiration estimated using the method proposed by 
Raoufi and Beighley (2017); W is water content in the upper soil layer; 𝑊𝑊𝑚𝑚𝑚𝑚𝑚𝑚 is the 
minimum water content in the soil, defined as 0.15× 𝑊𝑊𝑠𝑠; 𝑊𝑊𝑠𝑠 is soil water content as 
saturation. 

Line 255. The authors calibrate several parameters related to runoff. But they don’t document 
how they fix the value of soil depth, from dataset or by calibration. In Line 233 they state that the 
soil depth is based on a previous study but I don’t see any description in (Feng et al., 2019). In 



their modeling framework, they use quite simple water balance scheme to account for the soil 
water movement, in this case the soil depth is an important variable determining the soil water 
holding capacity.  

Response: The soil depth data was originally from the Soil Survey Geographic (SSURGO) Data 
Base for Santa Barbara County. This reference has been added to the manuscript L190-191.  

Line 256. sim-topmodel uses groundwater depth to calculate runoff yield. Do you spin up the 
model to reach the equilibrium state?  

Response: Yes. We did spin up the model for one year. The following text has been inserted to 
the manuscript. 

L209-210: 

“The models spun up for one year to ensure the equilibrium status.” 

Line 290. If I understand correctly, here should be "parameter", which is different from 
"parameterization 

Response: Thanks for pointing it out. We have corrected it.  



SC1 

This paper presents some limited results of evaluating the impact of different formulations in 
runoff generation schemes when simulating streamflow. My major objection with the paper is 
that it really is not assessing the uncertainty but rather the variability of the simulated streamflow 
and how each of the forcings, model parameters or formulations contribute to it. Although that is 
valuable in itself, the authors claim that the objective is to identify the uncertainties in the 
context of climate change simulations. However, that is not what was done here. The calibration 
of the parameters was done using an observation-based forcing dataset and although I can 
understand the rationale, I believe that any calibration of parameters should have been done in a 
way that would emulate the intended application (i.e. using GCM output to drive the hydrology 
model). I believe historical simulation are available from CMIP5 and if so they should be used to 
evaluate the actual uncertainty of simulated streamflow within the framework that the authors 
have developed. The end of 21st century simulations should be a final experiment (if included at 
all) given the objective of the paper. Consequently, I recommend major revisions before 
publication that will include new simulations that test the different model parameter sets, runoff 
generation schemes and downscaled GCM output for the period when streamflow measurements 
are available, so that the actual uncertainty can be quantified. In addition, I believe the study area 
is rather limited and an opportunity is being missed by not including additional basins with 
different physiography and climate.  

Response: In this study, we did use GCM simulations as the forcings of hydrologic models for 
the historical period. For each simulation scenario (i.e., the combination of hydrologic model, 
parameter set, GCM and RCP), we simulated runoff and discharge using GCM outputs for both 
historical and future periods, and then the relative changes (%) between future and historical 
simulations were quantified. The total uncertainty in these projected changes from all model 
combinations (3 hydrologic models, 10 parameter sets, 10 GCMs and 2 RCPs; 3*10*10*2=600) 
was quantified. The uncertainty contributions to the total uncertainty were then quantified using 
the ANOVA method. 

To clarify it, we have inserted the following text to the manuscript: 

L230-235: 

“Here, we used GCM outputs as the forcings of hydrologic models for both historical (1986-
2005) and future (2081-2100) periods. For each simulation scenario (i.e., the combination of 
hydrologic model, parameter set, GCM and RCP), the historical and future daily streamflow and 
monthly runoff were simulated, and the relative changes (%) were quantified. Note, there is no 
RCPs for historical period, and we used the same historical simulation for RCP 4.5 and 8.5.” 

To deepen this study, we have also expanded the analysis by including more metrics about the 
volume and composite of runoff (i.e., monthly surface, subsurface and total runoff), as well as 
the hydrologic seasonality (wet season length and timing of wet season onset), considering these 
quantities are of great importance for the study region (Myers et al., 2019;Feng et al., 2019).  

We have added the following figures and texts in the manuscript: 



 

Figure 6: (a) Projected relative changes (%) in monthly surface runoff, subsurface runoff and 
total runoff in the whole study region during 2081-2100 as compared to historical period (1986-
2005); (b) Relative contributions (%) of the uncertainties for the projected changes in the 
monthly total runoff; Hydro = Hydrologic models; Para = hydrologic model parameters; GCM 
= General Circulation Models; RCP = Representative concentration pathways (emission 
scenarios); “other” is the uncertainty from the 3rd and 4th orders of interactions between the 4 
major sources (i.e., GCMs, RCPs, Hydrologic models and parameters). 

L365-377: 

“The projected changes in monthly runoff (surface, subsurface and total) during 2081-
2100 compared to 1986-2005 range between -100% and 300% (Figure 6a). The median changes 



indicate that surface runoff will probably increase in February and March, and decrease in 
other months (Figure 6a). This is because in the future, the onset of wet season will be delayed 
and more severe storm events will occur during the shorter wet season (mainly during February 
and March) (Feng et al., 2019). The decrease in subsurface runoff in all months is probably 
because the decrease in the frequency (or total number) of storm events (Feng et al., 2019). The 
changes of monthly total runoff show similar pattern with the surface runoff, suggesting the more 
pronounced changes in surface runoff as compared to subsurface runoff. The major uncertainty 
sources are GCM and RCP, which account for ~45% of total uncertainty (Figure 6b). 
Hydrologic models contribute to ~10% of total uncertainty (Figure 6b). This suggests that the 
climate patterns (e.g., storm event frequency and intensity) are more important factors 
controlling the runoff generation than the hydrologic model algorithms.” 
 

Figure 9: (a) Projected change (days) in the onset and duration of wet season in SBC; positive 
(negative) values indicate later (earlier) onset or longer (shorter) duration of the wet season; (b) 
relative contributions (%) of the uncertainties of the projected changes in seasonality. Hydro = 
Hydrologic models; Para = hydrologic model parameters; GCM = General Circulation Models; 
RCP = Representative concentration pathways (emission scenarios); “other” is the uncertainty 
from the 3rd and 4th orders of interactions between the 4 major sources (i.e., GCMs, RCPs, 
Hydrologic models and parameters). 

L403-424: 

“Consistent with the work of Feng et al. (2019), this study suggests a delayed onset and shorter 
duration of wet season (Figure 9a). The median changes show that the wet season will start later 
by 3 days, and become shorter by ~6 days. The major uncertainty sources for both onset and 
duration of wet season are GCM (~20%) and hydrologic models (~15%). Different from 
discharge and runoff, the seasonality shows more uncertainty from hydrological models (15% vs 
12%) and model parameters (~6% vs 2%) (Figure 9b). This is because the seasonality integrates 
the runoff generation, paths and transport processes for both surface and subsurface runoff, 
which are important for the timing and quantity of simulated discharge.” 



“As the major carrier of nutrients/sediment, surface runoff and discharge are crucial for beach 
ecosystems in the study region (Myers et al., 2019;Aguilera and Melack, 2018). Nutrients and 
sediment build up over land surface and in channels during dry season, and get flushed with the 
initiation of wet season (Scott and Williams, 1978;Keller and Capelli, 1992;Bende-Michl et al., 
2013;Aguilera and Melack, 2018). The nutrients/sediment fluxes are positively correlated with 
hydrologic variability, and the majority of them occurs at the beginning of the wet season 
(Aguilera and Melack, 2018;Homyak et al., 2014). Therefore, both timing and magnitude of 
runoff and discharge will impact the nutrients/sediment export to the coastal ecosystems. The 
findings in this study reveal that the surface runoff and river discharge (especially the extremes) 
will increase but get delayed during wet season (Figures 6 and 9), implying that the 
nutrients/sediment fluxes will likely increase and occur in a shorter and delayed period. The 
decrease in runoff (both surface and subsurface) during the dry season suggests that the soil 
moisture will be lower under future climate conditions in the study region. The longer and drier 
dry season will probably increase the occurrence of severe droughts and wildfires.” 
Some additional comments are outlined below:  

* How does the uncertainties in the prescribed ET affect the results? Why weren’t they 
accounted for?  

Response: We agree that the uncertainty from ET models will affect the results. However, the 
focus of this study is to investigate the uncertainty contributions of runoff generation schemes 
and associated parameters for the climate change impact assessment. Therefore, we used the 
same ET method and routing algorithm for all three hydrologic models. To clarify it, we have 
added the following text in the discussion section: 

L425-460: 

“Compared to previous studies (e.g., Vetter et al. (2015), Schewe et al. (2014),  
Hagemann et al. (2013);Troin et al. (2018), and Asadieh and Krakauer (2017)), this work 
identifies relatively low uncertainty contributions from hydrologic models. The main reason for 
this is probably that the hydrologic model uncertainty in this study was only from runoff 
generation algorithms and associated parameters. As is, the three hydrologic models share 
common algorithms for ET and plane/channel routing, and the same model configuration (e.g., 
soil matrix and model unit definition). These similarities among models likely reduced the 
differences in simulated runoff and discharge. In addition, the uniform calibration approach and 
parameter selection criteria were also likely to eliminate user/method bias which is common in 
studies that consider more than one hydrologic model. In contrast, the hydrologic models used in 
previous studies have their own model component algorithms (e.g., ET and routing algorithms), 
and model configurations. For example, the VIC model (here VIC refers to the original VIC 
model, and is different from the model used in this study; to clarify, in following text, VIC refers 
to the original VIC model while VIC-HRR refers to the model used in this study) applies an ET 
algorithm different from the one used in this study (Raoufi and Beighley, 2017), uses the grid-
based model units ignoring the spatial arrangement, and has its own routing scheme which 
adopts the synthetic unit hydrograph concept. When comparing models owning their own 
component algorithms, the differences between models likely resulted in larger uncertainties in 
the simulation from hydrologic models in previous studies.  



This study can also provide useful information for hydrologic model evaluation and 
selection. As discussed in section 3.1, the STP-HRR model is more suitable than the other two 
models for the study region, mainly due to its ability to represent the highly non-linear 
hydrological response to precipitation forcings. This implies hydrologic models adopting the 
saturation excess runoff generation algorithms may be more suitable for areas with a 
Mediterranean climate. The uncertainties from hydrologic models are larger than those from the 
hydrologic model parameters for all variables (i.e., discharge, runoff and seasonality), 
suggesting the inter-model variability is larger than the intra-model variability (from model 
parameters). This implies that model selection is more important than the parameter selection, 
and that the parameter equifinality (or non-uniqueness) is less of a concern when quantifying 
climate change impacts on hydrologic fluxes using an ensemble of GCM forcings. In this study, 
only the runoff generation algorithm was investigated. Other hydrologic model components, 
such as ET algorithms and routing methods, also have variants. The choice of these components 
may also make a difference in the total uncertainties in simulated runoff and streamflow. Further 
study integrating different algorithms for these components can be conducted in the future. Such 
analysis can be useful to guide stakeholders to select appropriate hydrologic algorithms and to 
develop actionable adaptation and mitigation strategies to accommodate climate change.”   
 

* Abstract needs some attention, especially after l. 21 in terms of cohesiveness. Right now, it 
reads as bullet points stitched together. Some proofreading needed for redundant articles and 
grammatical errors. 

Response: We have modified the abstract as follows. We have also taken a careful proofreading 
for the whole manuscript. 

L21-34: 

“…A case study conducted in Santa Barbara County, California, reveals increased surface 
runoff in February and March while decreased runoff in other months, a delayed (3 days, 
median) and shortened (6 days, median) wet season, and increased daily discharge especially 
for the extremes (e.g., 100-yr flood discharge, Q100). The Bayesian Model Averaging analysis 
indicates the probability of such increase can be up to 85%. For projected changes in runoff and 
discharge, general circulation models (GCMs) and emission scenarios are two major 
uncertainty sources, accounting for about half of the total uncertainty. For the changes in 
seasonality, GCMs and hydrologic models are two major uncertainty contributors (~35%). In 
contrast, the contribution of hydrologic model parameters to the total uncertainty of changes in 
these hydrologic variables is relatively small (<6%), limiting the impacts of hydrologic model 
parameter equifinality in climate change impact analysis. This study provides useful information 
for practices associated with water resources, risk control and ecosystems conservation and for 
studies related to hydrologic model evaluation and climate change impact analysis for the study 
region as well as other Mediterranean regions.”  

* l. 53: what is the need for naming the "land-atmosphere interactions" as "runoff generation 
process" when the latter is clearly one of the processes that manifest from those interactions?  

Response: We have modified the text to following: 



L54-57: 

“Generally, hydrologic models have modules simulating water partitioning at land surface 
(named as runoff generation process in this study), evapotranspiration, and water transportation 
along terrestrial hillslopes and channels (named as routing process here).” 

* l. 175- : Not sure whether this much detail is needed for the description of the runoff 
generation models, since they are well established.  

Response: We have moved the text associated with runoff generation models to the supporting 
information, and added a figure (Figure 2) to illustrate the modeling framework. 

* l. 354: does that mean that there is bias in the validation data (i.e. streamflow)?  

Response: Yes, we think so. The typical uncertainty for streamflow gauge data is 6%-19% in 
small watershed based on previous studies (e.g., Harmel et al., 2006). The work of Beighley et 
al. (2003) also identified the bias in the 1995 January event. 

We discussed this in L306-311: 

“The uncertainties in gauge measurements can also be a bias source. For example, in typical 
conditions the uncertainty in streamflow measurements ranges between 6%-19% in small 
watersheds, but it can be higher during large storm events when accurate stage measurements 
are more difficult (Harmel et al., 2006). Beighley et al. (2003) also identified the overestimation 
of gauge records for the 1995 January event at Gauge 11119940.” 

* l. 362-363: this highlights another problem that has not been addressed in this study: the 
downscaling of GCM outputs to drive the hydrology model. 

Response: We agree that the uncertainty from the downscaling of GCM outputs can impact the 
results. The focus of this study is the uncertainty contribution from the runoff generation models 
and associated parameters. Therefore, we didn’t include different downscaling methods and 
quantify their uncertainties. However, we do think it is a great idea, and we may investigate it in 
our future studies. To clarify it, we have added the following text in the manuscript: 

L457-460: 

“…In addition, the methods for GCM downscaling can also contribute to the uncertainty in predicted 
changes in hydrology. Further study integrating different algorithms for hydrologic model components as 
well as GCM downscaling methods can be conducted in the future.” 
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