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This manuscript tries to investigate the uncertainties resulting from different hydrological model 
components when assessing the impacts of climate change on streamflow. To do so, they design a 
modeling framework that incorporates three runoff yield schemes, one runoff routing scheme, several 
GCM and RCP. I think the topic is interesting and the manuscript is overall well-prepared. However, I 
think there are still several issues have to be addressed before considering for publication in HESS.  

The authors choose annual mean discharge, annual peak discharge or 100-yr flood discharge to analyze 
the uncertainties. I doubt if it’s meaningful to investigate annual mean values in a 750 km2 catchment. 
In figure 5 they even investigate changes and uncertainties in much smaller sub-basin. Because I think, 
according to their methodology, in such a small catchment the annual mean runoff is simply controlled 
by precipitation and evaporation. On the other hand, when investigate the annual peak values (here it’s 
not clear how they define ‘peak’ values, from daily or hourly?), the routing may play a more significant 
role in the timing and magnitude of simulated streamflow. My concern is if the authors can still reach 
the same conclusions if they use daily streamflow when perform uncertainties analysis because I believe 
in such small catchment different runoff yield schemes have more effects on daily streamflow instead 
annual streamflow.  

Response: The annual mean discharge was defined as the average of daily streamflow in a year.  
To clarify it, we have inserted the following sentence in the manuscript: 
“Here, the annual mean discharge was defined as the average of daily streamflow in a year.”  
The annual peak discharge was defined as the maximum daily streamflow in a year. It was 
described in L322-323: “annual maximum daily discharge (Qp)” 
 

I also want to hear opinions from the authors regarding the choose of runoff yield scheme. When 
perform regional or global simulations using LSM, people usually can only use one runoff yield option, 
either saturation-excess (e.g. NoahMP, CLM) or infiltration-excess (e.g. VIC). However, when focus on 
the specific catchment, you can definitely choose a runoff yield scheme that is suitable for the 
hydrological regime of that catchment. I’m not challenging your work, just want to hear some 
discussion.  

Response: This is a good point. One of the main objectives of this study was to “evaluate and 
compare the performance of hydrologic models with different approaches representing runoff 
generation process…” (L111-113). The results in this study showed that STP performs better 
than the other two methods. This finding can be informative for future studies associated with 
hydrologic model selection. We have inserted the following discussion in the manuscript: 

“This study can also provide useful information for selecting hydrologic models for 
climate change impact analysis. As discussed in section 3.1, the STP-HRR model is more 
suitable than the other two models for the study region, mainly due to its ability to represent the 
non-linear hydrological response to precipitation forcings. This implies hydrologic models 
adopting the saturation excess runoff generation algorithms may be more suitable for areas with 
a Mediterranean climate. The uncertainties from hydrologic models are larger than those from 
the hydrologic model parameters for all hydrologic variables (e.g., discharge, runoff and 
seasonality), suggesting the inter-model variability is larger than the intra-model variability 



(from model parameters). This implies that model selection is more important than the 
parameter selection, and that the parameter equifinality (or non-uniqueness) is less of a concern 
when quantifying climate change impacts on hydrologic fluxes when using an ensemble of GCM 
forcings. In this study, only the runoff generation algorithm was investigated. Other hydrologic 
model components, such as ET algorithm and routing method, also have many variants. The 
choice of these components can also make a difference in the total uncertainties in simulated 
runoff and streamflow. Therefore, further study integrating different algorithms for these 
components can be conducted in the future. This complete analysis can be useful to guide 
stakeholders to select appropriate hydrologic algorithms for climate change impacts analysis 
and to develop actionable adaptation and mitigation strategies.” 
 

Line 134-141. The authors use MODIS products to estimate the PET, However, they don’t provide any 
detail regarding how to convert PET into ET for runoff yield simulation. In eq(1)~(7) I don’t see any 
variable related to ET.  

Response: The ET was extracted from soil at each time step, and then the soil content was 
updated which was used for water balance calculation in next time step. We have added the 
following content to the manuscript: 

“The evapotranspiration was estimated using Eq. S15…. After the water fluxes (runoff, ET and 
water movement between soil layers) were determined, the soil moisture was updated which 
would be used for the water balance calculation in the next time step.” 

𝐸𝑇 = 𝑚𝑖𝑛	(𝑃𝐸𝑇,𝑊 −𝑊-./)   (S15) 

where PET is the potential evapotranspiration estimated using the method proposed by Raoufi and 
Beighley (2017); W is water content in the upper soil layer; 𝑊-./  is the minimum water 
content in the soil, defined as 0.15×𝑊2 ; 𝑊2  is soil water content as saturation. 

Line 255. The authors calibrate several parameters related to runoff. But they don’t document how they 
fix the value of soil depth, from dataset or by calibration. In Line 233 they state that the soil depth is 
based on a previous study but I don’t see any description in (Feng et al., 2019). In their modeling 
framework, they use quite simple water balance scheme to account for the soil water movement, in this 
case the soil depth is an important variable determining the soil water holding capacity.  

Response: The soil depth data was originally from the Soil Survey Geographic (SSURGO) Data 
Base for Santa Barbara County. This reference has been added to the manuscript.  

Line 256. sim-topmodel uses groundwater depth to calculate runoff yield. Do you spin up the model to 
reach the equilibrium state?  

Response: Yes. We did spin up the model for one year. The following text has been inserted to 
the manuscript L212: 

“The models spun up for one year to ensure the equilibrium status.” 



Line 290. If I understand correctly, here should be "parameter", which is different from 
"parameterization 

Response: Thanks for pointing it out. We have corrected it.  



This paper presents some limited results of evaluating the impact of different formulations in runoff 
generation schemes when simulating streamflow. My major objection with the paper is that it really is 
not assessing the uncertainty but rather the variability of the simulated streamflow and how each of the 
forcings, model parameters or formulations contribute to it. Although that is valuable in itself, the 
authors claim that the objective is to identify the uncertainties in the context of climate change 
simulations. However, that is not what was done here. The calibration of the parameters was done using 
an observation-based forcing dataset and although I can understand the rationale, I believe that any 
calibration of parameters should have been done in a way that would emulate the intended application 
(i.e. using GCM output to drive the hydrology model). I believe historical simulation are available from 
CMIP5 and if so they should be used to evaluate the actual uncertainty of simulated streamflow within 
the framework that the authors have developed. The end of 21st century simulations should be a final 
experiment (if included at all) given the objective of the paper. Consequently, I recommend major 
revisions before publication that will include new simulations that test the different model parameter 
sets, runoff generation schemes and downscaled GCM output for the period when streamflow 
measurements are available, so that the actual uncertainty can be quantified. In addition, I believe the 
study area is rather limited and an opportunity is being missed by not including additional basins with 
different physiography and climate.  

Response: In this study, we did use GCM simulations as the forcings of hydrologic models for 
the historical period. For each simulation scenario (i.e., the combination of hydrologic model, 
parameter set, GCM and RCP), we simulated runoff and discharge using GCM outputs for both 
historical and future periods, and then the relative changes (%) between future and historical 
simulations were quantified. The total uncertainty in these projected changes from all model 
combinations (3 hydrologic models, 3 parameter sets, 10 GCMs and 2 RCPs; 3*3*10*2=180) 
was quantified. The uncertainty contributions to the total uncertainty were then quantified 
using the ANOVA method. 

To clarify it, we have inserted the following text to the manuscript: 

“Here, we used GCM outputs as the forcings of hydrologic models for both historical (1986-
2005) and future (2081-2100) periods. For each simulation scenario (i.e., the combination of 
hydrologic model, parameter set, GCM and RCP), the historical and future daily streamflow and 
monthly runoff were simulated, and the relative changes (%) were quantified.” 

To deepen this study, we have also expanded the analysis by including more metrics about the 
volume and composite of runoff (i.e., monthly surface, subsurface and total runoff), as well as 
the hydrologic seasonality (wet season length and timing of wet season onset), considering 
these quantities are of great importance for the study region (Myers et al., 2019;Feng et al., 
2019).  
We have added the following figures and texts in the manuscript: 



 

Figure 6: (a) Projected relative changes (%) in monthly surface runoff, subsurface runoff and 
total runoff in the whole study region during 2081-2100 as compared to historical period (1986-
2005); (b) Relative contributions (%) of the uncertainties for the projected changes in the 
monthly total runoff; Hydro = Hydrologic models; Para = hydrologic model parameters; GCM 
= General Circulation Models; RCP = Representative concentration pathways (emission 
scenarios); “other” is the uncertainty from the 3rd and 4th orders of interactions between the 4 
major sources (i.e., GCMs, RCPs, Hydrologic models and parameters). 

“The projected changes in monthly runoff (surface, subsurface and total) during 2081-
2100 compared to 1986-2005 range between -100% and 300% (Figure 6a). Surface runoff will 
probably increase in February and March, and decrease in other months (Figure 6a). This is 
because in the future, the onset of wet season will be delayed and more severe storm events will 



occur during the shorter wet season (Feng et al., 2019). The decrease in subsurface runoff in all 
months is probably because the decrease in the frequency (or total number) of storm events 
(Feng et al., 2019). The changes of monthly total runoff show similar pattern with the surface 
runoff, suggesting the more pronounced changes in surface runoff as compared to subsurface 
runoff. The major uncertainty sources are GCM and RCP, which account for ~45% of total 
uncertainty (Figure 6b). Hydrologic models contribute to ~10% of total uncertainty (Figure 6b). 
This suggests that the climate patterns (e.g., storm event frequency and intensity) are more 
important factors controlling the runoff generation than the hydrologic model algorithms.” 

 

Figure 9: (a) Projected change (days) in the onset and duration of wet season in SBC; positive (negative) 
values indicate later (earlier) onset or longer (shorter) duration of the wet season; (b) relative 
contributions (%) of the uncertainties of the projected changes in seasonality. Hydro = Hydrologic 
models; Para = hydrologic model parameters; GCM = General Circulation Models; RCP = Representative 
concentration pathways (emission scenarios); “other” is the uncertainty from the 3rd and 4th orders of 
interactions between the 4 major sources (i.e., GCMs, RCPs, Hydrologic models and parameters). 
 
“Consistent with the work of Feng et al. (2019), this study suggests a delayed onset and shorter 
duration of wet season (Figure 9a). The median changes show that the wet season will start later 
by 3 days, and become shorter by ~6 days. The major uncertainty sources for both onset and 
duration of wet season are GCM (~20%) and hydrologic models (~15%). Different from 
discharge and runoff, the seasonality shows more uncertainty from hydrological models (15% vs 
12%) and model parameters (~6% vs 2%) (Figure 9b). This is because the seasonality integrates 
the runoff generation, paths and transport processes for both surface and subsurface runoff, 
which are important for the timing and quantity of simulated discharge.” 
 
 

  



Some additional comments are outlined below:  

* How does the uncertainties in the prescribed ET affect the results? Why weren’t they accounted for?  

Response: We agree that the uncertainty from ET models will affect the results. However, the 
main focus of this study is to investigate the uncertainty contributions of runoff generation 
schemes and associated parameters for the climate change impact assessment. Therefore, we 
used the same ET method and routing algorithm for all three hydrologic models. To clarify it, 
we have added the following text in the discussion section: 

“Compared to previous studies (e.g., Vetter et al. (2015), Schewe et al. (2014),  
Hagemann et al. (2013);(Troin et al., 2018), and Asadieh and Krakauer (2017)), this work 
identifies relatively low uncertainty contributions from hydrologic models. The main reason for 
this is that the hydrologic model uncertainty in this study was only from runoff generation 
algorithms and associated parameters. As is, the three hydrologic models share common 
algorithms for ET and plane/channel routing, and the same model configuration (e.g., soil 
matrix and model unit definition). These similarities among models likely reduced the differences 
in simulated runoff and discharge. In addition, the uniform calibration approach and parameter 
selection criteria were also likely to eliminate user/method bias which is common in studies that 
consider more than one hydrologic model. In contrast, the hydrologic models used in previous 
studies have their own model configurations, and ET and routing algorithms. For example, the 
VIC model (here VIC refers to the original VIC model, and is different from the model used in 
this study; to clarify, in following text, VIC refers to the original VIC model while VIC-HRR 
refers to the model used in this study) applies an ET algorithm different from the one used in this 
study (Raoufi and Beighley, 2017), uses the grid-based model units ignoring the spatial 
arrangement, and has its own routing scheme which adopts the synthetic unit hydrograph 
concept. These differences between models likely resulted in the larger uncertainties in the 
simulation from hydrologic models in previous studies.  

This study can also provide useful information for selecting hydrologic models for 
climate change impact analysis. As discussed in section 3.1, the STP-HRR model is more 
suitable than the other two models for the study region, mainly due to its ability to represent the 
non-linear hydrological response to precipitation forcings. This implies hydrologic models 
adopting the saturation excess runoff generation algorithms may be more suitable for areas with 
a Mediterranean climate. The uncertainties from hydrologic models are larger than those from 
the hydrologic model parameters for all hydrologic variables (e.g., discharge, runoff and 
seasonality), suggesting the inter-model variability is larger than the intra-model variability 
(from model parameters). This implies that model selection is more important than the 
parameter selection, and that the parameter equifinality (or non-uniqueness) is less of a concern 
when quantifying climate change impacts on hydrologic fluxes when using an ensemble of GCM 
forcings. In this study, only the runoff generation algorithm was investigated. Other hydrologic 
model components, such as ET algorithm and routing method, also have many variants. The 
choice of these components can also make a difference in the total uncertainties in simulated 
runoff and streamflow. Therefore, further study integrating different algorithms for these 
components can be conducted in the future. This complete analysis can be useful to guide 



stakeholders to select appropriate hydrologic algorithms for climate change impacts analysis 
and to develop actionable adaptation and mitigation strategies.”   
 

* Abstract needs some attention, especially after l. 21 in terms of cohesiveness. Right now, it reads as 
bullet points stitched together. Some proofreading needed for redundant articles and grammatical 
errors. 

Response: We have modified the abstract as follows. We have also taken a careful proofreading 
for the whole manuscript. 

“Assessing the impacts of climate change on hydrologic systems is critical for developing 
adaptation and mitigation strategies for water resource management, risk control and ecosystem 
conservation practices. Such assessments are commonly accomplished using outputs from a 
hydrologic model forced with future precipitation and temperature projections. The algorithms 
used for the hydrologic model components (e.g., runoff generation) can introduce significant 
uncertainties in the simulated hydrologic variables. Here, a modeling framework was developed 
that integrates multiple runoff generation algorithms with a routing model and associated 
parameter optimizations. This framework is able to identify uncertainties from both hydrologic 
model components and climate forcings as well as associated parameterization. Three 
fundamentally different runoff generation approaches: runoff coefficient method (RCM, 
conceptual), variable infiltration capacity (VIC, physically-based, infiltration excess) and 
simple-TOPMODEL (STP, physically-based, saturation excess), were coupled with the Hillslope 
River Routing model to simulate surface/subsurface runoff and streamflow. A case study 
conducted in Santa Barbara County, California, reveals increased surface runoff in February 
and March while decrease in other months, a delayed (3 days, median) and shortened (6 days, 
median) wet season, and increased daily discharge especially for the extremes (e.g., 100-yr flood 
discharge, Q100). The uncertainties of the projected changes in these hydrologic variables are 
large (e.g., 400% for monthly runoff and 340% for Q100). For runoff and discharge, general 
circulation models (GCMs) and emission scenarios are two major uncertainty sources, 
accounting for about half of the total uncertainty. For the changes in seasonality, GCMs and 
hydrologic models are two major uncertainty contributors (~35%). In contrast, the contribution 
of hydrologic model parameterization to the total uncertainty of changes in these hydrologic 
variables is relatively small (<6%), limiting the impacts of hydrologic model parameter 
equifinality in climate change impact analysis. This study also provides insights on how to 
optimize hydrologic model selection for projecting future hydrologic conditions.”  

* l. 53: what is the need for naming the "land-atmosphere interactions" as "runoff generation process" 
when the latter is clearly one of the processes that manifest from those interactions?  

Response: We have modified the text to following: 

“Generally, hydrologic models have modules simulating water partitioning at land surface 
(named as runoff generation process in this study), evapotranspiration, and water transportation 
along terrestrial hillslopes and channels (named as routing process here).” 

* l. 175- : Not sure whether this much detail is needed for the description of the runoff generation 
models, since they are well established.  



Response: We have moved the text associated with runoff generation models to the supporting 
information.  

* l. 354: does that mean that there is bias in the validation data (i.e. streamflow)?  

Response: Yes, we think so. The typical uncertainty for streamflow gauge data is 6%-19% in 
small watershed based on previous studies (e.g., Harmel et al., 2006). The work of Beighley et 
al. (2003) also identified the bias in the 1995 January event. 

We discussed this in L363-368: 

“The uncertainties in gauge measurements can also be a bias source. For example, in typical 
conditions the uncertainty in streamflow measurements ranges between 6%-19% in small 
watersheds, but it can be higher during large storm events when accurate stage measurements 
are more difficult (Harmel et al., 2006). Beighley et al. (2003) also identified the overestimation 
of gauge records for the 1995 January event at Gauge 11119940.” 

* l. 362-363: this highlights another problem that has not been addressed in this study: the downscaling 
of GCM outputs to drive the hydrology model. 

Response: We agree that the uncertainty from the downscaling of GCM outputs can impact the 
results. The focus of this study is the uncertainty contribution from the runoff generation 
models and associated parameters. Therefore, we didn’t include different downscaling 
methods and quantify their uncertainties. However, we do think it is a great idea, and we may 
investigate it in our future studies.  
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