General Comments (overall quality of paper):

Overall, I think the paper was well written as a climate impacts assessment and application of
uncertainty methods provided elsewhere. As stated in the Introduction, the goals of the paper
were threefold:

1) Compare different hydrologic models 2) Quantify uncertainty associated with different
modeling choices 3) Provide suggestions for studies looking at impacts of climate change

The paper accomplished these three goals (aside for one point which | address in the paragraph
below). However, the authors don’t make it clear how the field is moved forward even if all
three goals are achieved. The authors’ study appears to be similar to the Vetter et al (2015)
study but in a different, and more homogeneous, domain. As-is, the authors conducted a very
detailed assessment of climate change impacts on streamflow in Santa Barbara County. Their
assignment of uncertainty to different modeling components followed methods similar to those
in previous studies like Addor et al (2014), Vetter et al (2015), Hattermann et al (2018),
Chegwidden et al (2019). | did not see any truly novel methods proposed, thus making the
paper seem more like an, albeit very rigorous, report. As is, the study is appropriate for a
climate impacts assessment journal, but the findings are insufficiently new to warrant
publication in HESS.

To make the manuscript more relevant to HESS, | suggest a handful of other potential additions
to deepen the analysis. Would it be possible to expand the analyses conducted here to other
domains and thus do an intercomparison across different regions? For example, the findings in
Figures 5 through 7 are relatively uniform across region and metric. Perhaps the authors could
probe deeper into those comparisons by conducting more analyses in other regions or with
other metrics? By expanding the analysis to other regions and metrics the study could test how
sensitive the uncertainty analysis is to the research question of interest.

Response: To deepen this study, we have expanded the analysis by adding metrics about the
volume and composite of runoff (i.e., monthly surface, subsurface and total runoff), as well as
the hydrologic seasonality (wet season length and timing of wet season onset), considering
these quantities are of great importance for the study region (Myers et al., 2019;Feng et al.,
2019).

We have added associated texts and figures in the manuscript:

“..Previous studies (e.g., Feng et al., 2019) showed that the intensified storm events
concentrated in a shorter and delayed wet season in SBC under future climate conditions will
cause significant increase in discharge, especially the extremes (e.g., 100-yr discharge). The
climate change impacts on the path and quantity of surface/subsurface runoff and discharge will
impact the soil erosion, sediment/nutrients transport and subsequently affect the coastal
ecosystems (Myers et al., 2019) Feng et al., 2019). The longer dry season may also contribute to
the increased occurrence of droughts and wildfires (Myers et al., 2019). Therefore, the changes
in these hydrologic variables (e.g., runoff, discharge and seasonality) under future climate
conditions and associated uncertainties are essential to assess the vulnerability of coastal region
in CA and make adaptation strategies to accommodate climate change. In this study, we
simulated future hydrologic variables using three hydrologic models forced with climate outputs
from 10 GCMs that were selected for their good performance in representing historical
meteorological characteristics in the study region, under 2 emission scenarios (RCP 4.5 and



RCP 8.5) (Feng et al., 2019). The main objectives of this study are to: (1) evaluate and compare
the performance of hydrologic models with different approaches representing runoff generation
process using a consistent modeling framework; (2) quantify the relative contributions of
different sources (including hydrologic process models, parameterizations, GCM forcings and
emission scenarios) to the total uncertainty in simulated surface/subsurface runoff, streamflow,
and seasonality; and (3) provide actionable information and suggestions for studies and
practices associated with hydrologic impacts of climate change in the study region.”
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Figure 6: (a) Projected relative changes (%) in monthly surface runoff, subsurface runoff and
total runoff in the whole study region during 2081-2100 as compared to historical period (1986-
2005), (b) Relative contributions (%) of the uncertainties for the projected changes in the
monthly total runoff; Hydro = Hydrologic models; Para = hydrologic model parameters;, GCM
= General Circulation Models; RCP = Representative concentration pathways (emission
scenarios), “other” is the uncertainty from the 3rd and 4th orders of interactions between the 4
major sources (i.e., GCMs, RCPs, Hydrologic models and parameters).



“The projected changes in monthly runoff (surface, subsurface and total) during 2081-
2100 compared to 1986-2005 range between -100% and 300% (Figure 6a). Surface runoff will
probably increase in February and March, and decrease in other months (Figure 6a). This is
because in the future, the onset of wet season will be delayed and more severe storm events will
occur during the shorter wet season (Feng et al., 2019). The decrease in subsurface runoff in all
months is probably because the decrease in the frequency (or total number) of storm events
(Feng et al., 2019). The changes of monthly total runoff show similar pattern with the surface
runoff, suggesting the more pronounced changes in surface runoff as compared to subsurface
runoff- The major uncertainty sources are GCM and RCP, which account for ~45% of total
uncertainty (Figure 6b). Hydrologic models contribute to ~10% of total uncertainty (Figure 6b).
This suggests that the climate patterns (e.g., storm event frequency and intensity) are more
important factors controlling the runoff generation than the hydrologic model algorithms.”
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Figure 9: (a) Projected change (days) in the onset and duration of wet season in SBC; positive
(negative) values indicate later (earlier) onset or longer (shorter) duration of the wet season, (b)
relative contributions (%) of the uncertainties of the projected changes in seasonality. Hydro =
Hydrologic models; Para = hydrologic model parameters;, GCM = General Circulation Models;
RCP = Representative concentration pathways (emission scenarios), “other” is the uncertainty
from the 3rd and 4th orders of interactions between the 4 major sources (i.e., GCMs, RCPs,
Hydrologic models and parameters).

“Consistent with the work of Feng et al. (2019), this study suggests a delayed onset and shorter
duration of wet season (Figure 9a). The median changes show that the wet season will start later
by 3 days, and become shorter by ~6 days. The major uncertainty sources for both onset and
duration of wet season are GCM (~20%) and hydrologic models (~15%). Different from
discharge and runoff, the seasonality shows more uncertainty from hydrological models (15% vs
12%) and model parameters (~6% vs 2%) (Figure 9b). This is because the seasonality integrates
the runoff generation, paths and transport processes for both surface and subsurface runoff,
which are important for the timing and quantity of simulated discharge.”



Another potential avenue of analysis could be a deeper understanding of the parameter space.
| am skeptical about the finding that parameterizations explained little of the uncertainty since
it appeared (from Figure 4) that the values within the different parameter sets evaluated were
actually quite similar. Since it appears that you have those parameter sets available, would it be
possible to expand the analysis to include more parameter sets? That could buy more
confidence in the current analyses.

Response: We have modified the parameter sets analysis by implementing more sophisticated
parameter selection criteria and selecting more parameter sets. We first selected 4 parameter
sets with highest NSE as we did originally, and then we selected another 6 sets of parameters
following the procedures: (1) rank the rest parameter sets based on their performance
(assessed by NSE); (2) randomly select 6 sets of parameters from the top 20% samples. These
10 parameter sets take both parameter dominance and variability into account. Then they were
used for the uncertainty analysis. The associate figure and results have been updated.

“To quantify the uncertainties from model parameters, we selected 10 parameter sets
using the following criteria: (1) select 4 parameter sets with highest NSE based on the
calibration results; (2) rank the rest parameter sets based on their performance (i.e., NSE), and
randomly select 6 sets from the top 20% candidates. This parameter selection process enabled us
to take both parameter dominance and variability into account while maintaining the high model
performance, which is important for the uncertainty analysis. These 10 parameter sets were then
used for uncertainty analysis.”
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References not included in the current manuscript:

Addor, N., Rossler, O., Képlin, N., Huss, M., Weingartner, R., & Seibert, J. (2014). Robust
changes and sources of uncertainty in the projected hydrological regimes of Swiss catchments.
Water Resources Research, 50(10), 7541-7562. https://doi.org/10.1002/2014WR015549
Chegwidden, 0. S., Nijssen, B., Rupp,D. E., Arnold, J. R., Clark, M. P.,,Hamman, J. J., et al. (2019).
How do modeling decisions affect the spread among hydrologic climate change projections?
Exploring a large ensemble of simulations across a diversity of hydroclimates. Earth’s
Future,7,623—637. https://doi.org/10.1029/2018EF001047

Hattermann, F. F., Vetter, T., Breuer, L., Su, B., Daggupati, P., Donnelly, C., Krysnaova, V. (2018).
Sources of uncertainty in hydrological climate impact assessment: A cross-scale study.
Environmental Research Letters, 13(1). https://doi.org/10.1088/1748-9326/2a9938

Response: They have been inserted to the manuscript in L83-85.

Specific Comments (individual scientific questions/issues):

L14- In the abstract, you mention that identification and uncertainties are rarely studied. This is
not true. It is increasingly common (see, for example, the three references above).

Response: With that sentence we meant the identification of uncertainties from the
hydrological model components (not the whole hydrologic model) is rarely studied. We have
modified the sentence as follows:

“Such assessments are commonly accomplished using outputs from a hydrologic model forced
with future precipitation and temperature projections. The algorithms used for the hydrologic
model components (e.g., runoff generation) can introduce significant uncertainties in the
simulated hydrologic variables. Here, a modeling framework was developed that integrates
multiple runoff generation algorithms with a routing model and associated parameter
optimizations. This framework is able to identify uncertainties...”

L139-141 - Is the monthly 1 degree aerosol optical depth product sufficient for calculating
radiation at the scale you are working at?

Response: The 1 degree aerosol optical depth product was downscaled to 0.05 degree for PET
estimation. The following text has been inserted to the manuscript:

“The aerosol optical depth product was downscaled to 0.05° x 0.05° (Raoufi and Beighley,
2017).”

L154-156 — Should there be some discussion about the fact that, regardless of subbasin size
(which, as the authors state, ranges between 0.1 and 135 km"2) the parameters are averaged
across each subbasin?

Response: The “sub-basin” here refers to the model unit, which was indicated in Lines 152-154
“The sub-basins are irregular-shape catchments defined by the flow accumulation area threshold. In this
study, the threshold is 1 km? which means the sub-basins (model units) are in size of roughly 1 km?.” So
the watershed with a drainage area of 135 km? roughly consists of 135 model units, and the
model parameters are averaged over each model unit. For the small watersheds with drainage
areas less than 1 km?, the model parameters were averaged over each watershed. To clarify it,
we have added the following text to the manuscript in L170-172:


https://doi.org/10.1088/1748-9326/aa9938
https://doi.org/10.1088/1748-9326/aa9938

“This indicates these parameters were averaged for each model unit, the majority of which had

an area of roughly 1 km?, with less than 1% having an area of <1 km?*.”

L175-254 — I’'m not sure the specificity is necessary for each of the hydrologic models in the
main text. | would suggest moving the conceptual plot from the supplemental text to the main
text and moving the mathematical explanations to the supplemental text. This would save you
space in the main body of the text, improving readability, while letting your story come through
easier. With that space you could fill in with more details on the calibration methods.
Response: We have moved the text about hydrologic models to the Supporting Information and
added a conceptual Figure (Figure 2) to illustrate the framework.
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Figure 2: The conceptual framework about the hydrologic models used in this study. Portions of
this figure were adapted from the work of Beighley et al. (2009). (a) shows the grid-based
climate inputs for hydrologic models; (b) shows water balance models; P is precipitation; ET is
evapotranspiration, Es is soil evaporation; E. is canopy evaporation, ET is transpiration, es is
water available for surface runoff; ess is water available for subsurface runoff; 6u is relative soil
moisture in upper soil layer; 0L is relative soil moisture in lower soil layer; I is infiltration, K is
water flux from the upper layer to the lower layer, and D is diffusive water flux from the lower
layer to the upper layer,; and (c) shows HRR routing model, the “open-book” assumption. two
identical planes (P1 and P2) with the channel (Ch) in the center of each sub-basin; gs is the
surface runoff; qss is subsurface runoff; Q is discharge in the river channel, and WT is
groundwater table. The parameters in red italic are for surface runoff generation, the
parameters in blue italic are for subsurface runoff generation. The first columns in the tables
indicate the models that the parameters are used for. The definition of these parameters can be
found in the supporting information.

L260-263 — The definitions of Kss and Ks would probably best fit in the description of the
routing model since they are from that model.



Response: We have move them to the routing model section L204-207.

L268-269 — How are the three different optimal parameter sets selected? Are they very
different parameter sets? As in, are they likely to be in very different parts of the overall
calibration space/range of parameter values? Or are they likely to be relatively similar? If they
are similar, does that explain the less than 1% uncertainty explained by parameterization
referenced in L426 in the results? | see in Figure 4 that some of the parameter values for some
models are indeed quite similar (e.g. Kss_all for RCM-HRR). How does this affect your
conclusions about the minimal contribution of parameterization toward total uncertainty?

Response: We think the reviewer is right that some parameters are quite similar, which
explains the small uncertainty contribution. We have modified the parameter selection process
by applying the following criteria: (1) select 4 parameter sets with highest NSE based on the
calibration results; (2) rank the rest parameter sets based on their performance (i.e., NSE), and randomly
select another 6 sets from the top 20% parameter sets. This parameter selection process enabled us to
take both parameter dominance and variability into account while maintaining the high model
performance. The results with these 10 parameter sets show that for changes in runoff and discharge,
the hydrologic model parameters contribute about 2% to the total uncertainty, and for changes in
seasonality (onset and duration of wet season), the parameters can contribute about 6% of the total
uncertainty. The associated figures (Figures 5-9) and text (section 3.2) have been updated.

L320-324 — Do the authors conduct their performance weighting based upon the GCM
simulations? Or do they do it using the historical meteorological forcing data (in this case Livneh
et al)? The latter would be appropriate, since the former would not match the actual weather
experienced by the region.

Response: We did the performance weighting on the simulations from the
GCMs+HydroModels+Parameters combinations, because we need to assess their performance
in representing historical reality and then assign weights to them. The reviewer is right that the
GCMs don’t match the actual weather. To deal with this issue, we ranked the simulated
discharge variable series (e.g., annual mean discharge or annual peak discharge) from each
GCMs+HydroModels+Parameters simulation, and then compare them with the observations
(also ranked). The details of this process have been provided in the Supporting Information.

“In this study, the annual mean discharge and annual maximum daily discharge are the
considered variables. Since these two variables are not normally distributed, a Box-Cox
transformation is performed before applying the EM method. Considering the GCMSs’ predictions
are not temporally consistent with reality (i.e., the GCMs’ prediction does not have correct
timing), the observation and simulation are both ranked from high to low, and then L(0) is
maximized based on the ranked series. The procedure is as follows:

Step I: Calculate the observed annual mean discharge (or annual maximum daily discharge) at
each watershed of interest for the period 1986-2005

Step II: Calculate the simulated annual mean discharge (or annual maximum daily discharge) for
each simulation in the ensemble (3X10X10=300 models) for the same period

Step lll: Rank the observed and simulated annual mean discharge (or annual maximum daily
discharge) in a descending order



Step IV: Calculate the Box—Cox coefficient A for each watershed by using the BoxCox.lambda
function in R and transform the quantities by using Eq. S28:
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. ; (528)
Step V: Apply the EM process to the transformed series z; and estimate the weights and

variance of all models
Step VI: Calculate the probability of estimated changes in Qm, Qp and Qioo in the future (2081-

2100) relative to 1986-2005 using the weights obtained in Step V.”

L360-363 — Is the climate data, even though it was downscaled to the 1/16th degree scale,
appropriate for the scale of the subbasins the authors are evaluating (for instance the basin
that is only 0.1 km~2)? As the authors suggest in L360-363, they note substantial biases in the
precipitation that, in one example case, doesn’t even provide enough water to account for
streamflow in absence of ET. Did the authors modify precipitation at all to account for this? If
not, do the authors think that some other modification of the precipitation forcing would be
appropriate? Also, in Figure 2 caption: (a) what does “normalized calibration process” mean?

Response: We do think the 1/16™ degree precipitation is too coarse for the 0.1 km? watershed.
However, in this study region, such small basins only account for a small fraction of the total
area (<1%). We were aware of this issue, so in this study we mainly focused on the results for
the major watersheds (area>7 km?) which account for 83% of the total area (Figure 7). In terms
of the precipitation scale, we didn’t make modifications to it. However, we do think it is a good
point that merits further research efforts. In Figure 2 caption, the “normalized calibration
process” means the x-axis range (i.e., 0-1) is normalized by the number of iterations during
calibration. The termination of the calibration process is determined by an increment threshold
(i.e., the improvement step in NSE), so the numbers of calibrations runs among models are
slightly different. For example, for Mission Creek watershed (USGS gauge NO. 11119750), the
numbers of calibration iterations for these three hydrologic models were 1494, 1460 and 1518,
respectively. To normalize these numbers to the range of 0-1 for a better presentation, we
divided them by 1494, 1460 and 1518, respectively. The following text has been inserted to the
Fig.3 caption:

“the “normalized calibration process” means the x axis range is normalized by the number of
iterations during calibration”

L437-438 — “Changes in Qm, Qp and Q100 are higher under RCP 8.5, but the uncertainties are
also higher (Fig. 8), which suggests the uncertainties from RCPs are mainly introduced by RCP
8.5.” Could you clarify this statement? | think there may be some conflation in the sources of
the uncertainties in this argument. In looking at Figure 8, we see that the distributions are very
different between RCP45 and RCP85. However, in your ANOVA formulation, the comparison of
the different model choices really just looks at the differences in the means. Thus, attributing
the uncertainty to RCP 8.5 can’t be made by these figures alone, since you are only comparing
two choices. If you are referring to the large standard deviation of the RCP85 distribution, then



that uncertainty contribution would actually be a higher-order interaction of RCP and
something else (perhaps GCM?).
Response: We think the reviewer is right. We have modified this sentence to the following:

“Changes in Qm, Qp and Qioo are higher under RCP 8.5, but the uncertainties are also higher
(Figure 8), which suggests the higher contribution of RCP 8.5 in the uncertainties of higher-order
interactions between RCP and other factors (i.e., GCM, hydrologic model and parameters).”

L394-396 — | assume the reference to the National Land Data Assimilation System VIC model
set-up is the one referenced at the following DOI?
(https://doi.org/10.5067/ELBDAPAKNGIJ9) If so, it needs a citation and perhaps some
explanation as to why this is used as a suitable comparison.

Response: Thanks for this information. We have added the reference in the text. We also have
inserted the following text to explain the reason for selecting the NLDAS-VIC model outputs as a
comparison in L333-338.

“The NLDAS-VIC runoff simulations are from the same runoff generation model (i.e., VIC) as
used in this work, and have compatible spatial/temporal resolutions to those in this study, which
makes it a suitable reference for comparison.”

L446-449/456-457 — How can you justify that model configurations (e.g. irregular catchments or
routing schemes) are the reason that hydrologic models played a smaller role in your
uncertainty findings?

Response: We have modified the text as follows:

“Compared to previous studies (e.g., Vetter et al. (2015), Schewe et al. (2014), Hagemann et al.
(2013); Troin et al., (2018), and Asadieh and Krakauer (2017)), this work identifies relatively low
uncertainty contributions from hydrologic models. The main reason for this is that the
hydrologic model uncertainty in this study was only from runoff generation algorithms and
associated parameters. As is, the three hydrologic models share common algorithms for ET and
plane/channel routing, and the same model configuration (e.g., soil matrix and model unit
definition). These similarities among models likely reduced the differences in simulated runoff
and discharge. In addition, the uniform calibration approach and parameter selection criteria
were also likely to eliminate user/method bias which is common in studies that consider more
than one hydrologic model. In contrast, the hydrologic models used in previous studies have
their own model configurations, and ET and routing algorithms. For example, the VIC model
(here VIC refers to the original VIC model, and is different from the model used in this study; to
clarify, in following text, VIC refers to the original VIC model while VIC-HRR refers to the model
used in this study) applies an ET algorithm different from the one used in this study (Raoufi and
Beighley, 2017), uses the grid-based model units ignoring the spatial arrangement, and has its
own routing scheme which adopts the synthetic unit hydrograph concept. These differences
between models likely resulted in the larger uncertainties in the simulation from hydrologic
models in previous studies.”



L449-451 — What do the authors mean by “a common calibration approach is also used to
eliminate user/method bias”?

Response: In this study, we performed the same calibration procedure for all hydrologic models
including the same multi-objective optimization algorithm and the same final parameter
selection criteria. Compared to the scenarios when different calibration processes and final
parameter selection standards are applied, the calibration approach in this study may possibly
generate a more consistent result. To make it clear, we have modified the sentence to:

“...the uniform calibration approach and parameter selection criteria were also likely to
eliminate user/method bias which is common in studies that consider more than one hydrologic
model.”

L461-462 — Is reducing the uncertainty the goal for an impacts assessment? Would not the goal
actually be to reveal the uncertainty present, and thus actually focus on multiple hydrologic
models as the authors suggest that their selection accounts for a sizeable portion of the
uncertainty space?

Response: The uncertainty induced by hydrologic models is due to their limited capability in
representing the hydrological processes in reality. We have multiple options for hydrologic
models. Therefore, it is necessary to quantify the uncertainty caused by the hydrologic model
choice, which is one of the main objectives in this study. On the other hand, the performance of
different hydrologic models are not the same, at least for the study region. For example, the
results in this study showed that STP performs better than the other methods. This implies we
need to treat these models differently. This is another objective of this study: evaluate and
compare the performance of hydrologic models with different approaches representing runoff
generation process. To make the statement more appropriate, we have modified the text as
below:

“This study can also provide useful information for selecting hydrologic models for climate
change impact analysis. As discussed in section 3.1, the STP-HRR model is more suitable than
the other two models for the study region, mainly due to its ability to represent the non-linear
hydrological response to precipitation forcings. This implies hydrologic models adopting the
saturation excess runoff generation algorithms may be more suitable for areas with a
Mediterranean climate. The uncertainties from hydrologic models are larger than those from the
hydrologic model parameters for all hydrologic variables (e.g., discharge, runoff and
seasonality), suggesting the inter-model variability is larger than the intra-model variability
(from model parameters). This implies that model selection is more important than the
parameter selection, and that the parameter equifinality (or non-uniqueness) is less of a concern
when quantifying climate change impacts on hydrologic fluxes when using an ensemble of GCM
forcings.”

L471-475 — At the relatively small scale which you are working, how is routing impactful?
Response: We think the reviewer is right that the routing for small basins can be not very
impactful. We have modified it to the following:

“In this study, only the runoff generation algorithm was investigated. Other hydrologic model
components, such as ET algorithm and routing method, also have many variants. The choice of
these components can also make a difference in the total uncertainties in simulated runoff and



streamflow. Therefore, further study integrating different algorithms for these components can
be conducted in the future...”

L483 — How do you define uncertainty of 230%? Is that the range? Or +/- 2 standard deviations?
etc):

Response: The uncertainty was defined as the range, that is, max change - min change. To
clarify this, we have added the following text:

“(here, uncertainty refers to the range of predicted relative changes among models, that is,
from -100% to +220%)”

L69-70, L81 — Confusing sentences/phrasing

Response: We have modified the sentence in L69-70 to “Model parameter selections based on
calibration metrics can result in different optimal parameter values (i.e., parameter
equifinality).”

We have modified the sentence in L81 to “Most previous studies treated hydrologic models as a
whole package.”

Technical Corrections (typing errors, etc.)

L43 — “cause” not “causes”

L220 - “matric” not “metric” — there are many other language typos (e.g. L222 “expresses”
should be “expressed”) sprinkled throughout the text, but | imagine that with another read-
through these issues could be resolved.

Overall, there are small language errors throughout the manuscript which the vast majority of
the time don’t interfere with understanding but are somewhat distracting. A careful reading
would help resolve these.

Response: Thanks for pointing them out. A careful proofreading has been made to correct them.




