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Abstract. A traditional metric used in hydrology to summarize model performance is the Nash-Sutcliffe Efficiency (NSE). 

Increasingly an alternative metric, the Kling-Gupta Efficiency (KGE), is used instead. When NSE is used, NSE = 0 corresponds 

to using the mean flow as a benchmark predictor. The same reasoning is applied in various studies that use KGE as a metric: 

negative KGE values are often viewed in the literature as bad model performance and positive values are seen as good model 10 

performance. Here we show that using the mean flow as a predictor does not result in KGE = 0, but instead KGE = 1-√2 ≈ -

0.41. Thus, KGE values greater than -0.41 indicate that a model improves upon the mean flow benchmark – even if the model’s 

KGE value is negative. NSE and KGE values cannot be directly compared, because their relationship is non-unique and 

depends in part on the coefficient of variation of the observed time series. Therefore, we argue that modellers should not let 

their understanding of NSE values guide them in interpreting KGE values and instead develop new understanding based on 15 

the constitutive parts of the KGE metric and the explicit use of benchmark values to compare KGE scores against. 

1 Introduction 

Model performance criteria are often used during calibration and evaluation of hydrological models, to express in a single 

number the similarity between observed and simulated discharge (Gupta et al., 2009). Traditionally, the Nash-Sutcliffe 

Efficiency (NSE, Nash and Sutcliffe, 1970) is an often-used metric, in part because it normalises model performance into an 20 

interpretable scale (Eq. (1)): 

𝑁𝑆𝐸 = 1 −
∑ (𝑄𝑠𝑖𝑚(𝑡)−𝑄𝑜𝑏𝑠(𝑡))2𝑡=𝑇

𝑡=1

∑ (𝑄𝑜𝑏𝑠(𝑡)−𝑄𝑜𝑏𝑠̅̅ ̅̅ ̅̅ ̅)2𝑡=𝑇
𝑡=1

 ,          (1) 

where 𝑇 is the total number of time steps, 𝑄𝑠𝑖𝑚(𝑡) the simulated discharge at time 𝑡, 𝑄𝑜𝑏𝑠(𝑡) the observed discharge at time 𝑡, 

and 𝑄𝑜𝑏𝑠
̅̅ ̅̅ ̅̅  the mean observed discharge. NSE = 1 indicates perfect correspondence between simulations and observations; NSE 

= 0 indicates that the model simulations have the same explanatory power as the mean of the observations; and NSE < 0 25 

indicates that the model is a worse predictor than the mean of the observations (e.g. Schaefli and Gupta, 2007). NSE = 0 is 

regularly used as a benchmark to distinguish ‘good’ and ‘bad’ models (e.g. Houska et al., 2014; Moriasi et al., 2007; Schaefli 

and Gupta, 2007), albeit this threshold could be considered a low level of predictive skill and is also a relatively arbitrary 

choice (for example, Moriasi et al., 2007, define several different NSE thresholds for different qualitative levels of model 

performance). 30 

The Kling-Gupta Efficiency (KGE, Eq. (2), Gupta et al., 2009) addresses several shortcomings in NSE and is increasingly 

used for model calibration and evaluation: 

𝐾𝐺𝐸 = 1 − √(𝑟 − 1)2 + (𝛼 − 1)2 + (𝛽 − 1)2 ,        (2) 

where 𝑟 is the linear correlation between observations and simulations, 𝛼 a measure of the flow variability error, and 𝛽 a bias 

term (Eq. (3)): 35 
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𝐾𝐺𝐸 = 1 − √(𝑟 − 1)2 + (
𝜎𝑠𝑖𝑚

𝜎𝑜𝑏𝑠
− 1)

2

+ (
𝜇𝑠𝑖𝑚

𝜇𝑜𝑏𝑠
− 1)

2

 ,      (3) 

where 𝜎𝑜𝑏𝑠 is the standard deviation in observations, 𝜎𝑠𝑖𝑚 the standard deviation in simulations, 𝜇𝑠𝑖𝑚 the simulation mean, and 

𝜇𝑜𝑏𝑠 the observation mean (i.e. equivalent to 𝑄𝑜𝑏𝑠
̅̅ ̅̅ ̅̅ ). Like NSE, KGE = 1 indicates perfect agreement between simulations and 

observations. Analogous to NSE = 0, certain authors state that KGE < 0 indicates that the mean of observations provides better 

estimates than simulations (Castaneda-Gonzalez et al., 2018; Koskinen et al., 2017), although others state that this 5 

interpretation should not be attached to KGE = 0 (Gelati et al., 2018; Mosier et al., 2016). Various authors use positive KGE 

values as indicative of ‘good’ model simulations, whereas negative KGE values are considered ‘bad’, without explicitly 

indicating that they treat KGE = 0 as their threshold between ‘good’ and ‘bad’ performance. For example, Rogelis et al (2016) 

consider model performance to be ‘poor’ for 0.5 > KGE > 0, and negative KGE values are not mentioned. Schönfelder et al 

(2017) consider negative KGE values ‘not satisfactory’. Andersson et al (2017) mention negative KGE values in the same 10 

sentence as negative NSE values, implying that both are considered similarly unwanted. Fowler et al (2018) consider reducing 

the number of occurrences of negative KGE values as desirable. Knoben et al. (2018) cap figure legends at KGE = 0 and mask 

negative KGE values. Siqueira et al (2018) consider ensemble behaviour undesirable as long as it produces negative KGE and 

NSE values. Sutanudjaja et al (2018) only count catchments where their model achieves KGE > 0 as places where their model 

application was successful. Finally, Towner et al (2019) use KGE = 0 as the threshold to switch from red to blue colour coding 15 

of model results, and only positive KGE values are considered ‘skilful’. Naturally, authors prefer higher efficiency values over 

lower values, because this indicates their model is closer to perfectly reproducing observations (i.e. KGE = 1). Considering 

the traditional use of NSE and its inherent quality that the mean flow results in NSE = 0, placing the threshold for ‘good’ model 

performance at KGE = 0 seems equally natural. We show in this paper that this reasoning is generally correct – positive KGE 

values do indicate improvements upon the mean flow benchmark – but not complete. In KGE terms, negative values do not 20 

necessarily indicate a model that performs worse than the mean flow benchmark. We first show this in mathematical terms 

and then present results from a synthetic experiment to highlight that NSE and KGE values are not directly comparable and 

that understanding of the NSE metric does not translate well into understanding of the KGE metric..  

Note that a weighted KGE version exists that allows specification of the relative importance of the three KGE terms (Gupta et 

al., 2009), as do a modified KGE (Kling et al., 2012) and a non-parametric KGE (Pool et al., 2018). These are not explicitly 25 

discussed here, because the issue we address here (i.e. the lack of an inherent benchmark in the KGE equation) applies to all 

these variants of KGE. 

2 KGE value of the mean flow benchmark 

Consider the case where 𝑄𝑠𝑖𝑚(𝑡) = 𝑄𝑜𝑏𝑠
̅̅ ̅̅ ̅̅  for an arbitrary number of time steps, and where 𝑄𝑜𝑏𝑠

̅̅ ̅̅ ̅̅  is calculated from an arbitrary 

observed hydrograph. In this particular case, 𝜇𝑜𝑏𝑠 =  𝜇𝑠𝑖𝑚, 𝜎𝑜𝑏𝑠 ≠ 0 but 𝜎𝑠𝑖𝑚 = 0. Although the linear correlation between 30 

observations and simulations is formally undefined when 𝜎𝑠𝑖𝑚 = 0, it makes intuitive sense to assign 𝑟 = 0 in this case, since 

there is no relationship between the fluctuations of the observed and simulated hydrographs. Equation (3) becomes (positive 

terms shown as symbols): 

𝐾𝐺𝐸 = 1 − √(0 − 1)2 + (
0

𝜎𝑜𝑏𝑠
− 1)

2

+ (
𝜇𝑜𝑏𝑠

𝜇𝑜𝑏𝑠
− 1)

2

 ,       (4) 

𝐾𝐺𝐸 = 1 − √(0 − 1)2 + (0 − 1)2 + (1 − 1)2 ,        (5) 35 

𝐾𝐺𝐸 = 1 − √2 ,            (6) 

Thus, the KGE score for a mean flow benchmark is 𝐾𝐺𝐸(𝑄𝑜𝑏𝑠
̅̅ ̅̅ ̅̅ ) ≈ −0.41.  
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3 Consequences 

3.1 Explicit statements about benchmark performance are needed in modelling studies 

The Nash-Sutcliffe Efficiency has an inherent benchmark in the form of the mean flow, giving NSE = 0. This benchmark is 

not inherent in the definition of the Kling-Gupta Efficiency, which is instead an expression of distance away from the point of 

ideal model performance in the space described by its three components. When 𝑄𝑠𝑖𝑚 is 𝑄𝑜𝑏𝑠
̅̅ ̅̅ ̅̅ , 𝐾𝐺𝐸 ≈ −0.41, but there is no 5 

direct reason to choose this benchmark over other options (see e.g. Schaefli and Gupta, 2007; Seibert, 2001; Seibert et al., 

2018). Because KGE itself has no inherent benchmark value to enable a distinction between ‘good’ and ‘bad’ models, 

modellers using KGE must be explicit about the benchmark model or value they use to compare the performance of their 

model against.  

If the mean flow is chosen as a benchmark, model performance in the range -0.41 < KGE <= 1 could be considered ‘reasonable’ 10 

in the sense that the model outperforms this benchmark. By artificially and consistently imposing a threshold at KGE = 0 to 

distinguish between ‘good’ and ‘bad’ models, modellers limit themselves in the models and/or parameter sets they consider in 

a given study, without rational justification of this choice and without taking into account whether more catchment-appropriate 

or study-appropriate thresholds could be defined.  

3.2 NSE and KGE values cannot be directly compared and should not be treated as approximately equivalent 15 

Through long use, hydrologic modellers have developed intuitive assessments about which NSE values can be considered 

acceptable for their preferred model(s) and/or catchment(s). However, this intuition of acceptable NSE values cannot easily 

be mapped onto corresponding KGE values. There is no unique relationship between NSE and KGE values (Figure 1a, note 

the scatter along both axes, see also Appendix 1) and where NSE values fall in the KGE component space depends in part on 

the coefficient of variation (CV) of the observations (see animated Figure S1 in Electronic Supplement 1 for a comparison of 20 

where NSE = 0 and 𝐾𝐺𝐸 = 1 − √2 fall in the space described be KGE’s r, a and b components).  

This has important implications when NSE or KGE thresholds are used to distinguish between behavioural and non-

behavioural models. Figure 1b-g are used to illustrate a synthetic experiment, where simulated flows are generated from 

observations and a threshold for behavioural models is set midway between the value for the mean flow benchmark (NSE=0 

and KGE=-0.41) and the value for a perfect simulation (NSE=KGE=1): simulations are considered behavioural if NSE > 0.5 25 

or KGE > 0.3. Each row shows flows from a different catchment, with increasing coefficients of variations (i.e. 0.28, 2.06 and 

5.00 respectively). In Figures 1b, 1d and 1f, the simulated flow is calculated as the mean of observations. NSE values are 

constant at NSE = 0 for all three catchments, and KGE values are constant at KGE = -0.41. In Figures 1c, 1e and 1g, the 

simulated flow is the observed flow plus an offset, to demonstrate the variety of impacts that bias has on NSE and KGE (similar 

examples could be generated for other types of error relating to correlation or variability, but these examples are sufficient to 30 

make the point that NSE and KGE behave quite differently). In Figure 1c, simulated flows are calculated as observed flows 

+0.45 mm/d (bias +39%). With the specified thresholds, this simulation would be considered behavioural when using KGE 

(0.61 > 0.3), but not with NSE (-0.95 < 0.5). In Figure 1e, simulated flows are calculated as observed flows +0.5 mm/d (bias 

+40%). In this case however, these simulations are considered behavioural with both metrics (NSE: 0.96 > 0.5; KGE: 0.60 > 

0.3). Figure 1g shows an example where simulated flows are calculated as observations +0.7 mm/d (bias +97%), which is 35 

considered behavioural when NSE is used (0.96 > 0.5), but not when KGE is used (0.03 < 0.3).  

These figures show that NSE values that are traditionally seen as high do not necessarily translate into high KGE values, nor 

that standards of acceptability developed through extensive use of the NSE metric are directly applicable to KGE values. 

Instead, hydrologists who choose to use the KGE metric need to develop new understanding of how this metric should be 

interpreted and not let themselves be guided by their understanding of NSE. 40 
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Figure 1: Overview of the relationship between NSE and KGE. (a) Comparison of KGE and NSE values based on random sampling 

of the r, a and b components used in KGE and NSE, using 6 different values for the Coefficient of Variation of observations (see 

appendix for method and separate plots of each plane). Internal axes are drawn at KGE = 1-√2 and NSE = 0. The dashed diagonal 

is the 1:1 line. Locations of figures b-g indicated in brackets. (b, d, f) Simulated flow Qsim is created from the mean of Qobs. (c) Qsim 5 
is created as Qobs+0.45 mm/d on every time step, increasing the bias of observations. (e) Qsim is created as Qobs+0.5 mm/d on every 

time step. (g) Qsim is created as Qobs+0.7 mm/d on every time step. The y-axis is capped at 30 mm/d to better visualise the difference 

between observations and synthetic simulations. 

3.3 The way forward: new understanding based on purpose-dependent metrics and benchmarks 

The modelling community currently does not have a single perfect model performance metric that is suitable for every study 10 

purpose. Indeed, global metrics that attempt to lump complex model behaviour and residual errors into a single value may not 

be useful for exploring model deficiencies and diagnostics into how models fail or lack certain processes. If such metrics are 

used however, a modeller should make a conscious and well-founded choice about which aspects of the simulation they 

consider most important (if any), and in which aspects of the simulation they are willing to accept larger errors. Emphasizing 

certain aspects of a simulation is straightforward by attaching weights to the individual KGE components to reduce or increase 15 

the impact of certain errors on the overall KGE score. This purpose-dependent score should then be compared against a 

purpose-dependent benchmark to determine whether the model can be considered ‘good’. 

An example of the necessity of such an approach can be found in Fig. 1g. For a study focussing on flood peaks, an error of 

only 0.7 mm/d for each peak might be considered skilful, although the bias of these simulations is very large (+97%). Due to 

the small errors and the high coefficient of variation in this catchment, the NSE score of these simulations reaches a value that 20 

would traditionally be considered as very high (NSE = 0.96). The standard formulation of KGE however is heavily impacted 

by the large bias and the simulations in Fig. 1g result in a relatively low KGE score (KGE = 0.03). If one relies on this 

aggregated KGE value only, the low KGE score might lead a modeller to disqualify these simulations from further analysis, 

even if the simulations are performing very well for the purpose of peak flow simulation. Investigation of the individual 

components of KGE would show that this low value is only due to bias errors and not due to an inability to simulate peak 25 

flows. The possibility to attach different weights to specific components of the KGE metric can allow a modeller to shift the 

metric’s focus: by reducing the importance of bias in determining the overall KGE score, or emphasizing the importance of 

the flow variability error, the metric’s focus can be moved towards peak flow accuracy (see Mizukami et al., 2019 for a 

discussion of purpose-dependent KGE weights and a comparison between (weighted) KGE and NSE for high-flow simulation). 
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For example, using weightings [1,5,1] for [r,a,b] to emphasize peak flow simulation (following Mizukami et al., 2019), the 

KGE score in Fig. 1g would increase to KGE = 0.81. The final step in any modelling exercise would then be comparing the 

obtained efficiency score against a certain benchmark that dictates which kind of model performance might be expected in this 

particular catchment (e.g. Seibert et al., 2018) and decide whether the model is truly skilful. How these purpose-dependent 

benchmarks should be set is an open question to the hydrologic community. 5 

4 Conclusions 

There is a tendency in current literature to interpret Kling-Gupta Efficiency (KGE) values analogous to Nash-Sutcliffe 

Efficiency (NSE) values: negative values indicate ‘bad’ model performance, whereas positive values indicate ‘good’ model 

performance. We show that the traditional mean flow benchmark (an inherent feature of NSE, resulting in NSE = 0 and the 

likely origin of this ‘bad/good’ model distinction) results in 𝐾𝐺𝐸 = 1 − √2. Unlike NSE, KGE does not have an inherent 10 

benchmark against which flows are compared and there is no specific meaning attached to KGE = 0. Modellers must thus be 

specific about which benchmark they compare their model performance against. If the mean flow is used as a KGE benchmark, 

all model simulations with -0.41 < KGE < 1 could be considered as reasonable performance. Furthermore, modellers must 

take care to not let their interpretation of KGE values be (subconsciously) guided by their understanding of NSE values, 

because these two metrics cannot be compared in a straightforward manner. Instead of relying on the overall KGE value, in-15 

depth analysis of the KGE components can allow a modeller to both better understand what the overall value means in terms 

of model errors and to modify the metric through weighting of the components to better align with the study’s purpose. 

Appendix 1 

The relation between possible KGE and NSE values shown in Figure 1a have been determined through random sampling of 

1000000 different combinations of the components r, a and b of KGE (Eq. 2), for 6 different coefficients of variation (CV; 0.1, 20 

0.5, 1.0, 1.5, 2.0, 5.0 respectively). Values were sampled in the following ranges: r = [-1,1]; a = [0,2]; b = [0,2]. The KGE 

value of each sample is found through Equation 2. The corresponding NSE value for each sampled combination of r, a and b 

is found through: 

𝑁𝑆𝐸 = 2𝑎𝑟 − 𝑎2 −
(𝑏−1)2

𝐶𝑉𝑜𝑏𝑠
2 ,           (7) 

Figure 2 shows the correspondence between KGE and NSE values for the 6 different CVs. Axis limits have been capped at [-25 

1,1] for clarity. Equation 7 can be found by starting from Equation 4 in Gupta et al (2009) and expressing 𝛽𝑛 =
𝜇𝑠−𝜇𝑜

𝜎𝑜
 in terms 

of 𝑏 =
𝜇𝑠

𝜇𝑜
, using 𝐶𝑉𝑜𝑏𝑠 =

𝜎𝑜𝑏𝑠

𝜇𝑜𝑏𝑠
. 
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Figure 2: Correspondence between synthetic KGE and NSE values based on 1E6 random samples of components r, a and b, for 

different coefficients of variation (CV). Colour coding corresponds to the colours used in Figure 1a. 
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