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Abstract. This study investigates the projected effect of vegetation feedback on drought conditions in West Africa using a 10 

regional climate model coupled to the National Center for Atmospheric Research Community Land Model, the carbon-nitrogen 11 

(CN) module, and the dynamic vegetation (DV) module (RegCM-CLM-CN-DV). The role of vegetation feedback is examined 12 

based on simulations with and without the DV module. Simulations from four different global climate models are used as 13 

lateral boundary conditions (LBCs) for historical and future periods (i.e., historical: 1981–2000; future: 2081–2100). With 14 

utilizing the Standardized Precipitation Evapotranspiration Index (SPEI), we quantify the frequency, duration and severity of 15 

droughts over the focal regions of the Sahel, the Gulf of Guinea, and the Congo Basin. With the vegetation dynamics being 16 

considered, future droughts become more prolonged and enhanced over the Sahel, whereas for the Guinea Gulf and Congo 17 

Basin, the trend is opposite. Additionally, we show that simulated annual leaf greenness (i.e., the Leaf Area Index) well-18 

correlates with annual minimum SPEI, particularly over the Sahel, which is a transition zone, where the feedback between 19 

land-atmosphere is relatively strong. Furthermore, we note that our findings based on the ensemble mean are varying, but 20 

consistent among three different LBCs except for one LBC. Our results signify the importance of vegetation dynamics in 21 

predicting future droughts in West Africa, where the biosphere and atmosphere interactions play a significant role in the 22 

regional climate setup. 23 

1 Introduction 24 

West Africa is significantly vulnerable to climate change yet, projecting its future climate is a challenging task (Cook, 2008). 25 

From the 1970s, a long period of drought was observed over West Africa, lasting until the late 1990s. While it is important to 26 

reduce the uncertainties and improve the reliability of future climate projections, there is still no clear consensus about whether 27 

the future outlook of the West African hydroclimate will be drier or wetter. Some studies projected drying trends (Hulme et 28 

al., 2001), whereas others predicted a wetter future (Hoerling et al., 2006; Kamga et al., 2005; Maynard et al., 2002). Caminade 29 

and Terray (2010) reviewed the A1B scenarios of the  21 coupled models from the Coupled Model Intercomparison Project 30 
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(CMIP) Phase 3 (CMIP3), which focused on a balanced emphasis on all energy resources, for the Sahel and found no clear 31 

evidence of precipitation trending over Africa. Roehrig et al. (2013) combined the CMIP3 and CMIP Phase 5 (CMIP5) global 32 

climate models (GCM) and found that western end of Sahel shows a drying trend whereas eastern Sahel shows opposite trend. 33 

Limited-area models, i.e., Regional Climate Models (RCMs) are often used as they can capture finer details as compared to 34 

GCMs (Kumar et al., 2008). The physics of RCMs dominate the signals imposed by large-scale forcing (i.e., forces with 35 

boundary conditions derived from GCMs). However, discrepancies still remain, because RCMs have distinct systematic errors 36 

with West African precipitation, varying in amplitude and pattern across models (Druyan et al., 2009; Paeth et al., 2011).  37 

Because climate and greenhouse gas concentrations continuously change, a noticeable change in vegetation is 38 

expected (Yu et al., 2014b). A more representative and reliable model requires incorporation of dynamic vegetation (DV) 39 

instead of static vegetation (SV) (Alo and Wang, 2010; Patricola and Cook, 2010; Wramneby et al., 2010; Xue et al., 2012; 40 

Zhang et al., 2014). Charney et al. (1975) first conceptualized the idea that precipitation could change dynamically in response 41 

to vegetation variability, he claimed that changes in precipitation over the Sahel is due to reduction in vegetation and increase 42 

in albedo. Various studies of biosphere–atmosphere interactions have been documented (Wang and Eltahir, 2000; Patricola 43 

and Cook, 2008; Kim et al., 2007) but there are a few studies in which a coupled RCM-DV is used. Such studies are in their 44 

initial stages (Cook and Vizy, 2008; Garnaud et al., 2015; Wang et al., 2016; Yu et al., 2016). For example, Cook and Vizy 45 

(2008) introduced a coupled potential vegetation model into an RCM to estimate the influence of global warming on South 46 

American climate and vegetation. They found a reduction in vegetation cover of almost 70% in the Amazon rainforest 47 

highlighting the importance of using DV in RCMs. Recently, Wang et al. (2016) introduced a DV feature into the International 48 

Center for Theoretical Physics Regional Climate Model (RegCM4.3.4) (Giorgi et al., 2012) with Carbon–Nitrogen (CN) 49 

dynamics and DV (RegCM-CLM-CN-DV) of the community land model (CLM4.5) (Lawrence et al., 2011; Oleson et al., 50 

2010). They validated the coupled model over tropical Africa (Wang et al., 2016; Yu et al., 2016). The advantage of simulating 51 

DV in the model eliminates potential discrepancies between the climate conditions and bioclimatic conditions required to 52 

prescribed vegetation, but it can create climate draft, i.e., biases in the model (Erfanian et al., 2016). Additionally, such a model 53 

is advantageous, because it provides a capacity to simulate future terrestrial ecosystems as the climate evolves.  54 

Among various drought indices (e.g., the Palmer Draught Severity index (Palmer, 1965) and the Standard 55 

Precipitation Index (McKee et al., 1993)) used to assess drought events, Vicente–Serrano (2010) suggested the Standardized 56 

Precipitation Evapotranspiration Index (SPEI), which uses the deficit between precipitation and potential evapotranspiration. 57 

Since the development of SPEI, various researchers have adopted this index for drought studies (Boroneant et al., 2011; Deng, 58 

2011; Li et al., 2012a; Li et al., 2012b; Lorenzo–Lacruz et al., 2010; Paulo et al., 2012; Sohn et al., 2013; Spinoni et al., 2013; 59 

Wang et al., 2016; Yu et al., 2014a; Yu et al., 2014b). Abiodun et al. (2013) studied the climate change and corresponding 60 

extreme events caused by afforestation in Nigeria while defining the drought events using SPEI. McEvoy et al. (2012) used 61 

SPEI as a drought index to monitor conditions over Nevada and Eastern California, proposing that SPEI was a convenient tool 62 

to describe the drought in arid regions.  63 
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In this study, we aim to understand the impact of vegetation feedback on the future of droughts over West Africa. 64 

Specifically, SPEI is used to depict vegetation feedback on drought characteristics according to frequencies, severity, and 65 

duration over West Africa. Four sets of GCMs are used to force the RCM with and without vegetation dynamics. By comparing 66 

the drought characteristics between the two simulation sets, we show the signals of DV on the drought processes in different 67 

regions of Africa. 68 

2 Methodology 69 

2.1 Model Description 70 

This study uses state-of-the-art RegCM-CLM-CN-DV (Wang et al., 2016). Specifically, RegCM4.3.4 (Giorgi et al., 2012) and 71 

CLM4.5 (Lawrence et al., 2011; Oleson et al., 2010) with CN dynamics and DV are coupled to simulate various atmospheric, 72 

land, biogeochemical, vegetation phenology, and vegetation distribution processes. RegCM is a regional model that uses an 73 

Arakawa B-grid finite differencing algorithm along with a terrain-following σ-pressure vertical coordinate system. Grell et al. 74 

(1994) introduced an additional dynamic component in the model that is taken from the hydrostatic version of the Pennsylvania 75 

State University Mesoscale Model version 5. From Community Climate Model (Kiehl et al., 1996) a radiation scheme was 76 

added. Model covers four different convection parameterization schemes namely 1) the modified-Kuo scheme (Anthes et al., 77 

1987), 2) the Tiedtke scheme (Tiedtke, 1989), 3) the Grell scheme (Grell, 1993) and 4) the Emanuel scheme (Emanuel, 1991) 78 

along with non-local boundary layer scheme of Holtslag et al. (1990).Cloud and precipitation scheme comes from the physics 79 

package (Pal et al., 2000). Aerosols algorithm follows Solmon et al. (2006) and Zakey et al. (2006). 80 

While solving a surface biogeochemical, biogeophysical, ecosystem dynamical and hydrological processes, CLM4.5 81 

considers fifteen soil layers, sixteen distinct plant functional types (PTF), up to five snow layers and a ordered data structure 82 

in each grid cell (Erfanian et al., 2016; Lawrence et al., 2011; Wang et al., 2016). An optional component present in this model 83 

is the CN and DV module. CN module not only simulates CN cycles and plant phenology and maturity but also estimates 84 

vegetation height, stem area index and leaf area index (LAI). The DV module projects the fractional coverage of different 85 

PFTs and corresponding temporary variations at yearly time steps developed using CN-estimated carbon budget, also it 86 

accounts for plant existence, activity and formation. If CN and DV modules are inactive, it means that the distribution and 87 

vegetation composition in the model is established according to observed data sets (i.e., SV). 88 

2.2 Numerical Experiments 89 

This study focuses on the West African region with emphasis on three regions over the study domain (see Fig. 1): the Sahel, 90 

the Gulf of Guinea, and the Congo Basin. A total of 16 different numerical simulations are performed (Table 1). To investigate 91 

the impacts of DV, simulation of model is carried out in two distinct configurations, one in which CN-DV module is activated 92 

(i.e, DV runs) and the other in which CN-DV module is not activated (i.e., SV runs). Additionally, the LBCs for the RCMs 93 

are derived from four GCMs: the Community Earth System Model (Kay et al., 2015), the Geophysical Fluid Dynamics 94 
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Laboratory model, the Model for Interdisciplinary Research on the Climate–Earth System Model (Watanabe et al., 2011), and 95 

the Max Planck Institute Earth System Model. These eight simulations are performed for two different periods: the present 96 

(i.e., 1981–2000) (CMIP5-historical) and the future (i.e., 2081–2100) (CMIP5-RCP8.5).  97 

The model grid is configured using a 50-km horizontal grid spacing and 18 vertical layers from the surface to 50 hPa. 98 

The model parameterizations are the same as the one used by Wang et al. (2016) and Yu et al. (2016), which was optimized 99 

with previous applications over the same region (Alo and Wang, 2010; Saini et al., 2015; Wang and Alo, 2012; Yu et al., 00 

2014b). Its performance and simulation details with ERA-interim and future projections were documented by Wang et al. 01 

(2016) and Erfanian et al. (2016), respectively.  02 

2.3 SPEI 03 

Vicente–Serrano et al. (2010) gave a simple approach to estimate SPEI. Thornthwaite (1948) method is used to calculate 04 

monthly PET in first step, this method utilizes three parameters 1) temperature, 2) latitude and 3) time. For a given month, j, 05 

and year, i, the monthly water surplus or deficit, (𝐷𝐷#,%)	is calculated by Eq. (1) given below. 06 

𝐷𝐷#,% = 𝑃𝑃𝑃𝑃#,% − 𝑃𝑃𝑃𝑃𝑃𝑃#,%                                          (1) 07 

Where PR is precipitation and PET is potential evapotranspiration. In the second step accumulated monthly water 08 

deficits, (𝑋𝑋#,%/ ), at time scale 𝑘𝑘 (i.e., 12 months) in a given month, 𝑗𝑗, and year, 𝑖𝑖, is calculated based on 𝐷𝐷. Finally, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆#,%/  is 09 

estimated by fitting 𝑋𝑋#,%/  to the log-logistic distribution by mean of the L-moments method by (Hosking 1990). In this study, 10 

we define a drought event with an 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆#,%/  of less than -1. 11 

3 Results and Discussions 12 

3.1 Historical Climate, Vegetation and Drought 13 

This study briefly presents the present-day climate, vegetation, and droughts, simulated with RegCM-CN-DV with and without 14 

vegetation dynamics, as detailed evaluations of model performance, including the performance according to different RCMs, 15 

which was already provided by Erfanian et al. (2016). Relative to the observational data from the University of Delaware (Fig. 16 

1), both SV and DV ensembles (Figs. 2a and 2b) follow the observed spatial patterns of precipitation and air temperature with 17 

overestimating precipitation over Gulf of Guinea and the northern and southern parts of the Congo Basin. But over Sahel and 18 

the central Congo Basin it is underestimated. The spatial trend of temperature bias is almost similar to precipitation bias, with 19 

the dry and warm bias occur simultaneously and vice versa. It also reflects how evaporative cooling plays an important role in 20 

surface energy flux across the regions (Erfanian et al., 2016). Additionally, the model generally performs better with SV than 21 

with DV. The biases of precipitation and temperature in SV ensembles are further amplified in the DV ensembles. DV tends 22 

to remove the physical inconsistencies linked with SV, but it increases the sensitivity of the model to lateral boundary 23 

conditions (LBC) and potential model biases related to LBCs (Erfanian et al., 2016). So, we can say that one of the benefits to 24 
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introduce DV in the model is that it gives us a clear signal that how the change of vegetation could impact climate forcings, 25 

presented in Sections 3.2 and 3.3. 26 

By allowing vegetation dynamics, the LAI is overestimated in the Guinea Gulf and the central Congo Basin, and it is 27 

underestimated in the Sahel region and southern and northern parts of the Congo Basin, compared to the case without 28 

vegetation dynamics, where the LAI represents Moderate Resolution Imaging Spectroradiometer-based monthly-varying 29 

climatological values (Figs. 3a, 3b, and 3e). It seems that underestimated LAI over the Sahel region is due to dry bias in the 30 

atmospheric forcings, which then leads to additional decreases in precipitation for that region. Such dry biases lead to warm 31 

bias in air temperate via the reduction of evaporative cooling.   32 

The precipitation surplus/deficit (Eq. (1), Fig. 2c) was used in calculating SPEI values to analyze the drought frequency. 33 

Precipitation minus potential evapotranspiration is mainly controlled by air temperature according to Thornthwaite method. 34 

The difference of DV and SV ensembles for the precipitation surplus/deficit (Fig. 2c-3) follow that of the precipitation and 35 

temperature, as expected.  36 

Therefore, the difference for the drought frequency (Fig. 4a) depicts a similar pattern.  For historical period over Sahel 37 

drought frequency is up to 44% higher when DV is enabled whereas it is 40% less over the Gulf of Guinea. Such characteristics 38 

in the ensemble averages are captured in the difference of drought frequency between DV and SV of each ensemble member 39 

to different extents (the first row of Fig. 5). While the Sahel and the Guinea Coast regions present relatively similar differences 40 

in the drought frequency, the central Congo Basin shows quite different trends among the different LBCs.  CCSM presents 41 

increase in drought frequency in DV relative to SV, but MIROC presents the opposite. GFDL and MPI-ESM presents relatively 42 

weak differences. 43 

To investigate the role of vegetation dynamics on drought severity and duration, the averages of SPEI over three 44 

regions are estimated in Fig. 6. In the Sahel, the more severe and longer droughts are clearly captured for the present-day DV 45 

ensemble compared to the SV ensemble. As noted, the reason behind an underestimated LAI over Sahel is dry biasness in 46 

atmospheric forcings, which then leads to an additional decrease in precipitation in that region. Thus, prolonged and severe 47 

drought events are consistently found in DV ensembles for Sahel. In the Guinea Coast and the Congo, the opposite is found 48 

because of the vegetation dynamics. Also, different LBCs present consistent patterns except for CCSM, which shows limited 49 

differences of SPEI between DV and SV in the regional averages over the Congo and Gulf of Guinea. 50 

3.2 Predicted Future Climate, Vegetation, and Droughts 51 

In this section, we focus on the projected future climate, vegetation, and droughts, simulated with and without vegetation 52 

dynamics. First of all, projected precipitation in the future period of both SV and DV ensembles (Figs. 7a and 7b) shows the 53 

similar spatial patterns to that of the past with different regional changes. In the SV ensemble (Fig. 7a-3), small decrease in 54 

precipitation are found in Sahel and the Congo Basin. For the DV ensemble (Fig. 7a-4), it is clearly visible that the band of 55 

precipitation below 10 °N increases up to 56.4 m/month. As expected, atmospheric warming caused by the increased CO2 56 
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concentration in the future scenario leads to widespread increases in temperatures for both SV and DV ensembles (Figs. 7b-3 57 

and 7b-4).  58 

Consistent with such changes in climate conditions, vegetation state (i.e., LAI) changes because of atmospheric 59 

warming and CO2 fertilization. In the DV ensemble (Figs. 3d and 3e), widespread increases in future LAI are found, compared 60 

to that from the historical period over the regions below 10 °N. Beyond 10 °N, vegetation cover is sparse and there are no 61 

noticeable changes in future LAI. Note that LAI does not differ for both historical or future periods in SV.  62 

In the future, the precipitation surplus/deficit shows a general decline for both SV and DV ensembles (Figs. 7c-3 and 7c-4). 63 

Only local increases in precipitation surplus/deficit near 10 °N are captured by the DV ensemble. Such changes in precipitation 64 

surplus/deficit lead to similar changes in drought frequencies between the future and historical periods for both SV and DV 65 

ensembles (Figs. 4b and 4c). Corresponding to the band of precipitation increase, a slight decrease of drought frequency of up 66 

to 15 % is shown in the DV ensemble. 67 

3.3 Impact of vegetation dynamics on future droughts 68 

It is desired to include vegetation dynamic component in land-atmospheric coupled model for future climate projections, 69 

although including this property makes the model more complex but it is closer to a realistic model.  In this section, we focus 70 

on the role of vegetation dynamics in future ensembles (i.e., the difference between DV and SV for the future).  71 

Investigating the difference of LAI between DV and SV for the future period (Fig. 3f), we find that the LAI for the DV 72 

ensemble is smaller than that of SV over the Sahel and larger below 10 °N. Such different responses of vegetation can be 73 

attributed to dominant vegetation types over the regions as grasses and trees are dominant over the Sahel and below the 10°N 74 

respectively. We note that LAI differences between SV and DV ensembles, show quite similar patterns both in historical and 75 

future periods (Figs. 3c and 3f) with LAI biases caused by climate biases in the historical period being similarly shown in the 76 

future period. Note that underestimated LAI in Sahel is not necessarily a bias in the future simulations, because the future LAI 77 

in SV is assumed to be identical to historical climatological LAI as in historical SV ensemble.   78 

Differences between DV and SV in precipitation and air temperature (Figs. 7a-5 and 7b-5) follow the differences of 79 

the vegetation state (i.e., LAI). Over the region below 10 °N, wetter and colder climate conditions are predicted with the DV 80 

ensemble compared to the SV ensemble, resulting in increased precipitation surplus, as shown in Fig. 7c-5. Consequently, the 81 

frequencies of drought events decrease up to 40 % over Gulf of Guinea and increases up to 43 % over the Sahel based on the 82 

ensemble averages (Fig. 4d). Among the runs with different LBCs, the inconsistency in the drought frequency is found over 83 

the central Congo Basin with CCSM, as already pointed out in the historical simulations.  84 

The differences of regional averages of SPEI over the three different regions (see the last rows in each panel of Fig. 85 

6) present the impact of vegetation dynamics on future drought severity and duration. Ensemble averages show that more 86 

prolonged and more severe droughts are projected over the Sahel and vice versa for the Guinea Gulf and the Congo Basin. 87 

Among ensemble members with different LBCs, CCSM presents a bit different results from other LBCs, not capturing the 88 

decreased droughts for the Guinea Gulf and the Congo Basin. 89 
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We next present the correlation coefficients between annual maximum LAI and annual minimum SPEI over the 90 

regions for both historical and future periods (Fig. 8). With drought events, as reflected in the relatively lower annual minimum 91 

SPEI, the annual maximum LAI should be smaller, because leaf growth is limited during such events. Such interactive 92 

responses of vegetation to climate conditions are only captured in the DV ensemble. When DV is active, a large portion of 93 

West Africa has a strong positive association between the maximum LAI and minimum SPEI. Relatively strong correlations 94 

are found along the Sahel, which may attribute to the fact that feedback between land–atmosphere is relatively strong in 95 

transition zones. 96 

4 Conclusion 97 

In this study, we employed the drought index (i.e., SPEI) to quantitatively assess the effects of vegetation dynamics on 98 

projected future drought over West Africa. The impact of vegetation feedback on drought projection was examined both with 99 

and without considering vegetation dynamics. This study suggests that, with the vegetation dynamics considered, drought is 200 

prolonged and enhanced over the Sahel, whereas for the Guinea Gulf and Congo Basin, the trend is clearly the opposite. Such 201 

opposite changes could attribute to amplified biases because a feedback exists between climate and vegetation in a dynamic 202 

vegetation model, as well as due to bioclimatic inconsistency in the static vegetation model. These results are quite consistent 203 

over 3 different LBCs while the LBC with CCSM show somewhat opposite results for the Congo Basin. Furthermore, we 204 

show that simulated annual leaf greenness (i.e., LAI) was well correlated with annual minimum SPEI, particularly over the 205 

Sahel, which is a sensitive, transition zone, where the feedback between land–atmosphere is relatively strong.  206 

We note that the present study uses the SPEI via calculating PET with the Thornthwaite approach, that considers air 207 

temperature as a governing feature of PET. There are various other method one of them is Penman method that that include 208 

many other variables (i.e., humidity, radiation coefficient and wind speed) to calculate PET. Due to temperature rise, there 209 

may be limited effects on drought via increased PET because other climatic conditions affecting PET may balance for 210 

temperature rise (McVicar et al., 2012). 211 
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 349 
Figure 1. Observed averages of (a) precipitation (mm/month) and (b) air temperature (oC) from 1981–2000 using datasets from the 350 
University of Delaware, and (c) derived precipitation deficit/surplus (mm/month). In (a), the boxes with the dashed lines show three focal 351 
regions of Sahel, Gulf of Guinea and the Congo Basin.  352 
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 353 
Figure 2. Averages of simulated (a) precipitation (mm/month), (b) temperature (oC), and (c) derived precipitation surplus/deficit (mm/month) 354 
from 1) SV ensembles, 2) DV ensembles, and 3) the difference between DV and SV ensembles for the historical period of 1981–2000.  355 
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 356 
Figure 3. Averages of leaf area index (LAI) (a) used for SV and (b) simulated in DV ensembles for historical period (1981–2000) and (c) 357 
their differences (DV-SV). And, we show (d) the difference between future (2081-2100) and historical periods in DV, (e) averages of 358 
simulated LAI in DV ensembles for future period and (f) the difference between DV and SV in the future period.  359 
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 360 
Figure 4. Difference of drought frequencies between the DV and the SV ensembles (a) for the historical period (1981-2000) and (d) for the 361 
future period (2081-2100). Differences between the future and historical periods (future-historical) for (b) SV ensembles and (c) DV 362 
ensembles. Drought frequency is defined for events with an SPEI less than -1.   363 
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 364 
Figure 5. Difference of drought frequencies between the DV and the SV ensembles (1) for the historical period (1981-2000) and (2) for the 365 
future period (2081-2100) from the ensemble members with different LBCs of (a) CCSM, (b) GFDL, (c) MIROC and (d) MPI-ESM. Drought 366 
frequency is defined for events with an SPEI less than -1.  367 
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Figure 6. Monthly SPEI averaged for three regions of the Sahel, the Gulf of Guinea, and the Congo Basin in (a) ensembles and the individual 369 
member with different LBCs of (b) CCSM, (b) GFDL, (c) MIROC and (d) MPI-ESM. HSV and HDV (FSV and FDV) represent the historical 370 
(future) simulation without and with dynamic vegetation, respectively. HDV-HSV (FDV-FSV) depict the difference between HDV and HSV 371 
(FDV and FSV). 372 
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Figure 7. Averages of simulated (a) precipitation (mm/month) and (b) temperature (oC), and (c) derived precipitation surplus/deficit 374 
(mm/month) from 1) SV ensembles and 2) DV ensembles for the future period of 2081–2100. Their difference between future and historical 375 
periods (future-historical) for 3) SV ensembles and 4) DV ensembles are shown. The difference between DV and SV ensembles reflect the 376 
future period.    377 
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 378 
Figure 8. Spearman’s rank correlation coefficient between annual minimum LAI and annual maximum SPEI from the DV ensembles for (a) 379 
the historical (1981-2000) and (b) future (2081-2100) periods. 380 
  381 
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Table 1. Description of 16 different simulation setups (4 boundary conditions, 2 different vegetation dynamics and 2 different periods) 382 
Boundary 
conditions 
from different 
GCMs 

CCSM Community Earth System Model 
GFDL Geophysical Fluid Dynamics Laboratory 
MIROC Model for Interdisciplinary Research on Climate-Earth System Model 
MPI-ESM Max Planck Institute Earth System Model 

Vegetation 
dynamics 

DV Dynamic Vegetation 
SV Static Vegetation 

Periods 
Historical 1981–2000 
Future 2081–2100 

 383 

 384 

 385 
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