
Response to Reviewer #2 
 

1. Brief summary of the manuscript 
In their manuscript, Dr. Mehboob and co-workers applied a regional climate model coupled to a 
dynamic vegetation module to quantify the effects of vegetation feedback on drought over West 
(Sahel and Gulf of Guinea) and Central Africa (Congo Basin) under present-day and future 
climate. To identify drought conditions, the authors use the Standardized Precipitation 
Evapotranspiration Index (SPEI) as defined by Vicente-Serrano et al. (2010) by combining 
monthly precipitation and potential evapotranspiration (PET). To assess the added value of 
representing the dynamics of vegetation processes (e.g., plant shift, growth), Mehboob et al. 
performed numerical experiments with and without the dynamic vegetation module. In addition, 
they accounted for uncertainties in the atmospheric forcing by taking boundary lateral conditions 
from four global climate models (GCMs). The main results are: 

• In experiments using the dynamic vegetation module, future drought lengthens and 
strengthens in the Sahel compared to experiments without the dynamic vegetation 
module, while the trend is less clear in the Gulf of Guinea and the Congo Basin. 

• When forcing the regional climate model with different GCMs, results are consistent 
except for the Congo Basin where GCM diverge in reproducing drought frequency under 
present-day and future climate. 
 

2. General comments 
The study addresses relevant scientific questions that are within the scope of HESS and that are 
related to drought occurrence and intensity in a sensitive region such as West and Central Africa. 
In this sense, the study could provide interesting advance towards current knowledge and 
methodologies applied to project drought in Africa and other sensitive regions using RCMs. 
However, in my opinion, the quality of presentation is poor and confused; the Introduction, 
Methodology, and Results and Discussion Sections are not well laid out; some methodological 
choices are not well justified; and the significance of results is not discussed. Moreover, I would 
suggest to edit and proofread the manuscript to avoid redundancy and to simplify some confused 
sentences that make the reading difficult. In the following, I provide specific comments (major 
and minor) on the manuscript. 
>> Thank you very much for the constructive comments. Here is the summary of our revision: 

1) Add the model evaluations with the runs forced by the reanalysis data (ERA-Interim);  
2) Re-arrange the results to better present our findings with updated figures; 
3) Include additional and detailed literature review; 
4) Discuss the significance on the results; 
5) Improve the figures with re-arrangement and proper titles; Add the significant test results 

in the difference figures. 

We have also proofread the manuscript thoroughly to avoid any confusing expressions. Please 
find the point-by-point responses to the specific comments below along with the revised 
manuscript.  
 



3. Major comments 
In my opinion, the Introduction does not provide enough information to readers on the target 
region, its climate features (also in terms of surface-atmosphere interactions) and on the 
vegetation feedback the manuscript will focus on. Although the authors cite some previous works 
that studied the same region, I think the authors should spend more words in summarizing the 
main results and limits of the cited works. This will allow the authors to clearly state their own 
original contribution to the tackled topic.  
>> We have revised the introduction to include the additional and detailed literature review 
regarding the previous studies about the West African climate projects as well as the coupled 
climate-vegetation model development. 

Page 2, Line 6: “Recently, Akinsanola and Zhou (2019) investigated projected changes in 
extreme summer rainfall events over West Africa with data from the Coordinated Regional 
Climate Downscaling Experiment (CORDEX) models. Results showed the RCMs reasonably 
reproduced the observed pattern of extreme rainfall over the region. Future projections under the 
representative concentration pathways (RCPs) showed a statistically significant decrease in total 
rainfall and an increase in consecutive dry days and extreme rainfall.” 

Page 2, Line 22: “Cook and Vizy (2008) developed a vegetation model coupled with a RCM to 
estimate the influence of global warming on South America by allowing interactions between 
climate and vegetation. With the simulation of the future climate under the A2 scenario, the 
authors found a reduction in vegetation cover of almost 70% in the Amazon rainforest along with 
a widespread increase in grass and shrubland in the east by the end of 21st century. This 
highlights the importance of considering vegetation dynamics in RCMs. Garnaud et al. (2015) 
combined the Canadian Regional Climate Model (CRCM5) with the Canadian Territorial 
Ecosystem Model (CTEM) to investigate the impact of a vegetation model to simulate the present 
day climate over North America. The result showed that introducing vegetation dynamics 
improved the model’s performance in some regions, along with introducing new biases in other 
regions, owing to biases in simulated leaf area index (LAI). This atmospheric-vegetation 
interaction also introduced long term memory, which was estimated using a lagged correlation 
between temperature/precipitation and LAI. Wu et al. (2016) utilized a regional earth system 
model coupled with the dynamic vegetation model, RCA-GUESS (Smith et al., 2011), and 
investigated the role of vegetation dynamics on climate in Africa under the RCP8.5 projected 
climate scenario. The authors showed that introducing vegetation processes amplifies the 
warming trend and enhanced precipitation reduction over rainforest areas, which highlights the 
impact of introducing vegetation processes in a climate model.”  

Page 3, Line 3: “Recently, Wang et al. (2016) introduced a dynamic vegetation feature into the 
International Center for Theoretical Physics Regional Climate Model (RegCM4.3.4) (Giorgi et 
al., 2012) with carbon–nitrogen (CN) dynamics and dynamic vegetation (DV) (RegCM-CLM-
CN-DV) of the community land model (CLM4.5) (Lawrence et al., 2011; Oleson et al., 2010) and 
validated the coupled model over tropical Africa. With the RegCM-CLM-CN-DV, Yu et al. (2016) 
and Erfanian et al. (2016) examined the impacts of vegetation dynamics on the climate and 
ecosystems using multiple LBCs from past and future GCM simulations over West Africa. Yu et 
al. (2016) showed that climate projections of dynamic vegetation feedback was found mainly in 
semiarid areas of West Africa with little signal in the wet tropics. Erfanian et al. (2016) 
demonstrated the substantial sensitivity of the simulated precipitation, evapotranspiration, and 



soil moisture to vegetation representation. Including DV in the model eliminates potential 
inconsistencies between prescribed vegetation and climate, but it can cause climate drift 
(enhancing model biases) (Erfanian et al., 2016).” 
 

Ll 31 (pag. 2): "... on a balanced emphasis on all energy resources...": It is not clear to me what 
this mean. I suggest to rephrase this sentence and describe more explicitly the methodology of 
the cited work of Caminade and Terray (2010). 
>> As per the reviewer’s suggestion, the review on Caminade and Terray (2010) has been 
rephrased to clarify their methodology and results.  
Page 1, Line 28: “Caminade and Terray (2010) examined the simulated rainfall over the Sahel at 
the end of twenty-first century with the 21 models from the Coupled Model Intercomparison 
Project (CMIP) Phase 3 (CMIP3). They argued that different model projections are highly 
uncertain because future rainfall may be affected by changes in surface conditions (e.g., 
vegetation, land use and soil moisture) that have not been considered in CMIP3 models.” 

 
Ll 36 (pag. 2): For sake of completeness, I would mention that RCM can be forced using re-
analysis. 
>> As per the reviewer’s suggestion, we have added the phrase about RCM. 

Page 2, Line 6: “regional climate models (RCMs), which are forced with lateral boundary 
conditions (LBCs) derived from GCMs,” 

 
Ll 45–48 (pag. 2): I think it would be interesting to summarize the main findings of the study of 
Cook and Vizy (2008), in particular the effects on the regional climate of South America of a 
reduction of 70. 

>> As per the reviewer’s suggestion, we have rephrased the sentences to clarify the findings of 
Cook and Vizy (2008). 

Page 2, Line 22: “Cook and Vizy (2008) developed a vegetation model coupled with a RCM to 
estimate the influence of global warming on South America by allowing interactions between 
climate and vegetation. With the simulation of the future climate under the A2 scenario, the 
authors found a reduction in vegetation cover of almost 70% in the Amazon rainforest along with 
a widespread increase in grass and shrubland in the east by the end of 21st century. This 
highlights the importance of considering vegetation dynamics in RCMs.” 

 
Ll 53 (pag. 2): "...climate draft...": Again, this expression is unclear to me, I suggest to express 
this differently.  
>> We have revised it to “climate drift” in the revised manuscript. 

 
Ll 55–63 (pag. 2): In my opinion, it is not clear why the authors have chosen the SPEI instead of 
other drought indexes. I would suggest to present the advantages and the limits of using the SPEI 



to identify and project drought.  
>> As per the reviewer’s suggestion, we have clarified the advantage of SPEI in Introduction. 
Further, recent studies on the estimation of the potential evapotranspiration have been discussed 
in Discussion and Conclusions. 

Page 3, Line 13: “Various drought indices (e.g., the Palmer Drought Severity index (Palmer, 
1965) and the Standard Precipitation Index (SPI, McKee et al., 1993)) have been used to assess 
drought events. Vicente–Serrano (2010) suggested the standardized precipitation 
evapotranspiration index (SPEI).	 It uses the deficit between precipitation and potential 
evapotranspiration and can include the effects of temperature variability on drought assessment. 
Therefore, it can be closely related to hydrologic and ecological drought processes although it 
only uses climate conditions. Since the development of SPEI, various drought studies have 
adopted this index (Boroneant et al., 2011; Deng, 2011; Li et al., 2012a; Li et al., 2012b; 
Lorenzo–Lacruz et al., 2010; Paulo et al., 2012; Sohn et al., 2013; Spinoni et al., 2013; Yu et al., 
2014a). For example, McEvoy et al. (2012) used SPEI as a drought index to monitor conditions 
over Nevada and Eastern California, proposing that SPEI was a convenient tool to describe the 
drought in arid regions. Recently, Diasso and Abiodun (2017) investigated the future impacts of 
global warming and reforestation on drought patterns simulated with the regional climate 
models over West Africa using the SPEI. Author showed that reforestation over the Savanna 
could reduce the future warming and increase the precipitation, but the impact of reforestation 
on the frequency of severe droughts could be doubled.” 

Page 9, Line 7: “The present study uses SPEI by calculating PET with the Thornthwaite 
approach, which considers air temperature as a governing feature of PET. However, there are 
various other methods to calculate PET. For example, the Penman–Montieth method is more 
physically realistic but requires a diverse input data set (i.e., humidity, radiation coefficient, and 
wind speed). Van der Schrier et al. (2011) calculated the change in the global Palmer Drought 
Severity Index (PDSI) using two distinct estimates for PET (e.g., Thornthwaite and Penman�
Monteith). The authors found that PSDI based on two PET estimates are identical in terms of 
trend, average values, and classifying severe wet or dry periods. Conversely, McVicar et al. 
(2012) suggests that climatic conditions other than temperature that affect PET, may balance 
temperature rise; therefore, further investigations with multiple approaches could inform future 
drought characteristics” 
 

In the Methodology section, I think the description of the dynamic vegetation module and its 
functioning should be more detailed. Moreover, I do not understand which parameterization 
scheme the authors have chosen to represent convection. Related to this point, to ensure the 
traceability of results, a summary table with all the selected parameterizations could be useful for 
readers that would like to apply the same modelling set-up over a different region. 
>> As per the reviewer’s suggestion, we have added one table to show the selected 
parameterizations for this study. 
Table 2. Model parameterizations used in this study 

Model’s feature Selected schemes 
Boundary layer Holtslag PBL 

(Holtslag et al., 1990) 



Cumulus convection Emanuel scheme 
(Emanuel, 1991) 

Precipitation and cloud Sub-grid Explicit Moisture Scheme 
(Pal et al., 2000) 

Radiation Community climate model 3 
(Kiehl et al., 1996) 

Dynamics  Mesoscale model 5 
(Grell et al., 1994) 

Ocean flux Zeng scheme 
(Zeng et al.,1998) 

Anthropogenic aerosols/ 
Interactive aerosols 

Tracer model 
(Solmon et al., 2006; Zakey et al., 2006, 2008) 

Land Surface  Community Land Model 4.5 
(Lawrence et al., 2011; Wang et al., 2016) 

 
In terms of run experiments, in my opinion, the study lacks an experiment forced by re-analysis; 
this extra-experiment would provide a better term of comparison against observations to identify 
the model biases.  

>> This study builds upon the previous studies of Wang et al. (2016) and Erfanian et al. (2016). 
In particular, Wang et al. (2016) provides extensive model evaluations with the re-analysis data. 
This point has been clarified in the revised manuscript. However, we agree that the model should 
be evaluated for capturing the drought characteristics in this study; thus, we have revised section 
3.1 to provide the model evaluations with the runs with the ERA-Interim data along with added 
new figures (Figs 1, 2 and 3). 

Page 5, Line 3: “Wang et al. (2016) extensively evaluated the RegCM-CLM-CN-DV model for 
simulating regional climate and ecosystems in West Africa. The evaluation was performed using 
the LBCs from the ERA-Interim (1989-2008), and with and without vegetation dynamics. Yu et 
al. (2016) and Erfanian et al. (2016) also examined the impacts of vegetation dynamics on the 
climate and ecosystems using multiple LBCs from past and future GCM simulations. Building 
upon these previous studies, this study focuses on the impacts of vegetation dynamics on the 
regional drought characteristic  (i.e., frequency, duration, and intensity) over the focal regions of 
the West African domain: the Sahel, the Gulf of Guinea, and the Congo Basin (Fig. 1).” 

Page 6, Line 5: “3.1 Model Performance for Present-day Droughts  
This section briefly evaluates the model performance with observed climate and vegetation and 
drought characteristics (Figs 1, 2 and 3). The runs with the ERA-Interim with and without 
vegetation dynamics for 1989-2008 (Table 1) are briefly presented for the model evaluation. 
Detailed evaluations of the model performance are documented in Wang et al. (2016). Relative to 
the observational data from the University of Delaware (UDEL), both EvalSV and EvalDV (Fig. 
1) follow the observed spatial patterns of precipitation with slightly underestimating 
precipitation over the Sahel and overestimating over the Congo Basin. Such dry/wet biases lead 
to warm/cool biases in air temperature via the reduction/enhancement of evaporative cooling in 
the Sahel/Congo Basin. In general, the model performs slightly better with SV than with DV in 
the evaluation runs. But note that DV could eliminate potential consistencies between prescribed 
vegetation and climate particularly for the future projections. 

 With the addition of vegetation dynamics, the LAI (Fig. 2) is overestimated in the eastern 



parts of Gulf of Guinea and the northern parts of Congo Basin, and it is underestimated in the 
Sahel (EvalDV-EvalSV). The run without vegetation dynamics (EvalSV) uses the Moderate 
Resolution Imaging Spectroradiometer (MODIS)-based monthly-varying climatological LAI 
values. Over the Sahel, the model underestimates the woody plants and grasses with a significant 
overestimation of bare ground area, which can be attributed to biases in the vegetation dynamics 
of CLM-CN-DV model as well as the RegCM physical climate, i.e., dry bias (Wang et al., 2016; 
Erfanian et al., 2016). The dry/wet bias in the atmospheric forcings over the Sahel/Congo Basin 
contributes to the underestimated/overestimated LAI, which then leads to additional 
decreases/increases in precipitation for that region.  
 We also investigated the precipitation surplus/deficit (right column of Fig. 1) that is used 
for calculating the SPEI values to analyze the drought characteristics. We found that the 
differences of EvalDV and EvalSV for the precipitation surplus/deficit follow those of the 
precipitation in these cases. The estimated SPEI over three regions are compared in Fig. 3. 
While the general cycles of SPEI are limitedly captured in the model, the SPEI differences 
between UDEL and EvalSV may contribute to the limits of RegCM4. The difference between 
EvalSV and EvalDV is opposite between the Sahel and other regions, which corresponds to the 
bases of the precipitation surplus/deficit in Fig. 1. In the Sahel, the more severe and longer 
droughts are simulated for EvalDV compared with EvalSV. In the Gulf of Guinea and the Congo 
basin, the opposite was observed.” 
 



 
Figure 1. Averages of precipitation (left column), air temperature (middle column) and 
precipitation surplus/deficit (right column) from 1989–2008 using datasets from the University of 
Delaware (UDEL; top row), evaluation run with SV (EvalSV; second row), the difference 
between EvalSV and UDEL (EvalSV-UDEL; third row), evaluation run with DV (EvalDV; fourth 
row) and the difference between EvalDV and UDEL (EvalDV-UDEL; bottom row). The boxes 
with the dashed lines show three focal regions of Sahel, Gulf of Guinea and the Congo Basin. 
Doted region shows areas passing the two-tailed confidence level with α=0.01. 



 
Figure 2. Averages of leaf area index (LAI) from observation (MODIS), which is used for SV 
runs (EvalSV, HistSV and FutSV) and simulated in DV for evaluation run and experiment 
ensemble runs (EavlDV, HistDV and FutDV) in the first row, and their LAI differences in the 
second row. Doted regions show areas passing the two-tailed confidence level with α=0.01. 
 

 
Figure 3. Six-month moving averages of monthly SPEIs of observations (UDEL), EvalSV and 
EvalDV over three regions of the Sahel, the Gulf of Guinea, and the Congo Basin in 1989-2008. 
SPEI for UDEL is calibrated with the data from 1959-2008 (50 years). 
 

 



Regarding the SPEI index, I think its computation should be described in a clearer way. For 
example, the Thornthwaite method should be presented in more details to allow the readers to 
understand how the potential evapotranspiration is derived. Specifically, this method should also 
be shortly reviewed in comparison to other well-known methods (e.g., the Penman- Monteith 
equation), in a more detailed way than that reported on page 7 (ll. 7–11). Lastly, in the 
manuscript, the authors refer to drought frequency. However, it seems to me that they did not 
explicitly define how drought frequency has been calculated. 
>> As per the reviewer’s suggestion, we have included details on computing the SPEI in the 
Methodology. A comparison with Penman-Monteith has also been added in the Discussion and 
Conclusions. 

Page 5, Line 10: “In this study, we estimated the SPEI using the approach of Beguería and 
Vicente-Serrano (2013). While the precipitation is the simulated output of RegCM-CLM-CN-DV, 
the potential evapotranspiration (PET) should be derived from the model outputs. Owing to the 
simplicity and availability of the data set, we used Thornthwaite’s (1948) approach that only 
requires the air temperature. Thornthwaite derived an equation to calculate PET as follows: 
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where PET is in mm per month, T is monthly mean temperature in Celsius, I is a heat index and 
the coefficient, a, is dependent on I.  

 For a given month, j, and year, i, the monthly water surplus or deficit, (𝐷𝐷D,4)	is calculated 
by Eq. (4) given below: 

𝐷𝐷D,4 = 𝑃𝑃𝑃𝑃D,4 − 𝑃𝑃𝑃𝑃𝑃𝑃D,4                                        (4) 

where PR is precipitation and PET is potential evapotranspiration. Then, accumulated monthly 
water surplus or deficits at time scale 𝑘𝑘 (𝑋𝑋D,4I ) is calculated based on	𝐷𝐷D,4. In this study, we chose 
12 months for the time scale.  

As suggested in Vicente–Serrano et al. (2010), 𝑆𝑆𝑃𝑃𝑃𝑃𝐼𝐼D,4I  is estimated by fitting 𝑋𝑋D,4I  to the log-
logistic distribution by means of the L-moments method by Hosking (1990) ) as given in Eq. (5). 
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where 𝑓𝑓(𝑦𝑦) is the cumulative density function of a three-parameter log-logistic distribution and 
𝛼𝛼, 𝛽𝛽 and 𝛾𝛾 are the scale, shape, and origin parameters, respectively.   

A drought event is defined when an 𝑆𝑆𝑃𝑃𝑃𝑃𝐼𝐼D,4I  is less than -1. Drought frequency (F) for the study 
period can be calculated by the following equation: 

𝐹𝐹 = U
V
×100                                                      (6)  

where 𝑛𝑛 is the number of months with SPEIs less than -1 and 𝑁𝑁 is the total number of months of 



the study period.” 
Page 9, Line 7: “The present study uses SPEI by calculating PET with the Thornthwaite 
approach, which considers air temperature as a governing feature of PET. However, there are 
various other methods to calculate PET. For example, the Penman–Montieth method is more 
physically realistic but requires a diverse input data set (i.e., humidity, radiation coefficient, and 
wind speed). Van der Schrier et al. (2011) calculated the change in the global Palmer Drought 
Severity Index (PDSI) using two distinct estimates for PET (e.g., Thornthwaite and Penman�
Monteith). The authors found that PSDI based on two PET estimates are identical in terms of 
trend, average values, and classifying severe wet or dry periods. Conversely, McVicar et al. 
(2012) suggests that climatic conditions other than temperature that affect PET, may balance 
temperature rise (McVicar et al., 2012); therefore, further investigations with multiple 
approaches could inform future drought characteristics.” 

 
Ll 82 (pag. 3): "... aN ordered data structure ...", it is not clear to me what this refers to. I would 
suggest to make this explanation more explicit. 
>> This expression has been deleted. 

 
In my opinion, in the Results and Discussions section, the model evaluation should be 
performed using a simulation forced by re-analyses. In the model evaluation presented in the 
manuscript, it is difficult to understand how the divergent behavior of GCMs over the Congo 
Basin may influence the ensemble mean, which is compared to observations in Figure 2. In 
general, I found the presentation and discussion of results confused and hard to follow using the 
provided figures. My suggestion would be to (a) re-structure this section and the related figures, 
(b) include a more quantitative discussion in relation to other studies, and (c) asses the 
significance of the shown results. 
>> As pointed earlier, this study builds upon the previous studies of Wang et al. (2016) and 
Erfanian et al. (2016). In particular, Wang et al. (2016) provides extensive model evaluations 
with the re-analysis data. However, we agree that the model should be evaluated for capturing 
the drought characteristics in this study; thus, we have revised section 3.1 to provide the model 
evaluations with the runs with the ERA-Interim data along with added new figures (Figs 1, 2 and 
3). 
>> Furthermore, we have re-constructed the results section as “3.1 Model Performance for 
Present-day Droughts; 3.2. Projected Future Changes in Droughts; 3.3 Impact of Vegetation 
Dynamics on Future Droughts” and revised the results analysis to clearly explain our findings 
along with the updated figures. We have re-arranged and re-drawn all of the difference figures by 
indicating the statistically significant differences with the dots. Please see the revised manuscript 
as it follows. 
 

Ll. 15 (pag. 4): "... different RCMs ...", by checking the study of Erfanian et al. (2016), I think 
the authors are referring to different GCMs. 

>> We have corrected this. 



 
Ll. 18 (pag. 4): "... overestimating precipitation ...", it is hard to compare the figures and to 
distinguish the differences between observations and simulations, however it seems to me that 
precipitations are under-estimated over the Gulf of Guinea and the Congo Basin. A plot showing 
the differences between observations and model experiments will ease the identification and 
interpretation of model bias. 

>> The comparison between HistSV and UDEL in the original manuscript is not appropriate. 
Instead, we have added the difference between EvalSV and UDEL in Fig.1. The phrase 
mentioned above has been removed.  
 

Ll. 25–26 (pag. 5): This sentence is not clear to me. In RCM experiments, the climate forcing is 
prescribed, hence I do not understand how "a change in vegetation could impact climate 
forcings". 
>> As per reviewer’s suggestion, we have clarified it with changing it to “how the change of 
vegetation could impact RCM-simulated climate conditions”. 
 

Ll. 45–46 (pag. 5): It is not clear to me that the experiments using the dynamic vegetation 
module clearly capture the "more severe and longer droughts". I think to support this statement 
an observation-based SPEI would be needed. If the authors could compute SPEI based on 
observations, I would suggest to add a line in Figure 6 that shows the monthly observation-based 
SPEI. 
>> The comparison between HistSV and UDEL in the original manuscript is not appropriate. 
Instead, we have added the difference between EvalSV and UDEL in Fig.1. The phrase 
mentioned above has been removed. 

 
Ll. 35 (pag. 5): " (Fig. 2c-3)" It is not clear to me if the authors are referring to Figure 2c and the 
whole Figure 3 or to something else. In my opinion, the figures are not well laid out because title 
and units are only inserted in the figure caption. Since all the figures are multi-panel, the reading 
becomes even more complex. Moreover, in Figure 1 the three boxes are nearly invisible. I would 
suggest to highlight better the three target regions and to draw these boxes on all the maps that 
are presented in the study. 
>> As per reviewer’s suggestion, we have re-drawn all the maps, re-arrange them and added the 
boxes of the three focal areas. We also revised the titles to include the details of all figures 
instead of the alphabet series. Please see the revised manuscript as it follows. 

 
4. Minor comments 

Below, I list typos and errors, and I point to sentences that I would suggest to rephrase in a 
clearer way. 

LL 14–15 (pag. 1): I would suggest to replace "With utilizing ..." with "Using ..." 
>> As suggested, we have corrected it. 



LL 16–17 (pag. 1): I would suggest to replace "With the vegetation dynamics ..." with "By 
considering vegetation dynamics ..." 

>> As suggested, we have corrected it. 
LL 33 (pag. 2): "... that western end of Sahel ... whereas eastern Sahel..." should be replaced with 
"...that the western end of Sahel ... whereas the eastern Sahel ..." 
>> As suggested, we have corrected it. 

LL 36 (pag. 2): I would suggest to remove the comma between "... remain ..." and "... because ..." 
>> As suggested, we have corrected it. 

LL 42 (pag. 2): "... variability, he claimed ..." should be replaced with "... variability; the authors 
claimed ..." 

>> As suggested, we have corrected it. 
LL 43 (pag. 2): "Various studies ... have been documented ..." should be replaced with "... 
Various studies documented biosphere-atmosphere interactions ..." 
>> As suggested, we have corrected it. 

LL 51–54 (pag. 2): I would suggest to rephrase these two sentences to make them clearer and 
avoid redundancy. 

>> The sentences have been revised as it follows: 
Page 3, Line 11: “Including DV in the model eliminates potential inconsistencies between 
prescribed vegetation and climate, but it can cause climate drift (enhancing model biases) 
(Erfanian et al., 2016).” 

LL 55 (pag. 2): "...Draught ..." should be replaced with "... Drought ..." 
>> As suggested, we have corrected it. 

LL 57 (pag. 2): "..., which ..." should be replaced with "... that ..." 
>> As suggested, we have corrected it. 

LL 79 (pag. 3): A space is missing before "Cloud" 
>> As suggested, we have corrected it. 

LL 81 (pag. 3): I would suggest to correct and simplify this expression: " While solving a surface 
biogeochemical, biogeophysical, ecosystem dynamical and hydrological processes ..." 

>> As per reviewer’s suggestion, we have simplified it with “To solve various processes in the 
model (e.g. surface bio-geochemical and bio-geophysical processes, ecosystem dynamics, and 
hydrological process)”. 
LL 88 (pag. 3): "... distribution and vegetation distribution ... is established ..." should be 
replaced with "... distribution and vegetation distribution ... are established ... " 
>> As suggested, we have corrected it. 

LL 91–93 (pag. 3): I would suggest to rephrase the sentences that describe the different 
simulations to make them clearer and avoid redundancy. 



>> As per reviewer’s suggestion, we have clarified the different simulations as follow: 
Page 4, Line 22: “A total of 18 different numerical simulations are used in this study as in Table 
1 with two evaluation runs and 16 experimental runs with the climate change scenarios. 
Numerical simulations are carried out in two distinct configurations, one in which the CN-DV 
module is activated (i.e, DV runs) and the other in which the CN-DV module is not activated 
(i.e., SV runs). Additionally, the LBCs are derived from ERA-Interim for the evaluation runs 
(EvalSV and EvalDV) and from four GCMs for the historical (1981–2000) (i.e., HistSV and 
HistDV) and future (2081–2100) runs (i.e., FutSV and FutDV) uner the RCP8.5 scenarios. The 
GCMs used in this study include the Community Earth System Model (CESM, Kay et al., 2015), 
the Geophysical Fluid Dynamics Laboratory Model (GFDL, Tim et al., 2004), the Model for 
Interdisciplinary Research on the Climate–Earth System Model (MIROC, Watanabe et al., 2011), 
and the Max Planck Institute Earth System Model (MPI-ESM, Giorgetta et al., 2013).” 

Ll 05 (pag. 4): The acronym PET has not been previously introduced. 
>> As suggested, we have corrected it by adding the full name: potential evapotranspiration 
(PET). 
Ll. 56 (pag. 5): "CO2" should be replaced with "CO2. 

>> As suggested, we have corrected it. 
Ll. 75 (pag. 6): The comma between "ensembles" and "show" should be removed because it 
divides the subject from the verb. 
>> As suggested, we have corrected it. 

Ll. 35 (pag. 7): "... CCSM show somewhat ..." should be replaced with "... CCSM shows 
somewhat ..." 

>> As suggested, we have corrected it. 
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Abstract. This study investigates the projected effect of vegetation feedback on drought conditions in West Africa using a 10 

regional climate model coupled to the National Center for Atmospheric Research Community Land Model, the carbon-nitrogen 11 

(CN) module, and the dynamic vegetation (DV) module (RegCM-CLM-CN-DV). The role of vegetation feedback is examined 12 

based on simulations with and without the DV module. Simulations from four different global climate models are used as 13 

lateral boundary conditions (LBCs) for historical and future periods (i.e., historical: 1981–2000; future: 2081–2100). Using 14 

the standardized precipitation evapotranspiration index (SPEI), we quantify the frequency, duration and intensity of droughts 15 

over the focal regions of the Sahel, Gulf of Guinea, and Congo Basin. By the vegetation dynamics being considered, future 16 

droughts become more prolonged and enhanced over the Sahel, whereas for the Gulf of Guinea and Congo Basin, the trend is 17 

opposite. Additionally, we show that simulated annual leaf greenness (i.e., the Leaf Area Index) correlates well with annual 18 

minimum SPEI, particularly over the Sahel, which is a transition zone, where the feedback between land-atmosphere is 19 

relatively strong. Furthermore, we note that our findings based on the ensemble mean are varying, but consistent among three 20 

different LBCs except for one LBC. Our results signify the importance of vegetation dynamics in predicting future droughts 21 

in West Africa, where the biosphere and atmosphere interactions play a significant role in the regional climate setup. 22 

1 Introduction 23 

West Africa is significantly vulnerable to climate change yet; projecting its future climate is a challenging task (Cook, 2008). 24 

From the 1970s, a long period of drought was observed over West Africa, lasting until the late 1990s. While it is important to 25 

reduce the uncertainties and improve the reliability of future climate projections, there is no clear consensus about whether the 26 

future of the West African hydroclimate will be drier or wetter. Some studies projected drying trends (Hulme et al., 2001), 27 

whereas others predicted a wetter future (Hoerling et al., 2006; Kamga et al., 2005; Maynard et al., 2002). Caminade and 28 

Terray (2010) examined the simulated rainfall over the Sahel at the end of twenty-first century with the 21 models from the 29 

Coupled Model Intercomparison Project (CMIP) Phase 3 (CMIP3). They argued that different model projections are highly 30 
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uncertain because future rainfall may be affected by changes in surface conditions (e.g., vegetation, land use and soil moisture) 1 

that have not been considered in CMIP3 models. Roehrig et al. (2013) combined the CMIP3 and CMIP Phase 5 (CMIP5) 2 

global climate models (GCM) and found that the western Sahel shows a drying trend whereas the eastern Sahel shows an 3 

opposite trend. Limited-area models, i.e., regional climate models (RCMs), which are forced with lateral boundary conditions 4 

(LBCs) derived from GCMs, are often used as they can capture finer details, compared with GCMs (Kumar et al., 2008) since 5 

the physics of RCMs dominate the signals imposed by large-scale forcings (i.e., LBCs from GCMs). Recently, Akinsanola 6 

and Zhou (2019) investigated projected changes in extreme summer rainfall events over West Africa with data from the 7 

Coordinated Regional Climate Downscaling Experiment (CORDEX) models. Results showed the RCMs reasonably 8 

reproduced the observed pattern of extreme rainfall over the region. Future projections under the representative concentration 9 

pathways (RCPs) showed a statistically significant decrease in total rainfall and an increase in consecutive dry days and 10 

extreme rainfall. 11 

Because climate and greenhouse gas concentrations continuously change, a noticeable change is expected in the 12 

vegetation as well (Yu et al., 2014b). Thus, the global and regional climate models should incorporate more representative and 13 

reliable prognostic vegetation dynamics instead of prescribed vegetation composition and structure, particularly for the regions 14 

where biosphere-atmosphere interactions are significant (Alo and Wang, 2010; Patricola and Cook, 2010; Wramneby et al., 15 

2010; Xue et al., 2012; Zhang et al., 2014). Charney et al. (1975) first suggested that precipitation could change dynamically 16 

in response to vegetation variability; the authors claimed that changes in precipitation over the Sahel are due to reduction in 17 

vegetation and increase in albedo. Various studies documented biosphere–atmosphere interactions (Wang and Eltahir, 2000; 18 

Patricola and Cook, 2008; Kim and Wang, 2007), but there are a few studies in which a RCM including the prognostic 19 

vegetation dynamic is used because their developments are in their initial stages (Cook and Vizy, 2008; Garnaud et al., 2015; 20 

Wang et al., 2016; Yu et al., 2016).  21 

Cook and Vizy (2008) developed a vegetation model coupled with a RCM to estimate the influence of global warming 22 

on South America by allowing interactions between climate and vegetation. With the simulation of the future climate under 23 

the A2 scenario, the authors found a reduction in vegetation cover of almost 70% in the Amazon rainforest along with a 24 

widespread increase in grass and shrubland in the east by the end of 21st century. This highlights the importance of considering 25 

vegetation dynamics in RCMs. Garnaud et al. (2015) combined the Canadian Regional Climate Model (CRCM5) with the 26 

Canadian Territorial Ecosystem Model (CTEM) to investigate the impact of a vegetation model to simulate the present day 27 

climate over North America. The result showed that introducing vegetation dynamics improved the model’s performance in 28 

some regions, along with introducing new biases in other regions, owing to biases in simulated leaf area index (LAI). This 29 

atmospheric-vegetation interaction also introduced long term memory, which was estimated using a lagged correlation between 30 

temperature/precipitation and LAI. Wu et al. (2016) utilized a regional earth system model coupled with the dynamic 31 

vegetation model, RCA-GUESS (Smith et al., 2011), and investigated the role of vegetation dynamics on climate in Africa 32 

under the RCP8.5 projected climate scenario. The authors showed that introducing vegetation processes amplifies the warming 33 
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trend and enhanced precipitation reduction over rainforest areas, which highlights the impact of introducing vegetation 1 

processes in a climate model.  2 

Recently, Wang et al. (2016) introduced a dynamic vegetation feature into the International Center for Theoretical 3 

Physics Regional Climate Model (RegCM4.3.4) (Giorgi et al., 2012) with carbon–nitrogen (CN) dynamics and dynamic 4 

vegetation (DV) (RegCM-CLM-CN-DV) of the community land model (CLM4.5) (Lawrence et al., 2011; Oleson et al., 2010) 5 

and validated the coupled model over tropical Africa. With the RegCM-CLM-CN-DV, Yu et al. (2016) and Erfanian et al. 6 

(2016) examined the impacts of vegetation dynamics on the climate and ecosystems using multiple LBCs from past and future 7 

GCM simulations over West Africa. Yu et al. (2016) showed that climate projections of dynamic vegetation feedback was 8 

found mainly in semiarid areas of West Africa with little signal in the wet tropics. Erfanian et al. (2016) demonstrated the 9 

substantial sensitivity of the simulated precipitation, evapotranspiration, and soil moisture to vegetation representation. 10 

Including DV in the model eliminates potential inconsistencies between prescribed vegetation and climate, but it can cause 11 

climate drift (enhancing model biases) (Erfanian et al., 2016). 12 

Various drought indices (e.g., the Palmer Drought Severity index (Palmer, 1965) and the Standard Precipitation Index 13 

(SPI, McKee et al., 1993)) have been used to assess drought events. Vicente–Serrano (2010) suggested the standardized 14 

precipitation evapotranspiration index (SPEI). It uses the deficit between precipitation and potential evapotranspiration and 15 

can include the effects of temperature variability on drought assessment. Therefore, it can be closely related to hydrologic and 16 

ecological drought processes although it only use climate conditions. Since the development of SPEI, various drought studies 17 

have adopted this index (Boroneant et al., 2011; Deng, 2011; Li et al., 2012a; Li et al., 2012b; Lorenzo–Lacruz et al., 2010; 18 

Paulo et al., 2012; Sohn et al., 2013; Spinoni et al., 2013; Yu et al., 2014a). For example, McEvoy et al. (2012) used SPEI as 19 

a drought index to monitor conditions over Nevada and Eastern California, proposing that SPEI was a convenient tool to 20 

describe the drought in arid regions. Recently, Diasso and Abiodun (2017) investigated the future impacts of global warming 21 

and reforestation on drought patterns simulated with the regional climate models over West Africa using the SPEI. Author 22 

showed that reforestation over the Savanna could reduce the future warming and increase the precipitation, but the impact of 23 

reforestation on the frequency of severe droughts could be doubled. 24 

In this study, we aim to understand the impacts of vegetation feedbacks on the future of droughts over West Africa. 25 

Specifically, SPEI is used to depict vegetation feedbacks on drought characteristics according to frequencies, intensity, and 26 

duration over West Africa. Following the previous studies with RegCM-CLM-CN-DV (Wang et al., 2016; Yu et al., 2016; 27 

Erfanian et al., 2016), we examined the drought characteristics simulated with and without vegetation dynamics for the 28 

historical and future periods and showed the signals of DV on the drought processes in three selected regions of West Africa. 29 
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2 Methodology 1 

2.1 Model Description 2 

This study uses state-of-the-art RegCM-CLM-CN-DV (Wang et al., 2016). Specifically, RegCM4.3.4 (Giorgi et al., 2012) and 3 

CLM4.5 (Lawrence et al., 2011; Oleson et al., 2010) with CN dynamics and DV are coupled to simulate various atmospheric, 4 

land, biogeochemical, vegetation phenology, and vegetation distribution processes. RegCM is a regional model that uses an 5 

Arakawa B-grid finite differencing algorithm along with a terrain-following σ-pressure vertical coordinate system. Grell et al. 6 

(1994) introduced an additional dynamic component in the model that is taken from the hydrostatic version of the Pennsylvania 7 

State University Mesoscale Model version 5. From the Community Climate Model (Kiehl et al., 1996) a radiation scheme was 8 

added. The model covers four different convection parameterization schemes namely 1) the modified-Kuo scheme (Anthes et 9 

al., 1987), 2) the Tiedtke scheme (Tiedtke, 1989), 3) the Grell scheme (Grell, 1993) and 4) the Emanuel scheme (Emanuel, 10 

1991) along with the non-local boundary layer scheme of Holtslag et al. (1990). The cloud and precipitation scheme comes 11 

from the physics package (Pal et al., 2000). The aerosols algorithm follows Solmon et al. (2006) and Zakey et al. (2006).  12 

To solve the various processes in the model (e.g. surface bio-geochemical and bio-geophysical processes, ecosystem 13 

dynamics, and hydrological processes), CLM4.5 considers fifteen soil layers, sixteen distinct plant functional types (PTF), up 14 

to five snow layers in each grid cell (Lawrence et al., 2011). An optional component present in this model is the CN and DV 15 

module. The CN module not only simulates CN cycles and plant phenology and maturity but also estimates vegetation height, 16 

stem area index and LAI. The DV module projects the fractional coverage of different plant functional types (PFTs) and 17 

corresponding temporary variations at yearly time steps developed using a CN-estimated carbon budget. It also accounts for 18 

plant existence, activity, and formation. If CN and DV modules are inactive, the distribution and vegetation composition in 19 

the model are established according to the observed data sets (i.e., static vegetation, hereafter referred to as SV). 20 

2.2 Numerical Experiments 21 

A total of 18 different numerical simulations are used in this study as in Table 1 with two evaluation runs and 16 experimental 22 

runs with the climate change scenarios. Numerical simulations are carried out in two distinct configurations, one in which the 23 

CN-DV module is activated (i.e, DV runs) and the other in which the CN-DV module is not activated (i.e., SV runs). 24 

Additionally, the LBCs are derived from ERA-Interim for the evaluation runs (1989-2008) (i.e., EvalSV and EvalDV) and 25 

from four GCMs for the historical (1981–2000) (i.e., HistSV and HistDV) and future (2081–2100) runs (i.e., FutSV and 26 

FutDV) under the RCP8.5 scenario. The GCMs used in this study include the Community Earth System Model (CESM, Kay 27 

et al., 2015), the Geophysical Fluid Dynamics Laboratory Model (GFDL, Tim et al., 2004), the Model for Interdisciplinary 28 

Research on the Climate–Earth System Model (MIROC, Watanabe et al., 2011), and the Max Planck Institute Earth System 29 

Model (MPI-ESM, Giorgetta et al., 2013). The model grid is configured using a 50-km horizontal grid spacing and 18 vertical 30 

layers, from the surface to 50 hPa. The model parameterizations are the same as the those used in the previous studies over the 31 
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same region (Alo and Wang, 2010; Saini et al., 2015; of Wang et al., 2016) as the list of parameterizations used in this study 1 

are summarized in Table 2. 2 

Wang et al. (2016) extensively evaluated the RegCM-CLM-CN-DV model for simulating regional climate and 3 

ecosystems in West Africa. The evaluation was performed using the LBCs from the ERA-Interim (1989-2008), and with and 4 

without vegetation dynamics. Yu et al. (2016) and Erfanian et al. (2016) also examined the impacts of vegetation dynamics on 5 

the climate and ecosystems using multiple LBCs from past and future GCM simulations. Building upon these previous studies, 6 

this study focuses on the impacts of vegetation dynamics on the regional drought characteristic  (i.e., frequency, duration, and 7 

intensity) over the focal regions of the West African domain: the Sahel, the Gulf of Guinea, and the Congo Basin (Fig. 1). 8 

2.3 SPEI 9 

In this study, we estimated the SPEI using the approach of Beguería and Vicente-Serrano (2013). While the precipitation is 10 

the simulated output of RegCM-CLM-CN-DV, the potential evapotranspiration (PET) should be derived from the model 11 

outputs. Owing to the simplicity and availability of the data set, we used Thornthwaite’s (1948) approach that only requires 12 

the air temperature. Thornthwaite derived an equation to calculate PET as follows: 13 

𝑃𝑃𝑃𝑃𝑃𝑃 = 16(()	+
,
).                       (1) 14 

𝐼𝐼 = 	 (+
0
)(.0(2(3
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𝑎𝑎 = 6.75×10;<𝐼𝐼= − 7.7×10;0𝐼𝐼3 + 17.92×10;=𝐼𝐼 + 0.492                              (3) 16 

where PET is in mm per month, T is monthly mean temperature in Celsius, I is a heat index and the coefficient, a, is dependent 17 

on I.  18 

 For a given month, j, and year, i, the monthly water surplus or deficit, (𝐷𝐷D,4)	is calculated by Eq. (4) given below: 19 

𝐷𝐷D,4 = 𝑃𝑃𝑃𝑃D,4 − 𝑃𝑃𝑃𝑃𝑃𝑃D,4                                          (4) 20 

where PR is precipitation and PET is potential evapotranspiration. Then, accumulated monthly water surplus or deficits at time 21 

scale 𝑘𝑘 (𝑋𝑋D,4I ) is calculated based on	𝐷𝐷D,4. In this study, we chose 12 months for the time scale.  22 

As suggested in Vicente–Serrano et al. (2010), 𝑆𝑆𝑃𝑃𝑃𝑃𝐼𝐼D,4I  is estimated by fitting 𝑋𝑋D,4I  to the log-logistic distribution by 23 

means of the L-moments method by Hosking (1990) ) as given in Eq. (5). 24 

𝑓𝑓 𝑦𝑦 = 1 + M
N;O

P ;(
	                                                                                                                                                         (5)              25 

where 𝑓𝑓 𝑦𝑦  is the cumulative density function of a three-parameter log-logistic distribution and 𝛼𝛼, 𝛽𝛽 and 𝛾𝛾 are the scale, shape, 26 

and origin parameters, respectively.   27 

A drought event is defined when an 𝑆𝑆𝑃𝑃𝑃𝑃𝐼𝐼D,4I  is less than -1. Drought frequency (F) for the study period can be 28 

calculated by the following equation: 29 
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𝐹𝐹 = W
X
×100                                                   (6)  1 

where 𝑛𝑛 is the number of months with SPEIs less than -1 and 𝑁𝑁 is the total number of months of the study period. 2 

 3 

3 Results Analysis 4 

3.1 Model Performance for Present-day Droughts  5 

This section briefly evaluates the model performance with observed climate and vegetation and drought characteristics (Figs 6 

1, 2 and 3). The runs with the ERA-Interim with and without vegetation dynamics for 1989-2008 (Table 1) are briefly presented 7 

for the model evaluation. Detailed evaluations of the model performance are documented in Wang et al. (2016). Relative to 8 

the observational data from the University of Delaware (UDEL), both EvalSV and EvalDV (Fig. 1) follow the observed spatial 9 

patterns of precipitation with slightly underestimating precipitation over the Sahel and overestimating over the Congo Basin. 10 

Such dry/wet biases lead to warm/cool biases in air temperature via the reduction/enhancement of evaporative cooling in the 11 

Sahel/Congo Basin. In general, the model performs slightly better with SV than with DV in the evaluation runs. But note that 12 

DV could eliminate potential consistencies between prescribed vegetation and climate particularly for the future projections. 13 

 With the addition of vegetation dynamics, the LAI (Fig. 2) is overestimated in the eastern parts of Gulf of Guinea and 14 

the northern parts of Congo Basin, and it is underestimated in the Sahel (EvalDV-EvalSV). The run without vegetation 15 

dynamics (EvalSV) uses the Moderate Resolution Imaging Spectroradiometer (MODIS)-based monthly-varying 16 

climatological LAI values. Over the Sahel, the model underestimates the woody plants and grasses with a significant 17 

overestimation of bare ground area, which can be attributed to biases in the vegetation dynamics of CLM-CN-DV model as 18 

well as the RegCM physical climate, i.e., dry bias (Wang et al., 2016; Erfanian et al., 2016). The dry/wet bias in the atmospheric 19 

forcings over the Sahel/Congo Basin contributes to the underestimated/overestimated LAI, which then leads to additional 20 

decreases/increases in precipitation for that region.  21 

 We also investigated the precipitation surplus/deficit (right column of Fig. 1) that is used for calculating the SPEI 22 

values to analyze the drought characteristics. We found that the differences of EvalDV and EvalSV for the precipitation 23 

surplus/deficit follow those of the precipitation in these cases. The estimated SPEI over three regions are compared in Fig. 3. 24 

While the general cycles of SPEI are limitedly captured in the model, the SPEI differences between UDEL and EvalSV may 25 

contribute to the limits of RegCM4. The difference between EvalSV and EvalDV is opposite between the Sahel and other 26 

regions, which corresponds to the bases of the precipitation surplus/deficit in Fig. 1. In the Sahel, the more severe and longer 27 

droughts are simulated for EvalDV compared with EvalSV. In the Gulf of Guinea and the Congo basin, the opposite was 28 

observed. 29 
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3.2 Projected Future Changes in Droughts  1 

This section investigates the changes in climate and vegetation and drought characteristics between the future and historical 2 

periods in the experimental runs (Table 1). First, the projected changes in the climate conditions in the future, relative to the 3 

historical periods, are examined in Fig. 4. Similar spatial patterns of changes are shown in both SV and DV ensembles. In the 4 

SV ensemble (FutSV-HistSV, first row of Fig. 4), small decreases in precipitation are found in the Sahel and Congo Basin. 5 

For the DV ensemble (FutDV-HistDV, second row of Fig. 4), it is clearly visible that the band of precipitation below 10 °N 6 

increases up to 56.4 m/month. As expected, atmospheric warming caused by the increased CO2 concentration in the future 7 

scenario leads to widespread increases in temperatures for both SV and DV ensembles.  8 

Consistent with such changes in climate conditions, there are changes in LAI (FutSV-HistSV and FutDV-HistDV of 9 

Fig. 2) because of atmospheric warming and CO2 fertilization. Over the regions below 10 °N, widespread increases in future 10 

LAI in FutDV are found, compared with that from HistDV. Beyond 10 °N, vegetation cover is sparse and there are no 11 

noticeable changes in future LAI. Note that LAI does not differ for either HistDV or FutDV.  12 

 In the future, the precipitation surplus/deficit shows a general decline for both SV and DV ensembles (FutSV-HistSV 13 

and FutDV-HistDV in the right column of Fig. 4). Only local increases in precipitation surplus/deficit near 10 °N are captured 14 

by the DV ensemble. Such changes in precipitation surplus/deficit lead to similar changes in drought frequencies between the 15 

future and historical periods for both SV and DV ensembles (Fig. 5). Corresponding to the band of precipitation increase, a 16 

slight decrease in drought frequency of up to 15 % is observed in the DV ensemble. 17 

3.3 Impact of Vegetation Dynamics on Future Droughts 18 

A vegetation dynamic component should be included in a land-atmospheric coupled model for future climate projections, 19 

although including this property makes the model more complex it is closer to a realistic scenario. In this section, we focus on 20 

the role of vegetation dynamics in future ensembles (i.e., the difference between DV and SV for the future; i.e., FutDV-FutSV).  21 

Investigating the difference of LAI between DV and SV for the future period (FutDV-FutSV of Fig. 2), we find that 22 

the LAI for the DV ensemble is smaller than that of SV over the Sahel and larger below 10 °N. LAI differences between SV 23 

and DV ensembles show similar patterns both in historical and future periods and LAI biases are caused by the biases from 24 
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 While most future drought characterization studies with climate model predictions have been carried out without 1 

considering the role of vegetation (e.g., Cook et al., 2015; Huang et al, 2018), this study suggests the necessity of the 2 

comprehensive understanding of biosphere–atmosphere interactions in future drought projections. Furthermore, it has been 3 

pointed out that such land–atmosphere feedbacks could exacerbate droughts under future climate projections (Dirmeyer et al., 4 

2013; Zhou et al., 2019). Therefore, these drought studies are critical for not only the Sahel but also over other regions where 5 

positive feedbacks between land and atmosphere are strong, such as the interior of North America (Kim and Wang, 2007). 6 

The present study uses SPEI by calculating PET with the Thornthwaite approach, which considers air temperature as 7 

a governing feature of PET. However, there are various other methods to calculate PET. For example, the Penman–Montieth 8 

method is more physically realistic but requires a diverse input data set (i.e., humidity, radiation coefficient, and wind speed). 9 

Van der Schrier et al. (2011) calculated the change in the global Palmer Drought Severity Index (PDSI) using two distinct 10 

estimates for PET (e.g., Thornthwaite and Penman-Monteith). The authors found that PSDI based on two PET estimates are 11 

identical in terms of trend, average values, and classifying severe wet or dry periods. Conversely, McVicar et al. (2012) 12 

suggests that climatic conditions other than temperature that affect PET, may balance temperature rise; therefore, further 13 

investigations with multiple approaches could inform future drought characteristics.  14 

 This study points out the potentially prolonged and enhanced drought events over the Sahel. Furthermore, many 15 

African countries are expected to experience population growth, and a majority of the population increase rates are found in 16 

neighboring countries in the Sahel, Niger and Chad (Ahmadalipur et al., 2019). Combined with the high likelihood of 17 

prolonged and enhanced drought and population growth there will likely be an increase in water demand. This will further 18 

exacerbate the risks of future drought and will present challenges for climate change adaptation for managing water needs in 19 

the region. 20 
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Figure 1. Averages of precipitation (left column), air temperature (middle column) and precipitation surplus/deficit (right column) from 1 
1989–2008 using datasets from the University of Delaware (UDEL; top row), evaluation run with SV (EvalSV; second row), the difference 2 
between EvalSV and UDEL (EvalSV-UDEL; third row), evaluation run with DV (EvalDV; fourth row) and the difference between EvalDV 3 
and UDEL (EvalDV-UDEL; bottom row). The boxes with the dashed lines show three focal regions of Sahel, Gulf of Guinea and the Congo 4 
Basin. Doted region shows areas passing the two-tailed confidence level with α=0.01. 5 
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 1 
Figure 2. Averages of leaf area index (LAI) from observation (MODIS), which is used for SV runs (EvalSV, HistSV and FutSV) and 2 
simulated in DV for evaluation run and experiment ensemble runs (EavlDV, HistDV and FutDV) in the first row, and their LAI differences 3 
in the second row. Doted regions show areas passing the two-tailed confidence level with α=0.01. 4 
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Figure 3. Six-month moving averages of monthly SPEIs of observations (UDEL), EvalSV and EvalDV over three regions of the Sahel, the 2 
Gulf of Guinea, and the Congo Basin in 1989-2008. SPEI for UDEL is calibrated with the data from 1959-2008 (50 years). 3 
 4 
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 2 

Figure 4. Difference in precipitation (mm/month) (left column), air temperature (°vC) (middle column), and precipitation surplus/deficit 3 
(mm/month) (right column) between different experimental simulations (HistSV, HistDV, FutSV and FutDV). Doted region shows areas 4 
passing the two-tailed confidence level with α=0.01. 5 
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 1 
Figure 5. Difference of drought frequencies between different experimental simulations (HistSV, HistDV, FutSV and FutDV). Drought 2 
frequency is defined for events with an SPEI less than -1. Doted region shows areas passing the two-tailed confidence level with α=0.01.  3 
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Figure 6. Difference of drought frequencies between the DV and the SV ensembles for the future period (2081-2100) (FutDV-FutSV) from 2 
the ensemble members with different LBCs of CCSM, GFDL, MIROC and MPI-ESM. Drought frequency is defined for events with an 3 
SPEI less than -1. Doted region shows areas passing the two-tailed confidence level with α=0.01.  4 
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Figure 7. Monthly SPEI averaged for three regions of the Sahel (left column), the Gulf of Guinea (middle column), and the Congo Basin 2 
(right column) in ensembles and the individual member of experimental runs (HistSV, HistDV, FutSV and FutDV) with different LBCs of 3 
CCSM, GFDL, MIROC and MPI-ESM. 4 
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Figure 8. Spearman’s rank correlation coefficient between annual minimum LAI and annual maximum SPEI from HistDV (1981-2000; left 2 
column) and FutDV (2081-2100; right column). 3 
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Table 1. Description of 18 different simulation setups 1 
 2 

Periods 

Evaluation  
(EvalSV, EvalDV) 

1989–2008 

Experimental Historical  
(HistSV, HistDV) 

1981–2000 

 
Future 
(FutSV, FutDV) 2081–2100 

Vegetation 
dynamics 

DV Dynamic Vegetation 
SV Static Vegetation 

Boundary 
conditions 

Evaluation  ERA-Interim 
Experimental CCSM Community Earth System Model 
 GFDL Geophysical Fluid Dynamics Laboratory 

 MIROC 
Model for Interdisciplinary Research on Climate-Earth System 
Model 

 MPI-ESM Max Planck Institute Earth System Model 
 3 
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Table 2. Model parameterizations used in this study 1 
 2 

Model’s feature Selected schemes 
Boundary layer Holtslag PBL 

(Holtslag et al., 1990) 
Cumulus convection Emanuel scheme 

(Emanuel, 1991) 
Precipitation and cloud Sub-grid Explicit Moisture Scheme 

(Pal et al., 2000) 
Radiation Community climate model 3 

(Kiehl et al., 1996) 
Dynamics  Mesoscale model 5 

(Grell et al., 1994) 
Ocean flux Zeng scheme 

(Zeng et al.,1998) 
Anthropogenic aerosols/ 
Interactive aerosols 

Tracer model 
(Solmon et al., 2006; Zakey et al., 2006, 2008) 

Land Surface  Community Land Model 4.5-CN-DV 
(Oleson et al., 2010, 2013; Wang et al., 2017) 
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