DETECTION AND ATTRIBUTION OF FLOOD TRENDS IN MEDITERRANEAN **BASSINS** Tramblay, Yves¹ Mimeau, Louise¹ Neppel, Luc¹ Vinet, Freddy² Sauquet, Eric³ ¹ HSM (Univ. Montpellier, CNRS, IRD), 300 Av. du Professeur Emile Jeanbrau, 34090, Montpellier, France ² GRED (Univ. Paul Valéry, IRD), 2 rue du Pr Henri Serres, 34000 Montpellier, France ³ IRSTEA, UR RiverLy, Centre de Lyon-Villeurbanne, 5 rue de la Doua CS 20244, 69625 Villeurbanne, France Version 2, revised manuscript, 20 September 2019

33 Abstract

34

Floods have strong impacts in the Mediterranean region and there is a questioning about a 35 possible increase in their intensity due to climate change. In this study, a large database of 171 36 basins located in South France with daily discharge data with a median record length of 45 years 37 38 is considered to analyze flood trends and their drivers. In addition to discharge data, outputs of 39 precipitation, temperature, evapotranspiration from the SAFRAN reanalysis and soil moisture 40 computed with the ISBA land surface model are also analyzed. The evolution of land cover in these basins is analyzed using the CORINE database. The trends in floods above the 95th and 99th 41 42 percentiles are detected by the Mann-Kendall test and quantile regression techniques. The results show that despite the increase in extreme precipitation reported by previous studies, there is no 43 general tendency towards more severe floods. Only for a few basins, the intensity of the most 44 extreme floods is showing significant upward trends. On the contrary, most trends are towards 45 fewer annual flood occurrences above both the 95th and 99th percentiles for the majority of basins. 46 The decrease in soil moisture seems to be an important driver for these trends, since in most 47 basins increased temperature and evapotranspiration associated with a precipitation decreases are 48 leading to a reduction of soil moisture. These results implies that the observed increase in the 49 vulnerability to these flood events in the last decades is mostly caused by human factors such as 50 51 increased urbanization and population growth rather than climatic factors.

- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60 Keywords:
- 61 Floods, trends, France, Mediterranean, soil moisture
- 62

64 **1. INTRODUCTION**

65

A number of studies have now established that extreme precipitation could increase due to 66 climate change in particular in the Mediterranean (Westra et al., 2013, Polade et al., 2017, Ribes 67 et al., 2018, Tramblay and Somot, 2018). Changes in extreme rainfall would be caused by an 68 69 increase in the precipitable water content in the atmosphere, related to increasing temperatures, 70 according to the principle of Claussius-Clapeyron thermodynamics (Drobinki et al., 2016, Pfahl 71 et al., 2017). Nevertheless, this relationship has a high variability in space, related to temperatures and available humidity (Prein et al., 2016Wasko et al., 2016). Several studies observed an 72 73 increase in the number of dry days associated with increased rainfall intensities, suggesting that dry periods in these areas would become longer, but that precipitation could be more extreme 74 when they occur (Paxian et al., 2015, Polade et al., 2017). Nevertheless, the increase in extreme 75 76 rainfall would not offset the decrease in precipitation totals, as the drop in cumulative rainfall associated with the decrease in the frequency of low to moderate rainfall is expected to 77 predominate over the gains resulting from the intensification of extreme precipitation (Polade et 78 al., 20172014). 79

80

Beside changes in precipitation, an increase in rainfall intensity does not necessarily imply an 81 82 increase in flood risk (Ivancic and Shaw, 2015, Woldemeskel and Sharma, 2016). Indeed, for a given rainfall accumulation, the runoff coefficient can be very variable in time and space in 83 84 different basins due to complex interactions between precipitation and infiltration processes on hillslopes which can strongly modulate flood magnitude (Woldemeskel and Sharma, 2016, 85 Wasko and Sharma, 2017, Bennett et al., 2018). Most global studies on flood trend indicate a 86 decrease in flood intensity (Do et al. 2017, Wasko and Sharma, 2017, Sharma et al., 2018). Yet, 87 these trends are highly variable in space for different regions of the globe (Yin et al., 2018, Najibi 88 and Devineni, 2018). The attribution of these trends is rather uncertain, while Yin et al. (2018) 89 relate an increase in floods with increased temperatures; Najibi and Devineni (2018) or Hodgkins 90 et al. (2018) conclude that trends in the flood frequency and duration can be mostly attributed to 91 long-term climate variability. Nonetheless, as noted by Whitfield (2012), flood generating 92 93 processes do not take place at the global but rather a relatively local scale, making generalizations

about flooding in future climates difficult and uncertain. For Mediterranean basins, Blöschl et al.
(2017) indicate later winter floods and Mangini et al. (2018) noted a tendency towards increasing
flood magnitude and decreasing flood frequency. These finding are consistent with trends
detected by Mediero et al. (2014) in Spain and Giuntoli et al. (2012) for the South of France.

98

While much work has been done to estimate future climatic conditions, it is not clear about 99 100 possible changes in hydrological variables including surface conditions that can strongly modulate climatic trends (Knighton et al., 2017). In particular, it is known that in many 101 102 catchments the initial soil moisture conditions prior to flood events play a key role in flood generation (Brocca et al., 2008, Tramblay et al., 2010, Raynaud et al., 2015, Woldemeskel and 103 104 Sharma, 2016, Wasko and Sharma, 2017, Uber et al., 2018, Wasko and Nathan, 2019) and its temporal change has not been much analyzed up to now. Between two episodes of rain, the base 105 flow of the perennial rivers originates from the draining of the water contained in the soils and for 106 107 some basins from the aquifers. The capacity of the soil to contain water and restore it to generate runoff depends on its characteristics (e.g. texture, structure, porosity-...) but also on the amount of 108 water it already contains at the beginning of a rain episode. Thus, a quasi-saturated soil will not 109 be able to store a lot of water, which, being unable to infiltrate, will contribute directly to runoff. 110 111 In most cases, there is a non-linear relationship between the flow rate and the initial saturation 112 state of the soil, usually with a threshold value of moisture above which a rapid flow response to 113 a rainy episode is observed (Norbiato et al., 2008, Viglione et al., 2009, Penna et al., 2011). Difference in soil types could induce different relationships between floods and initial conditions 114 115 (Grillakis et al., 2016, Camarasa-Belmonte, 2016). For intermittent (seasonal runoff only) and ephemeral streams (runoff only after a rain event), the impact of antecedent soil moisture is more 116 complex and strongly dependent on the soil type and geological context (in the presence of karst 117 in particular). In smaller basins, the impact of initial soil moisture content is usually not 118 significant and it increases with catchment size (Zhang et al., 2011). 119

120

For some Mediterranean basins, the increase in heavy rainfall associated with a reduced number of rainy days could decrease the soil water content and therefore increase infiltration capacity, hence reducing runoff. On the other hand, more intense rains in urbanized, impervious areas or on bare soils that are subject to crusting effects could increase runoff and therefore the magnitude

of floods. It is therefore necessary to use hydrological or surface models capable of representing 125 126 these processes. Quintana-Seguí et al. (2011) using the ISBA land surface scheme with different downscaling methods found a future increase in floods corresponding to a 10-year return level in 127 128 southern French basins, but with different magnitudes depending on the basins. Camici et al. 129 (2017), in a study on the impacts of climate change on floods in central Italy, noted a greater sensitivity of basins with permeable soils to changing climatic conditions. Similarly, Piras et al. 130 131 (2017) in Sardinia found that impermeable and flat sub-basins are predicted to experience more 132 intense flood events in future scenarios, while more permeable and steep sub-catchments will 133 have an opposite tendency. However, there are systematic differences between projections of changes in flood hazard in south Europe (Italy, Greece, Iberian Peninsula) in most European and 134 135 global studies using large-scale hydrological models (Kundzewicz et al., 2017). Indeed some studies points towards an increase in southern Europe (Quintana-Seguí et al., 2011, Alfieri et al., 136 2015) while others suggests a decrease (Donnelly et al., 2017, Thober et al., 2018). This is due to 137 138 different GCM, RCM, scenarios and downscaling approaches but also the use of large scale hydrological model usually not calibrated and validated for all basins. This type of global (or 139 large scale) hydrological model (e.g. LISFLOOD, VIC, HYPE....) is usually not adapted to small 140 river basins less than 500 km², which is the typical catchment size found in the Mediterranean 141 142 region.

143

144 Prior to make future projections on flood hazard, there is a need to understand the main drivers of 145 changes for floods and the links between floods and climate characteristics (Merz et al., 2014). 146 Indeed, understanding the potential flood drivers and their changes may be more relevant than predictions of uncertain flood changes as noted by Blöschl et al. (20162015). The objective of 147 this study is to analyze trends in floods characteristics for a large sample of French Mediterranean 148 basins and to relate these trends to climate and land use dynamics. This is done using statistical 149 tests for the detection of trends and quantile regression models to relate high discharge quantiles 150 151 to different climatic drivers.

- 152
- 153 **2. DATA**
- 154

171 basins located in south France are selected with a minimum of 20 years of daily discharge 155 data. The selection of basins is based on the availability of long time series of daily discharge and 156 the selected basins have no significant human influence on flow, from a previous database 157 elaborated from Sauquet and Catalogne (2011) and Snelder et al. (2013). The median record 158 length is 45 years and 56 stations have more than 50 years of data, more than 100 stations have 159 complete years, with less than 5% missing data, between 1970 and 2010. All the catchments 160 161 selected have a Mediterranean climate, with a precipitation deficit during summer when the low 162 flows are recorded. These basins are experiencing flash flood events caused by intense rainfall 163 events, corresponding to the only region in France when rainfall can exceed 200 mm/day (http://pluiesextremes.meteo.fr) with the maximum occurrence between September and 164 165 November. Most basins have a catchment area lower than 500 km² and located below 1000 m. (figure 1). The proportion of karstic areas for each basin has been obtained from the BDLISA 166 database (available here: https://bdlisa.eaufrance.fr/) which provides a delineation of karst 167 systems in France (Schomburgk et al., 2016). Very common geological formation in the French 168 Mediterranean region, about 50 gauged basins have more than 50% of their catchment areas with 169 carbonaceous superficial formations, indicative of Karstic areas. This means that the rainfall-170 runoff relationship in this type of basin can be strongly modulated by the presence of karst 171 172 (Jourde et al., 2007).

173

In addition to daily discharge data, different elimatic-variables have been retrieved from the 174 175 SAFRAN-ISBA-MODCOU (SIM) hydro-meteorological model (Habets et al., 2008). SIM is 176 based on the SAFRAN reanalysis over France (Quintana-Seguí et al., 2008) based . This reanalysis based on observed station data and provides rainfall, snowfall, temperature, actual and 177 reference evapotranspiration for a 8x8km grid over France at the daily time step from 1958 until 178 present. The SAFRAN reanalysis is used to force the ISBA land surface scheme of Météo-France 179 (Habets et al., 2008), to provide among other variables the actual evapotranspiration, the surface 180 181 and root zone soil moisture at the same spatial and temporal resolution than ISBA. Tramblay et al. (2010) have shown that the soil moisture from the root zone simulated by ISBA is an 182 appropriate indicator of soil moisture prior to flood events in French Mediterranean catchments. 183 184 The catchment boundaries of the 171 basins selected have been extracted from the HydroSheds 185 database (https://hydrosheds.org/) providing flow accumulation and flow direction maps at the 15

arc-second resolution. Then the total precipitation, rainfall, air temperature, actual and reference
evapotranspiration from SAFRAN and the surface and root zone soil moisture from ISBA have
been extracted and averaged over every catchment.

189

The evolution of landcover between 1990 and 2018 in the 171 basins was analyzed using the Corine Landcover inventory (CLC1990 and CLC 2018). Corine Landcover provides an inventory of 44 classes over the European region (Büttner et al., 2002). CLC1990 and CLC2018 are respectively based on Landsat-5 (50m spatial resolution) and Sentinel-2 (10m spatial resolution) satellite images. A limitation of the CLC inventory lies in the difference of accuracy between the CLC1990 and CLC2018 products, which may introduce an uncertainty in the estimation of the evolution of the land cover in the studied basins.

197

198 3. METHODS

199

Two approaches are considered to evaluate trends. The first approach, presented in section 3.1 thereafter, relies on the Mann-Kendall test (Mann 1945) applied to the annual number of flood events above two different percentiles, the 95th and the 99th computed on the whole time series and also on the magnitude of these events. Using two different thresholds, which are commonly used for the analysis of floods, allows considering separately the trends on moderate (above the 95th percentile) and more severe (above the 99th percentile) flood events.

206

The second approach presented in section 3.2, is based on quantile regression (Koenker and Basset, 1978) to estimate the temporal trend magnitude in the 95th and 99th percentiles of daily runoff in all stations. The quantile regression method is also used to relate the change in runoff quantiles to changes in climate characteristics, hence providing a way to attribute the observed changes to their potential drivers.

212

Hydrological years are considered, starting September 1st and ending August, 31 of the next calendar year. Years with more than 5% missing days are removed. For the first approach based on event characteristics, a de-clustering is required to not include in the flood sample consecutive daily threshold exceedances that belong to the same flood event. A minimum of 2 days between

two flood events is selected since it is the average duration of rainstorm in the region (Tramblay
et al. 2013). This means, if for two consecutive days the runoff is exceeding the threshold, only
the maximum value is retained. Moreover, different values between 1 and 5 days to separate the
events have been tested but preliminary tests indicated that itand did not change the trend results.

221

222 **3.1** Test for trends and regional significance

223

224 The Mann-Kendall (MK) test (Mann 1945) is used for the trend detection. Several studies have 225 noted that the presence of serial correlation may affect the results of trend analysis by increasing the variance of the test statistic (Khaliq et al., 2009, Renard et al., 2008). To overcome this 226 227 limitation, Hamed and Rao (1998) proposed a corrected MK test statistic considering an effective sample size that reflects the effect of serial correlation. This correction was applied in the present 228 study. In addition to the MK test, the method of Sen (1968) is considered to estimate the 229 magnitude of trends. In the present study, trends are considered significant at the 10% level; 230 however, sensitivity tests performed for $p \le 0.05$, $p \le 0.01$ revealed very similar spatial trend 231 232 patterns.

233

The significance level α_{local} for a statistical test is related to a single test and is no longer valid 234 when multiple tests are conducted (Wilks 2016). When the number of tests being conducted 235 236 increases, more significant values will be found. The goal of the false discovery rate (FDR) 237 procedure introduced by Benjamini and Hochberg (1995) is to identify a set of at-site significant 238 tests by controlling the expected proportion of falsely rejected null hypotheses that are actually true. Renard et al. (2008), Khaliq et al. (2009) or Wilks (2016) demonstrated that the original 239 240 FDR is robust to cross correlations between locations and can work with any statistical test for which one can generate a p-value. This FDR method is applied to the MK test results to check if 241 the trends are regionally significant. The detected trends are regionally significant if at least one 242 local null hypothesis is rejected according to the global (or regional) significance level, α_{elobal} 243 (Wilks, 2016). For consistency with the local trend analysis, the global significance level is also 244 set to 10% in the FDR procedure. 245

246

247 3.2 Quantile regression

249 As a complementary approach to detect trends in quantiles but also to investigate the relationship between floods and explanatory covariates, the quantile regression (Koenker and Basset, 1978) 250 method is applied. Quantile regression could be seen as the extension of the ordinary least square 251 (OLS) regression (Koenker and Machado, 1999, Villarini and Slater 2017). In OLS, the 252 conditional mean of the response variable is modeled with respect to one or more predictors and 253 254 the sum of squared errors is minimized. For quantile regression, a conditional quantile of the 255 response variable is modelled as function of predictor(s), an asymmetrically weighted sum of 256 absolute errors is minimized to estimate the slope and intercept terms. In the present work, only linear relationships are considered with one single covariate at a time, while more complex forms 257 258 of dependences could also be considered in quantile regression. The approach has been previously used to detect trends in extreme precipitation or floods by Villarini and Slater (2017), 259 Yin et al. (2018) or Wasko and Nathan (2019). 260

261

Koenker and Machado (1999) introduced the R^{l} goodness of fit measure for quantile regression 262 models. As for the R^2 in the case of OLS, R^1 lies between 0 and 1. Unlike R^2 , which measures the 263 relative success of two models for the conditional mean function in terms of residual variance, R^{I} 264 measures the relative success of the corresponding quantile regression models for a specific 265 quantile, by comparison with a restricted model (with slope = 0), in terms of a weighted sum of 266 absolute residuals (see Koenker and Machado, 1999). Consequently, R^{I} constitutes only a local 267 measure of goodness-of-fit for a particular quantile rather than a global measure over the entire 268 269 conditional distribution, like R^2 . This measure can help to discriminate between different models using different covariates (ex: precipitation or temperature). Higher R^{1} values indicate that the 270 271 model fits better to observations. In this study, this criterion is used to identify the best covariates that could explain the temporal variations in high runoff quantiles. 272

273

274 **4. RESULTS**

275

4.1 Climatic and land cover trends

The climate trends have been analyzed on the whole period of available SAFRAN records, 278 279 between 1958 and 2018. For each basin, the annual trends in precipitation, rainfall, temperature, soil moisture, actual and reference evapotranspiration have been analyzed with the Mann Kendall 280 test. From figure 2, It can be seen a significant decrease of annual rainfall in 56 basins, on 281 282 average of -20%, accompanied by an increase of the frequency in dry days (with precipitation below 1 mm) for 46 basins. The snowfall is also decreasing in the same proportions (no shown). 283 The sole exception where an increase in rainfall is found is for the Asse River at Beyne-284 285 Chabrières on the western foothills of the Alps. This station has long time series spanning from 286 1983 to 2009, where a +15% trend in annual rainfall is detected over the whole record. Yet, the detection of this trend might be an artefact since there are several consecutive wet years between 287 288 1992 and 2000. This trend in rainfall can be also seen for the soil moisture trends. Associated with the precipitation decrease, positive temperature trends are observed for almost all basins, 289 with an average increase of +0.5°C during the time period 1958-2015. Consequently, widespread 290 291 increasing trends in reference and actual evapotranspiration rates over all basins are observed, similarly as in Vicente-Serrano et al. (2014) in Spain or Rivoire et al. (submitted2019) for the 292 whole Mediterranean region. The combined decrease in precipitation with increased 293 evapotranspiration yields to a decrease in soil moisture for the surface and the root zone layers. 294 295 Yet, it must be stressed here that the soil moisture in the present study is not observed but simulated from the ISBA land surface model. However, the detected trends are This is in 296 297 accordance with previous studies over South France such as Vidal et al. (2012) or Dayon et al. (2018). 298

299

About land cover (figure 3), most basins have low urban areas (below 10%) and the basins with 300 301 the highest coverage are found mostly in the South East. An increase of urban areas up to +20%of total catchment surface can be seen between 1990 and 2018 for basins mostly located close to 302 303 the Mediterranean coast and in particular in the Provence-Alpes-Côte-d'Azur region. The class 304 representing discontinuous urban fabric represents 73% of artificialized areas and increased by +36% between 1990 and 2018. The increase of urbanized areas could have a strong impact on 305 runoff generation, in particular for small basins, with the increase of impervious surfaces favoring 306 307 surface runoff. In contrast, the agricultural and forest land cover can reach 100% of the basin 308 surface, in particular in the western Tarn regions for agriculture. We can notice a reduction of

forest cover in the Northern Cévennes areas associated with an increase in agricultural surfaces. 309 310 When looking in details from the original classification, for some catchments of size 500 km² or less, the percentage of vineyards could exceed 70% of the total catchment areas in particular for 311 basins located in the Occitanie region. For almost all basins, the percentage of vineyards has 312 decreased between 1990 and 2018. The other dominant land use classes related to agriculture are 313 pastures (27.8% of all catchments), complex cultivation patterns (21.9%) and land principally 314 315 occupied by agriculture with significant areas of natural vegetation (27.7%). Forested areas are 316 mostly represented by broad-leaved forest (35%), coniferous forest (19%) and mixed forest 317 (14.4%) classes. It must be noted that the land cover change analysis is hampered by the short duration of the land use maps available, 28 years between 1990 and 2018, and possibly different 318 319 sensors during this period leading the different attribution to some land use classes.

320

321 4.2 Flood trends

322

To analyze flood trends, all flood events above the 95th or 99th percentiles of daily runoff 323 computed on the whole time series are extracted. As noted in the method section, a declustering 324 approach has been implemented to avoid introducing in the samples an autocorrelation signal due 325 to several consecutive threshold exceedances belonging to the same event. The trend MK test is 326 applied to the number of annual exceedances above these two thresholds and also on the 327 328 magnitude of the threshold exceedances. From figure 4 it can be seen a general tendency towards a decrease in the annual number of flood events above the 95th percentile, that is significant in 67 329 330 catchments, and to a lesser extend also in the number of events above the 99th percentile in 45 catchments. These trends are regionally significant according to the FDR procedure and 331 particularly over the northern ridge of the Cévennes mountainous areas. According to the Sen 332 Slope method to estimate the decrease in the annual number of events above the 95th percentile: 333 for most basins the trends are ranging between -0.5 and -1 event per decade. For the most 334 extreme cases the trends can reach up to -2.5 events per decade. Since for all catchments the 335 number of events above the 95^{th} percentile per year is 4.5 on average (min =2, max =6, after de-336 clustering), the magnitude of these trends can be considered lowmoderate. For the 99th percentile 337 the magnitude of trends are similar, with a maximum decrease of -1.4 events per decade, and for 338 339 most stations on average -0.4 events per decade (with an average annual number of 1.6 events

above the 99th percentile, after de-clustering). In addition to the trends in the annual number of
events, there is also a weak signal of an increase of the magnitude of floods, in particular above
the 99th percentile for 16 stations, yet these trends are not regionally significant.

343

Beside this event-based analysis, the temporal trends in the 95th and 99th percentiles of the daily 344 runoff time series have been investigated using quantile regression. The approach is 345 346 complementary but different to the testing of trends on the annual occurrence and the magnitude 347 of the events, since quantile regression allows evaluating the possible changes on the quantiles of 348 daily runoff time series. This analysis reveals that for a majority of catchments, a decreasing trend in these two percentiles is detected. The procedure is to apply a quantile regression of the 349 350 percentile of interest with time as a covariate, and to validate if the slope of the quantile regression model is significantly different than zero at the 10% level a bootstrap resampling 351 approach (Efron, 1979) has been considered. For the 95th percentile, a decreasing trend in 147 352 stations is found and an increase in only 12 stations. For the 99th percentile, 89 negative trends 353 are found and 15 stations with increasing trends. The relative changes in the 95th and 99th 354 percentiles are ranging for most stations between 0 and -0.5 as shown on figure 5. The number of 355 detected trends with quantile regression for the 95th and 99th percentiles is larger than the number 356 of trends detected with the MK test. However, for many basins the trends in the 95th and 99th 357 percentiles are of small magnitude and only for the largest trends the MK test also detect 358 359 significant changes in the annual number of events above these thresholds.

360

361 In an attempt to relate the detected trends to catchment characteristics, the Student t-test has been 362 used to compare the catchment descriptors between the group of basins with or without trends. The catchments where decreasing trends in flood occurrence are detected tend to be are larger 363 catchments (mean size of 369 km² vs. 253 km² for the catchments with no significant trends), 364 with a lower proportion of karstic areas (33% vs. 41%) and urban areas (1.7% vs 3.79%). Also 365 more decreasing trends are detected in agricultural catchments than in forested areas. Yet, no 366 clear link can be found between land cover changes and flood trends, probably due to the short 367 368 duration of the land cover dataset available. The only exception is about trends in urbanization, with a lower increase in urbanization (+0.77% average increase in urban areas) in catchments 369 370 where floods are decreasing by comparison with catchments with no flood trends (+1.41%

average increase in urban areas). It must be noted that there is a strong spatial variability of the 371 372 observed trends highlighting the complex interplays between the different catchment characteristics, as similarly noted by Snelder et al. (2013) over France. For example, the 373 magnitude of the detected trends is not correlated with the different catchment properties. This 374 implies that it would be very challenging to propose a typology of basins with similar changes in 375 floods according to catchment properties. 376

377

378

4.3 Changes in event precipitation and antecedent soil moisture conditions

379

For each event, the cumulative catchment precipitation average is computed as the sum of non-380 381 zero consecutive rainy days, on a time window up to 10 days prior to the flood event. The 382 antecedent soil moisture is taken as the root zone soil moisture corresponding to the day prior the start of the rainfall event. Figure 6 show the Mann-Kendall test results for these two indicators for 383 floods above the 95th and the 99th percentiles. An increase of precipitation associated with floods 384 using both thresholds is observed (for 34 catchments for the 95th percentile and 36 catchments for 385 the 99th percentile), associated with a decrease in antecedent soil moisture conditions prior to 386 floods in up to 40 catchments for floods above the 95th percentile. There is a correlation between 387 the reduction of antecedent soil moisture prior to flood events and the decrease of the annual 388 number of flood events above the 95th percentile (r=0.44), also to a lesser extent for the number 389 of floods above the 99th percentile (r=0.34). Consequently, as observed in Australia by Wasko 390 and Nathan (2019) it can be hypothesized that the decrease of antecedent soil moisture is an 391 392 important driver leading to the reduction of the annual number of floods, despite the increase in event precipitation already pointed out by several studies in this region (Tramblay et al., 2013, 393 Ribes et al., 2018, Blanchet et al., 2018). Indeed, for 12 catchments an increase of event rainfall 394 is detected when for the same catchments a decrease in the annual number of events above the 395 95th percentile is also observed. It is also the case of 11 catchments for the events above the 99th 396 percentile with an increase of event rainfall accompanied by a decrease in the annual number of 397 events. However as shown before, the increased event precipitation for several basins is probably 398 the cause of higher flood magnitudes for the most severe events (above the 99th percentile). 399

400

4.34 Explanatory covariates for high runoff quantiles 401

402 To test the influence of different covariates on the variation of the 95th and 99th percentile values, 403 quantile regression models using time, temperature, soil moisture from the root zone, actual 404 405 evapotranspiration (AE), reference evapotranspiration (ET0) and precipitation have been 406 compared. The goal here is not to select the best covariates for each station but to identify relevant covariates at the regional scale. Since climatic covariates could influence the 407 408 hydrological response at different time scales (Mediero et al., 2014, Villarini and Slater 2018, Wasko and Nathan, 2019), three different aggregation periods to compute moving averages have 409 410 been compared. For the event scale, the different covariates have been averaged with a 3-day time lag preceding each event. At the monthly time scale representing the seasonal variability, the 411 412 covariates have been averaged for the 30 days preceding the events. For the annual time scale the covariates have been averaged for 365 days preceding the events. At the monthly time scale 413 representing the seasonal variability, the covariates have been averaged in the same manner but 414 on 30 days. Finally, for the annual time scale the covariates have been averaged over 365 days. 415 At the event scale, the precipitation rather represents the intensity of rainfall during the event than 416 the preceding soil moisture. On the opposite other timescales, for the monthly and annual 417 aggregation periods the precipitation is here a proxy for soil moisture and its long term 418 variability. To test which covariate provides the best reproduction of the observed 95th and 99th 419 percentiles of the daily discharge time series, the R^{1} metric is computed, for each covariate, 420 between the quantile regression model built with the covariate and a constrained model with a 421 422 constant slope (0).

423

The results are plotted on figure 9. A similar pattern can be seen for both percentiles, with 424 decreasing R^{1} values for longer time aggregation periods for the covariates. For the event-scale, 425 both precipitations and soil moisture are outperforming other covariates, including time. The 426 427 same results are found for the annual time scale, yet with a different interpretation because annual precipitation is representing the average level of soil moisture storage rather than event rainfall. 428 The link observed between the 95th and 99th percentiles with annual precipitation or soil moisture 429 is an indication that the long-term decrease observed for these two variables (figure 2) could be 430 the cause of the observed decrease in the frequency of floods above these two percentiles. At the 431 432 monthly time scale, the cumulative precipitation plays the most important role when the effects of

soil moisture, actual evapotranspiration and temperature are similar. For almost all covariates,there is an improvement by comparison to the quantile regression model using time only.

435

Overall, the R^{l} coefficients are decreasing with increasing slopes and basin mean 436 attitudeelevation. However, these two variables are correlated (r=0.61). This is an indication that 437 antecedent soil moisture condition may have a lower influence on flood generation in 438 439 mountainous areas, probably due to shallower soils and steeper slopes. For event based soil moisture and precipitation, there is an inverse relationship with basin size: for small basins (less 440 441 than 500km²) event soil moisture and precipitation are very good predictors for the time variations of the 95th and the 99th percentiles, with R^{1} values up to 0.6, when for larger basins the 442 R^{l} values are much lower, reaching a maximum of 0.2 for some basins. (about 0.1 to 0.2). When 443 averaged at the monthly or annual time step, the relation is opposite with a larger influence of soil 444 moisture and antecedent precipitation for larger basins with higher R^{1} coefficients. This finding is 445 fully consistent with results obtained for different regions of the globe (Zhang et al., 2011, 446 Ivancic and Shaw, 2015, Woldemeskel and Sharma, 2016, Wasko and Sharma, 2017), 447 highlighting the buffering effects of large basins with the capacity to store more water than 448 smaller basins. 449

450

451 5. CONCLUSIONS

452

The results obtained in the present study show that despite the increase in extreme precipitation 453 454 events reported by previous studies over the same domain (Ribes et al., 2018) there is not a general increase in flood occurrence. Only for a few basins, the intensity of the most extreme 455 floods is showing significant upward trends. On the contrary, a global tendency towards fewer 456 annual flood occurrences is observed for events of moderate intensity, above the 95th percentile. 457 The same signal, with a lower magnitude, is also seen for higher floods above the 99th percentile. 458 Overall, there are much more trends detected for the annual occurrence of floods than for their 459 intensity. It should be also emphasized that the magnitude of these trends remains moderated, 460 with only a few events less by decade and consequently these trends are only noticeable over 461 long time periods. The decrease in soil moisture seems to be an important driver for these 462 detected changes, indeed in all basins an increase of temperature and evapotranspiration 463

associated with a decrease in precipitation is leading to a reduction of soil moisture over time. For 464 465 several basins, the soil moisture decrease can offset the increase in extreme precipitation and generate less frequent floods. These changes are mostly observed for larger agricultural basins, 466 467 with low urbanization and karstic areas. Wasko and Sharma et al. (2017) previously noted the 468 importance of catchment size for the influence of soil moisture on flood runoff due to higher potential of soil moisture storage. The trends detected in the present work are consistent with 469 470 those found in other Mediterranean regions such as Spain (Mediero et al., 2014) and Australia 471 (Wasko and Nathan, 2019). An important finding of the present work is that with the same large 472 scale climatic drivers (in terms of temperature, evapotranspiration and precipitation) the flood trends in the basins can be different. This shows the importance of basins characteristics to buffer 473 climatic variability. Indeed, even if similar patterns of changes in the 95th and 99th percentiles are 474 found, the analysis of individual catchments is revealing spatial differences even for neighboring 475 basins caused by different topography, soil and land cover combinations. This is a factual 476 demonstration of the commentary of Whitfield (2012) stating that is would be very difficult, if 477 not scientifically irrelevant, to make general statements about the plausible future evolution of 478 flood risk. 479

480

These results showing a lack of a generalized upward trend in floods should be put into 481 482 perspective with the observed increase in the vulnerability to these episodes. Indeed many reports 483 such as Llasat et al (2013) indicate an increase in the number of floods inducing damages between 1981 and 2010 in South France and North Spain, which they attribute to an increased 484 vulnerability and land use changes. The French Mediterranean regions are concentrating 66% of 485 the total cost of flood damage to private properties in France (Vinet, 2011) and the total assets 486 487 lost due to floods are rising as in many other regions (CCR, 2018, Paprotny et al., 2018). The 488 areas close to the Mediterranean have seen a population increase and an extension of urbanized areas, driven in part but not solely by the increase of touristic activities (Vinet, 2011, Vinet and 489 De Richemond, 2017). Bouwer (2011) concluded after a review of 22 disaster loss studies that 490 there is no trends in flood losses, corrected for changes (increases) in population and capital at 491 492 risk, which could be attributed to anthropogenic climate change". Therefore, it can be concluded 493 that, at least for Southern France, as noted previously by Neppel et al. (2003) the increasing cost of damages caused by floods is rather due to the increase in socio-economic vulnerability rather 494

than a climate change signal towards an increase in the severity of floods. Nonetheless, the 495 496 evolution of flood frequency and intensity is a key question for risk prevention. Flood related mortality in the Mediterranean basin is conditioned both by hazards drivers (e.g. rainfall 497 intensity, discharge) but also by social drivers (behaviors, characteristics of buildings...) as 498 shown in different studies (Ruin et al., 2008, Vinet, 2011, Boudou et al., 2016). Deeper 499 knowledge in rainfall and flood trends must be crossed with exposure (e.g. population in flood 500 501 prone zones) and vulnerability data (e. g. eldering of population in the future) to anticipate 502 evolution in human mortality in relation with flash floods in the Mediterranean basin (Petrucci et 503 al. 2017). As pointed out in previous research projects (Merz et al., 2014, Meyer et al., 2014) 504 there is a need to integrate climate change scenarios with socio-economic change scenarios to 505 better quantify changes in flood risk. To achieve this task, it is necessary to develop databases on vulnerability and exposure to be analyzed in conjunction with hydrometeorological data (Saint-506 Martin et al., 2018). 507

508

509 Acknowledgements

510

This work is a contribution to the HYdrological cycle in The Mediterranean EXperiment
(HyMeX) program, through INSU-MISTRALS support. The dataset compiled in this work
are made available to the research community upon request.

514

515 **References**

516

- Alfieri, L., Burek, P., Feyen, L., and Forzieri, G.: Global warming increases the frequency of river floods
 in Europe, Hydrol. Earth Syst. Sci., 19, 2247-2260, https://doi.org/10.5194/hess-19-2247-2015, 2015.
- 519

Benjamini, Y. and Hochberg, Y.: Controlling the false discovery rate: A practical and powerful
approach to multiple testing, J. Roy. Stat. Soc. B, 57, 289–300, 1995.

522

525

Bennett B., Leonard, M., Deng Y., and Westra, S.: An empirical investigation into the effect of antecedent
precipitation on flood volume, J. Hydrol., 567, 435-445, 2018.

526	Blanchet, J., Molinié, G., and Touati, J.: Spatial analysis of trend in extreme daily rainfall in southern				
527	France, Clim Dyn., 51, 799-812, 2018.				
528					
529	Blöschl, G., Gaál, L., Hall, J., Kiss, A., Komma, J., Nester, T., et al.: Increasing river floods: fiction or				
530	reality? WIREs Water, 2, 329–344, 2015.				
531					
532	Blöschl, G., Hall, J., Parajka, J., Perdigão, R.A., Merz, B., Arheimer, B., et al.: Changing climate shifts				
533	timing of European floods, Science, 357, 588–590, 2017.				
534					
535	Boudou, M., Lang, M., Vinet, F., and Cœur, D.: Comparative hazard analysis of processes leading to				
536	remarkable flash floods (France, 1930–1999), J. Hydrol., 541, 533–552, 2016.				
537					
538	Bouwer, L. M.: Have disaster losses increased due to anthropogenic climate change? Bull. Am. Met. Soc.				
539	92 (1), 39-46, 2011.				
540					
541	Brocca, L., Melone, F., and Moramarco, T.: On the estimation of antecedent wetness conditions in				
542	rainfall-runoff modelling, Hydrol. Processes, 22, 629–642, 2008.				
543					
544	Büttner, G., Feranec, F., and Jaffrain, G.: Corine land cover up-date 2000. Technical report,				
545	Copenhagen: European Environment Agency, 2002.				
546					
547	Camarasa-Belmonte, A.M.: Flash floods in Mediterranean ephemeral streams in Valencia Region, J.				
548	Hydrol., 541, 99–115, 2016.				
549					
550	Camici, S., Brocca, L., and Moramarco, T.: Accuracy versus variability of climate projections for flood				
551	assessment in central Italy, Climatic Change 141(2), 273-286, 2017.				
552					
553	CCR 2018. Conséquences du changement climatique sur les coûts des catastrophes naturelles en France à				
554	Horizon 2050.				
555	https://www.ccr.fr/documents/23509/29230/Etude+Climatique+2018+version+complete.pdf/6a7b6120-				
556	7050-ff2e-4aa9-89e80c1e30f2				
557					
558	Dayon, G., Boé, J., Martin, E., and Gailhard, J.: Impacts of climate change on the hydrological cycle over				
559	France and associated uncertainties, Comptes Rendus Geosciences, 350(4), 141-153, 2018.				

Do, H.X., Westra, S., and Leonard, M.: A global-scale investigation of trends in annual maximum
streamflow, J. Hydrol., 552, 28–43, 2017.

563

567

564 Donnelly, C., Greuell, W., Andersson, J., Gerten, D., Pisacane, G., Roudier, P., and Ludwig, F.: Impacts
565 of climate change on European hydrology at 1.5, 2 and 3 degrees mean global warming above
566 preindustrial level, Climatic Change, 19, 1–14, 2017.

568 Drobinski, P., Alonzo, B., Bastin, S., Silva, N. D., and Muller, C.: Scaling of precipitation
569 extremes with temper-ature in the French Mediterranean region: what explains the hook shape?,
570 J. Geophys. Res.-Atmos., 121, 3100–3119,https://doi.org/10.1002/2015JD023497, 2016

571

572 Efron, B.: Bootstrap Methods: Another Look at the Jackknife, Ann. Stat., 7, 1–26, 1979.

573

576

Giuntoli, I., Renard, B., and Lang, M.: Floods in France. In: Z.W. Kundzewicz, ed. Changes in flood risk
in Europe. Wallingford, UK: IAHS and CRC/Balkema, IAHS Special Publ. 10, 212–224, 2012.

577 Grillakis, M.G., Koutroulis, A.G., Komma, J., Tsanis, I.K., Wagner, W., and Blöschl, G.: Initial
578 soil moisture effects on flash flood generation - A comparison between basins of contrasting
579 hydro-climatic conditions, Journal of Hydrology 541, 206-217, 2016.

580

Habets, F., Boone, A., Champeaux, J.-L., Etchevers, P., Franchis-teguy, L., Leblois, E., Ledoux, E., Le
Moigne, P., Martin, E., Morel, S., Noilhan, J., Quintana-Segui, P., Rousset-Regimbeau, F., and Viennot,
P.: The SAFRAN-ISBA-MODCOU hydrometeorological model applied over France, J. Geophys. Res.,
113, D06113, doi:10.1029/2007JD008548, 2008.

585

Hamed, K.H. and Rao, A.R.: A modified Mann-Kendall trend test for autocorrelated data, J. Hydrol., 204,
182–196, 1998.

588

Hodgkins, G. A., Whitfield, P. H., Burn, D. H., Hannaford, J., Re-nard, B., Stahl, K., Fleig, A. K.,
Madsen, H., Mediero, L., Ko-rhonen, J., Murphy, C., and Wilson, D.: Climate-driven variability in the
occurrence of major floods across North America and Europe, J. Hydrol., 552, 704–717, 2017.

593	Ivancic, T.J., Shaw S.B.: Examining why trends in very heavy precipitation should not be mistaken for				
594	trends in very high river discharge, Climatic Change, 133, 681-693, 2015.				
595					
596	Jourde, H., Roesch, A., Guinot, V. and Bailly-Comte, V.: Dynamics and contribution of karst				
597	groundwater to surface flow during Mediterranean flood, Environmental Geology, 51, 725–730, 2007.				
598					
599	Khaliq, M.N., Ouarda, T.B.M.J, Gachon, P., Sushama, L., and St-Hilaire, A.: Identification of				
600	hydrological trends in the presence of serial and cross correlations: A review of selected methods and				
601	their application to annual flow regimes of Canadian rivers, J. Hydrol., 368, 117-130, 2009.				
602					
603	Knighton, J.O., DeGaetano, A., and Walter, M.T.: Hydrologic state influence on riverine flood discharge				
604	for a small temperate watershed (Fall Creek, United States): negative feedbacks on the effects of climate				
605	change, J. Hydrometeorol., 18(2), 431–449, 2017.				
606					
607	Koenker, R. and Basset, B.G.: Regression quantiles, Econometrica, 46(1), 33-50, 1978.				
608					
609	Koenker, R., Machado J.A.F.: Goodness-of-fit and related inference processes for quantile regression,				
610	Journal of the American Statistical Association, 94(448), 1296–1310, 1999.				
611					
612	Kundzewicz, Z.W., Krysanova, V., Dankers, R., Hirabayashi, Y., Kanae, S., Hattermann, F.F., Huang, S.,				
613	Milly, P.C.D., Stoffel, M., Driessen, P.P.J., Matczak, P., Quevauviller, P., and Schellnhuber, HJ.:				
614	Differences in flood hazard projections in Europe - their causes and consequences for decision making,				
615	Hydrological Sciences Journal, 62(1), 1-14, 2017.				
616					
617	Llasat, M.C., Llasat-Botija, M., Petrucci, O., Pasqua, A. A., Rosselló, J., Vinet, F., and Boissier, L.:				
618	Towards a database on societal impact of Mediterranean floods within the framework of the HYMEX				
619	project, Nat. Hazards Earth Syst. Sci., 13, 1337-1350, 2013.				
620					
621	Mann, H. B.: Nonparametric tests against trend, Econometrica, 13,245-259, 1945				
622					
623	Mangini, W., Viglione, A., Hall, J., Hundecha, Y., Ceola, S., Montanari, A., Rogger, M., Salinas, J.L.,				
624	Borzì, I., and Parajka, J.: Detection of trends in magnitude and frequency of flood peaks across Europe,				
625	Hydrological Sciences Journal, 63(4), 493-512, 2018.				
626					

627	Mediero, L., Santillán, D., Garrote, L., and Granados, A.: Detection and attribution of trends in magnitude,
628	frequency and timing of floods in Spain, J. Hydrol., 517, 1072-1088, 2014.
629	
630	Merz, B., Aerts, J., Arnbjerg-Nielsen, K., Baldi, M., Becker, A., Bichet, A., Blöschl, G., Bouwer, L. M.,
631	Brauer, A., Cioffi, F., Delgado, J. M., Gocht, M., Guzzetti, F., Harrigan, S., Hirschboeck, K., Kilsby, C.,
632	Kron, W., Kwon, HH., Lall, U., Merz, R., Nissen, K., Salvatti, P., Swierczynski, T., Ulbrich, U.,
633	Viglione, A., Ward, P. J., Weiler, M., Wilhelm, B., and Nied, M.: Floods and climate: emerging
634	perspectives for flood risk assessment and management, Nat. Hazards Earth Syst. Sci., 14, 1921-1942,
635	2014.
636	
637	Meyer, V., Becker, N., Markantonis, V., Schwarze, R., van den Bergh, J. C. J. M., Bouwer, L. M.,
638	Bubeck, P., Ciavola, P., Genovese, E., Green, C., Hallegatte, S., Kreibich, H., Lequeux, Q., Logar, I.,
639	Papyrakis, E., Pfurtscheller, C., Poussin, J., Przyluski, V., Thieken, A. H., and Viavattene, C.: Review
640	article: Assessing the costs of natural hazards - state of the art and knowledge gaps, Nat. Hazards Earth
641	Syst. Sci., 13, 1351-1373, https://doi.org/10.5194/nhess-13-1351-2013, 2013.
642	
643	Najibi, N. and Devineni, N.: Recent trends in the frequency and duration of global floods, Earth Syst.
644	Dynam., 9, 757-783, 2018.
645	
646	Neppel L., Bouvier C., Desbordes M., and Vinet F.: A possible origin for the increase in floods in the
647	Mediterranean region. Revue des sciences de l'eau 16(4), 389-494, 2003.
648	
649	Norbiato, D., Borga, M., Esposti, S.D., Gaume, E., and Anquetin, S.: Flash flood warning based on
650	rainfall thresholds and soil moisture conditions: An assessment for gauged and ungauged basins, Journal
651	of Hydrology, 362, 274-290, 2008.
652	
653	Penna, D., Tromp-van Meerveld, H.J., Gobbi, A., Borga, M., and Dalla Fontana, G.: The influence of soil
654	moisture on threshold runoff generation processes in an alpine headwater eatchment, Hydrology and Earth
655	System Sciences, 15, 689-702, 2011.
656	
657	Paprotny, D., Sebastian, A., Morales-Nápoles, O., and Jonkman, S. N.: Trends in flood losses in Europe
658	over the past 150 years, Nature Communications, 9(1),1985, doi:10.1038/s41467-018-04253-1, 2018.
659	

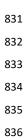
660	Paxian, A., Hertig, E., Seubert, S., Vogt, G., Jacobeit, J., and Paeth, H.: Present-day and future					
661	mediterranean precipitation extremesassessed by different statistical approaches, Clim. Dynam., 44,845-					
662	860, https://doi.org/10.1007/s00382-014-2428-6, 2015					
663						
664	Penna, D., Tromp-van Meerveld, H.J., Gobbi, A., Borga, M., and Dalla Fontana, G.: The influence of soil					
665	moisture on threshold runoff generation processes in an alpine headwater catchment, Hydrology and Earth					
666	System Sciences, 15, 689-702, 2011.					
667						
668	Petrucci, O., Papagiannaki, K., Aceto, L., Boissier, L., Kotroni, V., Grimalt, M., Llasat, M. C.,					
669	Llasat-Botija, M., Rosselló, J., Pasqua, A. A., and Vinet, F.: MEFF: The database of MEditer-ranean					
670	Flood Fatalities (1980 to 2015), J. Flood Risk Manage.,e12461, https://doi.org/10.1111/jfr3.12461, 2018.					
671						
672	Pfahl, S., O'Gorman, P. A., and Fischer, E. M.: Under-standing the regional pattern of					
673	projected future changesin extreme precipitation, Nat. Clim. Change, 7, 423–					
674	427,https://doi.org/10.1038/nclimate3287, 2017.					
675						
676	Piras, M., Mascaro, G., Deidda, R., and Vivoni, E.R.: Impacts of climate change on precipitation and					
677	discharge extremes through the use of statistical downscaling approaches in a Mediterranean basin,					
678	Sci. Total Environ., 543, 952–964, 2016.					
679						
680	Polade, S. D., Pierce, D. W., Cayan, D. R., Gershunov, A. and Dettinger, M. D.: The key role of dry days					
681	in changing regional climate and precipitation regimes, Sci. Rep. 4, 4364, 2014.					
682						
683	Polade, S.D., Gershunov, A., Cayan, D.R., Dettinger, M.D., and Pierce, D.W.: Precipitation in a warming					
684	world: Assessing projected hydro-climate changes in California and other Mediterranean climate regions,					
685	Scientific Reports 7, 10783, doi:10.1038/s41598-017-11285-y, 2017.					
686						
687	Quintana-Seguí, P., Habets, F., and Martin, E.: Comparison of past and future Mediterranean high and low					
688	extremes of precipitation and river flow projected using different statistical downscaling methods, Nat.					
689	Hazards Earth Syst. Sci., 11, 1411-1432, 2011.					
690						
691	Quintana-Seguí, P., Le Moigne, P., Durand, Y., Martin, E., Habets, F., Baillon, M., Canellas, C.,					
692	Franchisteguy, L., and Morel, S.: Analysis of Near-Surface Atmospheric Variables : Validation of the					
693	SAFRAN Analysis over France, J. Appl. Meteor. Climatol., 47, 92-107, 2008.					

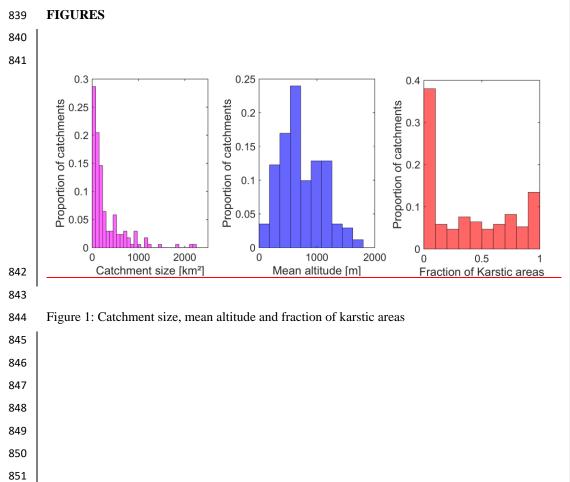
694						
695	Raynaud, D., Thielen, J., Salamon, P., Burek, P., Anquetin, S., and Alfieri, L.: A dynamic runoff					
696	coefficient to improve flash flood early warning in Europe: validation on the 2013 Central Euro-pean					
697	floods in Germany. Met. Apps, 22: 410-418, 2015.					
698						
699	Renard, B., Lang, M., Bois, P., Dupeyrat, A., Mestre, O., Niel, H., Sauquet, E., Prudhomme, C., Parey, S.,					
700	Paquet, E., Neppel, L., and Gailhard, J.: Regional methods for trend detection: assessingfield significance					
701	and regional consistency, Water Resour. Res.,44, W08419, doi:10.1029/2007WR006268, 2008.					
702						
703	Ribes, A., Soulivanh, T., Vautard, R., Dubuisson, B., Somot, S., Colin, J., Planton, S., and Soubeyroux, J-					
704	M.: Observed increase in extreme daily rainfall in the French Mediterranean. Clim Dyn. 52, 1095-1114,					
705	2019.					
706						
707	Rivoire, P., Tramblay, Y., Neppel, L., Hertig, E., and Vicente-Serrano, S. M.: Impact of the dry-day					
708	definition on Mediterranean extreme dry-spell analysis, Nat. Hazards Earth Syst. Sci., 19, 1629-1638,					
709	https://doi.org/10.5194/nhess-19-1629-2019, 2019. Rivoire, P., Tramblay, Y., Neppel, L., Hertig, E., and					
710	Vicente Serrano, S. M.: Impact of the dry day definition on Mediterranean extreme dry spells analysis,					
711	Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess 2019-31, in review, 2019.					
712						
713	Ruin, I., Creutin, JD., Anquetin, S. and Lutoff, C.: Human exposure to flash-floods - Relation between					
714	flood parameters and human vulnerability during a storm of September 2002 in southern France,					
715	J. Hydrol., 361, 199-213, 2008.					
716						
717	Saint-Martin, C., Javelle, P., and Vinet, F.: DamaGIS: a multisource geodatabase for collection of flood-					
718	related damage data, Earth Syst. Sci. Data, 10, 1019-1029, https://doi.org/10.5194/essd-10-1019-2018,					
719	2018.					
720						
721	Sauquet, E. and Catalogne, C.: Comparison of catchment grouping methods for flow duration curve					
722	estimation at ungauged sites in France, Hydrol. Earth Syst. Sci., 15, 2421-2435,					
723	https://doi.org/10.5194/hess-15-2421-2011, 2011.					
724						
725	Sen, P.K.: Estimates of the regression coefficient based on Kendall's tau, J. Am. Stat. Assoc.,					
726	63, 1379–1389, 1968					
727						

728	Schomburgk S., Allier D., and Seguin J.J.: The new aquifer Reference system BDLISA in France and the				
729	representation of karst units : challenges of small-scale mapping, in Grundwasser - Mensch - Ökosysteme.				
730	25. Tagung des Fachsektion Hydrogeologie in der DGGV 2016, Karlsruher Institut für Technologie				
731	(KIT), 1317. April 2016, Germany. KIT Scientific Publishing. n° ISBN : 978-3-7315-0475-7, 2016.				
732					
733	Sharma, A., Wasko, C., & Lettenmaier, D.P.: If precipitation extremes are increasing, why aren't floods?				
734	Water Resources Research, 54, 8545–8551, 2018.				
735					
736	Snelder, T. H., Datry, T., Lamouroux, N., Larned, S. T., Sauquet, E., Pella, H., and Catalogne, C.:				
737	Regionalization of patterns of flow intermittence from gauging station records, Hydrol. Earth Syst. Sci.,				
738	17, 2685-2699, https://doi.org/10.5194/hess-17-2685-2013, 2013.				
739					
740	Thober, S., Kumar, R., Wanders, N., Marx, A., Pan, M., Rakovec, O., Samaniego, L., Sheffield, J.,				
741	Wood, E. F., and Zink, M.: Multi-model ensemble projections of European river floods and high flows				
742	at 1.5, 2, and 3 degree global warming, Environ. Res. Lett., 13, 1–22, 2018.				
743					
744	Tramblay Y., Somot S.: Future evolution of extreme precipitation in the Mediterranean, Climatic Change				
745	151(2), 289–302, 2018.				
746					
747	Tramblay, Y., Neppel, L., Carreau, J., and Najib, K.: Non-stationaryfrequency analysis of heavy rainfall				
748	events in southern France, Hydrol. Sci. J., 58, 1-15, 2013.				
749					
750	Tramblay, Y., Bouvier, C., Martin, C., Didon-Lescot, J.F., Todorovik, D., and Domergue, J. M.:				
751	Assessment of initial soil moisture conditions for event-based rainfall-runoff modelling, J. Hydrol., 387,				
752	176-187, 2010.				
753					
754	Uber, M., Vandervaere, JP., Zin, I., Braud, I., Heistermann, M., Legoût, C., Molinié, G., and Nord, G.:				
755	How does initial soil moisture influence the hydrological response? A case study from southern France,				
756	Hydrol. Earth Syst. Sci., 22, 6127-6146, https://doi.org/10.5194/hess-22-6127-2018, 2018.				
757					
758	Vicente-Serrano, S.M., Azorin-Molina, C., Sanchez-Lorenzo, A., Revuelto, J., López-Moreno, J.I.,				
759	González-Hidalgo, J.C., and Espejo, F.: Reference evapotranspiration variability and trends in Spain,				
760	1961–2011. Global and Planetary Change, 121, 26–40, 2014.				
761					

762	Vidai, JP., Martin, E., Kitova, N., Najac, J., and Soubeyroux, JM.: Evolution of spatio-temporal
763	drought characteristics: validation, projections and effect of adaptation scenarios, Hydrol. Earth Syst. Sci.,
764	16, 2935-2955, https://doi.org/10.5194/hess-16-2935-2012, 2012.
765	
766	Viglione, A., Merz, R., and Blöschl, G.: On the role of the runoff coefficient in the mapping of rainfall to
767	flood return periods, Hydrol. Earth Syst. Sci., 13, 577-593, https://doi.org/10.5194/hess-13-577-2009,
768	2009.
769	
770	Villarini G. and Slater L.: Examination of Changes in Annual Maximum Gauge Height in the Continental
771	United States Using Quantile Regression. J. Hydrol. Eng., DOI:10.1061/(ASCE)HE.1943-5584.0001620,
772	2017.
773	
774	Vinet, F.: Flood Risk Assessment and Management in France. The Case of Mediterranean Basins, Flood
775	Prevention and Remediation. WIT Press, Southampton, UK, p. 105-132, 2011.
776	
777	Vinet F. and Meschinet de Richemond N.: Changes in Flood Risk: Retrospective and Prospective
778	Approach, Chap. 14 in F. VINET (ed.) Floods 1: risk knowledge ISTE edition London, p. 311-323, 2017.
779	
780	Wasko C, Parinussa R.M., and Sharma A.: A quasi-global assessment of changes in remotely sensed
781	rainfall extremes with temperature, Geophys Res Lett 43:12, 659-612,668, 2016.
782	
783	Wasko, C. and Sharma, A.: Global assessment of flood and storm extremes with increased temperatures,
784	Sci Rep, 7(1), 7945, doi:10.1038/s41598-017-08481-1, 2017.
785	
786	Wasko C. and Nathan R.: Influence of changes in rainfall and soil moisture on trends in flooding, J.
787	Hydrol., 575, 432-441, 2019.
788	
789	Westra, S., Alexander, L. V., and Zwiers, F. W.: Global increasing trends in annual maximum daily
790	precipitation, J. Climate, 26, 3904–3918, 2013
791	
792	Whitfield, P.: Changing floods in future climates. J. Flood Risk Manage, 5: 336-365, 2012.
793	
794	Wilks, D.S.: The stippling shows statistically significant grid points: how research results are routinely
795	overstated and over interpreted and what to do about it Bull Am Meteorol Soc. 97 2263-2273 2016

796				
797	Woldemeskel, F. and Sharma, A.: Should flood regimes change in a warming climate? The role of			
798	antecedent moisture conditions, Geophys. Res. Lett., 43, 7556–7563, doi:10.1002/2016GL069448, 2016.			
799				
800	Yin, J., Gentine, P., Zhou, S., Sullivan, S.C., Wang, R., Zhang, Y., and Guo, S.: Large increase in global			
801	storm runoff extremes driven by climate and anthropogenic changes. Nat. Commun. 9, 4389,			
802	DOI:10.1038/s41467-018-06765-2, 2018.			
803				
804	Zhang, Y., Wei, H., and Nearing, M. A.: Effects of antecedent soil moisture on runoff modeling in small			
805 806	semiarid watersheds of southeastern Arizona, Hydrol. Earth Syst. Sci., 15, 3171-3179, https://doi.org/10.5194/hess-15-3171-2011, 2011.			
807	https://doi.org/10.5194/hess-15-51/1-2011, 2011.			
808				
809				
810				
811				
812				
813				
814				
815				
816				
817				
818				
819				
820				
821				
822				
823				
824				
825				
826				
827				


Table 1: summary of the trend detection on different variables: number of positive, negative


Mis en forme : Police : Gras

trends significant at the 10% level and regional significance

829	
830	

	Variable	<u>Positive</u> trends	<u>Negative</u> trends	<u>Regional</u> significance
	Mean precipitation	0	56	
	Mean rainfall	<u>1</u>	<u>50</u> 49	
es	Frequency of dry days	<u>46</u>	<u>13</u>	Yes (9 basins)
<u>'iab</u>	Mean temperature	<u>166</u>	= 0	Yes (165 basins)
<u>vai</u>	Mean surface soil moisture	<u></u>	132	
Climatic variables	Mean root zone soil moisture	<u>1</u>		Yes (129 basins)
lin	Mean actual evapotranspiration	<u>169</u>	0	
			_	
	Mean reference evapotranspiration	<u>136</u>	<u>0</u>	Yes (131 basins)
	Number of floods above the 95th		_	
	percentile	<u>0</u>	<u>67</u>	Yes (40 basins)
nts	Number of floods above the 99th			
Flood events	percentile	<u>1</u>	<u>45</u>	Yes (7 basins)
po	Flood magnitudes above the 95th			
문	percentile	<u>4</u>	<u>3</u>	<u>No</u>
	Flood magnitudes above the 99th			
	percentile	<u>16</u>	<u>5</u>	<u>No</u>
	Cumulative precipitation during			
	floods above the 95th percentile	<u>36</u>	<u>6</u>	Yes (16 basins)
<u>Climatic variables</u> associated with flood events	Cumulative precipitation during		-	
<u>tic vari</u> ted wit events	floods above the 99th percentile	<u>34</u>	<u>3</u>	Yes (5 basins)
late ev	Antecedent wetness conditions for			
<u>soci</u>	floods above the 95th percentile	<u>10</u>	<u>40</u>	Yes (11 basins)
as:	Antecedent wetness conditions for			
	floods above the 95th percentile	<u>6</u>	<u>24</u>	<u>Yes (14 basins)</u>

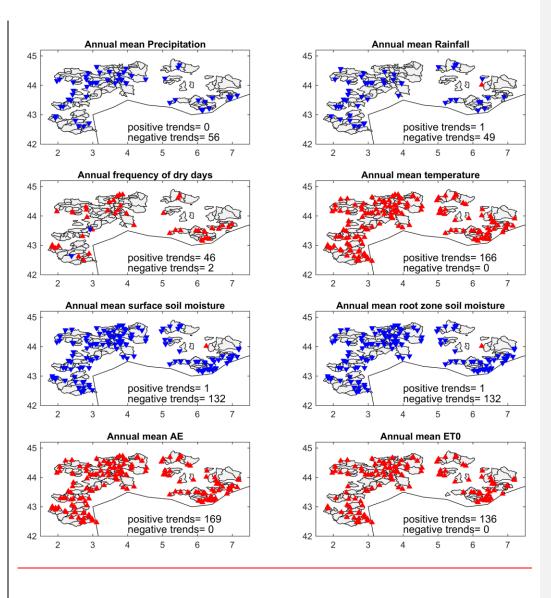
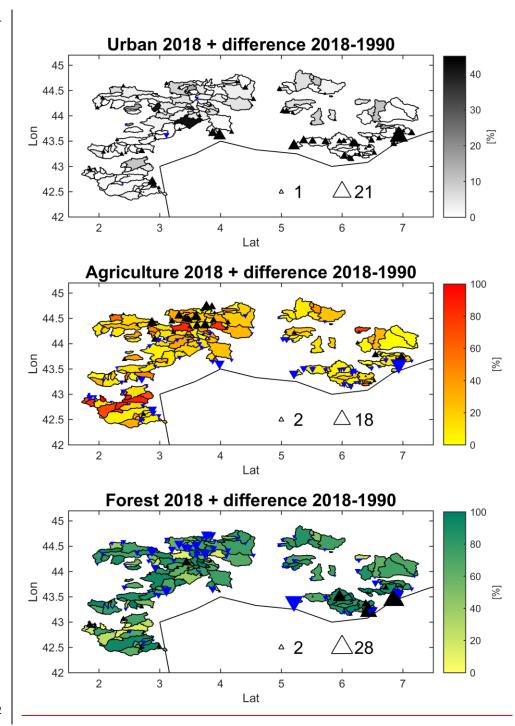



Figure 2: Significant annual trends at the 10% level (Mann Kendall test) between 1958 and 2018 in precipitation, rainfall, frequency of dry days (with precipitation below 1mm), temperature, soil moisture, actual evapotranspiration (AE) and reference evapotranspiration (ET0)

29

863	
864	
865	
866	Figure 3: Urban, Agricultural and Forest cover by catchment from the CORINE database for the
867	year 2018 and difference between 1990 and 2018 (upward black triangles indicate an increase,
868	downward blue triangles a decrease, the triangle size are proportional to the absolute changes
869	between 1990 and 2018).
870	
871	
872	
873	
874	
875	
876	
877	
878	

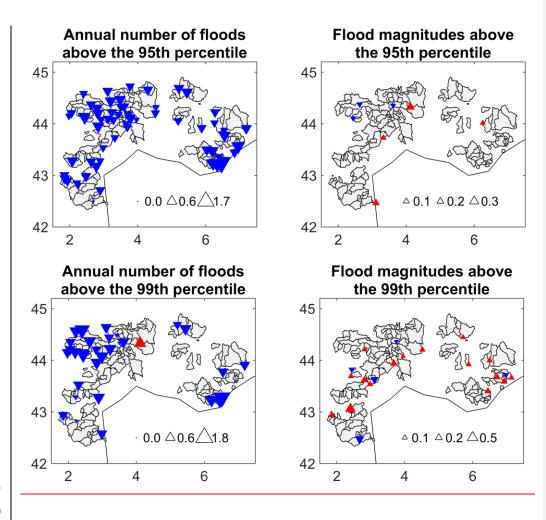
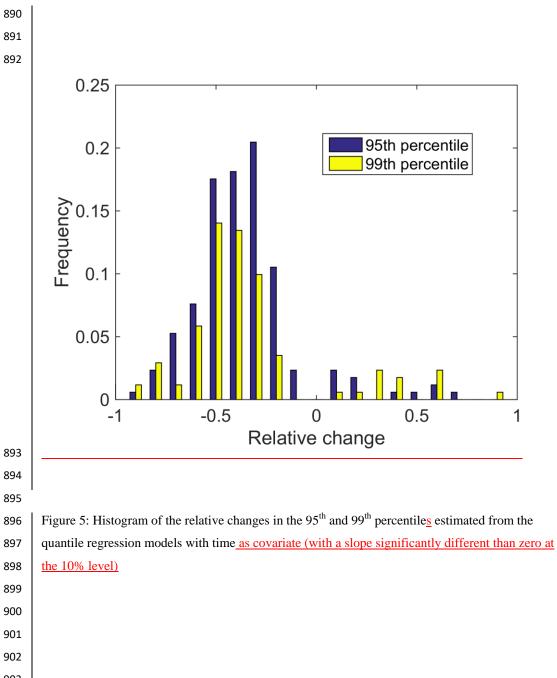



Figure 4: <u>Significant trends at the 10% level (Mann Kendall test)</u> <u>Trends</u> in the annual number of flood events above the 95th and 99th percentiles (left) and in the magnitude of these threshold exceedances (right). Blue triangles indicate a decrease and red triangles an increase. <u>The size of the triangles indicates the relative changes.</u>

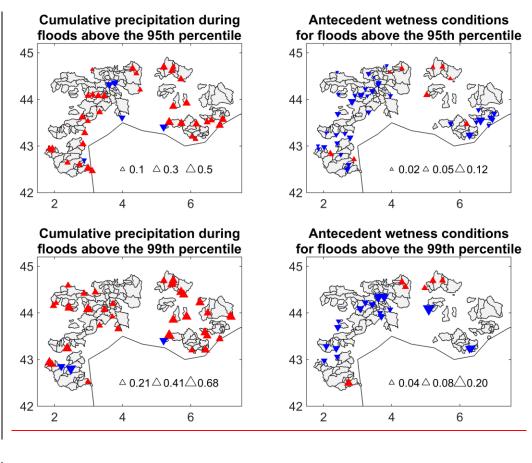
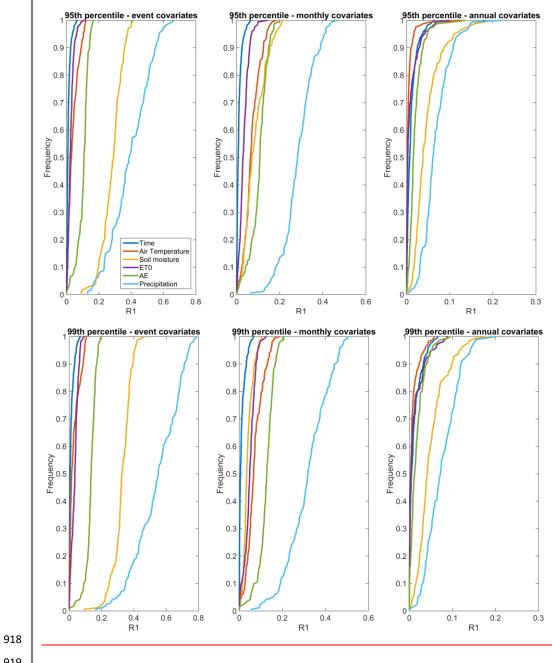



Figure 6: <u>Significant trends at the 10% level (Mann Kendall test)</u> Trends in cumulative precipitation during flood events above the 95th and 99th percentile (left) and in the soil moisture initial conditions (right). Blue triangles indicate a decrease and red triangles an increase. <u>The size of the triangles indicates the relative changes.</u>

- 920 Figure 7: Distribution of the R^{1} coefficients for different covariates for the 95th or 99th percentiles
- 921 of daily runoff, averaged at: (i) the event scale (3 days), left panels, (ii) the monthly scale, central
- 922 panels, and (ii) annual timescale, right panels.
- 923