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Abstract.

Large uncertainty remains about the amount of precipitation falling in the Indus River basin, particularly in the more moun-
tainous northern part. While rain gauge measurements are often considered as a reference, they provide information for specific,
often sparse, locations (point observations) and are subject to underestimation, particularly in mountain areas. Satellite obser-
vations and reanalysis data can improve our knowledge but validating their results is often difficult. In this study, we offer
a cross-validation of 20 gridded datasets based on rain gauge, satellite and reanalysis data, including the most recent and
less studied APHRODITE-2, MERRA2, and ERAS. This original approach to cross-validation alternatively uses each dataset
as a reference and interprets the result according to their dependency with the reference. Most interestingly, we found that
reanalyses represent the daily variability of precipitation as well as any observational datasets, particularly in winter. There-
fore, we suggest that reanalyses offer better estimates than non-corrected rain gauge-based datasets where underestimation
is problematic. Specifically, ERAS is the reanalysis that offers estimates of precipitation closest to observations, in terms of
amounts, seasonality as well as variability, from daily to multi-annual scale. By contrast, satellite observations bring limited
improvement at the basin scale. For the rain gauge-based datasets, APHRODITE has the finest temporal representation of the
precipitation variability, yet it importantly underestimates the actual amount. GPCC products are the only datasets that include
a correction factor of the rain gauge measurements but this factor remains likely too small. These findings highlight the need

for a systematic characterisation of the underestimation of rain gauge measurements.
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1 Introduction

Throughout the Holocene, the Indus River and its tributaries have provided much of the water needed by the people living in its
basin for various purposes (e.g. food, energy, industry). The diversity of use and the risks associated with scarcity or excess of
water under variable and changing climatic and socio-economic conditions highlight the importance of water management in
both Pakistan and north-west India (Archer et al., 2010; Laghari et al., 2012). Moreover, the Indus headwaters are an important
locus of water storage with numerous glaciers whose current and future change remains uncertain (Hewitt, 2005; Gardelle
et al., 2012). Therefore, a comprehensive evaluation of the basin wide water cycle is needed. Studies that have addressed this
issue have stressed the uncertainties inherent in the observed precipitation (Singh et al., 2011; Gardelle et al., 2012; Immerzeel
etal., 2015; Wang et al., 2017; Dabhri et al., 2018).

Gridded products allow for a homogeneous spatial representation of precipitation at a river basin-scale for statistical purposes
(Palazzi et al., 2013). They can be derived from rain gauges, satellite imagery or atmospheric models (e.g. reanalysis), but
need validation to assess their quality. Most studies that validate precipitation products in Pakistan, India, or in the adjacent
mountainous areas (Hindu-Kush / Karakoram / Himalayas) make use of rain gauge data as a reference, either directly from
weather stations (Ali et al., 2012; Khan et al., 2014; Ghulami et al., 2017; Hussain et al., 2017; Igbal and Athar, 2018), or after
gridding (Palazzi et al., 2013; Rajbhandari et al., 2015; Rana et al., 2015, 2017). However, some authors have pointed out that
these reference datasets also suffer from limitations that could dramatically reduce correlation and increase biases, incorrectly
lowering the confidence in the dataset validated (Tozer et al., 2012; Ménégoz et al., 2013; Rana et al., 2015, 2017).

The first issue of validating gridded precipitation products with rain gauge measurements is simply the uncertainty of the
measurements. Beside the risk of corruption or missing values in the reporting process, it has been demonstrated that rain
gauges can underestimate precipitation (Sevruk, 1984; Goodison et al., 1989). The main source of underestimation is wind-
driven under-catchment that can reach up to 50% in case of snowfall (Goodison et al., 1989; Adam and Lettenmaier, 2003;
Wolff et al., 2015; Dabhri et al., 2018), but also includes wetting of the instrument, evaporation before measuring, and splashing
out (WMO, 2008). Dahri et al. (2018) used the guidelines from the World Meteorological Organization (WMO) to re-evaluate
the precipitation measured from hundreds of rain gauges in the upper Indus and found the underestimation to be between
1 and 65% for each station, and 21% basin wide. The second issue is the one of spatial representativeness. A rain gauge
records a measurement at a specific location whereas in a gridded dataset, each value represents the mean over all the grid box.
Thus, the two types of data have a different spatial representativeness. This discrepancy in representativeness increases when
considering shorter timesteps and areas with strong heterogeneity such as mountainous terrains, which is especially impactful
when studying extreme events. Some methods exist to quantify and tackle this issue (e.g. Tustison et al., 2001; Habib et al.,
2004; Wang and Wolff, 2010).

Gridding methods are used to spatially homogenise point measurements and they also have limitations. Firstly, the specificity
of the interpolation method can impact the result (Ensor and Robeson, 2008; Newlands et al., 2011). Secondly, the sparsity of
the weather stations increases the uncertainties, which can range from 15 to 100% in areas with a low number of rain gauges

(Rudolf and Rubel, 2005). This last point is especially problematic in the Indus River basin. For climatological purposes, the
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WMO has published guidelines for the density of rain gauges: from one station per 900 km? in flat coastal areas, to one every
250 km? in mountains (WMO, 2008). However, the Meteorological Department of Pakistan have recently published a 50-year
climatology of precipitation for the country based on 56 stations, that is around one station per 15,000 km? (Faisal and Gaffar,
2012). Gridded rain gauge-based datasets rely on a similar density of observations in the Indus River basin (cf. Figure 2, Table
2). The situation in India is better as the Indian Meteorological Department produces a country-wide dataset of precipitation
that is used for monsoon monitoring and includes up to 6300 stations. This distribution makes around one station per 500 km?,
which is well within the WMO guideline. However, areas of lower density remain, especially in the western Himalayas and the
Thar Desert, which are both in the Indus River basin (Kishore et al., 2016). Rain gauges are not only scarce in mountainous
areas, but their location is also biased. In order to be accessible all year long, they are generally situated at the bottom of
valleys, and these locations appear to be significantly drier than locations at altitude (Archer and Fowler, 2004; Ménégoz et al.,
2013; Immerzeel et al., 2015; Dahri et al., 2018), which means that the interpolation method underestimates precipitation in
the surrounding mountains.

There are a number of ways of overcoming the limitations of gridded rain gauge data, including the use of data derived from
satellites and reanalyses. Satellite imagery can help to reduce both the lack and the heterogeneity of surface measurements.
Satellite-based products generally make use of global infrared observations of cloud cover and microwave measurements along
a swath (the narrow band where the observations are made as the satellite passes). However, their abilities over a heterogeneous
terrain are more limited than over a flat and homogeneous one (Khan et al., 2014; Hussain et al., 2017; Igbal and Athar, 2018).
Moreover, these products still need rain gauges for calibration and are therefore dependent on the quality of station data.

Reanalyses of the atmosphere offer another way to estimate precipitation. Many valuable variables in a reanalysis are the
result of the assimilation of observations with model outputs, but estimates of precipitation are, in most cases, a pure model
product. That is, the precipitation is a forecast generated by the model used for the reanalysis, and is not constrained by direct
observations in the way that other assimilated quantities are. Models are known to predict precipitation with difficulty and most
studies highlight that precipitation from reanalyses is less reliable than that based on observations (Rana et al., 2015; Kishore
et al., 2016). The reasons often invoked include discrepancies in spatial patterns and important model biases. However, recent
progress in assimilation techniques has made it possible to integrate precipitation observations in the most recent reanalysis
product (ERAS, Hersbach et al., 2018), and significant improvements are possible (e.g. Beck et al., 2019).

This study aims to better understand the quality and limitations of 20 precipitation datasets that are available for a study area
encompassing the Indus River basin. Previous studies have investigated the strengths and limitations of precipitation datasets in
this area (e.g. Ali et al., 2012; Palazzi et al., 2013; Khan et al., 2014; Hussain et al., 2017), but none has looked at such a large
number of datasets nor at the most recent ones. Moreover, our method slightly differs, as we offer a cross-validation, thereby
avoiding the problems that come from the selection of a unique reference. We cross-compare each of the datasets, identify their
similarities and discrepancies, and using the diversity of data source and methods, assess their strengths and weaknesses. After
presenting the datasets selected for the study, we give a general description of the methods. The subsequent result section is

split into four parts, which review, for the precipitation: i) the annual mean, ii) the seasonality, iii) the daily variability, and



iv) the monthly and longer term variability. The final section concludes with the main results, the potential of the method, and

future research priorities.
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2 Data and Methods
2.1 Study areas

The Indus River basin extends across the north-westernmost part of the South Asian sub-continent, and is an area of various
topographic features, as indicated in figure 1. It is bounded from the north-east to the west by high mountain ranges, including
the Himalayas, Karakoram, Hindu Kush and Sulaiman Ranges. To the south, the Indus River flows into the Arabian Sea. The
eastern border is the most ambiguous as it extends into the flat dune-fields of the Thar desert. Much of the precipitation that
falls in this extensive area evaporates before reaching the Indus River or the sea. It may also forms seasonal rivers, such as the
Luni River, which has been included in the study area. This particular river flows into the Rann of Kutch, which is a flat salt
marsh with complex connections with the Arabian Sea and the mouth of the Indus River (Syvitski et al., 2013), and is bounded
to the west by the Aravalli Range. Although not strictly a part of the Indus watershed, it provides a clear and steady boundary
for the study area. The total watershed considered for the study is represented by the outer black line shown in figure 1.

Precipitation amount varies across the basin as shown in Figure 2-A, as well as its seasonality. In the flat southern part,
most of the precipitation occurs in July and August, under the influence of the South-Asian summer monsoon propagating
from the Indian Ocean and India, while during the rest of the year the basin remains dry (e.g. Ali et al., 2012; Khan et al.,
2014; Rana et al., 2015). By contrast, the northern region is much more mountainous and encompasses a steep maximum
of precipitation along the Himalayan front. This precipitation falls throughout the year, exhibiting a seasonal bi-modality
explained by differences in circulation patterns (e.g. Archer and Fowler, 2004; Singh et al., 2011; Palazzi et al., 2013; Filippi
et al., 2014). As in the southern part of the basin, a sharp peak in precipitation occurs in July-August related to the summer
monsoon, but a second, broader peak also occurs in winter, from January to April, triggered by mid-latitude, extra-tropical
western disturbances (Cannon et al., 2015; Dimri and Chevuturi, 2016; Hunt et al., 2018).

Those differences in relief and precipitation seasonality and pattern suggest that the basin can be split into two distinct areas,
along a line between 68.75°E-33.5°N and 77.5°E-30°N (inner dark blue contour in figure 1), which broadly corresponds to
the 100mm isohyet of winter precipitation (defined from December to March). Thus, the northern part of the basin (hereafter
the upper Indus, 595000 km?) includes the maxima of precipitation along the Himalayas and most of the winter precipitation,
while the southern part (hereafter the lower Indus, 785000 km?) is characterised by a single wet season during summer, as

wintertime precipitation is negligible (cf. Figure 3).
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Figure 1. Relief and topographical features in and around the area investigated. The thick outer black contour represent the watershed on the

Indus and Luni rivers. This area is split to form the two study areas: the upper Indus to the north, and the lower Indus to the south.
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2.2 Datasets
2.2.1 Rain gauge data

We have selected five commonly used and one newly available gridded dataset based only on rain gauge data. These are the
first six datasets presented in Table 1. The mean number of stations used in the two study areas are available for five of the
datasets and presented in Table 2. The Asian Precipitation Highly Resolved Observed Data Integration Towards Evaluation
of water resources (APHRODITE; Yatagai et al., 2012) was developed by the Research Institute for Humanity and Nature
(RIHN) and the Meteorological Research Institute of Japan Meteorological Agency (MRI/IMA). Specific to Asia, it is one
of the best datasets available for the area (Rana et al., 2015), both in term of resolution (0.25° and daily, it includes a large
number of rain gauges; Table 2) and because it covers an extended period (over 50 years). However, it does not provide data
after 2007. A new dataset has been issued in 2019 from the same institute extending the period covered up to 2015 and using
a new algorithm (APHRODITE-2), though its quality has not yet been investigated. Covering the whole twentieth century at a
monthly resolution, the Global Precipitation Climatology Center monthly dataset (GPCC-monthly; Schneider et al., 2018) is
widely used in climatology and for calibration purposes (e.g. satellite-based datasets, Table 1). GPCC-daily (Ziese et al., 2018)
offers a better temporal resolution (daily), but at a lower spatial resolution and has a much-reduced time coverage compared
to GPCC-monthly. It uses a smaller number of rain gauges (Table 2), but is constrained by GPCC-monthly. The precipitation
dataset from the Climate Research Unit (CRU; Harris and Jones, 2017) has a similar resolution and time coverage as GPCC-
monthly. We also selected another daily dataset from NOAA’s Climate Prediction Center (CPC; Xie et al., 2010). Although
CPC uses a lower number of rain gauges compared to APHRODITE (Table 2), its availability extends to the present with near
real time updates, which means that it can be used for calibrating other near real time products (e.g. CMAP in Table 1 and

MERRAZ2 in Table 3).
2.2.2 Satellite data

Various satellite-based gridded precipitation products are available, but we have only selected datasets providing data from
1998, to ensure a long enough common period with the rain gauge-based datasets (the common period reaches 10 years due to
APHRODITE ending in 2007). Four were eventually selected (last four datasets in Table 1). The Tropical Rainfall Measuring
Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA; Huffman et al., 2007) is the most widely used satellite-based
datasets. It has the highest temporal and spatial resolution of the selection (sub-daily, and 0.25° like APHRODITE and GPCC-
monthly) and includes a large diversity of satellite observations. We also selected the daily product from the Global Precipita-
tion Climatology Project (GPCP-1DD; Huffman and Bolvin, 2013) as well as the monthly product issued by the same group
(GPGP-SG Adler et al., 2016). All three of these datasets (TMPA, GPCP-1DD, and GPGP-SG) use GPCC for calibration,
which could introduce some similarities. By contrast, the last dataset included, CPC Merged Analysis of Precipitation (CMAP;
Xie and Arkin, 1997), uses CPC for calibration. It has the same time coverage and resolution as GPCP-SG. This version does

not include reanalysis data, to simplify the analysis.



Table 1. Observational datasets of precipitation selected for this study, derived from rain gauges or satellites

Name Version Time coverage Time Spatial Based on Reference

resolution  resolution

APHRODITE V1101 1951-2007 Daily 0.25° Rain gauge only  Yatagai et al. (2012)

APHRODITE-2 V1901 1998-2015 Daily 0.25° Rain gauge only

CPC V1.0 1979 (monthly) / Daily 0.5° Rain gauge only  Xie et al. (2010)

1998 (daily) -2018

GPCC-daily V2 1982-2016 Daily 1° Rain gauge and  Ziese et al. (2018)
GPCC-monthly

GPCC-monthly V8 1891-2016 Monthly 0.25° Rain gauge only  Schneider et al. (2018)

CRU TS4.02 1901-2017 Monthly 0.5° Rain gauge only  Harris and Jones (2017)

TMPA 3B42 V7 1998-2016 3-hourly 0.25° GPCC, satellites  Huffman et al. (2007)

GPCP-1DD V1.2 1996-2015 Daily 1° GPCC, satellites  Huffman and Bolvin (2013)

GPCP-SG V2.3 1979-2018 Monthly 2.5° GPCC, satellites ~ Adler et al. (2016)

CMAP V1810 1979-2018 Monthly 2.5° CPC, satellites Xie and Arkin (1997)




Table 2. Number of stations used on average for the rain-gauge-based datasets (except CRU for which this information was not directly

available), per time step, for the two study areas, and over the period 1998-2007.

Datasets Upper Indus  Lower Indus
APHRODITE 55 48
APHRODITE-2 88 65
CPC 15 21
GPCC-daily 11 16
GPCC-monthly 35 33
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2.2.3 Reanalysis data

Unlike the observation datasets, reanalysis data can be quite different from one another. They generally use their own atmo-
spheric model and assimilation scheme, and the type and number of observations assimilated can vary. Table 3 shows the
ensemble of the ten reanalysis datasets that have been used in this study. The four reanalyses of the latest generation are,
from most recent to oldest: ERAS (Hersbach et al., 2018) from the European Centre for Medium-Range Weather Forecasts
(ECMWEF), the Modern Era Retrospective-analysis for Research and Applications version 2 (MERRA?2; Gelaro et al., 2017)
from the NASA, the Japanese 55-year Reanalysis (JRA; Kobayashi et al., 2015) from the JMA, and the Climate Forecast Sys-
tem Reanalysis (CFSR; Saha et al., 2010, 2014) from the National Center for Environmental Prediction (NCEP). These are still
regularly updated, they all include the latest observations from satellites and cover the full satellite era from at least 1980. JRA
goes back to 1958, when the global radiosonde observing system was established. ERAS currently starts in 1979 but future
releases are expected to extend this back to 1950.

In terms of technical differences, ERAS uses a more complex assimilation scheme than the others reanalysis (4DVAR), which
allows for better integration of the observations. It is also the only one that assimilates precipitation measurements. MERRA2
also uses observations, but takes them from a gridded dataset (CPC) and only uses them to correct the precipitation field before
analysing the atmospheric impact on the land surface; this changes land surface feedbacks on the atmosphere. CFSR is an
Ocean-Atmosphere coupled reanalysis, that is, the sea surface is modelled and provides feedback to the atmospheric model,
instead of being prescribed by an analysis from observations. ERAS and MERRA? are the most recent of the reanalysis datasets
to be published, and not many studies have looked at the improvement from their predecessor, respectively ERA-Interim (Dee
et al., 2011) and MERRAT1 (Rienecker et al., 2011). Both have stopped being updated or will be very shortly, but they are
included in this study for comparison purposes.

Reanalyses for the whole twentieth century have also been produced, but to retain the homogeneity of the type of observa-
tions assimilated they only include surface observations. The twentieth century reanalysis from NCEP (20CR; Compo et al.,
2011), only assimilates surface pressure, but more recently, the ECMWF produced ERA-20C (Poli et al., 2016), which has
surface wind assimilated along with surface pressure.

We have also made use of older generation reanalysis datasets that are still being updated, including: the NCEP/NCAR
reanalysis (NCEP1; Kalnay et al., 1996) and the NCEP/NDOE reanalysis (NCEP2; Kanamitsu et al., 2002). Both are useful to

quantify the progress in reanalysis systems as well as to compare them with more observation-limited century long reanalyses.
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Table 3. Datasets of precipitation selected for this study, derived from reanalysis

Name Time coverage  Spatial resolution ~ Remarks Reference
ERAS 1979-2018 0.25° 4DVAR, precipitation assimilated Hersbach et al. (2018)
ERA-Interim  1979-2018 0.75° 4DVAR assimilation scheme Dee et al. (2011)
JRA 1958-2018 0.5° Kobayashi et al. (2015)
MERRA2 1980-2018 0.5°/0.625° Correction of the precipitation with CPC for Gelaro et al. (2017)
land interaction. Assimilate aerosol observations
MERRA1 1979-2010 0.5°/0.66° Rienecker et al. (2011)
CFSR 1979-2018 0.5° Coupled reanalysis (atmosphere, ocean, land, Saha et al. (2010, 2014)
cryosphere). Same analyses as MERRAL.
Version 2 starting in 04/2011
NCEP2 1979-2018 1.875° Fixed errors and updated model since NCEP1 Kanamitsu et al. (2002)
No satellite radiance assimilated
NCEPI 1948-2018 1.875° No satellite radiance assimilated Kalnay et al. (1996)
20CR 1871-2012 1.875° Assimilate surface pressure only Compo et al. (2011)
ERA-20C 1900-2010 1° Assimilate surface pressure and marine wind only  Poli et al. (2016)

11



B) CRU

=
S
s ° ©  Precipitation  Anomaly Observations
(mm/year) (mm/year)  (fraction
of time)
3000 -500
250 + 025
1000 0 * 0.50
Q 300 50 X 075
.4 | . * 1.00
V% 0 --500
B R
2y
S

80 920

G) MERRA2

Y e == O a =
S 3

- -9

35

25

(%

v@ﬁ‘i
B

25

o
1560 70 80 90 ‘560 70 80 90

Figure 2. Map of annual mean precipitation for different datasets. The annual mean is computed over the period 1998-2007. GPCC monthly
(A) is used as a reference to compute the anomaly for the other datasets (B to H). The grey lines are the isohyets whose level corresponds
to the labels in the legend. The boundaries of the two study areas are displayed in dark blue on each map. The stars mark the grid cells that
include at least one gauge observation. The size of the stars represents the number of time steps with at least one observation over that cell,
relative to the total number of time steps needed to compute the annual mean (120 for A, 3652 for C,D and E). This information was not

available for CRU (B) nor ERAS5 (H), and does not apply to the satellite-based TMPA (F), and MERRA2 (G).
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2.3 Methods

For each dataset, the time series of precipitation are averaged over the two study areas (upper and lower Indus) and calculated
at a monthly resolution, and daily if possible. The datasets have different spatial resolution which causes a problem when
calculating the precipitation averages over the study areas. Simply selecting the cells whose centre is within these areas leads
to small biases in the extent of the region considered. These biases are reduced by bi-linearly interpolating all data to a 0.25°
grid, common to APHRODITE, APHRODITE-2, and GPCC-monthly. This choice is further discussed in section 3.1.1.

The analysis is performed over the 10-year period from 1998-2007, which is common to all datasets, except when analysing
the trends and inter-annual to decadal variability, for which we use all data available. We focus on the two wet seasons of the
upper Indus. Summer is defined from June to September, which matches the monsoon precipitation peak. Winter is defined
from December to March. This fits the snowfall peak rather than the precipitation peak, but makes it possible to focus on
issues of snowfall estimation (Palazzi et al., 2013). In the lower Indus, we use the same definition for summer, but winter is not
analysed, as it is a dry season.

We first compare the mean and seasonal cycle of each dataset in sections 3.1 and 3.2. For quantitative statements, we use
GPCC-monthly as a reference. However, in section 3.1.3, we use the precipitation dataset from Dahri et al. (2018) as reference
instead. This dataset cannot be used in other parts of the study, as it is limited to one part of the upper Indus, and only provides
annual means.

Then, in section 3.3 we compare the daily variability of the precipitation using the Pearson correlation. The correlation sig-
nificance is discussed at the 95% probability level. To reduce the impact of abnormally large rainfall events when investigating
trends in daily variability (cf. section 3.3.4), we use the Spearman correlation. Lastly, in section 3.4, other time scales of vari-
ability of the precipitation are investigated: monthly, seasonal, inter-annual, and decadal, still using the Pearson correlation at

the 95% confidence interval.

13
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3 Results
3.1 Annual mean
3.1.1 Differences between rain gauges-based datasets

Annual mean precipitation in both study areas and for each dataset are given in Table 4 (last two columns). We first focus on
the rain gauge-based datasets (upper part of the table). Spatial pattern differences are shown in Figure 2-A to E.

First, we should mention that the bi-linear method we use to interpolate each dataset to the same grid (cf. subsection 2.3)
leads to some differences between datasets. The two GPCC products can be used to evaluate the impact of our interpolation
method, as they have a different spatial resolution but uses the same monthly climatology. Hence, the small underestimation of
GPCC-daily compared to GPCC-monthly (about 1% in the upper Indus and 5% in the lower Indus) is related to the interpolation
method. However, these differences are small enough to justify the use of our method.

More generally, annual mean differences can be explained by methods and data that each dataset uses. Particularly, the
interpolation of station measurements to a grid differs from one dataset to the other. APHRODITE’s interpolation method, for
instance, considers the orientation of the slope to quantify the influence of nearby stations. This greatly reduces the amount
of precipitation falling in the inner mountains compared to GPCC-monthly. An example of this pattern is evident to the north
of the Himalayas where only very few observations exist (Figure 2-D; Yatagai et al., 2012). In CRU, the interpolation method
(triangulated linear interpolation of anomalies; Harris et al., 2014) seems to smooth areas of strong gradients such as near the
foothills of the Himalayas (Figure 2-B). This smoothing might explain a slightly drier upper Indus, and slightly wetter lower
Indus, compared to GPCC-monthly (Table 4).

Differences can also be explained by the dramatic change in location and number of stations used to compute the statistics
(Figure 2-A, C, D, and E, Table 2). For example, CPC is by far the driest dataset in the upper Indus and the second driest in
the lower Indus. This is likely related to the low number of observations it includes, leaving vast areas with no or very few
observations, including the wettest regions (Figure 2-E). However, there is no linear relationship between precipitation amount
and number of observations. GPCC-daily includes the lowest number of observations, but this does not impact its climatology,
because the climatology is derived from GPCC-monthly. On the contrary, APHRODITE comprises a much higher number of
observations than others datasets, but remains much drier than GPCC-monthly (about 20% drier in both study areas).

Yatagai et al. (2012) pointed out that differences in quality checks compared to the other datasets might explain APHRODITE’s
dry bias . They noted that APHRODITE partly relies on GTS data that are sent in near real time to the global network, with
the risk of misreporting. This risk particularly concerns misreported zero values, which are hard to detect and lead to a dry
bias. The large dry bias seen in CPC data might be associated to the same issue, since CPC is entirely based on GTS data. In
GPCC-monthly (and daily), only stations with at least 70% of data per month are retained (Schneider et al., 2014), while in
CRU this number is 75% (Harris et al., 2014). Thus, limiting the analysis to the most reliable weather stations can help build

confidence in recorded total precipitation amount.
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Interestingly, APHRODITE-2 is more than 10% wetter than APHRODITE in both study areas. Several changes have been
performed in the methodology: quality control of extreme high values, station-value conservation after interpolation, merging
daily observation with different definitions of End of Day time (cf. section 3.3.1), and an updated climatology. However, the
difference in mean precipitation is most likely related to the change in observations from rain gauges. Although APHRODITE-
2 comprises more observations basin-wide, this increase mainly occurs over the Indian territory, whereas Pakistan is presented
with fewer precipitation measurements, especially in the dry southern central part (Figure 2-D). This decrease in observations
in a drier area can reasonably explain the increase in mean precipitation in the lower Indus. In the upper Indus, the increase is

mainly due to the inclusion of measurements from one isolated weather station in the northernmost part of the area.
3.1.2 Considering satellite and reanalysis datasets

We now consider satellite-based datasets (middle part of the table 4). In the upper Indus, CMAP stands out as being the wettest
observational datasets, 13% wetter than GPCC-monthly. By contrast, the other three (TMPA, GPCC-1DD, GPCP-SG), are drier
than GPCC-monthly (between 10 and 5%), despite being calibrated by this GPCC-monthly. In the lower Indus, all satellite-
derived datasets are wetter than the rain gauge products (between 10 and 30% more than GPCC-monthly). The complexity
of the algorithm used to produce the satellite-based datasets makes determining the reasons for their differences with each
other or with rain gauge products difficult. According to previous studies, their ability to represent precipitation over rough
terrain is limited (e.g. Hussain et al., 2017). In fact, figure 2-F shows that the strongest differences between TMPA and GPCC-
monthly occurs near mountain ranges, such as the upper Indus. In contrast, precipitation estimates over flat terrain with sparse
observations and mostly convective precipitation benefit from satellite observations (Ebert et al., 2007). This suggests that the
higher precipitation mean of the satellite-derived datasets for the lower Indus is possibly due to better consideration of locally
higher precipitation rates during convective events.

The annual mean precipitation in reanalysis datasets is listed in the lower part of table 4. In the lower Indus, the range of
values is very high: the wettest dataset, JRA, is five times wetter than the driest dataset, 20CR. This range shows the significant
difficulties for reanalyses to represent precipitation in an area were convection dominates. Among the most recent reanalyses,
ERADS has the closest estimates of precipitation to the observational datasets, yet above the estimates from rain gauges. Figure 2-
H suggests that these wetter conditions mainly comes from the north-western edge of the Suleiman range, an area with sparse
precipitation observation (cf. Figure 2-A), therefore increasing confidence in ERAS estimation. The two twentieth century
reanalysis (20CR and ERA-20C) are amongst the driest reanalysis datasets, suggesting that their models have difficulties
to propagate the monsoon precipitation into the lower Indus region, when only surface observations are assimilated. Lastly,
MERRAZ2 exhibits a severe drop of precipitation compared to the previous version, MERRA1. Summer monsoon precipitation
is known to be strongly affected by surface moisture content, especially in flat areas like the lower Indus (Douville et al., 2001).
MERRAZ2 uses CPC data to constrain the precipitation flux at the surface. Due to the dry bias of CPC, soil moisture is reduced
for most of India (Figure 3 in Reichle et al., 2017), explaining the drop in precipitation.
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For the upper Indus, the most striking features is that all reanalysis datasets except MERRA1 and ERA-20C predict higher
precipitation amounts than GPCC-monthly, about 20% higher on average. In the following we investigate whether that this

difference can be explained by an underestimation of rain gauge measurements.
3.1.3 Impact of rain gauge biases in mountainous terrains

Rain gauge measurements are known to potentially underestimate precipitation and particularly snowfall (Sevruk, 1984; Good-
ison et al., 1989). This is an important issue for mountainous region such as the upper Indus. However, among the six rain
gauge-based datasets, only GPCC’s products consider a correction of the data. Based on a study by Legates and Willmott
(1990), a correction factor, which depends on the month, is applied at each grid cell. Most of these factors vary between 5 and
10% (Figure 4 in Schneider et al., 2014), and explain why GPCC’s products are wetter than most of the other rain gauge-based
datasets. Recently, Dahri et al. (2018, hereafter Dahri2018) compiled the measurements from over 270 rain gauges in the upper
Indus and adjusted their values to undercatchment, following WMO guidelines. They found a basin-wide adjustment of 21%,
but this varies from 65% for high altitude stations, to around 1% for the stations in the plains.

The Dahri2018 dataset has both the advantage of considering a very large number of observations and correcting rain gauge
measurements. However, its result is based on a study area somewhat smaller than the upper Indus region presented here, and
only covers the period from 1999 to 2011. For comparison purpose, we recomputed the annual mean of several of the most
recent and highest resolution datasets to fit these definitions (Table 5).

Table 5 shows that none of the observational datasets is able to reproduce the Dahri2018 precipitation estimates. They all
have a dry bias, from 30% for TMPA, to 10% for GPCC-monthly. Furthermore, APHRODITE-2 and TMPA even underestimate
the unadjusted value of Dahri2018, which suggests that the underestimation is not only related to rain gauge measurements, but
also to the representation of the spatial pattern. By contrast, GPCC-monthly is 7% higher than the Dahri2018 unadjusted value,
which corresponds to the correction factor used in GPCC. This suggests that the unadjusted values in both datasets are very
close, and highlights the quality of GPCC. Nevertheless, we also found discrepancies in the spatial patterns between GPCC-
monthly and Dahri2018. Particularly, in the northernmost part of the upper Indus region, in the Karakoram range, GPCC-
monthly exhibits lower precipitation means than Dahri2018, which cannot be explained by the difference in correction factors
between the two datasets alone. The nearest stations used in GPCC-monthly are all located in the dry and more accessible
Indus River valley to the south of the mountain range (Figure 2-A). Those drier conditions extend to the north due to the
interpolation method used by GPCC, while Dahri2018 includes station measurements with wetter conditions than in the valley.
This difference illustrates the impact of biased weather station locations mentioned in the introduction and in several other
studies ( e.g. Archer and Fowler, 2004; Ménégoz et al., 2013; Immerzeel et al., 2015).

Still in the Karakoram range, figures 2-G and H show that MERRA?2 and ERAS are wetter than GPCC-monthly, and therefore
closer to Dahri2018. However, spatial discrepancies remain. Particularly, the maximum of precipitation in MERRA?2 is shifted
to the North, which leads to important biases when averaging on the Dahri2018’s study area. Our study area, which does not
overlap with the highest precipitation rates, is less affected by shifts and is better fitted to compare the large scale precipitation

patterns. Nevertheless, the four selected reanalysis datasets in Table 5 overestimate the Dahri2018 adjusted values, by 20%
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on average. This suggests that part but not all of the differences between reanalyses and observational data can be explained
by biases from the latter. This overestimation of modelled precipitation in reanalyses for the upper Indus is corroborated by
previous studies (e.g. Palazzi et al., 2015).

To conclude, all rain gauge-based datasets suffer from an underestimation of annual mean precipitation for the upper In-
dus when compared to Darhi2018. This results from biases in rain gauge locations and measurements. Quality control and
interpolation methods also impact precipitation amount in both parts of the basin. Satellite observations probably improve
precipitation estimates in flat areas with sparse observations. However, they cannot correct observational biases since they use
them for calibration, and biases remain unchanged or even amplify for the upper Indus. Reanalyses do not include rain gauge
measurement, except for ERAS and MERRAZ2, and are therefore not affected by observational biases. However, model biases
can also be significant as suggested by the spread of the annual mean precipitation values. Reanalyses tend to be wetter than
observational datasets in the upper Indus, which is partly explained by the underestimation of the observations. Lastly, all
datasets suffer from spatial discrepancies, which are detrimental to small-scale comparisons, especially near mountains, but

justify our choice to use a larger study area.
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Table 4. Mean annual and seasonal precipitation (in mm) falling over the two study areas, for the period 1998-2007. Winter is defined from

December to March and summer from June to September. The first ten datasets are observations, the second ten are reanalyses.

Datasets Upper Indus Lower Indus
Winter Summer Annual Annual
APHRODITE 154 237 484 198
APHRODITE-2 179 272 555 223
CPC 98 200 355 216
GPCC-daily 201 297 607 243
GPCC-monthly 201 301 613 255
CRU 166 281 565 267
TMPA 156 298 555 286
GPCP-1DD 161 305 569 317
GPCP-SG 167 309 583 325
CMAP 273 307 696 279
ERAS 280 380 828 300
ERA-Interim 289 445 931 305
JRA 299 325 810 586
MERRA?2 265 310 724 177
MERRA1 205 267 598 355
CFSR 282 214 656 162
NCEP2 274 259 703 276
NCEPI 372 343 915 239
20CR 244 319 746 116
ERA-20C 175 276 551 175
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Table 5. Mean annual precipitation (in mm) for various datasets over the study area defined in Dabhri et al. (2018) for the period 1999-2011.

Both adjusted and unadjusted values (the latter in parenthesis) from Dahri et al. (2018) are reported in the second line

Datasets Revised Upper Indus
Dahri2018 697 (574)
APHRODITE-2 548
GPCC-monthly 612

TMPA 480

ERAS 835

JRA 827
MERRA2 929

CFSR 783
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3.2 Seasonal cycle

The seasonal cycle of precipitation for each dataset is presented in Figure 3. Analysing the seasonality is particularly interesting
in the upper Indus, as it is characterised by two wet seasons. The mean precipitation of each season is presented in table 4
(second and third column). The rain gauge-based datasets exhibit a very similar seasonality for both study areas. In the upper
Indus, the maxima of precipitation occur in February and July, the minima in May and November. The differences between the
datasets vary little from one month to another, which suggests that the causes of the differences identified in the previous section
(e.g. misreporting, station location and number, interpolation method) are independent of the seasonality. The satellite-based
datasets represent the summer precipitation almost exactly as GPCC-monthly. The annual mean differences are explained by
biases during the winter season, which suggests that winter precipitation is more difficult to estimate for those datasets.

The reanalyses represent the dry and wet seasons of the upper Indus, but with a larger spread than in the observations and
some differences in seasonal cycle (Figure 3-B). On average, winter precipitation is 30% higher than in GPCC-monthly, with
the notable exception of ERA-20C (Table 4). Those wetter conditions also extend to the surrounding drier months: April/May
and October/November. However, the mean summer precipitation in reanalyses is not significantly different from GPCC-
monthly (Table 4). Only ERA-Interim stands out with a wet summer precipitation bias, mainly in the north-west corner of the
upper Indus, a bias partly corrected in ERAS5 (Figure 2-H). The winter wet bias is not surprising after the comparison with the
Dahri2018 dataset in the section 3.1.3. Indeed, Dahri2018 found that the most important rain gauge underestimations happen in
winter when precipitation mostly falls as snow. More interestingly, we found that the latest reanalyses (ERAS, JRA, MERRA2,
and CFSR) represent winter precipitation in similar ways. We haven’t been able to investigate the seasonality of the Dahri2018
dataset, but we suggest that the latest reanalyses better represent winter precipitation than the observational datasets.

We noted another discrepancy in seasonality between a majority of the reanalyses and the observations for the upper Indus:
a delay of the summer precipitation starting from the pre-monsoon season (Figure 3-B). The observations show that May is the
driest month of that season, followed by a sharp increase in precipitation in June. Only ERAS, ERA-Interim, and MERRA1
reproduce this behaviour. In contrast, NCEP2 and CFSR are much drier in June than in May. For other reanalyses, precipitation
during May and June are comparable. This delay continues into the summer monsoon period: while the observations clearly
show a wetter July than August, this is only the case for ERAS, ERA-Interim, and both MERRA reanalyses. A similar delay
can be found over the Ganges plain and along the Himalayas, which suggests wider uncertainties on the monsoon propagation
in the reanalyses. By contrast, no such delay is found in the lower Indus, despite the large uncertainty on the amount of

precipitation (Figure 3-D).
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Figure 3. Monthly mean of precipitation, over the period 1998-2007, representing the seasonal cycle. Results are split between upper Indus

(A and B) and lower Indus (C and D) as well as observation datasets (A and C) and reanalysis (B and D).
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3.3 Daily variability
3.3.1 Lag analysis

Investigating the daily precipitation variability helps to better quantify the quality of each dataset. Before computing the daily
correlation, we checked for possible lags between the datasets. Lags can have different origins. The first is the accumulation
period considered for the rain gauge measurements. CPC documentation (Xie et al. 2010) points out that the official period
is different from one country to another (in our case, Afghanistan, Pakistan, and India all use different periods, or "End of
Day time": 00hUTC, 06hUTC, 03hUTC, respectively), which could impact precipitation estimates. Neither GPCC-daily nor
APHRODITE documentation mention this issue, while a specific effort has been made to homogenise all observations in
APHRODITE-2. Secondly, the TMPA algorithm uses the 00h imagery for the following day accumulation, and therefore,
could be more representative of an accumulation starting at 22:30h UTC (Huffman et al., 2007). Thirdly, biases in the daily
cycle are possible in the reanalyses.

Our main finding relates to CPC. Figure 4 shows the daily correlation year per year of CPC against APHRODITE and
MERRAZ2, for two lags: Oh and -24h (previous day for CPC). We found that the two lags switch their behaviour somewhere
around 1997/1998, which we interpret as an error in the data processing for CPC. That is, in CPC before 1998, precipitation
values correspond to those for the following day. This should not have an important impact on monthly and longer accumula-
tions, but we limited the daily analysis of CPC to the period from 1998 to 2018. Moreover, similar errors might have happened
earlier during the 1980s as the curves in Figure 4 come closer or invert again. This error also propagates to the corrected
precipitation of MERRAZ2. That is, before 1998, the land surface in the model receives the precipitation of the following day.
Theoretically, this could enhance precipitation by increasing surface moisture supply before the precipitation actually falls.
However, we have not been able to find a significant change before and after 1998. The error has been reported to NOAA’s
CPC.

Possible differences in the End of Day times of the observational datasets are investigated using the sub-daily resolution
of TMPA. We compute TMPA daily accumulation with different End of Day time and determine which one maximises the
correlation with the other observational datasets. APHRODITE and CPC (after 1998) maximise the correlation with TMPA
when for the latter an End of Day at 03h UTC is used. This behaviour suggests that both CPC and APHRODITE are more
representative of an accumulation period ending at 03hUTC, influenced by the Indian rain gauge network. APHRODITE-2
successfully corrected this delay, maximising correlation with TMPA for a End of Day at 00hUTC, like GPCC-daily.

A similar analysis can be performed for the reanalyses, to investigate the possibility of a delay in the daily cycle of the
precipitation. We found that most reanalyses have a negligible (<3h) delay with TMPA. However, the reanalyses of the twen-
tieth century have a different behaviour: both have a +12h delay. For those two, only surface observations are assimilated. It is
possible that 12h is the time needed by the troposphere to adjust to those surface constraints.

Finally, we decided to take the accumulation period starting at O0h for all sub-daily datasets. Indeed, it is not straightforward
to correct the delay in APHRODITE or CPC for instance, since only a daily resolution is available. Moreover, the correlation

coefficients are not too importantly affected by those sub-daily lags.
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Figure 4. Daily correlation, per year, between CPC and Aphrodite (A and C), and MERRA?2 (B and D) for both upper Indus (A and B) and
lower Indus (C and D). The green line is the correlation between the same days in each dataset. For the red line, the previous day of CPC is

used instead. The black vertical line is the start of the year 1998, around where the main error should be.

23



10

15

20

25

30

3.3.2 Cross-validation

We now start the comparison of the daily variability between each dataset. Particularly, we aim to understand whether the co-
variability exhibited between datasets is coming from the use of a common method or data source, or from a good representation
of the precipitation variability. All datasets are estimates of precipitation, but they use different methods and input data to
achieve this (cf. section 2.2). If two datasets share a similar method or data source, this can at least partly explain the co-
variability between the datasets. If, on the contrary, the two datasets are independent, then the co-variability they share is most
likely due to the precipitation signal they estimate. As a consequence, the higher the correlation between two independent
datasets, the better is the estimate of precipitation of both datasets.

Table 6 presents the daily correlation of precipitation between the different datasets, for the upper Indus. The upper part
of the table focuses on the cross-correlation between the observational datasets. The highest correlation coefficient, almost
0.9, is between TMPA and GPCP-1DD, showing how close those two datasets are, likely due to the satellite observations
they have in common and the similarity of retrieval procedures (Rahman et al., 2009; Palazzi et al., 2013; Rana et al., 2017).
The rain gauge-based datasets APHRODITE, CPC, and GPCC-daily have also a high correlation between one another about
0,8. The two versions of APHRODITE are even closer, due to their similarities of conception. When comparing GPCP-1DD
and TMPA’s correlation coefficients using the rain gauge-based datasets as reference, it turns out that the TMPA coefficients
are systematically significantly higher than those for GPCP-1DD (at the level 95%). That is, TMPA variability is closer to
the rain gauge-based datasets than GPCP-1DD is. It could be either because TMPA includes more information from the rain
gauge measurements than GPCP-1DD or because it has better quality (better algorithm, better data source). Similarly, we note
that APHRODITE and APHRODITE-2 have significantly higher correlation with the satellite-based datasets than CPC and
GPCC-daily do.

In the lower part of table 6, the correlation between the reanalyses and the observational datasets are about as high as between
the observational datasets, suggesting that reanalyses are as good as observational datasets in representing the daily variability.
Moreover, precipitation from reanalysis and observational data are independent from each other, in the sense that they do
not share the same data source (except ERAS, which assimilates precipitation observations, and MERRA2, which integrate
CPC data; the two need to be treated separately). Hence, the correlations between the two types of datasets is not affected by
common data or method, and is rather a measure of their quality, which helps identifying the best datasets in each group.

We continue the comparison of the observational datasets using reanalyses as a reference (comparison along the rows of
table 6). APHRODITE-2 has systematically higher correlation with the reference, regardless of the reanalysis used, than the
other observational datasets. It is followed by APHRODITE. Both have significantly higher correlation than GPCC-daily, in
third position. By contrast, CPC has systematically a lower correlation than GPCC-daily. Interpreting these results in terms of
quality, we attribute the lower performance of CPC and GPCC-daily to the much lower number of observational inputs than
in APHRODITE and APHRODITE-2 (Table 2). Despite a slightly higher number of measurements, CPC performs worse than

GPCC-daily, likely due to issues on the quality of those measurements, discussed in section 3.1.1. Regarding satellite-based
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datasets, TMPA systematically outperforms GPCP-1DD, but the two, along with CPC, have the lowest correlations with the
reanalyses. That is, satellite measurements seem to degrade the signal from rain gauge measurements.

We can also compare the reanalyses quality using observational datasets as a reference (along the columns of table 6). ERAS
has systematically higher correlations with the observations. However, this reanalysis assimilates rain gauge measurements,
such that it is not completely independent from the observational datasets. It is certainly a sign of good quality that the reanalysis
output resembles the observations, but the reanalysis data could also include some of the observation errors. ERA-Interim
has the second highest correlations, and is the best performing reanalysis among those that do not assimilate precipitation
observations. It is closely followed by MERRA?2, while CFSR has poorer results among the latest generation of reanalyses.
Interestingly for NCEP’s reanalyses, the first version outperforms the second version. The two twentieth century reanalyses also
show interesting behaviour: while 20CR has the lowest correlations with the observations, ERA20C performance is between
CFSR and NCEP1, despite only assimilating surface observations. This behaviour clearly shows the progress made in reanalysis
processing (e.g. in atmospheric modelling and data assimilation) over the last decades.

The same correlation analysis is performed for the lower Indus (Table 7). The results are quite similar, but we also note some
interesting differences. The correlations between the observations are all higher for this study area. In this flat area, precipitation
is less heterogeneous, and observations are more representative of their surrounding (i.e. larger spatial representativeness). In
contrast, the reanalyses have lower correlations with observations than for the upper Indus. The lower Indus only receives
precipitation during the summer monsoon, which is less well represented in models than the winter precipitation in the upper
Indus (see following section on seasonality). More in details, APHRODITE-2 and APHRODITE still perform best among the
observational datasets, but the four other datasets rank in a different order: satellite products are possibly better in that flatter
area. For the reanalyses, we noticed that MERRA?2 does not outperform MERRAL. It echoes the large change in precipitation
amount between the two discussed above (Table 4), and, similarly, could be related to the integration of CPC in MERRAZ2.
Indeed, table 7 suggests that CPC does not perform as well as the other observational datasets in terms of variability, and,
indeed, surface moisture content variability was not improved from MERRA1 to MERRA?2 in the area (Figure 1 in Reichle
et al., 2017). As for ERAS and ERA-Interim, they remains the two reanalysis datasets with the highest correlation with the

observations.
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Table 6. Daily correlation between different datasets, in the upper Indus for the period 1998-2007.

Datasets APHRODITE APHRODITE-2 CPC GPCC-daily TMPA GPCP-1DD
APHRODITE-2 0.92

CPC 0.797 0.775

GPCC-daily 0.819 0.836 0.816

TMPA 0.76 0.762 0.687 0.712

GPCP-1DD 0.735 0.725 0.665 0.676 0.898

ERAS 0.888 0.903 0.743 0.81 0.741 0.727
ERA-Interim 0.854 0.87 0.722 0.777 0.733 0.727
JRA 0.843 0.86 0.677 0.759 0.702 0.697
MERRA2 0.846 0.862 0.714 0.778 0.708 0.699
MERRAL1 0.834 0.849 0.683 0.76 0.698 0.688
CFSR 0.795 0.82 0.64 0.74 0.641 0.625
NCEP2 0.706 0.731 0.552 0.661 0.577 0.545
NCEP1 0.76 0.769 0.606 0.687 0.619 0.598
20CR 0.596 0.635 0.512 0.567 0.481 0.478
ERA20C 0.754 0.746 0.646 0.691 0.644 0.643
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Table 7. Same as Table 6 for the lower Indus

Datasets APHRODITE APHRODITE-2 CPC GPCC-daily TMPA GPCP-1DD
APHRODITE-2 0.887

CPC 0.838 0.825

GPCC-daily 0.864 0.841 0.87

TMPA 0.829 0.869 0.79 0.809

GPCP-1DD 0.771 0.801 0.72 0.74 0.906

ERAS 0.858 0.871 0.805 0.826 0.835 0.772
ERA-Interim 0.828 0.837 0.763 0.794 0.79 0.744
JRA 0.719 0.76 0.709 0.708 0.76 0.73
MERRA2 0.777 0.794 0.723 0.763 0.725 0.677
MERRA1 0.782 0.796 0.749 0.76 0.775 0.741
CFSR 0.7 0.69 0.626 0.657 0.672 0.618
NCEP2 0.601 0.632 0.572 0.618 0.576 0.523
NCEPI 0.635 0.643 0.605 0.623 0.596 0.545
20CR 0.442 0.4 0.35 0.393 0.345 0.308
ERA20C 0.655 0.712 0.643 0.663 0.678 0.673
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3.3.3 Influence of the seasonality

Figure 5 presents the seasonality, for the upper Indus, of the correlations between the reanalyses and APHRODITE-2. This
reference is chosen because of its higher correlation with the reanalyses, but the other rain gauge-based datasets give a simi-
lar seasonality. The figure shows that the reanalyses are altogether more similar to APHRODITE-2 during the winter season
than during summer. From December to April, all reanalysis products have a similarly high correlation with the observational
dataset (>0.9), except for the two century reanalyses, and to a lesser extent the older NCEP reanalyses. From May onward, all
correlations drop to various degrees. Both NCEP reanalyses drop the most, followed by CFSR. ERAS5 shows the highest cor-
relations, just above ERA-Interim, JRA, MERRA1, and MERRAZ2. For the century reanalyses, 20CR drops to very low values
(<0.5 and even <0.2 in September and October), while ERA-20C remains at acceptable levels, around CFSR. Accordingly,
we have very high confidence in the capability of most reanalyses to represent the daily variability in winter. In summer, the
confidence is more dependent on the reanalysis, and overall lower than in winter. However, it is unclear if the seasonality of
the correlation between APHRODITE-2 and the best reanalyses (ERAS, ERA-Interim, JRA, MERRA1, MERRA2) is due to a
changing ability of the reanalyses or of APHRODITE-2. The seasonality for those reanalyses disappears when using TMPA as
a reference, but mainly due to a drop in winter correlation, which rather suggests that satellite observations are not suited for
that season (not shown). The analysis of the seasonality is less interesting in the lower Indus, since it is mainly dominated by

the monsoon. The results resemble what was just discussed for summer in the upper Indus.

28



1.00

= t\\ Nt
075 \‘ £\ </ Dataset:
\\ - ~— ERAS5
— ERA-I
S / — JRA
< 050 — MERRA2
5 — MERRA1
o
CFSR
‘ NCEP2
025 \ / = NCEP1
\’J — 20CR
— ERA-20C

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

month

Figure 5. Daily correlation, per month, between APHRODITE-2 and each reanalysis, in the upper Indus. The period considered is 1998-2007.
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3.3.4 Trends

We also looked at possible trends in the representation of the daily variability, due to a change in the type, quantity, or quality
of input data in each dataset. We computed the time series of correlations between observations and reanalyses using a two year
moving window. However, the Pearson correlation we used so far is also known to be sensitive to extreme values. This leads
to jumps in the correlation when an extreme value (abnormally large precipitation event) passes in the moving window and is
well represented. In order to have a clearer signal, without jumps, we used instead the Spearman correlation. This coefficient
is based on the rank rather than on the absolute value of each observation and is therefore not sensitive to extreme values. We
checked that most of the results presented above are valid with the Spearman correlation as well.

In Figure 6-A, we compare the observational dataset using ERA-Interim as a reference, for the upper Indus. We first notice
that APHRODITE and APHRODITE-2 always have significantly higher correlation scores than the others, except around 2004-
2006, and relatively stable values between 0.85 and 0.9. The quality of those two datasets found over the period 1998-2007 can
therefore be extended to the whole period 1979-present. GPCC-daily exhibits stronger variability during the first 20-years, but
then its score increases and stabilises around 0.85. This behaviour is likely due to an increase of the number of observations
that are between 5 and 10 before 2000, but above 15 after 2005. CPC is in general very close to GPCC-daily, except around
the year 2000, which explains the differences between the two datasets over the period 1998-2007 previously investigated. The
two satellite products TMPA and GPCP-1DD are very similar to each other, relatively stable, but at a lower level than the rain
gauge-based datasets.

We now investigate in Figure 6-B the quality of the most recent reanalysis using as reference APHRODITE (plain line) and
APHRODITE-2 (dotted line). These references are justified by the stability of their good results discussed above. They give
similar results over their common period, which helps when analysing the whole time period. ERA5 and ERA-Interim are the
two most stable reanalyses and have the highest correlations. JRA is also one of the best reanalysis datasets in the 1980’s, but its
correlation drops by about 0.05 compared to ERAS after 1990 and never recovers. MERRAT1 and 2 exhibit similar variability
to each other, but the first version often has better results than the latter. CFSR is the most problematic reanalysis with the
strongest variability and much lower correlation. However, it shows much better results at the end of the time period, with the
release of its second version.

Lastly, over the second half of the twentieth century, the large change in number and type of observations assimilated could
impact the quality of the reanalysis and is therefore investigated in Figure 6-C. However, no trend can be found. Correlations
between JRA and APHRODITE remains mostly between 0.8 and 0.85. ERA-20C is also fairly stable over time, generally
above NCEPI. 20CR, by contrast, exhibits a much higher variability with correlation dropping as low as 0.4 at times, and
sometimes reaching NCEP1.

There are some differences in the results for the lower Indus as shown in Figure 7. First, for the observation, CPC and
GPCC-daily reach the quality of APHRODITE-2 around 2005, despite including half the number of observations (Figure 7-
A). Certainly, after 2005, the more homogeneous coverage of observations in CPC and GPCC-daily than in APHRODITE-2

counterbalances the reduction in number (Figure 2-D and E). Before 2005, the cause of the improvement of GPCC-daily can
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again be tracked to the increase in observations included, while the rise in quality of CPC remains of uncertain origin, since
the number and location of observations are constant. TMPA shows correlation very close to CPC, with a similar unexplained
rise between 2000 and 2005, almost reaching the quality of the rain gauge-based datasets. GPCP-1DD has lower scores than
TMPA, but also sees a rising trend during the two decades it covers. Comparing the differences between the reanalyses (Figure
7-B), we found much smaller differences than when using the Pearson correlation (Table 7), which suggest that the difference
in quality resides in the representation of the extreme events. No clear change can be observed during the period 1979-2015,

however.
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Figure 6. Daily correlation using the Spearman formula, on a running two-year window, between a reference and different datasets, for the
upper Indus. The years on the x-axis is the start of the two-year window. In A) observational datasets are tested against ERA-Interim. Figure
B) shows the correlation between a selection of reanalysis and APHRODITE over the period 1979-2005 (plain line) and APHRODITE-2
over the period 1998-2013 (dotted line). Finally, C) presents the reanalyses covering the second half of the 20th century, with APHRODITE
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Figure 7. Same as Figure 6 but for the lower Indus
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3.4 Monthly, seasonal, and inter-annual variability

A good representation of daily precipitation variability does not ensure a good representation of monthly or longer period
variability. Moreover, all the observational datasets selected for this study can be analysed at a monthly time scale. In Figure 8,
we present the trend in monthly correlation between a reference and each type of dataset for the upper Indus. The correlation is
calculated with the Pearson formula and over a ten-year moving window. It uses the monthly anomaly of precipitation, relative
to a monthly mean computed over the same ten-year moving window. The reference to validate the observational datasets is
ERA-Interim (A), and to validate the reanalyses GPCC-monthly (B). Those two datasets present a more stable quality and
good correlations as we demonstrate below. They also cover the whole period 1979 to the present. However, we checked the
main results with other references to validate them.

The best observational dataset for representing monthly variability for the upper Indus is APHRODITE (Figure 8-A). By
contrast to the daily variability analysis, APHRODITE-2 has a significantly lower correlation with ERA-Interim on the common
period with APHRODITE (1998-2007) and the correlation continues to drop after it. The difference in correlation between the
two datasets is quite dependent on the reference, but all show the subsequent decrease. By contrast, CPC starts with the lowest
correlation, but the correlation rises in the last decade at the level of the other datasets. CMAP, based on CPC also presents
lower correlation, but is more variable, and it depicts a similar rise around the year 2000. All the other datasets are very close
to each other.

Still for monthly variability, the closest reanalysis to the observations is ERAS (Figure 8-B), except when using CPC and
CMAP as reference: then, MERRA?2 has higher correlation at times, likely due the use of CPC data in both CMAP and
MERRAZ2. Several datasets show a decrease in correlation during the 1990s: JRA, has a drop more pronounced than what is
observed for the daily variability, and a drop appears for NCEP1, NCEP2 and ERA-20C. 20CR has the lowest correlation,
while MERRA2, MERRAL1, and ERA-Interim are quite similar, with correlation just below ERA5. CFSR also has relatively
high values, but exhibits a decreasing trend, especially in the last 10 years, which is even more pronounced when testing with
the other observational datasets. It is possible that version 2 of CFSR gives better results, but it has not been running long
enough to evaluate the monthly variability over a 10-year period. Instead, the correlations in Figure 8-B include both versions
toward the end of the time period, which could add discrepancies when computing the monthly mean anomaly.

We also tested the datasets with the longest time coverage against GPCC-monthly (Figure 8-C). We found relatively stable
correlations with APHRODITE and CRU during the twentieth century: the time series do not diverge, despite the lowering
number of observations. However, since the datasets are not independent, we cannot say that the quality of those datasets
remains constant. The reanalyses present fluctuating correlations with the reference. ERA-20C has lower correlations in the
first half of the century, which could be due to a lowering confidence in either the reference or the reanalysis. However, ERA-
20C correlations get closer to 20-CR during that period, which suggests the variation in the reanalysis quality is the most

important factor.

The lower Indus shows somewhat different results in terms of monthly variability (Figure 9). For the observations, APHRODITE

does not have the highest correlations, as it is bypassed by GPCP-SG during the 1980s. After 2000, all datasets perform very
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similarly with two exceptions: CRU, which always has lower correlations, and APHRODITE-2 whose correlations drop during
the last two years. For the reanalysis, ERAS still has the highest correlation but is joined by ERA-Interim just before the year
2000. MERRAZ2 does not show specifically higher correlation with CPC, as it does for the upper Indus, except for the two first
years, where CPC has the lowest values. It is possible that the smaller difference in quality between CPC and the other obser-
vational datasets is not important enough to influence MERRA?2’s quality significantly. Lastly, for the century-long datasets,
correlations between CRU and GPCC-monthly show a decreasing trend, that could be related to an increasing difference in the

observations included in each dataset. By contrast, ERA-20C correlation are as low as 20CR before 1950.
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reanalysis and GPCC-monthly. Lastly, C) presents the longest datasets, except GPCC-monthly which is used as reference.
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In Figure 10, we compare the inter-annual variability of GPCC-monthly to the reanalyses over the period 1981-2010 and
to the other observational datasets covering that period. In Figure 11, we look at the 10-year moving mean for each of these
datasets. Note that the years we mention in the text correspond to the start of that 10-year window. The results are split
by season and study area. GPCP inter-annual variability is almost identical to that of GPCC-monthly, due to the inclusion
of GPCC-monthly data (Figure 10). By contrast, CPC has a much lower correlation with GPCC-monthly, especially in the
upper Indus. This agrees with the lower capabilities found for the daily and monthly variability of CPC. Moreover, CPC is
the most dissimilar observational dataset for the decadal variability, particularly for the upper Indus, along with CMAP and
APHRODITE-2 (Figure 11). In contrast, the other datasets show a very similar behaviour.

The reanalyses in winter have a decadal variability similar to the observation for the period 1980-2010 (Figure 11-D).
Moreover, the most recent reanalyses tend to converge towards the same amount of precipitation after 2000. By contrast, the
reanalyses that run before 1980 do not represent the decadal variability depicted by the observations. For summer in both
study areas, none but ERA-5 represents the decadal variability observed. For example, in the upper Indus during summer, the
precipitation amount increases after 2000 in the observations (Figure 11-B). While MERRA?2 and CFSR show an increase of
precipitation 2 or 3 times more important, ERA-interim and NCEP1 and 2 show instead a decrease (Figure 11)-E. Interestingly,
while the observations show similar decadal variability for summer between the upper and the lower Indus, this is not the
case for the reanalyses, except maybe for the twentieth century reanalyses, and ERA-5. Notably, ERAS5 has an inter-annual
correlation with GPCC-monthly that is higher than the correlation between GPCC and CRU for all three panel in (Figure 10),

suggesting it is at least as able as observational datasets.
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Figure 10. Inter-annual correlation on the period 1981-2010 between GPCC-monthly and the other datasets covering that period. The

correlations are computed for specific seasons and domains. We split the result by type of dataset (Observation and renalysis)
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4 Conclusions

In this study, we have compared a large number of precipitation datasets of different types across two distinct zones of the Indus
watershed: six datasets are based only on rain gauges, four are derived from satellite observations, and ten from reanalysis. We
have shown that the number and diversity of the datasets help to identify and quantify the limitations and abilities of each of
them, which in turn enables a better estimation of the uncertainties.

We have compared the datasets on the basis of the annual mean precipitation, the seasonal cycle, as well as the variability
over time scales from one day to 10 years. We have relied on the literature to evaluate the different sources of uncertainty
and have interpreted the mean differences between datasets in terms of their quality. We have suggested that the similarities
in variability can directly be interpreted in terms of quality, especially when comparing datasets with no common methods or
data source. Most reanalyses do not assimilate precipitation observations, which makes it possible to cross-validate between
observational and reanalysis data based on variability. Regardless of the observational datasets used as a reference, we have
found that some reanalyses have significantly higher correlation with that reference than other reanalyses, which we have
interpreted as a sign of good quality. Conversely, when using a reanalysis as a reference, some observational datasets have
significantly higher correlation than others. The use of reanalyses to validate observational datasets is justified by the quality
of reanalysis products demonstrated in this study. Specifically, at the scale of the Indus basin, and for the daily variability, the
same level of similarity between the reanalyses and observations is also seen between the observational datasets themselves.

We have used the Pearson correlation to compare the datasets, although this has some limitations. For example, it is affected
by extreme values, that is, in our context, abnormally large precipitation events. These lead to difficulties in interpreting trends
and we preferred the Spearman formula in this context (cf. Figures 6 and 7). By contrast, the Pearson correlation is less affected
by the difficulties in representing the lowest precipitation rates, although these rates can explain some of the biases.

One of our findings concerns the important uncertainty in fine scale spatial patterns of precipitation, particularly in the upper
Indus, where precipitation is the most heterogeneous. Important discrepancies remain between datasets, which explain part of
the differences in mean precipitation. This issue needs to be tackled in observational datasets by including more measurements
and by updating the climatology used in the interpolation methods. In reanalysis products, higher resolution and better mod-
elling of small scale processes are likely needed to improve confidence in the spatial pattern of precipitation. In this study,
we have deliberately selected two large study areas, which has increased the confidence in the datasets. Area-wide correlation
particularly improves the significance of the variability analysis, compared to a point-wise correlation.

We have also found that the quality of the datasets depends on the season. Rain gauge measurements suffer from impor-
tant underestimations in winter for the upper Indus. Most satellite-derived datasets even further amplify this bias. By contrast,
reanalyses perform best during winter. Particularly, the most recent reanalyses produce a very similar amount of winter precip-
itation and its variability is similar to the observations at all timescales. We have suggested that their amount of precipitation
is closer to reality than the observations, although some overestimations are possible, due to, for example, misrepresentation

of the lowest precipitation rates. Summer precipitation, in both study areas, is much more uncertain in the reanalyses in total
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amount, seasonality, and variability. In contrast, satellite observations perform better in summer than in winter and seem to
bring additional information to rain gauge measurements.

As mentioned above, rain gauge-based datasets underestimate precipitation. Only GPCC products use a correction factor
to account for measurement underestimation, but this factor is still too small. We emphasise the need to correct directly the
measured values before interpolation to a grid dataset, using, for example, methods similar to those developed by Dahri et al.
(2018).

More specifically, APHRODITE is the best observational dataset for daily and monthly variability, thanks to a large number
of observations in the whole basin. However, it also exhibits drier conditions than most of the other datasets, which is partially
caused by the interpolation method it uses and possibly by a lower quality of the data. Surprisingly, APHRODITE-2 is not
as good, especially for the longer term variability, as it removes some observations in areas with an already lower density of
measurements. CPC is the least reliable observational dataset, particularly for the upper Indus, with a large dry bias compared
to GPCC-monthly, the lowest correlation scores at all time scales, and an error on the dates before 1998. However, its quality
significantly improves after 2005, which, we suspect, is due to a change in the quality of the data source. GPCC-monthly is
one of the most reliable datasets both in terms of amount and variability. GPCC-daily relies on GPCC-monthly for its monthly
mean. The very low number of daily measurements included in the early part of the covered period limits its quality, but this
quickly improves as more observations are included.

Satellite-based datasets are very dependent on the quality of the rain-gauge product they integrate. The added-value of
satellite observations remains limited at the basin scale. The signal is degraded during winter for the upper Indus, while better
results in the lower Indus suggest slightly wetter conditions than the rain gauge-based datasets. Importantly, the quality of
satellite-based datasets resides in their near real time availability as well as their higher temporal and spatial resolution than
rain gauge based datasets.

The quality of reanalysis datasets has clearly improved since the first datasets were released. ERAS is the latest reanalysis
and clearly stands out as the one representing best the observations, in terms of amount, seasonality, and variability at all time
scales investigated. Remarkably, it is the only reanalysis representing the decadal variability of the summer precipitation for
both study areas as it is seen in the observations. Furthermore, for the daily to inter-annual variability, the best performing
observational dataset has often a better level of similarity with ERAS than with other observational datasets. Some of these
qualities can be derived from its high resolution, which allows the representation of interesting fine scale features, as well as
the assimilation of precipitation measurements.

After ERAS, ERA-Interim, MERRA1, and MERRA?2 have relatively similar performance. Reichle et al. (2017) showed that
the soil moisture content was not improved over South Asia from MERRA1 to MERRA2, neither in terms of variability nor
biases, despite the use of CPC to correct the precipitation input to the land surface model of MERRAZ2. Given the difficulties
of CPC to represent precipitation in the Indus basin, correcting the modelled precipitation with this dataset probably does
not improve the signal. In this study, we were able to show that the correction with CPC feeds back locally on the modelled
precipitation, particularly at the monthly scale for the upper Indus. We have also suggested that the dry bias of MERRA?2 in

the lower Indus, and the decrease score on the daily variability compared to MERRA, is also due to that correction.
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The confidence in JRA’s precipitation in the upper Indus is generally high, but drops for the daily and monthly variability
in the 1990’s. By contrast, it represents overly wet conditions for the lower Indus. CFSR has problems reproducing the daily
variability and the seasonality of the monsoon, especially in the upper Indus. This is probably improved by the latest version that
started in April 2011. However, it would likely be better to treat the two versions separately as it seems the new version produces
somewhat different statistics of precipitation. The twentieth century reanalyses, which includes only surface observations, are
not as good as the others, especially in winter. However, while 20CR barely reproduces any of the variability depicted by the
observation, ERA-20C has much better capabilities, close to NCEP1 and CFSR, especially during summer. Neither 20CR nor
ERA-20C represent the decadal variability seen in the observation before 1980.

Finally, large uncertainties remain about precipitation in the upper Indus, but one should not treat all datasets equally. We
have demonstrated that specific datasets represent the precipitation better, which helps to narrow down the uncertainty. Par-
ticularly, we have argued that precipitation from reanalyses and observational datasets can both be useful for cross-validation.
They can also be used for quality monitoring. Daily correlation of precipitation for key areas can be performed between a
series of datasets with near real time updates. Changes in correlation between one or several datasets would therefore highlight

a change in quality that would need to be investigated.
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