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Abstract. Hydrological models can provide estimates of streamflow pre- and post- observations, which enable greater 

understanding of past hydrological behaviour, and potential futures. In this paper, a new multi-objective calibration method 

was derived and tested for 303 catchments in the UK, and the calibrations were used to reconstruct river flows back to 1891, 

in order to provide a much longer view of past hydrological variability, given the brevity of most UK river flow records which 15 

began post-1960. A Latin Hypercube sample of 500,000 parameterisations for the GR4J model for each catchment were 

evaluated against six evaluation metrics covering all aspects of the flow regime from high, median and low flows. The results 

of the top ranking model parameterisation (LHS1), and also the top 500 (LHS500), for each catchment were used to provide a 

deterministic result whilst also accounting for parameter uncertainty. The calibrations are generally good at capturing observed 

flows, with some exceptions in heavily groundwater dominated catchments, and snowmelt and artificially influenced 20 

catchments across the country. Reconstructed flows were appraised over 30 year moving windows, and were shown to provide 

good simulations of flow in the early parts of the record, in cases where observations were available. To consider the utility of 

the reconstructions for drought simulation, flow data for the 1975/76 drought event were explored in detail in nine case study 

catchments. The model’s performance in reproducing the drought events was found to vary by catchment, as did the level of 

uncertainty in the LHS500. The Standardised Streamflow Index (SSI) was used to assess the model simulations’ ability to 25 

simulate extreme events. The peaks and troughs of the SSI timeseries were well represented despite slight over or 

underestimations of past drought event magnitudes, while the accumulated deficits of the drought events extracted from the 

SSI timeseries verified that the model simulations were overall very good at simulating drought events. This paper provides 

three key contributions: 1) a robust multi-objective model calibration framework for calibrating catchment models for use in 

both general and extreme hydrology; 2) model calibrations for the 303 UK catchments that could be used in further research, 30 

and operational applications such as hydrological forecasting; and 3) ~125 years of spatially and temporally consistent 

reconstructed flow data derived that will allow comprehensive quantitative assessments of past UK drought events, as well as 

long term analyses of hydrological variability that have not been previously possible, thus enabling water resource managers 

to better plan for extreme events, and build more resilient systems for the future. 

1 Introduction 35 

Hydrological extremes, and associated flood and drought events, threaten security of water supply, food supply, livelihoods 

and welfare (Kundzewicz and Matczak, 2015). Managing the impacts of both rainfall excess and deficit on the hydrological 

system poses a significant challenge for authorities and water resource managers across the globe. These challenges are set to 

become more acute in future: the latest projections for Europe suggest increasing hydrological variability with more severe 

extremes (Collet et al., 2018; Guerreiro et al., 2018; Teuling, 2018) and further reductions in low flows in many regions (Wilby 40 
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and Harris, 2006; Christierson et al., 2012; Prudhomme et al., 2012; Kay et al., 2018; Marx et al., 2018). Increasing demands 

due to a growing population and socioeconomic changes also imply growing pressures on water resources in the future, 

necessitating considerable investment in long-term strategic water resources planning and adaptation (Committee on Climate 

Change, 2017). 

Understanding extremes of the past can help us prepare for future extreme events. Drought characteristics of events in the 45 

recent past can be used to stress test water supply systems (Mens et al., 2015), a practice that is commonly applied in UK water 

resource management and drought plans (e.g. Southern Water, 2013 pp. 50-61; Northumbrian Water, 2017 pp. 20-21). 

Similarly, drought severity estimates of past events have been used to investigate the impacts of increased drought frequency 

on water supply vulnerability (Herman et al., 2016). There is a growing trend towards testing water supply systems against 

events worse than those experienced, using either scenario-based methods (e.g. Stoelzle et al., 2014; Anderton et al., 2015) or 50 

stochastic approaches to generate simulated droughts with credible characteristics (e.g. Atkins, 2016). In addition, short-term 

water management planning can benefit from seasonal forecasting of reservoirs inflows and streamflow volumes (Prudhomme 

et al., 2017), so that periods of water deficit can be known in advance and appropriate measures put in place to manage 

resources and mitigate impacts.  However, these methods are all dependent on having a good understanding of past variability 

and long hydrometric records which are used to train and validate stochastic approaches, and to create tools that enables the 55 

simulation of river flows as accurately as possible under a range of varied climate conditions.  

Observations of global streamflow are sparse prior to the 1950s, with less than 20% of stations in the Global Runoff Data 

Centre (GRDC, 2019) beginning pre-1950. Post 1960, the streamflow network expanded rapidly, a pattern that is mimicked 

by the UK gauging network, where 100 gauging stations in 1950 have increased to over 1300 today. Qualitative data sources 

and long rainfall records can identify significant drought events in the pre-instrumentational period (Pfister et al., 2006; Marsh 60 

et al., 2007; Brázdil et al., 2016). However, these cannot be used to determine whether these events were more or less severe 

in hydrological terms than those on the observational record, and there is a need for temporally and spatially coherent flow 

timeseries to allow systematic assessment of extreme events. 

Meteorological records of rainfall and temperature generally extend further back than hydrological data, often providing data 

from the turn of the 21st century (New et al., 2000), and occasionally as far back as the mid-20th century. Modelled climate 65 

reanalysis data (e.g. Compo et al., 2011), and long term reconstructed climate datasets (e.g. Casty et al., 2007) have been 

developed for use in scientific research, and can be fed into hydrological models to quantitatively reconstruct river flows 

beyond the limits of the observational period. In the UK, quantitative reconstructions of river flows using simple hydrological 

models have previously been conducted, but only for a handful of catchments (e.g. Jones and Lister, 1998; Jones et al., 2006). 

Regional flow reconstructions have been used to explore the implications of drought events on water resources (e.g. Spraggs 70 

et al., 2015). Drought reconstruction has also been conducted in other countries using proxy data (Jones et al., 1984; Cook et 

al., 2015), precipitation data (Noone et al., 2017, Ireland), soil moisture models (Wu et al., 2011, China), and hydrological 

models (Caillouet et al., 2017, France). Generally, however, there are few extant studies that use hydrological models to derive 

plausible historical sequences. 

Catchment hydrological models are tools that can generate streamflow time series from meteorological time series data, to 75 

provide continuous proxy river flow data that is otherwise not directly available. They can be used to extend flow records, 

creating very long sequences that extend back beyond the initiation of the observational network. Such long timeseries can 

enable thorough analysis of past variability and frequency of severe events (e.g. Caillouet et al., 2017); be used as vital input 

to short range and seasonal forecasting (Day, 1985; Harrigan et al., 2018), providing valuable early warnings and help 
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preparedness; or for future projections for long term planning accounting for possible future non-stationarity, for example due 80 

to global warming (e.g. Collet et al., 2018).  

Calibrating a hydrological model for multiple purposes, e.g. flow reconstruction and forecasting, for high, low and average 

flows, requires careful consideration. Currently, models are typically calibrated to minimise a specific type of error against 

observations, measured by an “evaluation metric” also known as an “objective function”. Commonly used metrics, such as the 

Nash Sutcliffe Efficiency (Nash and Sutcliffe, 1970) or Root Mean Squared Error, tend to focus on the correct estimation of 85 

high flows (Krause et al., 2005; Dawson et al., 2007), whilst more general metrics, such as Mean Absolute Percent Error and 

Percent Bias are also used to more systematically optimise the flows and the water balance respectively. There are few 

examples focusing on optimising low flow simulation. Most commonly, a single objective function is used, implemented using 

automatic algorithms to find a deterministic parameterisation of the model. Such algorithms are commonly categorised as 

“local” (e.g. PEST, Kim et al., 2007) or “global” (e.g. SCE, Duan et al., 1993), some examples of which have been compared 90 

by Wallner et al. (2012). However, seeking a single “optimum” parameter set to describe the observations has been argued to 

be a misconception with theoretical catchment models (Beven, 2012). The need for calibration techniques to maximise 

hydrological model performance against multiple elements of the flow regime has however been recognised, and multi-

objective optimisation methods have been advancing since the turn of the century, though few studies explore more than three 

objectives (Efstratiadis and Koutsoyiannis, 2010). Multi-objective optimisation commonly involves seeking Pareto-optimal 95 

solutions that find a compromise between objective functions (e.g. Shafii and De Smedt, 2009;  Kamali et al., 2013; Jung et 

al., 2017). Multi-objective methods may also be used to optimise more than one hydrological variable (e.g. Mostafaie et al., 

2018). In addition, utilising multiple model parameterisations have been advocated to account for “equifinality” – that many 

different parameterisations may produce equally adequate simulations of past observations (see, for example: Beven and 

Binley (1992); Beven (2006)). 100 

Here, we develop a framework to establish a national network of catchment hydrological models, and evaluate their application 

to the reconstruction of hydrological time series, with application to the UK over the period 1891 to 2015. The aims of this 

research are to:  

o Develop a robust method for multi-objective model calibration suitable for use in simulating streamflow with associated 

uncertainty. 105 

o Apply that method to reconstruct historic streamflow time series from the 1890s across the UK, 

o Examine the performance of these time series where observations are available, and 

o Explore the potential for application of these time series in evaluating drought events. 

This paper first outlines the datasets in Section 2, before detailing the modelling methods in Section 3. Section 4 provides the 

results on the performance of the model reconstructions compared with streamflow observations both generally, and during 110 

drought events. Section 5 discusses the potential limitations of this work, and suggests directions for further research, before 

the paper is concluded in Section 6. 

2 Data 

The hydrological model employed in this study (see section 3.1) requires rainfall and potential evapotranspiration data to run, 

and observed flow data for calibration and validation. Means of access to the datasets used in this study are described in the 115 

Data Availability section at the end of the paper. 
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2.1 Catchment Selection and Flow Data 

A diverse set of 303 UK catchments were selected for model calibration. Initially, 395 stations were considered, from the near-

natural catchments suitable for low flow analysis from the UK Benchmark Network (Harrigan et al., 2017), and those which 

are part of the National Hydrological Monitoring Programme (https://nrfa.ceh.ac.uk/nhmp), which are of particular interest for 120 

operational water situation monitoring. Catchments were required to have a minimum of 32 years of observational daily data 

from the National River Flow Archive (https://nrfa.ceh.ac.uk/), from 1984 to 2015 for model calibration. Some catchments 

that suffered repeated or prolonged periods of missing data, truncation of flow measurements, step changes, and artificial 

influences resulting in unrealistic flow patterns were removed from the catchment selection, resulting in 303 catchments. These 

catchments had records ranging from 32 to 135 years in length, with an average length of 49 years. The average completeness 125 

in the gauged daily flows was 99.2% (with a minimum of 90%, and a maximum of 100%). An additional two flow records 

were included, the naturalised daily flows for the River Thames at Kingston and the River Lee at Feildes Weir, making 305 

flow records from 303 catchments. Throughout this paper, the observed calibrations for these two catchments are presented 

(rather than the naturalised series), for consistency with the other catchments across the UK. While this paper presents summary 

results from the whole network, we also selected a set of nine case study catchments to present results in more detail. The nine 130 

catchments (shown in Figure 1), were selected from each of the nine hydro-climatic regions defined in (Harrigan et al., 2017) 

in order to represent the range of  hydro-climatology, hydro-geology, and artificial influence across the country, as well as to 

explore some of the better and some of the poorer model performances among the 303 catchments used in this study.  

 

Figure 1: Map of 303 catchments calibrated. Nine reconstruction case study catchments (one per region) are shown with black 135 
hatching. 

https://nrfa.ceh.ac.uk/nhmp
https://nrfa.ceh.ac.uk/
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2.2 Rainfall Data 

The daily rainfall dataset used in this study was derived by the UK Met Office as a result of a large data rescue and digitisation 

programme. The 5km gridded dataset, which covers the period 1891 to 2015, was derived using the same methodology as the 

UKCP09 data (Met Office, 2017), with interpolation carried out using inverse distance weighting (Perry and Hollis, 2005). 140 

The data rescue and digitisation programme added over 200 monthly and 38 daily gauges to the network during the period 

1890 to 1910. Catchment averages were derived from the 5km grids, using the catchment boundaries provided from the 

National River Flow Archive, for use in the hydrological model. 

2.3 Potential Evapotranspiration Data 

As the meteorological variables needed to derive Potential Evapotranspiration (PET) data using the Penman-Monteith equation 145 

(Monteith, 1965) are not available prior to 1961, the PET data used for the reconstructions was derived using the McGuinness-

Bordne temperature-based PET equation (McGuinness and Bordne, 1972), calibrated for the UK. The temperature data for 

1891-2015 were again provided by the UK Met Office following their data rescue programme. A detailed description of the 

generation of the PET dataset used in this study, following a rigorous analysis of seven temperature based PET equations, four 

calibration techniques, and seven input temperature data sources/formats, can be found in Tanguy et al. (2018).  150 

3 Methods 

3.1 The GR4J Hydrological Model 

The GR4J (Génie Rural à 4 paramètres Journalier) daily lumped rainfall-runoff model (Perrin et al., 2003) was used in this 

study via the ‘airGR’ R package version 1.0.2 (Coron et al., 2017). The suite of daily GR models (GR4J, GR5J and GR6J) are 

being increasingly applied around the world, and GR4J was chosen for several reasons:  155 

1) GR models have been used for streamflow reconstructions previously (Brigode et al., 2016; Caillouet et al., 2017),  

2) The GR4J model has demonstrated good performance in a diverse set of catchments in the UK (Harrigan et al., 2018), 

as well as good performance at simulating temporal transitions between wet and dry periods (Broderick et al., 2016),  

3) The GR models are openly accessible, and  

4) The model has a low computational demand, and can be run in parallel without manual input requirement.  160 

The model has four free parameters (X1 – X4), requires daily precipitation and potential evapotranspiration data as input, and 

routes water into two stores: the production store and the routing store. The production store (capacity X1) gains water from 

effective rainfall, and loses water through evaporation and percolation. Percolated water joins that which has bypassed the 

production store, and is routed with a fixed split: in which 90 percent is routed via a unit hydrograph (time lag X4), followed 

by the non-linear routing store (capacity X3); and the remaining 10 percent is routed by a single unit hydrograph (time lag 165 

2*X4). Groundwater or inter-catchment exchange (controlled by X2) is effective on both the routing store, and the flow routed 

by the single unit hydrograph, and can be positive, negative or zero.  

The GR models include an optional snowmelt module, CemaNeige (Valéry et al., 2014). Due to the high computational demand 

of the snowmelt module, it was decided to calibrate the GR4J model without snowmelt, as only 15 (5%) of the 303 catchments 

experience a significant fraction of precipitation falling as snow (> 15 %) over the calibration period (Harrigan et al., 2018). 170 
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3.2 Calibration Strategy 

The GR4J model was calibrated for this study incorporating concepts from GLUE type Bayesian approaches (Beven and Freer, 

2001), and multi-objective Pareto-optimal solutions (Yapo et al., 1998). The approach consisted of three stages, the details of 

which are further elaborated in this sub-section: firstly, the feasible parameter space was determined, and sampled using Latin 

Hypercube Sampling (LHS) (McKay et al., 1979); secondly the model was run, and six evaluation metrics were calculated for 175 

each parameter set; and thirdly the top 500 parameter sets for each catchment were selected using a very simple Pareto-

optimising ranking approach, accounting for non-acceptable trade-offs (Efstratiadis and Koutsoyiannis, 2010). This method 

was formalised for several reasons: 

1) Latin Hypercube Sampling allowed the systematic sampling of the model parameter space;  

2) Multiple evaluation metrics enabled the simultaneous optimisation of several aspects of the flow regime, including 180 

general water balance and low flows;  

3) Model equifinality (Beven, 2006) could be addressed by accepting multiple “behavioural” parameter sets, and 

4) A deterministic “best” parameter set could also be selected.  

3.2.1 Latin Hypercube Sampling 

LHS uses Latin Square theory to ensure that the full range of each parameter is represented regardless of its resultant 185 

importance (Cheng and Druzdzel, 2000), whilst maximising efficiency in comparison to simple random sampling approach.  

An LHS set of 500,000 model parameter sets (parameterisations) for the four model parameters was derived using the 

MATLAB package ‘lhsdesign’ (The MathWorks Inc, 2016), using the ‘maximin’ criterion to maximise the minimum distance 

between each point. In order to determine what values to ascribe to the upper and lower bounds of the parameters, a smaller 

experiment using 100,000 model parameterisations was run over 45 catchments as a “first pass”. This experiment used 190 

parameter limits that could be found in previous literature on the GR4J model (Pushpalatha et al., 2011; Perrin et al., 2003). It 

was found that good parameter sets for this first pass had storage values (X1 and X3) close to the limits that had been set from 

the literature. Therefore, in consultation with the developers of the airGR model package, it was decided to widen the ranges 

of parameter values, and then to increase the number of model parameterisations that were run to account for this increase in 

the parameter space. The parameter values were sampled from a uniform distribution, using the upper and lower limits given 195 

in Table 1. Lower bounds of 0.0001 were ascribed to the two storage parameters to represent a value of 0, without causing 

division errors. 

Table 1: Sampled Parameter Ranges 

Model Parameter Units Lower Bound Upper Bound 

X1 Production Store Capacity  mm 0.0001 3000 

X2 Inter-catchment Exchange Coefficient  mm/day -20 20 

X3 Routing Store Capacity  mm 0.0001 2000 

X4 Unit Hydrograph Time Constant  days 0.5 15 

 

3.2.2 Evaluation Metrics 200 

For each of the 500,000 model parameterisations, six evaluation metrics were calculated in order to employ a “multi-objective” 

approach to cover the full range of the flow duration curve (see Table 2): Nash Sutcliffe Efficiency (NSE), focusses on 

optimising high flows, Absolute Percent Bias (absPBIAS) maintains the water balance, Mean Absolute Percent Error (MAPE) 
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and NSE on logarithmic flows (logNSE) measure overall agreement on the full range of flows, and Absolute Percent Error in 

Q95 (Q95APE) and Absolute Percent Error in Mean Annual Minimum on a 30-day accumulation period (MAM30APE) focus on 205 

low flows. These metrics were calculated over 32 water years 1st October 1982 to 30th September 2014. 

Post calibration, the upper and lower daily limits of the 500 top ranking parameterisations (see Section 3.2.3 for details on the 

ranking process) were used to calculate two further model performance metrics over the full observational record available for 

each catchment (a maximum of 1891-2014):  

 The uncertainty width (UncW) - calculated by taking range of the minimum and maximum LHS500 members 210 

each day and dividing it by the midpoint of the LHS500 for that day. The mean of these values was then calculated 

over the duration of the timeseries, as per: 

1

𝑛
∑ (

𝑒𝑛𝑠𝑚𝑎𝑥 − 𝑒𝑛𝑠𝑚𝑖𝑛

𝑒𝑛𝑠𝑚𝑎𝑥 + 𝑒𝑛𝑠𝑚𝑖𝑛
2⁄

)

𝑛

𝑖=1

 

 The containment ratio (ContR) – calculated as the percentage of days that the observations fell within the 

envelope of the minimum and maximum of the LHS500 ensemble members for that day. 215 

3.2.3 Ranking and Selecting Model Parameterisations 

In order to optimise six evaluation metrics, the 500,000 model parameterisations were ranked from best to worst by their scores 

for each metric in turn, and these ranks were then summed to create a total rank. This total, or “basic”, rank was used to reorder 

the parameterisations for each catchment from best to worst, accounting for all metrics. However, the scores of the 500,000 

model parameterisations were not normally distributed, and it was found that unacceptable trade-offs between metrics were 220 

occurring, whereby nominal increases in one metric were taking preference over quite significant decreases in other metrics. 

Therefore, a series of thresholds of acceptability were set, as shown in Table 3. A simple iterative search algorithm was then 

used to re-rank the list according to these thresholds, whilst retaining their original ranks within each threshold group. For 

example, if the first, third and fourth parameterisations in the basic rank met the hardest threshold for all six metrics, but the 

second ranked parameterisation did not, the third and fourth would be bumped up the rankings, above the second resulting in 225 

a list of [1, 3, 4, 2…]. All parameterisations meeting the hardest thresholds were prioritised before the algorithm switched to 

search for those in meeting the middle thresholds, and so on. From this final list, the top ranking optimum parameter set was 

extracted for deterministic model applications, herein referred to as LHS1. Due to the variability of the performance across 

catchments, where hundreds of thousands of parameter sets met the hardest threshold in some catchments, whilst none met 

even the softest threshold in other catchments, it was decided that extracting behavioural parameter sets using a ‘limit of 230 

acceptability’ approach after Beven (2006) would not be appropriate. Therefore, a proportion of the sampled model 

parameterisations, the top 500 (herein referred to as LHS500), were taken forward to provide an indication of parameter 

uncertainty within the flow simulations. The extent to which the threshold re-ranking influenced the rankings varied by 

catchment due to the differences in mode performance. Figure 2 shows the NSE and logNSE scores of the 500,000 model 

parameterisations (though this graph has been limited to show only those with positive scores for both metrics) for the River 235 

Greet in Severn Trent Region. This figure demonstrates how the basic ranking system identified 500 parameterisations close 

to the Pareto front of NSE vs logNSE, however parameterisations with scores that were lower for NSE than logNSE were 

selected. By applying the thresholds, parameterisations with an NSE lower than 0.4 were rejected, and replaced with others 

within the acceptable range for all metrics.  

 240 
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Table 3: Thresholds for selecting acceptable model parameterisations 

 NSE absPBIAS MAPE logNSE Q95APE MAM30APE 

Optimum Value 1 0 0 1 0 0 

Hardest 0.5 10 50 0.5 50 50 

Middle 0.4 15 75 0.4 75 75 

Softest 0.3 20 100 0.3 100 100 

Remainder <0.3 >20 >100 <0.3 >100 >100 

 

 

Figure 2 Nash Sutcliffe Efficiency and log Nash Sutcliffe Efficiency calibration scores for all sampled model parameterisations 245 
(grey), the top 500 from the basic ranking process (blue), and the top 500 after the thresholds were applied to negate non-

acceptable trade-offs (red). X and Y axes have been reversed, and limited to show only parameterisations that achieved positive 

scores. Scores of 1 would indicate perfect simulation of the observations; optimal performance is in the bottom left of the graph. 

3.3 Flow Reconstructions 

Using these 500 model parameterisations per catchment, and the rainfall and potential evapotranspiration data described in 250 

Section 2, daily flow reconstructions were produced from January 1891 to November 2015 for the 303 catchments. Details on 

accessing this data are provided in the Data Availability section at the end of this paper. 

3.4 Standardised Streamflow Index (SSI) 

The application of model results to drought analysis are conducted here using the “Standardised Streamflow Index” (SSI). The 

SSI has for some years been advocated as an equivalent to the Standardized Precipitation Index (e.g. Vicente-Serrano et al., 255 

2012), being based on the cumulative probability of a given monthly mean streamflow occurring in a given catchment. The 

procedure involves fitting a statistical distribution to time series of accumulated streamflow over a baseline period, then 

transforming the data to a normal distribution to produce a dimensionless timeseries of the deviation of flow about the 

catchment mean. In this study, SSI was calculated using the 12 month accumulation period (SSI-12) and the Tweedie 
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distribution (Svensson et al., 2017), over the baseline period 1961-2010. A 12 month accumulation period was chosen to 260 

provide summaries of long term deficits that were likely to have significant impacts on water resources. The Tweedie 

distribution, which is a flexible three-parameter distribution that has a lower bound at zero, has been shown to perform 

effectively for UK river flows, across a wide range of near-natural Benchmark catchments (Svensson et al., 2017).  

3.5  Drought Accumulated Deficit 

Using the Standardised Streamflow Index (SSI), accumulated over a 12 month period, drought events were identified as periods 265 

where the SSI was consecutively negative (i.e. below normal) with at least one month reaching an SSI of -1.5 (Barker et al., 

2016). The sum of monthly SSIs during these events was calculated to derive the accumulated deficit (e.g. Noone et al., 2017; 

Barker et al., 2019). 

4 Results of Model Calibrations 

4.1 Model Calibration Statistics 270 

The map in Figure 3 shows the threshold (as set out in Table 3) met by the LHS1 runs and the percentage of the LHS500 

members that met that threshold. The map shows that the LHS1 runs for 272 of the 303 catchments met the hardest threshold 

set (shown as triangles). However, there is a lot of variability within these catchments, with 82 demonstrating all of the LHS500 

met the hardest threshold (black triangles), whilst 108 have less than 10% of the LHS500 above the hardest threshold (yellow 

triangles). The LHS1 run for 20 of the catchments met the “middle” threshold, and very few catchments performed worse than 275 

this, having <0.4 for NSE and logNSE, >75% for MAPE, MAM30APE and Q95APE, and >15% for absPBIAS (5 catchments in 

the “softest” threshold, shown as circles, and 6 catchments that failed to meet even the “softest” threshold, shown as crossed 

circles). These localised examples of poor model performance (shown as circles and crossed circles) may be due to the lack of 

snowmelt processes in the model (in Scotland and North East England), human influences such as abstractions and water 

transfers or significant groundwater interactions (in Anglian and Southern England). For the Warleggan in Cornwall, poor 280 

performance is due to underestimation of peak flows, which may be attributed to an issue in simulating the localised geological 

outcrops.   

Figure 4 shows the results of the six evaluation metrics for each of the 305 flow reconstructions over the calibration period 

(1982-2014), for both the LHS1 runs and the range of the LHS500. These polar plots confirm the findings of Figure 3, showing 

that the model performance is generally very good, with most of the LHS1 runs for the 305 catchments satisfying the thresholds 285 

defined in Table 3 with ease. This plot allows the assessment of each performance metric individually, and shows that 

performance varies both between metrics, and across catchments.  The poorest scores, where the LHS1 did not meet the softest 

threshold can be mostly attributed to NSE, but MAPE and MAM30APE each also account for one failed catchment. MAM30APE 

shows the fewest LHS1 scores below the hardest threshold, and NSE the most. LHS1 points are mostly on the extreme 

periphery of the absPBIAS and MAM30APE plots, demonstrating very good results, but several catchments deviate quite 290 

substantially from this. Q95APE exhibits a similar, but not so strong pattern; whilst the LHS1 points for NSE, logNSE and 

MAPE are far more scattered. The ranges of the LHS500 scores are also varied, with some very narrow ranges, particularly in 

the SE region across all metrics. These narrow ranges show that the 500 ensemble members are very similar in performance. 

Beyond the SE region, the ranges of model performance among the LHS500 do not appear to show any regional pattern, but 

are generally narrower for the NSE, logNSE and MAPE metrics than absPBIAS, MAM30APE and Q95APE. These results show 295 

that using this multi-objective calibration procedure, all six of the evaluation metrics were well optimised for the majority of 
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catchments, providing confidence in the application of the flows derived from these model calibrations across the range of 

flow values. 

 

Figure 3: The threshold met by the LHS1 model parameterisation (shape), and the percentage of the LHS500 that met that threshold 300 
(colour), for the 303 study catchments. See Table 3 for the definition of the thresholds. 

Figure 5 shows the scores of the uncertainty width (UncW) and the containment ratio (ContR) for each of the 303 catchments. 

The lower the UncW (a narrow range of model results among the 500 ensemble members), and the higher the ContR (a high 

proportion of the observations fitting within the band of model runs), the more accurate and reliable the simulation is. In these 

results, there appears to be a correlation between UncW and ContR (Pearson correlation 0.52, with significance, p value 2.2e-305 

16): where UncW is high (which can be seen as poor), the ContR is also high (seen as good), and vice versa. This highlights 

the need to consider both of these elements when assessing the confidence in the model, as a low UncW with a low ContR 

would suggest a biased, and under-sensitive model. Catchments with the smallest UncW associated with low ContR are located 

in central southern England, parts of north-east England, and eastern Scotland. Whilst attribution of the cause of this modelling 

deficiency is difficult and out of scope here, it is possibly linked with the “flashiness” of the catchment, which can be due to 310 

groundwater and human influences (southern England and parts of north-east England), and snowmelt (eastern Scotland). In 

the majority of the catchments (250 of 303), the ContR is greater than 80%, but the UncW is also greater than the mean flow 

in 189 of those catchments. 

These graphs represent an overview of the performance of the model calibrations across the UK. The model performance for 

individual catchments, as well as timeseries of the reconstructed flow data from 1891-2015, can be explored in more detail 315 

using the interactive web application at https://shiny-apps.ceh.ac.uk/reconstruction_explorer/.  

https://shiny-apps.ceh.ac.uk/reconstruction_explorer/
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Figure 4: Polar plots of the scores for six evaluation metrics over the calibration period 1982-2014. Each blue bar and associated dot 

represents one of the 303 catchments, plotted around the perimeter of the circle, grouped by hydrometric region: see Figure 1 for 

region abbreviations. Dark blue dots represent the LHS1 run, and blue shaded bars represent the range of the LHS500. The score 320 
is shown on the radial axis, with the outside of the circle representing best model performance. 
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Figure 5 (a) Uncertainty width, and (b) Containment ratio over the calibration period (water years 1982-2014) for all 303 study 

catchments. In these maps, darker blue colours represent better scores. 

4.2 Thirty Year Model Validation Statistics 325 

In order to evaluate the integrity of the reconstructed flow series, in the earlier pre-calibration parts of the record, the six 

evaluation metrics for the LHS1 runs specified in Table 2, as well as the uncertainty width and the containment ratio for the 

LHS500, were calculated over thirty year moving windows for all water years where flow observations were available. These 

results have been plotted as polar heatmaps in a similar way to the polar plots showing the evaluation metrics over the 

calibration period. Figure 6 shows the heatmap for Q95APE, whilst all eight heatmaps are provided in Supplementary Figure 330 

S1. In these figures, the catchments with longer observational timeseries are shown as longer bars that originate nearer the 

centre of the circles. Here it can be seen that observations for most catchments began after the 1960s, and only 12 catchments 

have observations prior to the 1940s. The two longest series in the south-east (SE) region are the Lee at Feildes Weir (plotted 

at the boundary with Anglian region) and the Thames at Kingston (plotted three catchments further clockwise). Long records 

can also be seen in the Dee in east Scotland (ES), and the Severn in Severn Trent (ST) region.  335 

In general, across all metrics and catchments, the scores are very stable: where bars are dark or pale, showing good and poorer 

model performance respectively, they remain similar colours throughout their length. There are some exceptions, which are 

most notable in the catchments with longer observational records. The Avon at Evesham in ST region, the Dee at Manley Hall 

in North West England North Wales (NWENW) region, and the Bedford Ouse catchment in Anglian (ANG) region, show 

reduced model performance earlier in the record, with the bars moving through orange and yellow shades as they stretch 340 

towards the centre of the circle. It is worth noting though, that these catchments are not part of the near-natural Benchmark 

Network (Harrigan et al., 2017), and have had reported issues with inhomogeneity in their observed records as a result of 

human influences. The Lee at Feildes Weir in SE region (plotted at the boundary with ANG region) also shows variation in 

performance across most metrics, although in this catchment, the performance is good (plotted in black) at the start and end of 

the record, with poorer performance (shown in yellow) around the start years of 1920-1940 (evaluation years of 1920 to 1970). 345 
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In contrast to this, the Dee at Woodend in East Scotland, and the Severn at Bewdley in Severn Trent region, which have the 

longest records in their regions, show more temporal stability in the model performances (with black colouring for the whole 

bar). This, coupled with the generally very stable results over the 20-30 years prior to the calibration period among with the 

catchments with shorter records, demonstrates that the flow series produced for this study are suitable for use in longer temporal 

studies, outside of the period of calibration (1982-2014). 350 

 

Figure 6: Polar heatmap showing Q95APE scores calculated over 30 year moving windows for all available water years of observed 

flow data. Each bar represents one of the 303 catchments, plotted around the perimeter of the circle, and grouped by hydrometric 

region: see Figure 1 for region abbreviations. The starting year of the 30 year window is represented on the radial axis with 1891 

plotted towards the centre of the circle. Catchments with longer observational records have longer bars. The shading of the bars 355 
represent the Q95APE scores, with darker colours being optimum. The hardest (H), middle (M) and softest (S) thresholds are labelled 

on the legend. 

5 Reconstructions of Drought Events 

In this section, the nine case study catchments (shown in Figure 1) are used to examine the performance of both the LHS1 and 

the LHS500 modelled flows at simulating drought events. 360 

5.1 The 1975/76 Drought event 

The 1975/76 event was chosen as a case study period to test the model’s capability to reconstruct drought events. This event 

occurs before the model calibration period of 1982-2014, and was one of the most severe and widespread droughts of the 20th 

century in the UK (Marsh et al., 2007). Summary statistics showing the model performance for these catchments both during 

the calibration period (1982-2014), and the ten year period surrounding this significant drought event (1971-1980) are provided 365 
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in the Supplementary Information Table S1. It is worth noting that the observational records in the Bush and Crimple did not 

begin until 1972, nor the Greet until 1974. 

5.1.1 Flow Timeseries 

The plots in Figure 7 show observed and simulated monthly flow for the years 1971 to 1980. Here, the simulations in each 

catchment capture the variability of the observational record well, however the model results show differing ensemble ranges 370 

between catchments. The range of the LHS500 members (referred to as the uncertainty width in Table S1) appears in the 

graphs to be much wider in the Avon, Greet, and Tove than in the Dee, Cree and Lambourn, but this is not reflected in the 

statistics. This is likely due to the higher inherent variability or “flashiness” in the Dee and Cree over the Avon that is affecting 

the visualisation of the uncertainty width (UncW) in the graphs. The Lambourn does have a particularly narrow UncW (0.23 

over the ten year period), but the Dee and the Cree have some of the largest UncW (1.44 and 1.46 respectively), with the 375 

Crimple showing the highest (1.52).  It is evident that where the UncW is low, the observations are more likely to fall outside 

of this range; with the exception of the Lambourn at 52%, the ContR across the catchments for this period is very high 

(exceeding 73%), and there are very few instances where the observations fall outside of the range of the model ensemble 

members.  

In the Crimple, the UncW is especially wide during low flow events, and the observations lie very close to the lowest of these 380 

model runs; however the LHS1 run lies close to the observational flow values. In other catchments, such as the Otter, the 

observed and LHS1 flows sit more centrally within the range of the LHS500. In the Avon, the observations sit centrally within 

the uncertainty range, however the LHS1 run overestimates low flows. The LHS1 flows for the Cree tend to underestimate the 

low flows. The Avon and the Bush display poor scores in the low flows metrics MAM30APE and Q95APE compared with other 

catchments during the 1971-1980 period. The inclusion of low flows evaluation metrics in the LHS calibration procedure does 385 

not appear to have heavily impacted the performance of the model during high flows. The high flows that followed the 1975/76 

drought event are very well simulated, with the exception of the Lambourn and the Greet where there are slight discrepancies 

in the monthly peak flows. 

Daily flows for Jan 1975 – Dec 1976 (shown in Figure 8) highlight the difference in variability between the catchments in the 

northern and southern parts of the UK. The variability is generally well simulated, though the GR4J model exhibits some 390 

difficulty in simulating the low flow variability in the southern catchments, with very little inter-monthly variability in the 

simulated discharge, although significant peaks are identified among the ensemble members. Note that the abnormal peaks of 

the observational record on the Lambourn in Sep-Dec of both 1975 and 1976 are the result of the West Berkshire Groundwater 

Scheme (WBGS) that was implemented during the drought to alleviate the extreme low flows, and are not accounted for in 

the model which has no human influence representation. Generally, LHS1 simulations are low among the LHS500 runs in the 395 

Cree, Bush, the Crimple (as seen in the monthly plots), but are close to the observations. This indicates that selecting the “best” 

simulation where a deterministic result is needed is more appropriate, in these cases, than extracting a mean or median from 

the ensemble. 

As with the monthly flows, the Avon and the Bush show systematic overestimation of the low flows by the LHS1 run, whilst 

the Cree shows underestimation of low flows, with the exception of the most extreme low flows in Jul-Sep 1976. These mixed 400 

results that can be seen for the nine case study catchments highlight the variation in model performance among the 303 

modelled catchments, and emphasise the need for users to carefully appraise the evaluation metrics of the flow simulations for 

the catchments they are investigating. However, these catchments were deliberately selected to explore these variations, and 

the results shown in Section 4 demonstrate that the model performs well across a wide range of different catchment types at 

the national scale. 405 
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5.1.2 Standardised Streamflow Index (SSI) 

SSI data for the LHS1 runs have been calculated for all 303 catchments, and are freely available (Barker et al. (2018), see Data 

Availability), but have also been calculated here for the LHS500 for the nine case study catchments. These data are used to 

evaluate how well the ensemble simulations reproduce the drought event accumulated deficit. For low flows, we consider SSI 

values of -1 to -1.5 to indicate a moderate hydrological drought, -1.5 to -2 a severe drought, and SSI values below -2 an extreme 410 

drought (after Barker et al., 2016; McKee et al., 1993). 

Here, the SSI timeseries for the same ten year period (1971 to 1980) are appraised, and shown in Figure 9. The uncertainty 

widths (UncW) in the SSI plots shown vary substantially between catchments and directly reflect the ranges seen in the flow 

timeseries: with the Lambourn showing a very low UncW from the LHS500, whilst the Greet, Tove and Otter show a wider 

range. In the Lambourn, Dee, and Bush catchments, the SSI derived from the observations frequently fall outside of the range 415 

of the LHS500, showing a low containment ratio (ContR). This behaviour is more pronounced in the SSI timeseries than the 

flow timeseries. The Dee catchment, for example, produced a ContR of 92.6% for the daily flow data over 1971-1980, but the 

SSI-12 ContR is just 30%. It is noticeable that the UncW of the SSI data are fairly even throughout the timeseries, whilst in 

the flow data, they appear to be wider during the more extreme high and low flow periods. There are two factors which may 

have contributed to these differences: firstly that the smoothed nature of the SSI-12 reduces the short term variability of the 420 

data (the ContR of the SSI-1 are closer to those of the flow data); and secondly, when deriving the SSI, the tails of the fitted 

distribution are more uncertain than for the average flows, which may result in convergence of the SSI values for the more 

extreme members of the LHS500 during periods of high and low flows. 

For the Lambourn, the negative SSI values (below normal flows) are underestimated and the positive SSI values (above normal 

flows) are overestimated showing the model is overemphasising the extreme events. In the Avon catchment the most extreme 425 

SSI deficit occurs in 1973, and the 1976 event is classed as “severe”, but not “extreme” for the observations and all but a few 

of the LHS500. The deficit in 1973 is simulated as being more extreme than the observations but the 1976 event is better 

captured. The uncertainty range in the Greet catchment is very wide, particularly for the SSI peak (drought termination) in 

1977, however the 1976 SSI deficit has a lower range among the LHS500. For the Tove, the SSI of the 1976 drought event is 

well simulated, as are those for the Crimple, despite some underestimation of SSI at other times in the 1970s. The Otter shows 430 

very good simulation of SSI-12 during this ten year period. 

SSI timeseries plots over the longer period 1975 to 2015 are provided in Figure S2 of the Supplementary Information. These 

plots show that although the exact magnitudes of the SSI deficits and excesses are not always captured by the model in some 

of the poorer performing catchments, the pattern of the SSI-12, the shape of the peaks and the troughs are very well represented.  
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5.2 Drought Event Accumulated Deficits 435 

This section explores the accumulated deficits of extracted drought events between 1975 and 2015 (the common observed 

period for all nine catchments), which are presented in Figure 10.  

This plot shows that drought events are generally in good synchrony across the country. For these nine catchments, four major 

nationwide drought events using SSI-12 are evident: 1975-1978, 1989-1993, 1997-1998, and 2004-2006. Regional droughts 

include 1984 in the northern catchments, and 2010-2012 which affected England and Wales, but not Scotland and Northern 440 

Ireland.  There appears to be a relatively “drought poor” period in the south between 1977 and 1988, whilst the north shows a 

lack of droughts in the more recent period of 2006-2015.  

The observed events are very well captured by the model simulations. There are only four out of a total of 40 observed drought 

events across all nine catchments that are not detected by the simulated drought events: an event in 1992 in the Crimple, 1994 

and 2004 in the Dee, and 2006 in the Cree. In each of these cases, the SSI of the model simulations fall below -1, but do not 445 

reach -1.5 (see Figure S2), suggesting an overestimation of low flows, and therefore a slight underestimation of the drought 

deficit for this event. In contrast, there are some drought events that are identified from the model simulations that are not 

evident in the observed record, for example 1998 in the Avon and the Bush. In these events the model underestimates the flow, 

and therefore overestimates the drought deficit. In the Bush, this underestimation of flow continues during the low flow periods 

of 2002 and 2003-2006. 450 

In terms of timing and deficit, the 1995-1998 drought event demonstrates the most confidence among the simulations. The 

Crimple catchment shows some uncertainty about the timing of each of the events, and the majority of the LHS500 model 

simulations place the 2004-2006 event later than the observation. In Figure S2, it can be see that this is due to the fact that the 

intensity of the 2005 deficit was overemphasised by the model. Similarly, in Figure 10, the 1975-1978 event in the Bush shows 

a wide range of mid-point dates (centre of the circles), and the deficit also varies. Overall, the deficits of the events are well 455 

captured by the modelled data: for example, the 2004-2006 event in the north showed smaller deficits than the 1975-1978 

event, and the modelled deficits reflect these differences. The modelled results for the 1997-1998 event in the Greet show two 

possible event timings, and the thickness of the circles indicate some differences in the simulated accumulated deficit among 

the model parameterisations, though these differences are relatively small.  

On balance, the pattern of drought events is well simulated by the GR4J model, despite some small differences in magnitude 460 

and timing, with magnitude being better estimated than the timing. These results demonstrate that, despite the issues seen in 

the SSI timeseries plots, the dataset can provide good estimates of drought events and their characteristics. This highlights the 

potential of the model to reproduce hydrological drought events using just precipitation and evapotranspiration data, and shows 

that the reconstructed flow timeseries will be valuable in appraising historic hydrological droughts over a longer period and 

wider spatial domain than the observations that are available. 465 
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Figure 10: Accumulated deficits of extracted drought events (using a threshold of SSI < -1.5) for nine case study catchments over 

the years 1975 to 2015. Circles are plotted along the x-axis according to the date of the mid-point of the extracted drought event. 

The circle size represents the magnitude of the accumulated deficit. Drought events extracted from the observed data are shown in 

red (with a thick circle for visibility). Events extracted from the 500 ensemble members are shown with thinner black circles (these 470 
circles are semi-transparent, where these circles appear black, multiple ensemble members are simulating the event, and where they 

are thick, the ensemble members show different accumulated deficit values). Multiple, overlapping black circles suggest 

discrepancies in the timing of the drought event among the ensemble members. 

6 Discussion 

The multi-objective calibration framework presented in this paper has produced modelled flow data with demonstrable high 475 

performance across a wide range of available observed records. This framework has been developed to enable nationally and 

temporally coherent flow simulation that can be applied to a wealth of applications, past, present and future. In this paper, the 

calibration framework has been applied to a wide range of catchments across the UK, allowing for a detailed exploration of 

model performance across different hydrological regimes. Two potentially limiting factors in model performance were 

highlighted in this study: snowmelt, and human influences. 480 

The airGR snowmelt module was not employed in this study as only 15 of the 303 catchments showed snowmelt fractions 

greater than 0.15 (15%). These catchments were located along ten rivers, all in Scotland. Despite the lack of snowmelt 

processes here, all of the catchments met at least the “softest” evaluation thresholds set out in Section 3.2.3, with six, eight and 

one catchment meeting the hardest, middle and softest thresholds respectively. This implies that snowmelt only causes 

modelling issues for high altitude Scottish catchments. 485 

Human interactions are a common problem in hydrological modelling that remain largely understudied (Calvin and Bond-

Lamberty, 2018). Whilst global scale models have been advancing in socio-hydrology, making use of satellite information and 

governmental estimates of total water consumption, the data to support such endeavours is lacking (Bierkens, 2015). Small 
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scale catchment models would need to rely on significant amounts of abstraction and licencing data as well as reservoir 

operation procedures, the details of which are often sensitive and/or unavailable. The lack of abstraction processes in GR4J is 490 

likely to be responsible for some reduced model performance, particularly in the regions of Anglian and Southern England. 

The loss function (parameter X2 “inter-catchment exchange coefficient”) of the GR4J model can account for some systematic 

losses or gains, however human influence is often non-stationary (e.g. construction and operation of reservoirs, irrigation and 

water transfer schemes). For the Lee at Fieldes Weir and the Thames at Kingston naturalised river flow data, which attempt to 

remove the impact of human activity on the observed flow, were available. Whilst not included in this paper for consistency 495 

with the other 301 catchments, calibration scores were slightly better for the naturalised flow data in these catchments, though 

both naturalised and observed calibrations easily met the hardest thresholds. An alternative approach is to focus studies on the 

“near-natural” catchments, which are deemed to have minimal human influence. Of the 303 catchments included in this study, 

115 are classified as near-natural and are part of the Low Flows Benchmark Network (Harrigan et al., 2017). Since many of 

the UK’s most significant catchments are heavily influenced, they were not excluded from this study, and the model does 500 

successfully manage to implicitly account for human influences in these large rivers. Localised issues in the model’s 

performance, and therefore the quality of the reconstructed flow data, highlights the need for users to take caution when 

choosing a catchment from this set of 303. Depending on their needs, an alternative nearby catchment where model 

performance is better, may be more suitable if model performance is poor in the initially selected catchment.  

The modelling framework developed in this study has explored model parameter uncertainty in order to account for equifinality 505 

(Beven, 2006). 500,000 parameter realisations were run, and the best 500 of these were selected for each catchment to allow 

for uncertainty quantification in applications of these flow data. Here, the uncertainty in the model runs was shown to vary 

more between catchments than over time (from 1890-2015, where long observational records were available). Whilst model 

parameter uncertainty was considered in this study, further sources of uncertainty can contribute to variations in model 

performance, including: model input data (precipitation and PET), flow data used for model calibration, and the choice of 510 

hydrological model (Smith et al., 2018b). 

The impact of precipitation uncertainty has been shown to be more significant than PET in hydrological modelling (Paturel et 

al., 1995; Bastola et al., 2011; Guo et al., 2017). Perry and Hollis (2005) and  Legg (2015) state that the accuracy of gridded 

data is dependent on the density of the rain gauge network, with greater errors associated with sparse coverage. Therefore 

errors in the reconstructed precipitation data applied in this study will be higher in the early part of the record when the station 515 

density was lower. Since the model is calibrated to the more recent period 1982-2014, uncertainty from the rainfall data may 

propagate through to the flow reconstructions in the early part of the record. However, from the moving window analysis of 

model performance (see Figure 6), there does not appear to be significant degradation in the quality of flow simulations in the 

early part of the record. Tanguy et al. (2018) considered the impact of poorer quality and lower density of temperature data on 

the derivation of the PET dataset that was employed in this study and concluded that, whilst PET is an important variable for 520 

predicting runoff, the influence of degraded PET input that result from low quality temperature data on runoff simulation can 

be limited by the adequate calibration of hydrological models (Bai et al., 2016; Seiller and Anctil, 2016). Thus, the Tanguy et 

al. (2018) PET dataset is considered suitable for use in hydrological models, especially if they are calibrated to this dataset. 

Uncertainties may also arise from the observational flow data used to calibrate models. Uncertainties from the precision of the 

instruments that measure the water level (stage), and uncertainties from the derivation of the stage-discharge relationship are 525 

both particularly sensitive in the extreme flow ranges. For example, a 10mm error in stage measurement at the Q95 flow can 

result in a 20% error in flow for around a third of the UKs gauging stations (National River Flow Archive, 2018). The dataset 

used in this study was taken from a reputable source (the NRFA) who in order to minimise such errors, conduct rigorous 

quality control procedures using both automatic and manual validation procedures annually (Dixon et al., 2013). Nevertheless, 
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hydrometric data quality does vary across the network and errors tend to cluster in the extreme flow ranges, so hydrometric 530 

uncertainty could be influential in some periods in catchments used herein – we recommend users consult the NRFA’s 

extensive station and catchment metadata (available at https://nrfa.ceh.ac.uk/) in conjunction with model performance 

information (Smith et al., 2018a) when using the flow reconstructions. 

Whilst the parameter uncertainty in the model was evaluated here, applying different model types and model structures can 

also yield dramatically different results. Many multi-model experiments have been conducted to assess the differences between 535 

hydrological models (e.g. Warszawski et al., 2014;Vansteenkiste et al., 2014). Similarly, different structures of the same model 

(e.g. GR4J, GR5J and GR6J) can influence the results. However, Smith (2016) found that model parameter uncertainty can be 

as wide as that from using different hydrological models, and initial testing of the GR5J and GR6J models showed significant 

parameter interactions that resulted in poor simulations in many UK catchments. It was therefore decided that considering the 

parameter uncertainty of the GR4J model would be sufficient to devise an ensemble of flow reconstructions for this dataset 540 

and study. Future work will investigate these simulations against a wider set of model runs using other model structures as 

part of a follow-up study. 

The modelling framework developed here has been shown to be fit-for-purpose for drought reconstruction, across a very wide 

range of catchment behaviours. The reconstructed series can be used to shed light on historical drought occurrence, 

characteristics (severity, duration, termination, seasonality) and variability. A first exploration of hydrological drought using 545 

the reconstructions is presented in a companion paper by Barker et al. (2019). The data can also be used to support drought 

and water resources planning activities, whether directly or to provide context for stochastic approaches to drought generation. 

Ensembles of historical drought events can be used to provide insight into the probabilities of the termination of a current event 

over a certain time period (e.g. Parry et al., 2018). Knowledge of historic events can also be used to explore statistical 

correlations with atmospheric drivers of droughts that may help predict the onset of events (e.g. Lavers et al., 2015). In these 550 

approaches, extending the hydrological record by ~70 years significantly increases the sample of historic drought events from 

which to conduct such research. Furthermore, the modelled data may be used to extend streamflow records used in seasonal 

hydrological forecasting with a hydrological analogues method (e.g. Svensson, 2016). The model calibrations may be applied 

to studies of the impacts of climate change on future hydrological extremes in the UK, such as in the Future Flows Hydrology 

project (Haxton et al., 2012), the outputs of which have been widely applied by water resources managers. The modelling 555 

framework developed in this study could extend the Future Flows Hydrology research using the more recent UKCP18 data 

(Met Office Hadley Centre, 2018). However, as with the Future Flows Hydrology project, users will need to be aware of the 

implications of the lack of artificial influence processes in the model.  

7 Conclusions 

In this paper, a novel multi-objective calibration method was derived and tested for 303 catchments in the UK, and the 560 

calibrations were used to reconstruct river flows back to 1891. The GR4J model was applied and calibrated using Latin 

Hypercube Sampling (LHS) and six evaluation metrics simultaneously to allow for the evaluation of high, median and low 

flows, thus optimising the calibrations for a wide range of potential applications. A best run (LHS1) and 500 model 

parameterisations (LHS500) were used to assess model uncertainty. Overall, the multi-objective calibration procedure has 

yielded excellent model results when compared to the observations, with the exception of only a few catchments. The 565 

reconstructed flows were appraised over 30 year moving windows, and were shown to provide good simulations of flow in the 

early parts of the record, where observations were available. Model performance and uncertainty during drought events was 

explored in nine case study catchments, and varied by catchment. The model simulations were used to derive the Standardised 

Streamflow Index, which allowed for an assessment of the model’s ability to simulate significant deviations from a catchment’s 

https://nrfa.ceh.ac.uk/
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“norm”. The results showed that, despite observations regularly sitting outside the range of the LHS500, the peaks and troughs 570 

of the timeseries were well represented. Drought event accumulated deficits were extracted from the SSI data and the results 

were overall very good, demonstrating that the data from these model calibrations are suitable for the identification and 

characterisation of hydrological drought events in the UK. 

The contributions of this paper are threefold: Firstly, the multi-objective model calibration framework applied here has been 

shown to provide robust model calibrations that can be applied in studies of both general and extreme hydrology. This 575 

framework could be applied elsewhere across Europe, and indeed globally to allow for spatially and temporally consistent 

simulations of hydrology with far reaching potential applications. Secondly, the model calibrations that have been derived for 

these 303 catchments in the UK can be used in further research and operational applications, such as for seasonal hydrological 

forecasting, or for assessing changes in river flows under climate change. Finally, this study has produced a crucial dataset of 

~125 years of seamless flow reconstructions across the UK that will allow for the spatial and temporal investigation and 580 

quantification of past drought events, as well as long term trends in flows, that have never before been possible. These methods 

and results can provide a valuable step forward in our ability to plan for and forecast the onset, duration and termination of 

drought events in the UK, and overseas. 
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peak river flows for the UK for over 1500 gauging stations. (https://nrfa.ceh.ac.uk/)  

Reconstructed flow data: The flow reconstructions produced in this study are freely available on the Environmental 

Information Data Centre (EIDC, Smith et al., 2018a) along with associated metadata on the models performance. The LHS1 595 

and LHS500 model runs are provided separately within the EIDC dataset. The LHS1 files includes the deterministic simulation 

based on LHS1 parameter set, plus the upper and lower daily limits from the LHS500 to allow for the interpretation of the 

parameter uncertainty without the need to assess the full ensemble. It should be noted however that these upper and lower 

bounds cannot be implemented as timeseries in their own right as they do not represent individual ensemble members, and are 

instead comprised of multiple runs. The LHS500 files contain all 500 timeseries, and each catchment has a metadata file 600 

providing performance of each of the 500 runs for that catchment. The performance of the model in each catchment, as well 

as the reconstructed flow timeseries, can be explored using an interactive web application at https://shiny-

apps.ceh.ac.uk/reconstruction_explorer/  

Standardised Streamflow Index data: The SSI data derived from the LHS1 runs are also freely available from the 

Environmental Information Data Centre (Barker et al., 2018). This SSI data, along with further event analyses can be explored 605 

using an interactive web application at https://shiny-apps.ceh.ac.uk/hydro_drought_explorer/  
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https://shiny-apps.ceh.ac.uk/hydro_drought_explorer/


25 

 

 

10 Author Contributions 

TPL and MT provided input data for the modelling. CP, SP, JH and SH assisted KAS in designing the modelling framework. 

KAS calibrated the model, ran the reconstructions and produced the plots. LJB calculated the SSI data and extracted drought 

events from the reconstructions. All authors contributed to the production of the manuscript, and its revisions.  610 

11 Competing Interests 

The authors declare that they have no conflict of interest. 

12 References 

Anderton, S., Ledbetter, R., and Prudhomme, C.: Understanding the performance of water supply systems during 
mild to extreme droughts, Environment Agency, Horizon House, Deanery Road, Bristol, BS1 5AH, 2015. 615 

Atkins: Thames Water Stochastic Resource Modelling: Stage 2&3 Report, Atkins, 2016. 
Bai, P., Liu, X., Yang, T., Li, F., Liang, K., Hu, S., and Liu, C.: Assessment of the Influences of Different Potential 
Evapotranspiration Inputs on the Performance of Monthly Hydrological Models under Different Climatic 
Conditions, Journal of Hydrometeorology, 17, 2259-2274, 10.1175/jhm-d-15-0202.1, 2016. 
Barker, L. J., Hannaford, J., Chiverton, A., and Svensson, C.: From meteorological to hydrological drought using 620 

standardised indicators, Hydrol. Earth Syst. Sci., 20, 2483-2505, 10.5194/hess-20-2483-2016, 2016. 
Barker, L. J., Smith, K. A., Svensson, C., Tanguy, M., and Hannaford, J.: Historic Standardised Streamflow Index 
(SSI) using Tweedie distribution with standard period 1961-2010 for 303 UK catchments (1891-2015), NERC 
Environmental Information Data Centre, https://doi.org/10.5285/58ef13a9-539f-46e5-88ad-c89274191ff9, 
2018. 625 

Barker, L. J., Hannaford, J., Parry, S., Smith, K. A., Tanguy, M., and Prudhomme, C.: Historic hydrological droughts 
1891-2015: systematic characterisation and ranking for 108 catchments across the UK, Hydrology and Earth 
System Sciences Discussions, https://doi.org/10.5194/hess-2019-202, 2019. 
Bastola, S., Murphy, C., and Sweeney, J.: The sensitivity of fluvial flood risk in Irish catchments to the range of 
IPCC AR4 climate change scenarios, Science of The Total Environment, 409, 5403-5415, 630 

https://doi.org/10.1016/j.scitotenv.2011.08.042, 2011. 
Beven, K., and Binley, A.: The Future of Distributed Models - Model Calibration and Uncertainty Prediction, 
Hydrological Processes, 6, 279-298, 1992. 
Beven, K., and Freer, J.: Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of 
complex environmental systems using the GLUE methodology, Journal of Hydrology, 249, 11-29, 2001. 635 

Beven, K.: A manifesto for the equifinality thesis, Journal of Hydrology, 320, 18-36, 10.1016/j.jhydrol.2005.07.007, 
2006. 
Beven, K.: Rainfall-Runoff Modelling: The Primer (Second Edition), Second ed., Wiley-Blackwell, Chichester, 457 
pp., 2012. 
Bierkens, M. F. P.: Global hydrology 2015: State, trends, and directions, Water Resources Research, 51, 4923-640 

4947, 10.1002/2015wr017173, 2015. 
Brázdil, R., Dobrovolný, P., Trnka, M., Büntgen, U., Řezníčková, L., Kotyza, O., Valá�ek, H., and �tˇepánek, P.: 
Documentary and instrumental-based drought indices for the Czech Lands back to AD 1501, Climate Research, 
70, 103-117, 2016. 
Brigode, P., Brissette, F., Nicault, A., Perreault, L., Kuentz, A., Mathevet, T., and Gailhard, J.: Streamflow variability 645 

over the 1881–2011 period in northern Quebec: comparison of hydrological reconstructions based on tree rings 
and geopotential height field reanalysis, Climate of the Past, Medium: ED; Size: p. 1785-1804, 2016. 
Broderick, C., Matthews, T., Wilby, R. L., Bastola, S., and Murphy, C.: Transferability of hydrological models and 
ensemble averaging methods between contrasting climatic periods, Water Resources Research, 52, 8343-8373, 
doi:10.1002/2016WR018850, 2016. 650 

Caillouet, L., Vidal, J. P., Sauquet, E., Devers, A., and Graff, B.: Ensemble reconstruction of spatio-temporal 
extreme low-flow events in France since 1871, Hydrol. Earth Syst. Sci., 21, 2923-2951, 10.5194/hess-21-2923-
2017, 2017. 

https://doi.org/10.5285/58ef13a9-539f-46e5-88ad-c89274191ff9
https://doi.org/10.5194/hess-2019-202
https://doi.org/10.1016/j.scitotenv.2011.08.042


26 

 

 

Calvin, K., and Bond-Lamberty, B.: Integrated human-earth system modeling—state of the science and future 
directions, Environmental Research Letters, 13, 063006, 10.1088/1748-9326/aac642, 2018. 655 

Casty, C., Raible, C. C., Stocker, T. F., Wanner, H., and Luterbacher, J.: A European pattern climatology 1766–2000, 
Climate Dynamics, 29, 791-805, 10.1007/s00382-007-0257-6, 2007. 
Cheng, J., and Druzdzel, M. J.: Latin Hypercube Sampling in Bayesian Networks, American Association for Artificial 
Intelligence, Pittsburgh, 2000. 
Christierson, B. v., Vidal, J.-P., and Wade, S. D.: Using UKCP09 probabilistic climate information for UK water 660 

resource planning, Journal of Hydrology, 424-425, 48-67, https://doi.org/10.1016/j.jhydrol.2011.12.020, 2012. 
Collet, L., Harrigan, S., Prudhomme, C., Formetta, G., and Beevers, L.: Future hot-spots for hydro-hazards in Great 
Britain: a probabilistic assessment, Hydrol. Earth Syst. Sci. Discuss., 2018, 1-22, 10.5194/hess-2018-274, 2018. 
Committee on Climate Change: UK Climate Change Risk Assessment 2017 Evidence Report, 2017. 
Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Matsui, N., Allan, R. J., Yin, X., Gleason, B. E., Vose, R. S., 665 

Rutledge, G., Bessemoulin, P., Brönnimann, S., Brunet, M., Crouthamel, R. I., Grant, A. N., Groisman, P. Y., Jones, 
P. D., Kruk, M. C., Kruger, A. C., Marshall, G. J., Maugeri, M., Mok, H. Y., Nordli, Ø., Ross, T. F., Trigo, R. M., Wang, 
X. L., Woodruff, S. D., and Worley, S. J.: The Twentieth Century Reanalysis Project, Quarterly Journal of the Royal 
Meteorological Society, 137, 1-28, doi:10.1002/qj.776, 2011. 
Cook, E. R., Seager, R., Kushnir, Y., Briffa, K. R., Büntgen, U., Frank, D., Krusic, P. J., Tegel, W., van der Schrier, G., 670 

Andreu-Hayles, L., Baillie, M., Baittinger, C., Bleicher, N., Bonde, N., Brown, D., Carrer, M., Cooper, R., Čufar, K., 
Dittmar, C., Esper, J., Griggs, C., Gunnarson, B., Günther, B., Gutierrez, E., Haneca, K., Helama, S., Herzig, F., 
Heussner, K.-U., Hofmann, J., Janda, P., Kontic, R., Köse, N., Kyncl, T., Levanič, T., Linderholm, H., Manning, S., 
Melvin, T. M., Miles, D., Neuwirth, B., Nicolussi, K., Nola, P., Panayotov, M., Popa, I., Rothe, A., Seftigen, K., Seim, 
A., Svarva, H., Svoboda, M., Thun, T., Timonen, M., Touchan, R., Trotsiuk, V., Trouet, V., Walder, F., Ważny, T., 675 

Wilson, R., and Zang, C.: Old World megadroughts and pluvials during the Common Era, Science Advances, 1, 
e1500561, 10.1126/sciadv.1500561, 2015. 
Coron, L., Thirel, G., Delaigue, O., Perrin, C., and Andréassian, V.: The Suite of Lumped GR Hydrological Models in 
an R package, Environmental Modelling and Software, 94, 166-171, 10.1016/j.envsoft.2071.05.002, 2017. 
Dawson, C. W., Abrahart, R. J., and See, L. M.: HydroTest: A web-based toolbox of evaluation metrics for the 680 

standardised assessment of hydrological forecasts, Environmental Modelling & Software, 22, 1034-1052, 
http://dx.doi.org/10.1016/j.envsoft.2006.06.008, 2007. 
Day, G. N.: Extended Streamflow Forecasting using NWSRFS, J. Water Resour. Plan. Manag., 111, 642-654, 1985. 
Dixon, H., Hannaford, J., and Fry, M. J.: The effective management of national hydrometric data: experiences from 
the United Kingdom, Hydrological Sciences Journal, 58, 1383-1399, 10.1080/02626667.2013.787486, 2013. 685 

Duan, Q., Gupta, V. K., and Sorooshian, S.: Shuffled complex evolution approach for effective and efficient global 
minimization, Journal of optimization theory and applications, 76, 501-521, 1993. 
Efstratiadis, A., and Koutsoyiannis, D.: One decade of multi-objective calibration approaches in hydrological 
modelling: a review, Hydrological Sciences Journal, 55, 58-78, 10.1080/02626660903526292, 2010. 
GRDC: The Global Runoff Data Base, http://www.bafg.de/GRDC/EN/Home/homepage_node.html D-56002 690 

Koblenz, Germany, https://www.bafg.de/GRDC/EN/02_srvcs/21_tmsrs/riverdischarge_node.html, 2019. 
Guerreiro, S. B., Dawson, R. J., Kilsby, C., Lewis, E., and Ford, A.: Future heat-waves, droughts and floods in 571 
European cities, Environmental Research Letters, 13, 034009, 10.1088/1748-9326/aaaad3, 2018. 
Guo, D., Westra, S., and Maier, H. R.: Use of a scenario-neutral approach to identify the key hydro-meteorological 
attributes that impact runoff from a natural catchment, Journal of Hydrology, 554, 317-330, 695 

https://doi.org/10.1016/j.jhydrol.2017.09.021, 2017. 
Harrigan, S., Hannaford, J., Muchan, K., and Marsh, T.: Designation and trend analysis of the updated UK 
Benchmark Network of river flow stations: The UKBN2 dataset, Hydrology Research, 10.2166/nh.2017.058, 2017. 
Harrigan, S., Prudhomme, C., Parry, S., Smith, K., and Tanguy, M.: Benchmarking ensemble streamflow prediction 
skill in the UK, Hydrol. Earth Syst. Sci., 22, 2023-2039, 10.5194/hess-22-2023-2018, 2018. 700 

Haxton, T., Crooks, S., Jackson, C. R., Barkwith, A. K. A. P., Kelvin, J., Williamson, J., Mackay, J. D., Wang, L., Davies, 
H., Young, A., and Prudhomme, C.: Future flows hydrology data, NERC Environmental Information Data Centre, 
https://doi.org/10.5285/f3723162-4fed-4d9d-92c6-dd17412fa37b, 2012. 
Herman, J. D., Zeff, H. B., Lamontagne, J. R., Reed, P. M., and Characklis, G. W.: Synthetic Drought Scenario 
Generation to Support Bottom-Up Water Supply Vulnerability Assessments, Journal of Water Resources Planning 705 

and Management, 142, 04016050, doi:10.1061/(ASCE)WR.1943-5452.0000701, 2016. 

https://doi.org/10.1016/j.jhydrol.2011.12.020
http://dx.doi.org/10.1016/j.envsoft.2006.06.008
http://www.bafg.de/GRDC/EN/Home/homepage_node.html
https://www.bafg.de/GRDC/EN/02_srvcs/21_tmsrs/riverdischarge_node.html
https://doi.org/10.1016/j.jhydrol.2017.09.021
https://doi.org/10.5285/f3723162-4fed-4d9d-92c6-dd17412fa37b


27 

 

 

Jones, P. D., Briffa, K. R., and Pilcher, J. R.: Riverflow reconstruction from tree rings in southern Britain, Journal of 
Climatology, 4, 461-472, 10.1002/joc.3370040502, 1984. 
Jones, P. D., and Lister, D. H.: Riverflow reconstructions for 15 catchments over England and Wales and an 
assessment of hydrologic drought since 1865, International Journal of Climatology, 18, 999-1013, 710 

10.1002/(sici)1097-0088(199807)18:9<999::aid-joc300>3.0.co;2-8, 1998. 
Jones, P. D., Lister, D. H., Wilby, R. L., and Kostopoulou, E.: Extended riverflow reconstructions for England and 
Wales, 1865–2002, International Journal of Climatology, 26, 219-231, 10.1002/joc.1252, 2006. 
Jung, D., Choi, Y. H., and Kim, J.: Multiobjective Automatic Parameter Calibration of a Hydrological Model, 1-23 
pp., 2017. 715 

Kamali, B., Mousavi, S. J., and Abbaspour, K. C.: Automatic calibration of HEC-HMS using single-objective and 
multi-objective PSO algorithms, Hydrological Processes, 27, 4028-4042, 10.1002/hyp.9510, 2013. 
Kay, A. L., Bell, V. A., Guillod, B. P., Jones, R. G., and Rudd, A. C.: National-scale analysis of low flow frequency: 
historical trends and potential future changes, Climatic Change, 147, 585-599, 10.1007/s10584-018-2145-y, 2018. 
Kim, S. M., Benham, B. L., Brannan, K. M., Zeckoski, R. W., and Doherty, J.: Comparison of hydrologic calibration 720 

of HSPF using automatic and manual methods, Water Resources Research, 43, 10.1029/2006wr004883, 2007. 
Krause, P., Boyle, D. P., and Bäse, F.: Comparison of differenct efficiency criteria for hydrological model 
assessment, Advances in Geosciences, 5, 89-97, 2005. 
Kundzewicz, Z. W., and Matczak, P.: Hydrological extremes and security, Proceedings of the International 
Association of Hydrological Sciences, 366, 44-53, 2015. 725 

Lavers, D. A., Hannah, D. M., and Bradley, C.: Connecting large-scale atmospheric circulation, river flow and 
groundwater levels in a chalk catchment in southern England, Journal of Hydrology, 523, 179-189, 
https://doi.org/10.1016/j.jhydrol.2015.01.060, 2015. 
Legg, T.: Uncertainties in gridded area-average monthly temperature, precipitation and sunshine for the United 
Kingdom, International Journal of Climatology, 35, 1367-1378, doi:10.1002/joc.4062, 2015. 730 

Marsh, T., Cole, G., and Wilby, R.: Major droughts in England and Wales, 1800–2006, Weather, 62, 87-93, 
10.1002/wea.67, 2007. 
Marx, A., Kumar, R., Thober, S., Rakovec, O., Wanders, N., Zink, M., Wood, E. F., Pan, M., Sheffield, J., and 
Samaniego, L.: Climate change alters low flows in Europe under global warming of 1.5, 2, and 3 °C, Hydrol. Earth 
Syst. Sci., 22, 1017-1032, 10.5194/hess-22-1017-2018, 2018. 735 

McGuinness, J. L., and Bordne, E. F.: A Comparison of Lysimeter-Derived Potential Evapotranspiration With 
Computed Values, United States Department of Agriculture, Economic Research Service, 1972. 
McKay, M. D., Beckman, R. J., and Conover, W. J.: Comparison of three methods for selecting values of input 
variables in the analysis of output from a computer code, Technometrics, 21, 239-245, 1979. 
McKee, T. B., Doeksen, N. J., and Kleist, J.: The relationship of drought frequency and duration to time scales, 740 

Eighth Conference on Applied Climatology, Anaheim, California, 1993,  
Mens, M. J. P., Gilroy, K., and Williams, D.: Developing system robustness analysis for drought risk management: 
an application on a water supply reservoir, Nat. Hazards Earth Syst. Sci., 15, 1933-1940, 10.5194/nhess-15-1933-
2015, 2015. 
Met Office: UKCP09: Met Office gridded land surface climate observations - daily temperature and precipitation 745 

at 5km resolution, Centre for Environmental Data Analysis, 
http://catalogue.ceda.ac.uk/uuid/319b3f878c7d4cbfbdb356e19d8061d6, 2017. 
Met Office Hadley Centre: UKCP18 Probabilistic Climate Projections, Centre for Environmental Data Analysis, 
http://catalogue.ceda.ac.uk/uuid/9842e395f2d04f48a177c3550756bf98, 2018. 
Monteith, J. L.: Evaporation and Environment, Symposium of the Society for Experimental Biology, 19, 205-234, 750 

1965. 
Mostafaie, A., Forootan, E., Safari, A., and Schumacher, M.: Comparing multi-objective optimization techniques 
to calibrate a conceptual hydrological model using in situ runoff and daily GRACE data, Computational 
Geosciences, 1-26, 2018. 
Nash, J. E., and Sutcliffe, J. V.: River flow forecasting through conceptual models part I -- A discussion of principles, 755 

Journal of Hydrology, 10, 282-290, 1970. 
Accuracy and Fitness for Purpost: https://nrfa.ceh.ac.uk/accuracy-fitness-for-purpose, access: 13/06/2018, 2018. 
New, M., Hulme, M., and Jones, P.: Representing Twentieth-Century Space–Time Climate Variability. Part II: 
Development of 1901–96 Monthly Grids of Terrestrial Surface Climate, Anglais, 13, 2217-2238, 10.1175/1520-
0442(2000)013<2217:Rtcstc>2.0.Co;2, 2000. 760 

https://doi.org/10.1016/j.jhydrol.2015.01.060
http://catalogue.ceda.ac.uk/uuid/319b3f878c7d4cbfbdb356e19d8061d6
http://catalogue.ceda.ac.uk/uuid/9842e395f2d04f48a177c3550756bf98
https://nrfa.ceh.ac.uk/accuracy-fitness-for-purpose


28 

 

 

Noone, S., Broderick, C., Duffy, C., Matthews, T., Wilby, R. L., and Murphy, C.: A 250-year drought catalogue for 
the island of Ireland (1765–2015), International Journal of Climatology, 37, 239-254, doi:10.1002/joc.4999, 2017. 
Northumbrian Water: Draft Drought Plan 2018, Northumbrian Water, Durham, 2017. 
Parry, S., Wilby, R., Prudhomme, C., Wood, P., and McKenzie, A.: Demonstrating the utility of a drought 
termination framework: prospects for groundwater level recovery in England and Wales in 2018 or beyond, 765 

Environmental Research Letters, 13, 064040, 10.1088/1748-9326/aac78c, 2018. 
Paturel, J. E., Servat, E., and Vassiliadis, A.: Sensitivity of conceptual rainfall-runoff algorithms to errors in input 
data — case of the GR2M model, Journal of Hydrology, 168, 111-125, https://doi.org/10.1016/0022-
1694(94)02654-T, 1995. 
Perrin, C., Michel, C., and Andréassian, V.: Improvement of a parsimonious model for streamflow simulation, 770 

Journal of Hydrology, 279, 275-289, https://doi.org/10.1016/S0022-1694(03)00225-7, 2003. 
Perry, M., and Hollis, D.: The generation of monthly gridded datasets for a range of climatic variables over the UK, 
International Journal of Climatology, 25, 1041-1054, 10.1002/joc.1161, 2005. 
Pfister, C., Weingartner, R., and Luterbacher, J.: Hydrological winter droughts over the last 450 years in the Upper 
Rhine basin: a methodological approach, Hydrological Sciences Journal, 51, 966-985, 10.1623/hysj.51.5.966, 775 

2006. 
Prudhomme, C., Young, A., Watts, G., Haxton, T., Crooks, S., Williamson, J., Davies, H., Dadson, S., and Allen, S.: 
The drying up of Britain? A national estimate of changes in seasonal river flows from 11 Regional Climate Model 
simulations, Hydrological Processes, 26, 1115-1118, 10.1002/hyp.8434, 2012. 
Prudhomme, C., Hannaford, J., Harrigan, S., Boorman, D., Knight, J., Bell, V., Jackson, C., Svensson, C., Parry, S., 780 

Bachiller-Jareno, N., Davies, H., Davis, R., Mackay, J., McKenzie, A., Rudd, A., Smith, K., Bloomfield, J., Ward, R., 
and Jenkins, A.: Hydrological Outlook UK: an operational streamflow and groundwater level forecasting system 
at monthly to seasonal time scales, Hydrological Sciences Journal, 62, 2753-2768, 
10.1080/02626667.2017.1395032, 2017. 
Pushpalatha, R., Perrin, C., Le Moine, N., Mathevet, T., and Andréassian, V.: A downward structural sensitivity 785 

analysis of hydrological models to improve low-flow simulation, Journal of Hydrology, 411, 66-76, 
https://doi.org/10.1016/j.jhydrol.2011.09.034, 2011. 
Seiller, G., and Anctil, F.: How do potential evapotranspiration formulas influence hydrological projections?, 
Hydrological Sciences Journal, 61, 2249-2266, 10.1080/02626667.2015.1100302, 2016. 
Shafii, M., and De Smedt, F.: Multi-objective calibration of a distributed hydrological model (WetSpa) using a 790 

genetic algorithm, Hydrol. Earth Syst. Sci., 13, 2137-2149, 10.5194/hess-13-2137-2009, 2009. 
Smith, K.: Investigating Uncertainty in Global Hydrology Modelling, Doctor of Philosophy, School of Geography, 
University of Nottingham, Nottingham, 338 pp., 2016. 
Smith, K. A., Tanguy, M., Hannaford, J., and Prudhomme, C.: Historic reconstructions of daily river flow for 303 
UK catchments (1891-2015), NERC Environmental Information Data Centre, https://doi.org/10.5285/f710bed1-795 

e564-47bf-b82c-4c2a2fe2810e, 2018a. 
Smith, K. A., Wilby, R. L., Broderick, C., Prudhomme, C., Matthews, T., Harrigan, S., and Murphy, C.: Navigating 
Cascades of Uncertainty — As Easy as ABC? Not Quite…, Journal of Extreme Events, 05, 1850007, 
10.1142/s2345737618500070, 2018b. 
Southern Water: Drought Plan, Southern Water, Worthing, 2013. 800 

Spraggs, G., Peaver, L., Jones, P., and Ede, P.: Re-construction of historic drought in the Anglian Region (UK) over 
the period 1798–2010 and the implications for water resources and drought management, Journal of Hydrology, 
526, 231-252, https://doi.org/10.1016/j.jhydrol.2015.01.015, 2015. 
Stoelzle, M., Stahl, K., Morhard, A., and Weiler, M.: Streamflow sensitivity to drought scenarios in catchments 
with different geology, Geophysical Research Letters, 41, 6174-6183, 2014. 805 

Svensson, C.: Seasonal river flow forecasts for the United Kingdom using persistence and historical analogues, 
Hydrological Sciences Journal, 61, 19-35, 10.1080/02626667.2014.992788, 2016. 
Svensson, C., Hannaford, J., and Prosdocimi, I.: Statistical distributions for monthly aggregations of precipitation 
and streamflow in drought indicator applications, Water Resources Research, 53, 999-1018, 
doi:10.1002/2016WR019276, 2017. 810 

Tanguy, M., Prudhomme, C., Smith, K., and Hannaford, J.: Historic Gridded Potential Evapotranspiration (PET) 
based on temperature-based equation McGuinness-Bordne calibrated for the UK (1891-2015), NERC 
Environmental Information Data Centre, https://doi.org/10.5285/17b9c4f7-1c30-4b6f-b2fe-f7780159939c, 
2017. 

https://doi.org/10.1016/0022-1694(94)02654-T
https://doi.org/10.1016/0022-1694(94)02654-T
https://doi.org/10.1016/S0022-1694(03)00225-7
https://doi.org/10.1016/j.jhydrol.2011.09.034
https://doi.org/10.5285/f710bed1-e564-47bf-b82c-4c2a2fe2810e
https://doi.org/10.5285/f710bed1-e564-47bf-b82c-4c2a2fe2810e
https://doi.org/10.1016/j.jhydrol.2015.01.015
https://doi.org/10.5285/17b9c4f7-1c30-4b6f-b2fe-f7780159939c


29 

 

 

Tanguy, M., Prudhomme, C., Smith, K., and Hannaford, J.: Historical gridded reconstruction of potential 815 

evapotranspiration for the UK, Earth Syst. Sci. Data, 10, 951-968, 10.5194/essd-10-951-2018, 2018. 
Teuling, A. J.: A hot future for European droughts, Nature Climate Change, 8, 364-365, 10.1038/s41558-018-0154-
5, 2018. 
Valéry, A., Andréassian, V., and Perrin, C.: ‘As simple as possible but not simpler’: What is useful in a temperature-
based snow-accounting routine? Part 1 – Comparison of six snow accounting routines on 380 catchments, 1166-820 

1175 pp., 2014. 
Vansteenkiste, T., Tavakoli, M., Van Steenbergen, N., De Smedt, F., Batelaan, O., Pereira, F., and Willems, P.: 
Intercomparison of five lumped and distributed models for catchment runoff and extreme flow simulation, 
Journal of Hydrology, 511, 335-349, https://doi.org/10.1016/j.jhydrol.2014.01.050, 2014. 
Vicente-Serrano, S. M., Beguería, S., Lorenzo-Lacruz, J., Camarero, J. J., López-Moreno, J. I., Azorin-Molina, C., 825 

Revuelto, J., Morán-Tejeda, E., and Sanchez-Lorenzo, A.: Performance of Drought Indices for Ecological, 
Agricultural, and Hydrological Applications, Earth Interactions, 16, 1-27, 10.1175/2012ei000434.1, 2012. 
Wallner, M., Haberlandt, U., and Dietrich, J.: Evaluation of different calibration strategies for large scale 
continuous hydrological modelling, Adv. Geosci., 31, 67-74, 10.5194/adgeo-31-67-2012, 2012. 
Warszawski, L., Frieler, K., Huber, V., Piontek, F., Serdeczny, O., and Schewe, J.: The Inter-Sectoral Impact Model 830 

Intercomparison Project (ISI–MIP): Project framework, Proceedings of the National Academy of Sciences, 111, 
3228-3232, 10.1073/pnas.1312330110, 2014. 
Wilby, R. L., and Harris, I.: A framework for assessing uncertainties in climate change impacts: Low-flow scenarios 
for the River Thames, UK, Water Resour. Res., 42, W02419, 10.1029/2005wr004065, 2006. 
Wu, Z. Y., Lu, G. H., Wen, L., and Lin, C. A.: Reconstructing and analyzing China's fifty-nine year (1951–2009) 835 

drought history using hydrological model simulation, Hydrol. Earth Syst. Sci., 15, 2881-2894, 10.5194/hess-15-
2881-2011, 2011. 
Yapo, P. O., Gupta, H. V., and Sorooshian, S.: Multi-objective global optimization for hydrologic models, Journal 
of Hydrology, 204, 83-97, http://dx.doi.org/10.1016/S0022-1694(97)00107-8, 1998. 

 840 

https://doi.org/10.1016/j.jhydrol.2014.01.050
http://dx.doi.org/10.1016/S0022-1694(97)00107-8

