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Authors Response to Anonymous Referee #1 

General Comments  

Reviewer Comment:  

This manuscript is a thorough evaluation and description of a new modeled dataset reconstructing historical flows in the UK. 

The authors do a good job outlining both the utility and limitations of the dataset they have created. This article makes very 5 

good use of graphics to convey complex information about a large number of data points; I especially like Figure 2. Overall, 

this is a high-quality paper, with just a few areas that require clarification (see "Specific Comments") or technical corrections 

(see below).  

Authors Initial Comments: 

We thank the reviewer for their kind words on the manuscript, and are pleased they valued our use of graphics. 10 

Specific Comments  

Reviewer Comment:  

Lines 358-360: The statement about selecting a “best” simulation rather than extracting a mean or median from the ensemble 

appears to be a very strong statement based only on some qualitative examples. The authors could just say that selecting a 

“best” simulation is SOMETIMES more accurate than using an ensemble mean. Otherwise, if the authors wish to back up their 15 

statement, I think they would need to do a more thorough analysis comparing both LHS1 and the ensemble means (or medians) 

to the observations. 

Authors Initial Comments: 

Thank you for this comment, we agree completely and will amend the manuscript to indicate that this is a qualitative and 

possibly case specific statement. E.g. “This indicates that selecting the “best” simulation where a deterministic result is needed 20 

is more appropriate, in these cases, than extracting a mean or median from the ensemble.” 

Reviewer Comment:  

Lines 477-479: I don’t quite follow the meaning of the sentence “They concluded that . . . eliminate the influence of different 

PET inputs on runoff simulation.” Does this mean that PET is not an important variable in predicting runoff? Does it mean 

that the hydrologic models have low sensitivity to small errors in PET? Please clarify.  25 

Authors Initial Comments: 

This statement implies that the calibration of a hydrological model can eliminate some of the uncertainties that may be derived 

from the quality of the PET data. PET is a very important variable in predicting runoff, but using poorer quality temperature 

data PET instead of very high spatial and temporal resolution data is unlikely to significantly affect the streamflow output, as 

the calibration of the hydrological model can implicitly account for such errors. The authors will amend these few sentences 30 

to be clearer. E.g. Tanguy et al. (2018) considered the impact of poorer quality and lower density of temperature data on the 

derivation of the PET dataset that was employed in this study and concluded that, whilst PET is an important variable for 

predicting runoff, the influence of degraded PET input that result from low quality temperature data on runoff simulation can 

be limited by the adequate calibration of hydrological models (Bai et al., 2016; Seiller and Anctil, 2016). Thus, the Tanguy et 

al. (2018) PET dataset is considered suitable for use in hydrological models, especially if they are calibrated to this dataset. 35 

Technical Corrections 

Reviewer Comment:  
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Lines 70-73: These sentences are a little confusing, because it is unclear whether you mean the same thing by “hydrological 

models” and “rainfall-runoff models.” Are you saying that your methods are different from those used by Caillouet et al (2017) 

in France, or that Caillouet et al (2017) is a rare example of the type of analysis you have done for the UK? 40 

Authors Initial Comments: 

Yes, we mean the same thing by hydrological and rainfall-runoff models. We have replaced references to “rainfall-runoff 

models” with “hydrological models” for consistency. We mean the latter – That studies such as this, and Caillouet et al (2017), 

using meteorological data with hydrological models, are rare; Caillouet et al also used a hydrological model to reconstruct 

flows, but: they used reanalysis data as climate input data where we have used observed data; our calibration and uncertainty 45 

analyses methods are different; and our drought event extraction techniques also differ. 

Reviewer Comment:  

Lines 75-6: “They can be used . . . prior to observational network” is an incomplete sentence. Please revise.  

Authors Initial Comments: 

We consider this a complete sentence, but have amended it for clarity: “They can be used to extend flow records back in time, 50 

creating very long sequences that extend back beyond the initiation of the observational network” 

Reviewer Comment:  

Line 125: It is not necessary to state that the catchments are shown in Figure 1, as this was already stated on line 123. 

Authors Initial Comments: 

We have removed this sentence. 55 

Reviewer Comment:  

Line 193: Please also define “LHS500” in the methods section before using it here. At present, it is not defined until line 212.  

Authors Initial Comments: 

The Sentence has been corrected to: “The upper and lower daily limits of the 500 top ranking parameterisations (see Section 

Error! Reference source not found. for details on the ranking process) were used to calculate…” 60 

Reviewer Comment:  

Line 225: Please provide more information about what the Tweedie distribution is.  

Authors Initial Comments: 

Readers may refer to the Svensson et al paper if they are further interested in the distribution, however, the final sentence of 

this paragraph has been amended to state: “The Tweedie distribution, which is a flexible three-parameter distribution that 65 

has a lower bound at zero, has been shown to perform effectively for UK river flows, across a wide range of near-natural 

Benchmark catchments (Svensson et al., 2017).”  

Reviewer Comment:  

Line 323: Add an apostrophe at the end of “models.”  

Authors Initial Comments: 70 

This has been added 

Reviewer Comment:  

Line 518: Change “catchments” to “catchment’s” 
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Authors Initial Comments: 

This has been added 75 

Reviewer Comment:  

Line 523: Change “This contributions” to “The contributions” 

Authors Initial Comments: 

This has been corrected 

 80 

We thank the reviewer for highlighting these technical errors. 
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Authors Response to Anonymous Referee #2 

Reviewer Comment:  85 

This paper uses a multi-objective approach to calibrate a fairly simple hydrologic model to predict discharge at a large number 

of catchments in the UK based on precipitation and temperature observations. The stated purpose of the exercise was to 

hindcast streamflow during historical early 20th century droughts that occurred prior to the systematic collection of discharge 

observations on UK streams, but (crucially) not before available meteorological records. The results show that the relatively 

simple hydrologic model that was used (4 parameters) was able to capture streamflow variability well, over the wide range of 90 

catchments included in the survey. The study showed little evidence of non-stationarity in parameter calibration, which allowed 

historical droughts to be hindcasted with a decent level of confidence. 

Major remarks  

Reviewer Comment:  

The study is methodologically solid. The paper is well written and methods and results are described clearly and in sufficient 95 

details. However, I am not sure I understand the contribution of the paper beyond a solid regional study of UK streams. This 

is without a doubt a useful practical contribution for the UK water resources community, but you should do a better job at 

discussing general implications of the research in the introduction and discussion. To be excessively blunt, as a scientist that 

has no particular interest in UK streams (like a large chunk of HESS readership), why should I care? To be a bit more specific, 

you explicitly lists the intended contributions of the paper in the conclusions (L527). At face value, these contributions are 100 

sufficiently general to interest non-UK readers and should be stated upfront (the intro is very much UK specific currently). 

However, I think that these arguments currently lack substance and should be further developed:  

Authors Initial Comments: 

We thank you for your comments, and appreciate that the introduction could be better framed. We believe that the methods 

employed in this study are applicable elsewhere across the globe, as well as in time. The multi-objective approach to model 105 

calibration used here is not exclusive to the UK, nor to reconstructions, but may also be used to calibrate models elsewhere 

for flow forecasting and longer term projections. Similarly, it could, with sufficient computational resources, be applied to 

more complex hydrological models. Furthermore, we believe that the data produced from this research will be of wider interest 

in the framing of historic flows and extreme events from a European perspective. If you agree that the contributions outlined 

in the discussion are of sufficient interest to wider readers, we will revise the manuscript to make these points clearer in the 110 

abstract and the introduction. 

Authors Final Comments:  

The first paragraph detailing UK drought events has been cut down/removed. European literature has been added to the 

climate projections statement. Detail on GRDC global network evolution has been added. Detailed examples of qualitative 

past UK droughts have been generalised, and other European drought studies using documentary evidence have been cited. 115 

Global met data availability from CRU has been cited (New et al, 2000). The aims have been generalised with fewer references 

to spatial location. 

The last few sentences of the abstract have been slightly amended to read: “This paper provides three key contributions: 1) 

an robust multi-objective model calibration framework for calibrating catchment models for use in both general and extreme 

hydrology; 2) model calibrations for the 303 UK catchments that could be used in further research, and operational 120 

applications such as hydrological forecasting; and 3) ~125 years of spatially and temporally consistent reconstructed flow 

data derived that will allow comprehensive quantitative assessments of past UK drought events, as well as long term analyses 
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of hydrological variability that have not been previously possible, thus enabling water resource managers to better plan for 

extreme events, and build more resilient systems for the future.” 

Reviewer Comment:  125 

1. You mention your multi-objective calibration approach as the first general contribution of the paper. As you admit yourself 

(L91), the concept itself of multi-objective calibration is not new and the section where you describe model selection (3.4) is 

particularly cryptic. If multi-objective calibration is indeed a key contribution of the paper, please describe the approach 

specifically (How are the model parametrizations “ranked”? How are each of the criteria weighted to come up with a composite 

ranking?) and spell out clearly what the novelty is compared to existing approaches.  130 

Authors Initial Comments: 

We apologise that the method has not been clearly set out, and that you found section 3.4 cryptic; we will endeavour to make 

it more transparent. We will likely include the code that was used for the ranking process in the supplementary materials for 

the readers’ reference. The third reviewer has also commented that we need to put our method in the context of existing multi-

objective calibration approaches, so we will make sure this issue is addressed in the revised manuscript.  135 

Authors Final Comments:  

We amended sections 3.2, 3.3, and 3.4 to be one section “Calibration Strategy” (with subsections) in order to allow a space 

for general comment on the approach and how it fits with previous research. Text added “The GR4J model was calibrated for 

this study incorporating concepts from GLUE type Bayesian approaches (Beven and Freer, 2001), and multi-objective Pareto-

optimal solutions (Yapo et al., 1998). The approach consisted of three stages, the details of which are further elaborated in 140 

this sub-section: firstly, the feasible parameter space was determined, and sampled using Latin Hypercube Sampling (LHS) 

(McKay et al., 1979); secondly the model was run, and six evaluation metrics were calculated for each parameter set; and 

thirdly the top 500 parameter sets for each catchment were selected using a very simple Pareto-optimising ranking approach, 

accounting for non-acceptable trade-offs (Efstratiadis and Koutsoyiannis, 2010).” 

The section on ranking has been re-written as: 145 

“In order to optimise six evaluation metrics, the 500,000 model parameterisations were ranked from best to worst by their 

scores for each metric in turn, and these ranks were then summed to create a total rank. This total, or “basic”, rank was used 

to reorder the parameterisations for each catchment from best to worst, accounting for all metrics. However, the scores of the 

500,000 model parameterisations were not normally distributed, and it was found that unacceptable trade-offs between metrics 

were occurring, whereby nominal increases in one metric were taking preference over quite significant decreases in other 150 

metrics. Therefore, a series of thresholds of acceptability were set, as shown in Table 3Table 3. A simple iterative search 

algorithm was then used to re-rank the list according to these thresholds, whilst retaining their original ranks within each 

threshold group. For example, if the first, third and fourth parameterisations in the basic rank met the hardest threshold for 

all six metrics, but the second ranked parameterisation did not, they would be bumped up the rankings, above the second 

resulting in a list of [1, 3, 4, 2…]. All parameterisations meeting the hardest thresholds were prioritised before the algorithm 155 

switched to search for those in meeting the middle thresholds, and so on. From this final list, the top ranking optimum 

parameter set was extracted for deterministic model applications, herein referred to as LHS1. Due to the variability of the 

performance across catchments, where hundreds of thousands of parameter sets met the hardest threshold in some catchments, 

whilst none met even the softest threshold in other catchments, it was decided that a ‘limit of acceptability’ approach after 

Beven (2006) would not be appropriate. Therefore, a proportion of the sampled model parameterisations, the top 500 (herein 160 

referred to as LHS500), were taken forward to provide an indication of parameter uncertainty within the flow simulations. 

The extent to which the threshold re-ranking influenced the rankings varied by catchment due to the differences in mode 
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performance. Figure 22 shows the NSE and logNSE scores of the 500,000 model parameterisations (though this graph has 

been limited to show only those with positive scores for both metrics) for the River Greet in Severn Trent Region. This figure 

demonstrates how the basic ranking system identified 500 parameterisations close to the Pareto front of NSE vs logNSE, 165 

however parameterisations with scores that were lower for NSE than logNSE were selected. By applying the thresholds, 

parameterisations with an NSE lower than 0.4 were rejected, and replaced with others within the acceptable range for all 

metrics” 

An illustrative figure has been added to the manuscript. 

Reviewer Comment:  170 

2. Second, you claim that the approach can be used not only to hindcast droughts but also to predict catchment responses to 

future climate change. In order to make such a claim, you ought to address the elephant in the room, which is that your approach 

does not accommodate non-stationarities in the calibrated parameters (e.g., related to land use change and human adaptation). 

Your result suggest that these factor were not much of a problem for historical simulations (except for heavily altered 

catchment), but if there is one thing that climate studies tell us is that the past is not necessarily representative of the future. I 175 

do agree that your results are interesting and can be leveraged to study the hydrological impacts of climate change, but the 

implied caveats and potential avenues to go around them should be discussed. I am specifically thinking of the potential to 

leverage satellite observations of land use change and/or modules integrating human adaptation to large scale hydrological 

models (e.g, Bierkens 2015, Calvin 2018).  

Authors Initial Comments: 180 

We agree that land use changes and human adaptations are likely to influence flows significantly in the context of climate 

change projections. However, we are reassured by the integrity of the model results when compared to the longer observed 

time series. Previous modelling studies have used lumped catchment models to simulate flows under climate change (e.g. 

future flows hydrology, Haxton et al 2012), and the results have been widely employed in water resource management 

simulations. We anticipate that this modelling framework, applied to more recent climate projections such as UKCP18 may 185 

be equally useful for decision makers, especially in the near-natural low flows benchmark network catchments, where water 

resource managers may use the flow projections to assess water availability, and subsequently run the flow projections through 

water resource models to simulate the impacts of changes in human influence over time. We discuss the lack of human influence 

in the model in the discussion section, but we will add this caveat to the mention of future applications, and also reference the 

Future Flows Hydrology study in the manuscript. 190 

Haxton, T.; Crooks, S.; Jackson, C.R.; Barkwith, A.K.A.P.; Kelvin, J.; Williamson, J.; Mackay, J.D.; Wang, L.; Davies, H.; 

Young, A.; Prudhomme, C. (2012). Future flows hydrology data. NERC Environmental Information Data 

Centre. https://doi.org/10.5285/f3723162-4fed-4d9d-92c6-dd17412fa37b 

Authors Final Comments:  

The following sentences have been added to this section of the discussion, citing your suggested literature: “Human 195 

interactions are a common problem in hydrological modelling that remain largely understudied (Calvin and Bond-Lamberty, 

2018). Whilst global scale models have been advancing in socio-hydrology, making use of satellite information and 

governmental estimates of total water consumption, the data to support such endeavours is lacking (Bierkens, 2015). Small 

scale catchment models would need to rely on significant amounts of abstraction and licencing data as well as reservoir 

operation procedures, the details of which are often sensitive and/or unavailable.” 200 

https://doi.org/10.5285/f3723162-4fed-4d9d-92c6-dd17412fa37b
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The following sentences have been added to the final paragraph of the discussion: “The model calibrations may be applied to 

studies of the impacts of climate change on future hydrological extremes in the UK, such as in the Future Flows Hydrology 

project (Haxton et al., 2012), the data from which has been widely applied by water resources managers. The modelling 

framework developed in this study could extend the Future Flows Hydrology research using the more recent UKCP18 data 

(Met Office Hadley Centre, 2018). However, as with the Future Flows Hydrology project, users will need to be aware of the 205 

implications of the lack of artificial influence processes in the model.” 

Reviewer Comment:  

3. Third, you argue that the study provides important spatio-temporal data on historical drought in the UK (so far so good) 

which can be used to plan and forecast the onset, duration and termination of drought events in the UK and overseas. First off, 

it is not clear to me how, specifically, how the historical reanalysis you describe can be used to forecast and mitigate the effect 210 

of future droughts (see previous point) – if you have a specific idea here, please make it explicit.  

Authors Initial Comments: 

Historical data can provide vital context when faced with an ongoing drought episode. Whilst, as you say, the past may not 

necessarily be representative of the future, using ensembles of historical drought events can gain insight into the probabilities 

of the termination of a current event over a certain time period (e.g. Parry et al, 2018). Knowledge of historic events can also 215 

be used to explore statistical correlations with atmospheric drivers of droughts that may help predict the onset of events (e.g. 

Lavers et al, 2015). In these approaches, extending the hydrological record by ~70 years significantly increases the sample of 

historic drought events from which to conduct such research. Furthermore, the modelled data may be used to extend 

streamflow records used in seasonal hydrological forecasting with a hydrological analogues method (e.g. Svensson, 2016), 

and the model set-up is already being applied in seasonal forecasting using an Ensemble Streamflow Prediction approach in 220 

the UK Hydrological Outlooks (www.hydoutuk.net). This will also be added to the manuscript. 

Parry, S., Wilby, R., Prudhomme, C., Wood, P., McKenzie, A. (2018) Demonstrating the utility of a drought termination 

framework: prospects for groundwater level recovery in England and Wales in 2018 or beyond. Environmental Research 

Letters. 

Lavers, D., Hannah, D., Bradley, C., (2015) Connecting large-scale atmospheric circulation, river flow and groundwater 225 

levels in a chalk catchment in southern England. Journal of Hydrology 523, 179-189. 

Svensson, C. (2016) Seasonal river flow forecasts for the United Kingdom using persistence and historical analogues. 

Hydrological Sciences Journal. 61 (1), 19-35. 

Authors Final Comments:  

The following sentences have been added to the final paragraph of the discussion: “Ensembles of historical drought events 230 

can be used to provide insight into the probabilities of the termination of a current event over a certain time period (e.g. Parry 

et al., 2018). Knowledge of historic events can also be used to explore statistical correlations with atmospheric drivers of 

droughts that may help predict the onset of events (e.g. Lavers et al., 2015). In these approaches, extending the hydrological 

record by ~70 years significantly increases the sample of historic drought events from which to conduct such research. 

Furthermore, the modelled data may be used to extend streamflow records used in seasonal hydrological forecasting with a 235 

hydrological analogues method (e.g. Svensson, 2016).” 

Reviewer Comment:  

Most importantly, your method relies on the fact that a large volume of high quality meteorological observations (for both P 

and PET) were available in the early 20th century, before river discharges were systematically gauged. This was definitely the 

case for the UK, but in order to argue that the approach you propose is applicable beyond the UK (which would make it more 240 

http://www.hydoutuk.net/
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relevant to the global hydrologic community), you have to show that what happened in the UK is not an exception. It can very 

well be that met data was collected way before flow data in other countries as well, but you have to make this argument explicit 

(and ideally back it up with some data).  

Authors Initial Comments: 

We believe that it is common that met data records begin before hydrological data records (within Europe at least), simply 245 

due to the relative complexities of recording temperature and rainfall over river levels or flows. Newly digitised observed 

climate datasets (such as the one employed in this study) are becoming increasingly extending observed series held by met 

services across Europe. Furthermore, Caillouet et al (2017) made use of modelled climate reanalysis data, and the approach 

could also be applied to other long term reconstructed climate datasets (such as the monthly Casty et al 2007 data). This 

comment will be added to the manuscript. 250 

Caillouet, L., Vidal, J. P., Sauquet, E., Devers, A., and Graff, B.: Ensemble reconstruction of spatio-temporal extreme low-

flow events in France since 1871, Hydrol. Earth Syst. Sci., 21, 2923-2951, 10.5194/hess-21-2923- 2017, 2017. 

Casty, C., Raible, C. C., Stocker, T. F., Wanner, H., Luterbacher, J.: A European pattern climatology 1766-2000: Climate 

Dynamics, 29, 7-8, 791-805, 10.1007/s00382-007-0257-6, 2007. 

Authors Final Comments:  255 

Lines were added to the introduction: “Meteorological records of rainfall and temperature generally extend further back than 

hydrological data, often providing data from the turn of the 21st century (New et al., 2000), and occasionally as far back as 

the mid-20th century. Modelled climate reanalysis data (e.g. Compo et al., 2011), and long term reconstructed climate datasets 

(e.g. Casty et al., 2007) have been developed for use in scientific research, and can be fed into hydrological models to 

quantitatively reconstruct river flows beyond the limits of the observational period” 260 

Minor comments  

Reviewer Comment:  

L210 I am not sure I understand your multi-objective approach to select catchments. How do you weigh different criteria when 

ranking the parametrization (e.g., how do you differentiate a parametrization A with a NSE of 0.64 and a Q95APE of 34 from 

a parametrization B with a NSE of 0.70 and a Q95 APE of 40 – which one dominates?). What optimality concept is your 265 

approach consistent with (pareto, maxi-min (i..e maximizing the worst performing metrics), . . .)  

Authors Initial Comments: 

The ranking was done as simply as possible, and does not conform to a traditional optimality concept due to the need to rank 

by 6 metrics at once. The matrix of 500,000 parameter sets and their scores was sorted first by NSE and a rank column was 

added giving each parameterisation a rank (1 best to 500,000 worst); the matrix was then sorted again but by logNSE and a 270 

new rank column was added; then again by absPBIAS etc. until there were 6 rank columns, one for each metric. The ranks 

were then summed, and the matrix was ordered by this total rank (with the lowest number being the best parameter set). 

However, we found that this left us with a sub-optimal scoring system, as slight improvements in one metric were occasionally 

outweighing more severe degradations in other metrics, e.g. absPBIAS scores better by 0.001 but NSE scores worse by 0.1). 

This is why we then set the thresholds. We took the ranked matrix, and starting at the top, looked down the rows of 275 

parameterisations until we found one that met the hardest threshold criteria for all 6 metrics. If this was not the originally top 

ranking parameterisation, it was bumped to the top of the list, and the search was run again. If a second parameterisation was 

found to meet all 6 criteria, it was then bumped to second place, and the search was run again. Etc. 
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This created a matrix where all parameterisations that met the hardest criteria were at the top of the list (ordered by their 

original rankings), followed by those that met the middle criteria (ordered by their original rankings), followed by the softest 280 

etc. 

This was done for each catchment individually.  

As mentioned earlier, we will endeavour to clarify this in the revised manuscript, and will likely provide the R code. 

Authors Final Comments:  

As explained in response to major comment 1, we have made revisions to clarify this. 285 

Reviewer Comment:  

There are lots of acronyms to remember. A Table summarizing the abbreviations would be useful  

Authors Initial Comments: 

We will consult with the editors and include a table of acronyms in the supplementary information, if appropriate for the 

journal. 290 

Authors Final Comments:  

A table of acronyms has been added to the supplementary information 

Reviewer Comment:  

Fig 5: labelled pointers showing the catchment that you specifically discuss in the text would be useful.  

Authors Initial Comments: 295 

We will add markers to the figure 

Authors Final Comments:  

We have experimented with this and found that it complicated the plot significantly. We would prefer to leave it as it is, and 

have better described the points in the text, as: “The Avon at Evesham in ST region, the Dee at Manley Hall in North West 

England North Wales (NWENW) region, and the Bedford Ouse catchment in Anglian (ANG) region, show reduced model 300 

performance earlier in the record, with the bars moving through orange and yellow shades as they stretch towards the centre 

of the circle”. “The Lee at Feildes Weir in SE region (plotted at the boundary with ANG region) also shows variation in 

performance across most metrics, although in this catchment, the performance is good (plotted in black) at the start and end 

of the record, with poorer performance (shown in yellow) around the start years of 1920-1940 (evaluation years of 1920 to 

1970).” And “In contrast to this, the Dee at Woodend in East Scotland, and the Severn at Bewdley in Severn Trent region, 305 

which have the longest records in their regions, show more temporal stability in the model performances (with black colouring 

for the whole bar).” 

Reviewer Comment:  

L132, 502: Please refrain from citing work in preparation.  

Authors Final Comments:  310 

We have removed the Legg reference, the Barker reference has since been published in HESSD, so we have updated the 

reference. 
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Authors Response to Referee #3 (Jim Stagge) 

Reviewer Comment:  315 

Here the authors address two unique research questions. First, the authors define a multi-objective approach to calibrating a 

hydrologic model to consider low flows, high flows, and water balance. Second, they use this approach to reconstruct flows 

for rivers throughout the UK beginning in the 1891, made possible by recovered meteorologic datasets.  

The paper is well-written, of strong interests for HESS readers and a novel piece of research. I have some concerns about a 

general lack of reference to the hydrologic calibration literature, particularly with relation to prior multi-objective approaches. 320 

The authors’ application is certainly novel and they made choices to weight their multiple objectives a priori, which is a realistic 

approach when repeating this for many watersheds. However, there are more advanced multi-objective schemes that should 

be mentioned for context (and potentially for follow-up research). Because of this weighting approach, there must be some 

discussion of how the objectives are related to one another and how these weightings affect results.  

Overall, I recommend this article for publication pending the major revisions to provide a better literature context and to better 325 

explain the objective weighting scheme’s effects.  

Authors Initial Comments: 

We thank you for your kind words Jim, and are glad that you deem the research novel and of strong interest to HESS readers. 

We appreciate your concern for the current lack of reference to the literature regarding multi-objective calibration procedures, 

and will ensure that this is addressed in the revised manuscript. 330 

Major Comments 

Reviewer Comment:  

1. I have a concern that there is a wide body of calibration/optimization literature not being referenced in this paper. Many 

approaches have been used for hydrologic model parameter calibration, and although the paper mentions some, there are gaps 

that could put this work in context. I suggest to at least mention PEST, which is a single objective optimization scheme, but 335 

almost ubiquitous in the U.S. hydrologic community. Wallner (2012) “Evaluation of different calibration strategies for large 

scale continuous hydrological modelling” provides a good overview of these calibration strategies.  

Authors Initial Comments: 

Thank you for noticing this oversight, we will insert reference to this area of research in to the introduction, and methods 

sections. 340 

Authors Final Comments:  

We have added a sentence to the introduction: Such algorithms are commonly categorised as “local” (e.g. PEST, Kim et al., 

2007) or “global” (e.g. SCE, Duan et al., 1993), some examples of which have been compared by Wallner et al. (2012). 

Reviewer Comment:  

2. Although the words “multi-objective optimization” aren’t often written together in the text, this approach appears to be an 345 

a priori multi-objective optimization. By using the sum of each objective’s rank as your objective, you have defined weightings 

a priori to merge multiple objectives into a single objective function. Please include at least one or two sentences explaining 

this and mentioning the difference between this and a posteriori multi-objective optimization (below). 

Authors Initial Comments: 

Please see our response to point 3. below 350 
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Reviewer Comment:  

I mention this because you state that “multi-objective optimization methods have been advancing since the turn of the century”, 

but this area has a pretty rich literature that goes back well into the 1990s. Additionally, most optimization researchers think 

of a posteriori (not a priori) when they think of multi-objective optimization. A posteriori approaches try to find a set of non-

dominated Pareto optimal solutions and then select the best compromise afterwards. You might include references to other 355 

multi-objective papers that take this approach like:  

“Multiobjective Automatic Parameter Calibration of a Hydrological Model” (Jung et al, 2017) “Comparing multi-objective 

optimization techniques to calibrate a conceptual hydrological model using in situ runoff and daily GRACE data” (Mostafaie 

et al. 2018) “Automatic calibration of HEC-HMS using single-objective and multi-objective PSO algorithms” (Kamali et al. 

2013) “Multi-objective calibration of a distributed hydrological model (WetSpa) using a genetic algorithm” (Shafi and de 360 

Smedt 2009)  

Or consider some of their references for older publications.  

Authors Initial Comments: 

Yes we can see that this area of literature has been overlooked in the manuscript. We will add a few sentences on these 

approaches to the introduction. 365 

Authors Final Comments:  

We have added the sentences: “Multi-objective optimisation commonly involves seeking Pareto-optimal solutions that find a 

compromise between objective functions (e.g. Shafii and De Smedt, 2009;  Kamali et al., 2013; Jung et al., 2017). Multi-

objective methods may also be used to optimise more than one hydrological variable (e.g. Mostafaie et al., 2018).” 

Reviewer Comment:  370 

3. Because of the a priori weighting (Comment #2), please provide information about how the multiple objectives are related 

to one another. Are some highly correlated? Negatively correlated? If, for instance, the rankings from the 4 high/water balance 

objectives operate as one and the 2 low flow indices operate as one, is there a concern that you are overweighting towards high 

flows? 

Authors Initial Comments: 375 

We are not sure whether our approach would be considered a priori or a posteriori. Traditionally, a GLUE type approach 

would assign an a priori distribution to sample parameter values from, we chose to make no a priori assumptions and chose 

to sample from a uniform distribution across all 4 parameters. A GLUE approach would then weight the “behavioural” 

parameter sets a posteriori according to their metric scores. We have chosen 6 metrics, and have not “weighted” the runs by 

their scores, merely extracted the top 500. Yes, the 6 metrics we chose could be implicitly weighted according to their similarity 380 

(if two metrics were very similar, then they would hold more weight together than any one of the others). Thus, the graphic 

below demonstrates a quick look into their correlations. We have taken the LHS1, the “best run”, for each catchment here, 

aside from the fact R is not easily capable of reading in 303 matrices of 500,000 rows, the sets of 500,000 for each catchment 

contain some truly awful parameterisations, and the metric interactions among these were understandably very odd. Here, we 

can generally see that there are significant correlations between each of the metrics: generally where catchments score well 385 

for one metric, they score well for all metrics. Bear in mind that for NSE and logNSE a high score is a good score, whilst for 

the other 4 a low score is a good score. The NSE and logNSE have the highest correlation, which would be expected, and the 

MAM30APE and Q95APE are also highly correlated as they are both errors in low flows. Correlations between MAPE and 

absPBIAS are positive with each other, and the low flows metrics, and negative with the NSE metrics. MAPE and MAM30APE 
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 are quite strongly correlated, as they are both mean percent error metrics. The metrics were carefully chosen to cover different 390 

elements of goodness of fit as follows: 

- NSE – good at magnitude and timing of peak flows 

- LogNSE – NSE on log flows in an attempt to match magnitude and timing of lower flows 

- MAPE – overall magnitude of variability 

- absPBIAS – total water balance 395 

- MAM30APE – error in the lowest of flows 

- Q95APE – fitting the tail of the FDC. 

We would say that, if anything, these 6 metrics are together slightly more biased towards matching low flows than high flows, 

which we were happy with given their intended purpose for use in drought research. 

 400 

Authors Final Comments:  

We have significantly revised the section on rankings for clarity. We also added some sentences to the start of the calibration 

strategy section to place this approach in some context with existing literature. We hope that this, along with our explanation 

here, sufficiently resolves your query. 

Reviewer Comment:  405 

4. Line 245-250: I find it surprising that there is a single very poor fit among nearly perfect fits, for example in Cornwall. As 

you are mentioning the reasons for poor fits in this paragraph, it is important to mention there does not appear to be a spatial 

pattern. Presumably, the same abstractions and groundwater issues affect the 0-10% threshold poor fit as its > 90% good fit 

neighbours. Are there any other feasible explanations? 

Authors Initial Comments: 410 

We would argue that there IS a spatial pattern, there is generally good performance across the country, with the exception of 

two areas: 

 some upland catchments in Scotland and Northern England that experience snowmelt contributions, and  
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 highly permeable catchments or those with significant human influence in south and south-eastern England. The 

more local scale variability across the south is likely due to the spatial variability in the geological units.  415 

You have identified one exception to these two broad categories, which is the Warleggan in Cornwall. This catchment fails the 

thresholds due to the Nash Sutcliffe Efficiency metric alone: the peak flow magnitudes are significantly underestimated, the 

other metric scores are acceptable. This could be due to the fact that the catchment sits on a granite outcrop, so is less 

permeable than surrounding catchments, but the calibration process ought to be able to account for this; it would require 

further investigation to identify the cause of this specific insufficiency. We will add a comment about this exception to the 420 

manuscript. 

Authors Final Comments: 

The line was added: “For the Warleggan in Cornwall, poor performance is due to underestimation of peak flows, which may 

be attributed to an issue in simulating the localised geological outcrops.”   

Minor Comments 425 

Reviewer Comment:  

Line 45 – Suggest 1 or 2 more references to fill out the discussion of low flow climate projections for the UK.  

Authors Initial Comments: 

We have added Wilby and Harris (2006), Christierson et al (2012), and Prudhomme et al (2012) 

Wilby, R. L., and Harris, I.: A framework for assessing uncertainties in climate change impacts: Low-flow 430 

scenarios for the River Thames, UK, Water Resour. Res., 42, W02419, 10.1029/2005wr004065, 2006. 
Christierson, B. v., Vidal, J.-P., and Wade, S. D.: Using UKCP09 probabilistic climate information for UK water 
resource planning, Journal of Hydrology, 424-425, 48-67, https://doi.org/10.1016/j.jhydrol.2011.12.020, 2012. 
Prudhomme, C., Young, A., Watts, G., Haxton, T., Crooks, S., Williamson, J., Davies, H., Dadson, S., and Allen, S.: 
The drying up of Britain? A national estimate of changes in seasonal river flows from 11 Regional Climate Model 435 

simulations, Hydrological Processes, 26, 1115-1118, 10.1002/hyp.8434, 2012. 
 
Reviewer Comment:  

Line 70 – You may want to mention some proxy-based reconstructions; for example Jones et al (1984) “Riverflow 

reconstruction from tree rings in southern Britain” or the Old World Drought Atlas (Cook et al 2015) “Old World megadroughts 440 

and pluvials during the Common Era” which covers the UK. 

Authors Initial Comments: 

We have added these references. 

Reviewer Comment:  

Line 193 – Please define LHS500. This is the first time it is included in the text (only in the abstract).  445 

Authors Initial Comments: 

The first reviewer also noticed this error, we have amended it to “The upper and lower daily limits of the 500 top ranking 

parameterisations (see Section Error! Reference source not found. for details on the ranking process) were used to 

calculate…” 

Reviewer Comment:  450 

Table 2 – If possible, please try to fit the ranges on a single line of this table.  

Authors Initial Comments: 

https://doi.org/10.1016/j.jhydrol.2011.12.020
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We’ve corrected this 

Reviewer Comment:  

Lines 273 – You do a great job of describing a low UncW and low ContR as biased and under-sensitive - this is a helpful 455 

translation for readers. As a reader, I would also like a description of the converse. What does high UncW and high ContR 

mean?  

Authors Initial Comments: 

We will add a sentence to this effect. 

Reviewer Comment:  460 

Line 344 - Can you provide a description of which objective function(s) is driving the best fit parameter set in the Avon to 

consistently overestimate low flows?  

Authors Initial Comments: 

We will look into the parameter values of the best run compared to the other LHS500 members, as well as the metric scores 

to see if we can notice anything here. 465 

Authors Final Comments: 

Please see the histograms below which show the distributions of the model parameters, and objective functions for the LHS500, 

and the LHS1 as a black line for the Avon catchment. It looks as though the NSE scores are generally quite low for this 

catchment (<0.4). The threshold method will have prioritised any parameterisations that met the middle set of thresholds, 

which will have pulled the few parameterisations that had an NSE of >0.4 to the top of the list. As the thresholds for MAM30 470 

and Q95 were 75 for the middle thresholds, this has allowed a set with lower scores for these metrics than the average across 

the top 500, to become the “best” set. This means that the LHS1 for this catchment is actually slightly biased towards higher 

flows, and may explain the overestimation of low flows seen in the manuscript. Such trade-offs that are inherent in any multi-

parameter optimisation make selecting a “best” parameterisation challenging, and this highlights the strength of utilising the 

full set of 500 parameterisations. 475 

 

Reviewer Comment:  

Line 372 – Please add the words “we consider” before “SSI values. . .”. The thresholds of -1 and -1.5 are largely arbitrary and 

more of a convention than a true definition.  

Authors Initial Comments: 480 

Valid point, we have added this to the manuscript 
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Reviewer Comment:  

Figure 9 – Please mention that you are plotting the mid-point of each event in the caption. It is currently only in the text (Line 

417).  

Authors Initial Comments: 485 

We have added this to the caption 

Reviewer Comment:  

Figure 9 – For the Crimple watershed, there are 3 unique drought events for the Modeled data shown in the period 1975-1979. 

But Figure 8 shows only 2 crosses of the -1 threshold. Please confirm what is going on here. 

Authors Initial Comments: 490 

The three modelled data circles suggest some discrepancy in the timing of the 1975/76 event among the LHS500, rather than 

3 distinct events. The timing of the drought events is characterised by the dates the SSI crosses 0 (though we’re only showing 

the events in Fig 9 where at least one month crosses SSI -1.5). The individual LHS500 runs demonstrate quite some width in 

the ascending limb as the SSI crosses into positive values in the Crimple in 1976/1977. This discrepancy in the end date of the 

drought event will affect its midpoint, and from Fig 9 it looks as though the LHS500 are grouped in to 3 main possibilities for 495 

timing. However, the thickest circle (demonstrating a higher number of runs) is the central one which best agrees with the 

timing of the observed event. The Greet and the Bush also show many circles for this event, and also have a wide band of grey 

LHS500 runs as the SSI crosses 0 in Fig 8. The Bush in particular doesn’t cross back above SSI 0 until 1979 for some of the 

LHS 500 runs. We will re-read this section and make sure that it is clear that overlapping black circles suggest timing 

discrepancy rather than multiple events. 500 

Authors Final Comments: 

A line was added to the caption of Figure 9 (now figure 10) “Multiple, overlapping black circles suggest discrepancies in the 

timing of the drought event among the ensemble members.” 

 

 505 

  



16 

 

 

A Multi-Objective Ensemble Approach to Hydrological Modelling in 

the UK: An Application to Historic Drought Reconstruction 

Katie A. Smith1, Lucy J. Barker1, Maliko Tanguy1, Simon Parry1, Shaun Harrigan2, Tim P. Legg3, Christel 

Prudhomme2,1,4, and Jamie Hannaford1,5 510 
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8BB, UK 
2 European Centre for Medium-Range Weather Forecasts, Shinfield Road, Reading, RG2 9AX, UK 
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4 Department of Geography, Loughborough University, Loughborough, LE11 3TU, UK  515 
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Abstract. Hydrological models can provide estimates of streamflow pre- and post- observations, which enable greater 

understanding of past hydrological behaviour, and potential futures. In this paper, a new multi-objective calibration method 

was derived and tested for 303 catchments in the UK, and the calibrations were used to reconstruct river flows back to 1891, 520 

in order to provide a much longer view of past hydrological variability, given the brevity of most UK river flow records which 

began post-1960. A Latin Hypercube sample of 500,000 parameterisations for the GR4J model for each catchment were 

evaluated against six evaluation metrics covering all aspects of the flow regime from high, median and low flows. The results 

of the top ranking model parameterisation (LHS1), and also the top 500 (LHS500), for each catchment were used to provide a 

deterministic result whilst also accounting for parameter uncertainty. The calibrations are generally good at capturing observed 525 

flows, with some exceptions in heavily groundwater dominated catchments, and snowmelt and artificially influenced 

catchments across the country. Reconstructed flows were appraised over 30 year moving windows, and were shown to provide 

good simulations of flow in the early parts of the record, in cases where observations were available. To consider the utility of 

the reconstructions for drought simulation, flow data for the 1975/76 drought event were explored in detail in nine case study 

catchments. The model’s performance in reproducing the drought events was found to vary by catchment, as did the level of 530 

uncertainty in the LHS500. The Standardised Streamflow Index (SSI) was used to assess the model simulations’ ability to 

simulate extreme events. The peaks and troughs of the SSI timeseries were well represented despite slight over or 

underestimations of past drought event magnitudes, while the accumulated deficits of the drought events extracted from the 

SSI timeseries verified that the model simulations were overall very good at simulating drought events. This paperwork 

provides three key contributions: 1) an robust multi-objective model calibrationexemplar framework for calibrating catchment 535 

models for use in both general and extreme hydrologymultiple applications.; 2) model calibrations for the 303 UK catchments 

that could be used in further research, and operational applications such as hydrological forecasting; and 3)  The ~125 years 

of spatially and temporally consistent reconstructed flow dataset derived for this study that will also allow comprehensive 

quantitative assessments of past UK drought events, as well as long term analyses of hydrological variability that have not 

been previously possible, thus. This will allow enabling water resource managers to better plan for extreme events, and build 540 

more resilient systems for the future. 

1 Introduction 

Hydrological extremes, and associated The UK is well known for its variable climate, and suffers from the detrimental effects 

of extreme weather events, which have given rise to several significant drought events and flood-rich periods over the past 50 

years (Marsh et al., 2007; Hannaford and Marsh, 2008). Consecutive rainfall deficiencies over the winters of 2010 and 2011 545 

resulted in a drought event that broke national spring (March-May) low flow records, depleted groundwater and reservoir 

mailto:k.a.smith@ceh.ac.uk
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stocks, and caused severe stress on the aquatic environment (Kendon et al., 2013). April 2012 saw a remarkable transformation, 

as a shift in the jet stream brought persistent frontal rainfall that dramatically terminated the drought event with widespread 

and sustained flooding across much of the country (Parry et al., 2013). In summer to autumn 2018, the UK experienced a very 

severe, heatwave-driven meteorological drought, causing widespread agricultural and environmental impacts and threatening 550 

water supplies (Barker et al., 2018a). Managing the impacts of both rainfall excess and deficit on the hydrological system 

continues to pose a challenge for UK authorities and water resource managers. flood and drought events, threaten security of 

water supply, food supply, livelihoods and welfare (Kundzewicz and Matczak, 2015). Managing the impacts of both rainfall 

excess and deficit on the hydrological system poses a significant challenge for authorities and water resource managers across 

the globe. These challenges are set to become more acute in future: the latest projections for Europe suggest increasing 555 

hydrological variability with more severe extremes (Collet et al., 2018; Guerreiro et al., 2018; Teuling, 2018) , and further 

reductions inand low flows in many regionss  are projected to reduce further in the future (Wilby and Harris, 2006; Christierson 

et al., 2012; Prudhomme et al., 2012; Kay et al., 2018; Marx et al., 2018). Increasing demands due to a growing population 

and socioeconomic changes also imply growing pressures on water resources in the future, necessitating considerable 

investment in long-term strategic water resources planning and adaptation (Committee on Climate Change, 2017). 560 

Understanding extremes of the past can help us prepare for future extreme events. Drought characteristics of events in the 

recent past can be used to stress test water supply systems (Mens et al., 2015), a practice that is commonly applied in UKIn 

their water resource management and drought plans, many of the UK water companies stress test their supply systems against 

drought events of the recent past (e.g. Southern Water, 2013 pp. 50-61; Northumbrian Water, 2017 pp. 20-21). Similarly, 

drought severity estimates of past events have been used to investigate the impacts of increased drought frequency on water 565 

supply vulnerability (Herman et al., 2016).  TThere is a growing trend towards testing water supply systems against events 

worse than those experienced, using either scenario-based methods (e.g. Stoelzle et al., 2014; Anderton et al., 2015) or 

stochastic approaches to generate simulated droughts with credible characteristics (e.g. Atkins, 2016). In addition, short-term 

water management planning can benefit from seasonal forecasting of reservoirs inflows and streamflow volumes (Prudhomme 

et al., 2017), so that periods of water deficit can be known in advance and appropriate measures put in place to manage 570 

resources and mitigate impacts.  However, these methods are all dependent on having a good understanding of past variability 

and long hydrometric records which are used to train and validate stochastic approaches, and to create tools that enables the 

simulation of river flows as accurately as possible under a range of varied climate conditions.  

Observations of globalUK streamflow are sparse prior to the 1950s, with fewer than 100less than 20% of stations in the 

gaugedGlobal Runoff Data Centre (GRDC, 2019) beginning pre-1950. network. Post 1960, the streamflow network expanded 575 

rapidly, a pattern that is mimicked by the UK gauging network, where 100 gauging stations in 1950 have increased to over 

and the National River Flow Archive now contains flow records for over 11300 today gauging stations. QIt is known from 

qualitative data sources and long rainfall records that several extreme drought events occurredcan identify significant drought 

events in the late 19th and early 20th centuriesthe pre-instrumentational period , including the “long drought” of 1890-1910, as 

well as the major droughts of 1920-1922 and 1933-1934 (Pfister et al., 2006; Marsh et al., 2007; Brázdil et al., 2016). However, 580 

we are currently unablethese cannot be used to determine whether these events were more or less severe in hydrological terms 

than the events we havethose on the observational record, and there is a need for temporally and spatially coherent flow 

timeseries to allow systematic assessment of extreme events throughout the 20th century and across the whole of the UK. 

Since mMeteorological records of rainfall and temperature are generally more plentiful extend further back than hydrological 

data, often providing data from the turn of the 21st century (New et al., 2000), and occasionally as far back as the mid-20th 585 

century. Modelled climate reanalysis data (e.g. Compo et al., 2011), and long term reconstructed climate datasets (e.g. Casty 

et al., 2007) have been developed for use in scientific research, and can be fed into  in the early 20th century, hhydrological 
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models can to be used to quantitatively reconstruct river flows beyond the limits of the observational period. In the UK, 

Qquantitative reconstructions of river flows using simple rainfall-runoffhydrological models have previously been conducted 

for the UK, but only for a handful of catchments (e.g. Jones and Lister, 1998; Jones et al., 2006). Regional flow reconstructions 590 

have been used to explore the implications of drought events on water resources (e.g. Spraggs et al., 2015). Drought 

reconstruction has also been conducted in other countries using proxy data (Jones et al., 1984; Cook et al., 2015), precipitation 

data (Noone et al., 2017, Ireland), soil moisture models (Wu et al., 2011, China), and hydrological models (Caillouet et al., 

2017, France). Generally, however, there are few extant studies that use rainfall-runoffhydrological models to derive plausible 

historical sequences. 595 

Catchment hydrological models are tools that can generate streamflow time series from meteorological time series data, to 

provide continuous proxy for river flow data that is otherwise not directly available. They can be used to extend flow records 

back in time, creating very long sequences that extend back beyond the prior toinitiation of the observational network. Such 

long timeseries can enable thorough analysis of past variability and frequency of severe events (e.g. Caillouet et al., 2017); be 

used as vital input to for short range toand seasonal range forecasting (Day, 1985; Harrigan et al., 2018)(Day (1985); Harrigan 600 

et al. (2018)), to providinge valuable early warnings and help preparedness; or for future projections for long term planning 

accounting for possible future non-stationarity, for example due to global warming (e.g. Collet et al., 2018).  

Calibrating a hydrological model for multiple purposes, e.g. flow reconstruction and forecasting, for high, low and average 

flows, requires careful consideration. Currently, models are typically calibrated to minimise a specific type of error against 

observations, measured by an “evaluation metric” also known as an “objective function”. Commonly used metrics, such as the 605 

Nash Sutcliffe Efficiency (Nash and Sutcliffe, 1970) or Root Mean Squared Error, tend to focus on the correct estimation of 

high flows (Krause et al., 2005; Dawson et al., 2007), whilst more general metrics, such as Mean Absolute Percent Error and 

Percent Bias are also used to more systematically optimise the flows and the water balance respectively. There are few 

examples focusing on optimising low flow simulation. Most commonly, a single objective function is used, implemented using 

automatic algorithms to find a deterministic parameterisation of the model. Such algorithms are commonly categorised as 610 

“local” (e.g. PEST, Kim et al., 2007) or “global” (e.g. SCE, Duan et al., 1993), some examples of which have been compared 

by Wallner et al. (2012). This concept assumes thereHowever, seeking is a singleone “global optimum” parameter set to 

describe the observations, which has been argued to be a misconception with theoretical catchment models (Beven, 2012). The 

need for calibration techniques to maximise hydrological model performance against multiple elements of the flow regime has 

however been recognised, and multi-objective optimisation methods have been advancing since the turn of the century, though 615 

few studies explore more than three objectives (Efstratiadis and Koutsoyiannis, 2010). Multi-objective optimisation commonly 

involves seeking Pareto-optimal solutions that find a compromise between objective functions (e.g. Shafii and De Smedt, 

2009;  Kamali et al., 2013; Jung et al., 2017). Multi-objective methods may also be used to optimise more than one hydrological 

variable (e.g. Mostafaie et al., 2018).  In addition, utilising multiple model parameterisations have been advocated to account 

for “equifinality” – that many different parameterisations may produce equally adequate simulations of past observations (see, 620 

for example: Beven and Binley (1992); Beven (2006)). 

Here, we develop a framework to establish a national network of catchment hydrological models across the UK, and evaluate 

their application to the reconstruction of hydrological time series, with application to the UK over the period from  11891 to 

2015. The aims of this research are to:  

o Develop a robust method for multi-objective model calibration suitable for use in simulating streamflow withand their 625 

associated uncertainty for catchments across the UK. 

o Apply that method to reconstruct historic streamflow time series from the 1890s across the UK, 
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o Examine the performance of these time series where observations are available, and 

o Explore the potential for application of these time series in evaluating UK drought events. 

This paper first outlines the datasets in Section 2, before detailing the modelling methods in Section 3. Section 4 provides the 630 

results on the performance of the model reconstructions compared with streamflow observations both generally, and during 

drought events. Section 5 discusses the potential limitations of this work, and suggests directions for further research, before 

the paper is concluded in Section 6. 

2 Data 

The hydrological model employed in this study (see section 3.1) requires rainfall and potential evapotranspiration data to run, 635 

and observed flow data for calibration and validation. Means of access to these datasets used in this study are described in the 

Data Availability section at the end of the paper. 

2.1 Catchment Selection and Flow Data 

A diverse set of 303 UK catchments were selected for model calibration. Initially, 395 stations were considered, from the near-

natural catchments suitable for low flow analysis from the UK Benchmark Network (Harrigan et al., 2017), and those which 640 

are part of the National Hydrological Monitoring Programme (https://nrfa.ceh.ac.uk/nhmp), which are of particular interest for 

operational water situation monitoring. Catchments were required to have a minimum of 32 years of observational daily data 

from the National River Flow Archive (https://nrfa.ceh.ac.uk/), from 1984 to 2015 for model calibration. Some catchments 

that suffered repeated or prolonged periods of missing data, truncation of flow measurements, step changes, and artificial 

influences resulting in unrealistic flow patterns were removed from the catchment selection, resulting in 303 catchments. These 645 

catchments had records ranging from 32 to 135 years in length, with an average length of 49 years. The average completeness 

in the gauged daily flows was 99.2% (with a minimum of 90%, and a maximum of 100%). An additional two flow records 

were included, the naturalised daily flows for the River Thames at Kingston and the River Lee at Feildes Weir, making 305 

flow records from 303 catchments. Throughout this paper, the observed calibrations for these two catchments are presented 

(rather than the naturalised series), for consistency with the other catchments across the UK. While this paper presents summary 650 

results from the whole network, we also selected a set of nine case study catchments to present results in more detail. The nine 

catchments (shown in Figure 1Figure 1), were selected from each of the nine hydro-climatic regions defined in (Harrigan et 

al., 2017) in order to represent the range of  hydro-climatology, hydro-geology, and artificial influence across the country, as 

well as to explore some of the better and some of the poorer model performances among the 303 catchments used in this study. 

They are shown in Figure 1.  655 

https://nrfa.ceh.ac.uk/nhmp
https://nrfa.ceh.ac.uk/
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Figure 1: Map of 303 catchments calibrated. Nine reconstruction case study catchments (one per region) are shown with black 

hatching. 

2.2 Rainfall Data 

The daily rainfall dataset used in this study was derived by the UK Met Office as a result of a large data rescue and digitisation 660 

programme (Legg and et al., in preparation). The 5km gridded dataset, which covers the period 1891 to 2015, was derived 

using the same methodology as the UKCP09 data (Met Office, 2017), with interpolation carried out using inverse distance 

weighting (Perry and Hollis, 2005). The data rescue and digitisation programme added over 200 monthly and 38 daily gauges 

to the network during the period 1890 to 1910. Catchment averages were derived from the 5km grids, using the catchment 

boundaries provided from the National River Flow Archive, for use in the hydrological model. 665 

2.3 Potential Evapotranspiration Data 

As the meteorological variables needed to derive Potential Evapotranspiration (PET) data using the Penman-Monteith equation 

(Monteith, 1965) are not available prior to 1961, the PET data used for the reconstructions was derived using the McGuinness-

Bordne temperature-based PET equation (McGuinness and Bordne, 1972), calibrated for the UK. The temperature data for 

1891-2015 were again provided by the UK Met Office following their data rescue programme. A detailed description of the 670 

generation of the PET dataset used in this study, following a rigorous analysis of seven temperature based PET equations, four 

calibration techniques, and seven input temperature data sources/formats, can be found in Tanguy et al. (2018).  
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3 Methods 

3.1 The GR4J Hydrological Model 

The GR4J (Génie Rural à 4 paramètres Journalier) daily lumped rainfall-runoff model (Perrin et al., 2003) was used in this 675 

study via the ‘airGR’ R package version 1.0.2 (Coron et al., 2017). The suite of daily GR models (GR4J, GR5J and GR6J) are 

being increasingly applied around the world, and GR4J was chosen for several reasons:  

1) GR models have been used for streamflow reconstructions previously (Brigode et al., 2016; Caillouet et al., 2017),  

2) The GR4J model has demonstrated good performance in a diverse set of catchments in the UK (Harrigan et al., 2018), 

as well as good performance at simulating temporal transitions between wet and dry periods (Broderick et al., 2016),  680 

3) The GR models are openly accessible, and  

4) The model has a low computational demand, and can be run in parallel without manual input requirement.  

The model has four free parameters (X1 – X4), requires daily precipitation and potential evapotranspiration data as input, and 

routes water into two stores: the production store and the routing store. The production store (capacity X1) gains water from 

effective rainfall, and loses water through evaporation and percolation. Percolated water joins that which has bypassed the 685 

production store, and is routed with a fixed split: in which 90 percent is routed via a unit hydrograph (time lag X4), followed 

by the non-linear routing store (capacity X3); and the remaining 10 percent is routed by a single unit hydrograph (time lag 

2*X4). Groundwater or inter-catchment exchange (controlled by X2) is effective on both the routing store, and the flow routed 

by the single unit hydrograph, and can be positive, negative or zero.  

The GR models include an optional snowmelt module, CemaNeige (Valéry et al., 2014). Due to the high computational demand 690 

of the snowmelt module, it was decided to calibrate the GR4J model without snowmelt, as only 15 (5%) of the 303 catchments 

experience a significant fraction of precipitation falling as snow (> 15 %) over the calibration period (Harrigan et al., 2018). 

3.2 Calibration Strategy 

The GR4J model was calibrated for this study using aincorporating concepts from BayesianGLUE type Bayesian approaches 

(Beven and Freer, 2001), and multi-objective Pareto-optimal solutions (Yapo et al., 1998). The approach consisted of three 695 

stages, the details of which are further elaborated in this sub-section: firstly, the feasible parameter space was determined, and 

sampled using Latin Hypercube Sampling (LHS) technique (McKay et al., 1979); secondly the model was run, and six 

evaluation metrics were calculated for each parameter set; and thirdly the top 500 parameter sets for each catchment were 

selected using a very simple Pareto-optimising ranking approach, accounting for non-acceptable trade-offs (Efstratiadis and 

Koutsoyiannis, 2010). This method was adoptedformalised for several reasons: 700 

1) It allowsLatin Hypercube Sampling allowed the systematic sampling of the model parameter space;,  

2) Multiple evaluation metrics can be included in the calibration strategyenabled the simultaneous optimisation of 

several aspects of the flow regime, including general water balance and low flows,;  

  

3) Model equifinality (Beven, 2006) canould be addressed by accepting multiple “behavioural” parameter sets, and 705 

4) A deterministic “best” parameter set canould also be selected.  

3.2.03.2.1 Latin Hypercube Sampling 

The GR4J model was calibrated for this study using a Bayesian Latin Hypercube Sampling (LHS) technique (McKay et al., 

1979). This method was adopted for several reasons: 
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1) It allows systematic sampling of the model parameter space,  710 

2)1) Multiple evaluation metrics can be included in the calibration strategy,  

3)1) Model equifinality (Beven, 2006) can be addressed by accepting multiple “behavioural” parameter sets, and 

4)1) A deterministic “best” parameter set can also be selected.  

LHS uses Latin Square theory to ensure that the full range of each parameter is represented regardless of its resultant 

importance (Cheng and Druzdzel, 2000), whilst maximising efficiency in comparison to simple random sampling approach.  715 

An LHS set of 500,000 model parameter sets (parameterisations) for the four model parameters was derived using the 

MATLAB package ‘lhsdesign’ (The MathWorks Inc, 2016), using the ‘maximin’ criterion to maximise the minimum distance 

between each point. In order to determine what values to ascribe to the upper and lower bounds of the parameters, a smaller 

experiment using 100,000 model parameterisations was run over 45 catchments as a “first pass”. This experiment used 

parameter limits that could be found in previous literature on the GR4J model (Pushpalatha et al., 2011; Perrin et al., 2003). It 720 

was found that good parameter sets for this first pass had storage values (X1 and X3) close to the limits that had been set from 

the literature. Therefore, in consultation with the developers of the airGR model package, it was decided to widen the ranges 

of parameter values, and then to increase the number of model parameterisations that were run to account for this increase in 

the parameter space. The parameter values were sampled from a uniform distribution, using the upper and lower limits given 

in Table 1Table 1. Lower bounds of 0.0001 were ascribed to the two storage parameters to represent a value of 0, without 725 

causing division errors. 

Table 1: Sampled Parameter Ranges 

Model Parameter Units Lower Bound Upper Bound 

X1 Production Store Capacity  mm 0.0001 3000 

X2 Inter-catchment Exchange Coefficient  mm/day -20 20 

X3 Routing Store Capacity  mm 0.0001 2000 

X4 Unit Hydrograph Time Constant  days 0.5 15 

 

3.3.03.2.2 Evaluation Metrics 

For each of the 500,000 model parameterisations, six evaluation metrics were calculated in order to employ a “multi-objective” 730 

approach to cover the full range of the flow duration curve (see Table 2Table 2): Nash Sutcliffe Efficiency (NSE), focusses on 

optimising high flows, Absolute Percent Bias (absPBIAS) maintains the water balance, Mean Absolute Percent Error (MAPE) 

and NSE on logarithmic flows (logNSE) measure overall agreement on the full range of flows, and Absolute Percent Error in 

Q95 (Q95APE) and Absolute Percent Error in Mean Annual Minimum on a 30-day accumulation period (MAM30APE) focus on 

low flows. These metrics were calculated over 32 water years 1st October 1982 to 30th September 2014. 735 

Post calibration, the upper and lower daily limits of the 500 top ranking parameterisations (see Section 1.1.1 for details on the 

ranking process) were used to calculate two further model performance metrics over the full observational record available for 

each catchment (a maximum of 1891-2014):  

 The uncertainty width (UncW) - calculated by taking range of the minimum and maximum LHS500 members 

each day and dividing it by the midpoint of the LHS500 for that day. The mean of these values was then calculated 740 

over the duration of the timeseries, as per: 
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 The containment ratio (ContR) – calculated as the percentage of days that the observations fell within the 

envelope of the minimum and maximum of the LHS500 ensemble members for that day. 

3.2.3 Ranking and Selecting Model Parameterisations 745 

In order to optimise six evaluation metrics, the 500,000 model parameterisations were ranked from best to worst by their scores 

for each metric in turn, and these ranks were then summed to create a total rank. This total, or “basic”, rank was used to reorder 

the parameterisations for each catchment from best to worst, accounting for all metrics. However, the scores of the 500,000 

model parameterisations were not normally distributed, and it was found that unacceptable trade-offs between metrics were 

occurring, whereby nominal increases in one metric were taking preference over quite significant decreases in other metrics. 750 

Therefore, a series of thresholds of acceptability were set, as shown in Table 3Table 3. A simple iterative search algorithm was 

then used to re-rank the list according to these thresholds, whilst retaining their original ranks within each threshold group. 

For example, if the first, third and fourth parameterisations in the basic rank met the hardest threshold for all six metrics, but 

the second ranked parameterisation did not, the third and fourth would be bumped up the rankings, above the second resulting 

in a list of [1, 3, 4, 2…]. All parameterisations meeting the hardest thresholds were prioritised before the algorithm switched 755 

to search for those in meeting the middle thresholds, and so on. From this final list, the top ranking optimum parameter set 

was extracted for deterministic model applications, herein referred to as LHS1. Due to the variability of the performance across 

catchments, where hundreds of thousands of parameter sets met the hardest threshold in some catchments, whilst none met 

even the softest threshold in other catchments, it was decided that extracting behavioural parameter sets using a ‘limit of 

acceptability’ approach after Beven (2006) would not be appropriate. Therefore, a proportion of the sampled model 760 

parameterisations, the top 500 (herein referred to as LHS500), were taken forward to provide an indication of parameter 

uncertainty within the flow simulations. The extent to which the threshold re-ranking influenced the rankings varied by 

catchment due to the differences in mode performance. Figure 22 shows the NSE and logNSE scores of the 500,000 model 

parameterisations (though this graph has been limited to show only those with positive scores for both metrics) for the River 

Greet in Severn Trent Region. This figure demonstrates how the basic ranking system identified 500 parameterisations close 765 

to the Pareto front of NSE vs logNSE, however parameterisations with scores that were lower for NSE than logNSE were 

selected. By applying the thresholds, parameterisations with an NSE lower than 0.4 were rejected, and replaced with others 

within the acceptable range for all metrics.  

 Ranking and Selecting Model Parameterisations 

In order to optimise six evaluation metrics, the 500,000 model parameterisations were ranked by each metric in turn, and total 770 

ranks were calculated. A series of thresholds of acceptability were set, as shown in Table 3, to avoid undesirable trade-offs in 

rankings from the non-normal distributions of metric values. An iterative search algorithm was used to re-rank the list 

according to these thresholds, whilst retaining their original ranks within each threshold group. From this list, the top ranking 

optimum parameter set was extracted for deterministic model applications, herein referred to as LHS1. Due to the variability 

of the performance across catchments, where hundreds of thousands of parameter sets met the hardest threshold in some 775 

catchments, whilst none met even the softest threshold in other catchments, it was decided that a ‘limit of acceptability’ 

approach after Beven (2006) would not be appropriate. Therefore, a proportion of the sampled model parameterisations, the 

top 500 (herein referred to as LHS500), were taken forward to provide an indication of parameter uncertainty within the flow 

simulations. 
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Table 3: Thresholds for selecting acceptable model parameterisations 

 NSE absPBIAS MAPE logNSE Q95APE MAM30APE 

Optimum Value 1 0 0 1 0 0 

Hardest 0.5 10 50 0.5 50 50 

Middle 0.4 15 75 0.4 75 75 

Softest 0.3 20 100 0.3 100 100 

Remainder <0.3 >20 >100 <0.3 >100 >100 

 

 785 

Figure 2 Nash Sutcliffe Efficiency and log Nash Sutcliffe Efficiency calibration scores for all sampled model parameterisations 

(grey), the top 500 from the basic ranking process (blue), and the top 500 after the thresholds were applied to negate non-

acceptable trade-offs (red). X and Y axes have been reversed, and limited to show only parameterisations that achieved positive 

scores. Scores of 1 would indicate perfect simulation of the observations; optimal performance is in the bottom left of the graph. 

3.43.3 Flow Reconstructions 790 

Using these 500 model parameterisations per catchment, and the rainfall and potential evapotranspiration data described in 

Section 2, daily flow reconstructions were produced from January 1891 to November 2015 for the 303 catchments. Details on 

accessing this data are provided in the Data Availability section at the end of this paper. 

3.53.4 Standardised Streamflow Index (SSI) 

The application of model results to drought analysis are conducted here using the “Standardised Streamflow Index” (SSI). The 795 

SSI has for some years been advocated as an equivalent to the Standardized Precipitation Index (e.g. Vicente-Serrano et al., 

2012), being based on the cumulative probability of a given monthly mean streamflow occurring in a given catchment. The 

procedure involves fitting a statistical distribution to time series of accumulated streamflow over a baseline period, then 

transforming the data to a normal distribution to produce a dimensionless timeseries of the deviation of flow about the 

catchment mean. In this study, SSI was calculated using the 12 month accumulation period (SSI-12) and the Tweedie 800 
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distribution (Svensson et al., 2017), over the baseline period 1961-2010. A 12 month accumulation period was chosen to 

provide summaries of long term deficits that were likely to have significant impacts on water resources. The Tweedie 

distribution, which is a flexible three-parameter distribution that has a lower bound at zero, has been shown to perform 

effectively for UK river flows, across a wide range of near-natural Benchmark catchments (Svensson et al., 2017).  

3.63.5  Drought Accumulated Deficit 805 

Using the Standardised Streamflow Index (SSI), accumulated over a 12 month period, drought events were identified as periods 

where the SSI was consecutively negative (i.e. below normal) with at least one month reaching an SSI of -1.5 (Barker et al., 

2016). The sum of monthly SSIs during these events was calculated to derive the accumulated deficit (e.g. Noone et al., 2017; 

Barker et al., 2019). 

4 Results of Model Calibrations 810 

4.1 Model Calibration Statistics 

The map in Figure 3Figure 3 shows the threshold (as set out in Table 3Table 3) met by the LHS1 runs and the percentage of 

the LHS500 members that met that threshold. The map shows that the LHS1 runs for 272 of the 303 catchments met the hardest 

threshold set (shown as triangles). However, there is a lot of variability within these catchments, with 82 demonstrating all of 

the LHS500 met the hardest threshold (black triangles), whilst 108 have less than 10% of the LHS500 above the hardest 815 

threshold (yellow triangles). The LHS1 run for 20 of the catchments met the “middle” threshold, and very few catchments 

performed worse than this, having <0.4 for NSE and logNSE, >75% for MAPE, MAM30APE and Q95APE, and >15% for 

absPBIAS (5 catchments in the “softest” threshold, shown as circles, and 6 catchments that failed to meet even the “softest” 

threshold, shown as crossed circles). These localised examples of poor model performance (shown as circles and crossed 

circles) may be due to the lack of snowmelt processes in the model (in Scotland and North East England), human influences 820 

such as abstractions and water transfers or significant groundwater interactions (in Anglian and Southern England). For the 

Warleggan in Cornwall, poor performance is due to underestimation of peak flows, which may be attributed to an issue in 

simulating the localised geological outcrops.   
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 825 

Figure 3: The threshold met by the LHS1 model parameterisation (shape), and the percentage of the LHS500 that met that threshold 

(colour), for the 303 study catchments. See Table 3Table 3 for the definition of the thresholds. 

Figure 4Figure 4 shows the results of the six evaluation metrics for each of the 305 flow reconstructions over the calibration 

period (1982-2014), for both the LHS1 runs and the range of the LHS500. These polar plots confirm the findings of Figure 

3Figure 3, showing that the model performance is generally very good, with most of the LHS1 runs for the 305 catchments 830 

satisfying the thresholds defined in Table 3Table 3 with ease. This plot allows the assessment of each performance metric 

individually, and shows that performance varies both between metrics, and across catchments.  The poorest scores, where the 

LHS1 did not meet the softest threshold can be mostly attributed to NSE, but MAPE and MAM30APE each also account for 

one failed catchment. MAM30APE shows the fewest LHS1 scores below the hardest threshold, and NSE the most. LHS1 points 

are mostly on the extreme periphery of the absPBIAS and MAM30APE plots, demonstrating very good results, but several 835 

catchments deviate quite substantially from this. Q95APE exhibits a similar, but not so strong pattern; whilst the LHS1 points 

for NSE, logNSE and MAPE are far more scattered. The ranges of the LHS500 scores are also varied, with some very narrow 

ranges, particularly in the SE region across all metrics. These narrow ranges show that the 500 ensemble members are very 

similar in performance. Beyond the SE region, the ranges of model performance among the LHS500 do not appear to show 

any regional pattern, but are generally narrower for the NSE, logNSE and MAPE metrics than absPBIAS, MAM30APE and 840 

Q95APE. These results show that using this multi-objective calibration procedure, all six of the evaluation metrics were well 

optimised for the majority of catchments, providing confidence in the application of the flows derived from these model 

calibrations across the range of flow values. 
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Figure 5 shows the scores of the uncertainty width (UncW) and the containment ratio (ContR) for each of the 303 catchments. 

The lower the UncW (a narrow range of model results among the 500 ensemble members), and the higher the ContR (a high 845 

proportion of the observations fitting within the band of model runs), the more accurate and reliable the simulation is. In these 

results, there appears to be a correlation between UncW and ContR (Pearson correlation 0.52, with significance, p value 2.2e-

16): where UncW is high (which can be seen as poor), the ContR is also high (seen as good), and vice versa. This highlights 

the need to consider both of these elements when assessing the confidence in the model, as a low UncW with a low ContR 

would suggest a biased, and under-sensitive model. Catchments with the smallest UncW associated with low ContR are located 850 

in central southern England, parts of north-east England, and eastern Scotland. Whilst attribution of the cause of this modelling 

deficiency is difficult and out of scope here, it is possibly linked with the “flashiness” of the catchment, which can be due to 

groundwater and human influences (southern England and parts of north-east England), and snowmelt (eastern Scotland). In 

the majority of the catchments (250 of 303), the ContR is greater than 80%, but the UncW is also greater than the mean flow 

in 189 of those catchments. 855 

These graphs represent an overview of the performance of the model calibrations across the UK. The model performance for 

individual catchments, as well as timeseries of the reconstructed flow data from 1891-2015, can be explored in more detail 

using the interactive web application at https://shiny-apps.ceh.ac.uk/reconstruction_explorer/.  

https://shiny-apps.ceh.ac.uk/reconstruction_explorer/
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Figure 4: Polar plots of the scores for six evaluation metrics over the calibration period 1982-2014. Each blue bar and associated dot 860 
represents one of the 303 catchments, plotted around the perimeter of the circle, grouped by hydrometric region: see Figure 1Figure 

1 for region abbreviations. Dark blue dots represent the LHS1 run, and blue shaded bars represent the range of the LHS500. The 

score is shown on the radial axis, with the outside of the circle representing best model performance. 
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Figure 5 (a) Uncertainty width, and (b) Containment ratio over the calibration period (water years 1982-2014) for all 303 study 865 
catchments. In these maps, darker blue colours represent better scores. 

4.2 Thirty Year Model Validation Statistics 

In order to evaluate the integrity of the reconstructed flow series, in the earlier pre-calibration parts of the record, the six 

evaluation metrics for the LHS1 runs specified in Table 2Table 2, as well as the uncertainty width and the containment ratio 

for the LHS500, were calculated over thirty year moving windows for all water years where flow observations were available. 870 

These results have been plotted as polar heatmaps in a similar way to the polar plots showing the evaluation metrics over the 

calibration period. Figure 6Figure 6 shows the heatmap for Q95APE, whilst all eight heatmaps are provided in Supplementary 

Figure S1. In these figures, the catchments with longer observational timeseries are shown as longer bars that originate nearer 

the centre of the circles. Here it can be seen that observations for most catchments began after the 1960s, and only 12 

catchments have observations prior to the 1940s. The two longest series in the south-east (SE) region are the Lee at Feildes 875 

Weir (plotted at the boundary with Anglian region) and the Thames at Kingston (plotted three catchments further clockwise). 

Long records can also be seen in the Dee in east Scotland (ES), and the Severn in Severn Trent (ST) region.  

In general, across all metrics and catchments, the scores are very stable: where bars are dark or pale, showing good and poorer 

model performance respectively, they remain similar colours throughout their length. There are some exceptions, which are 

most notable in the catchments with longer observational records. The Avon at Evesham in ST region, the Dee at Manley Hall 880 

in North West England North Wales (NWENW) region, and the Bedford Ouse catchment in Anglian (ANG) region, show 

reduced model performance earlier in the record, with the bars moving through orange and yellow shades as they stretch 

towards the centre of the circle. It is worth noting though, that these catchments are not part of the near-natural Benchmark 

Network (Harrigan et al., 2017), and have had reported issues with inhomogeneity in their observed records as a result of 

human influences. The Lee at Feildes Weir in SE region (plotted at the boundary with ANG region) also shows variation in 885 

performance across most metrics, although in this catchment, the performance is good (plotted in black) at the start and end of 

the record, with poorer performance (shown in yellow) around the start years of 1920-1940 (evaluation years of 1920 to 1970). 
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In contrast to this, the Dee at Woodend in East Scotland, and the Severn at Bewdley in Severn Trent region, which have the 

longest records in their regions, show more temporal stability in the model performances (with black colouring for the whole 

bar). This, coupled with the generally very stable results over the 20-30 years prior to the calibration period among with the 890 

catchments with shorter records, demonstrates that the flow series produced for this study are suitable for use in longer temporal 

studies, outside of the period of calibration (1982-2014). 

 

Figure 6: Polar heatmap showing Q95APE scores calculated over 30 year moving windows for all available water years of observed 

flow data. Each bar represents one of the 303 catchments, plotted around the perimeter of the circle, and grouped by hydrometric 895 
region: see Figure 1Figure 1 for region abbreviations. The starting year of the 30 year window is represented on the radial axis with 

1891 plotted towards the centre of the circle. Catchments with longer observational records have longer bars. The shading of the 

bars represent the Q95APE scores, with darker colours being optimum. The hardest (H), middle (M) and softest (S) thresholds are 

labelled on the legend. 

5 Reconstructions of Drought Events 900 

In this section, the nine case study catchments (shown in Figure 1Figure 1) are used to examine the performance of both the 

LHS1 and the LHS500 modelled flows at simulating drought events. 

5.1 The 1975/76 Drought event 

The 1975/76 event was chosen as a case study period to test of the model’s capability to reconstruct drought events. This event 

occurs before the model calibration period of 1982-2014, and was one of the most severe and widespread droughts of the 20th 905 

century in the UK (Marsh et al., 2007). Summary statistics showing the model performance for these catchments both during 

the calibration period (1982-2014), and the ten year period surrounding this significant drought event (1971-1980) are provided 
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in the Supplementary Information Table S1. It is worth noting that the observational records in the Bush and Crimple did not 

begin until 1972, nor the Greet until 1974. 

5.1.1 Flow Timeseries 910 

The plots in Figure 7Figure 7 show observed and simulated monthly flow for the years 1971 to 1980. Here, the simulations in 

each catchment capture the variability of the observational record well, however the model results show differing ensemble 

ranges between catchments. The range of the LHS500 members (referred to as the uncertainty width in Table S1) appears in 

the graphs to be much wider in the Avon, Greet, and Tove than in the Dee, Cree and Lambourn, but this is not reflected in the 

statistics. This is likely due to the higher inherent variability or “flashiness” in the Dee and Cree over the Avon that is affecting 915 

the visualisation of the uncertainty width (UncW) in the graphs. The Lambourn does have a particularly narrow UncW (0.23 

over the ten year period), but the Dee and the Cree have some of the largest UncW (1.44 and 1.46 respectively), with the 

Crimple showing the highest (1.52).  It is evident that where the UncW is low, the observations are more likely to fall outside 

of this range; with the exception of the Lambourn at 52%, the ContR across the catchments for this period is very high 

(exceeding 73%), and there are very few instances where the observations fall outside of the range of the model ensemble 920 

members.  

In the Crimple, the UncW is especially wide during low flow events, and the observations lie very close to the lowest of these 

model runs; however the LHS1 run lies close to the observational flow values. In other catchments, such as the Otter, the 

observed and LHS1 flows sit more centrally within the range of the LHS500. In the Avon, the observations sit centrally within 

the uncertainty range, however the LHS1 run overestimates low flows. The LHS1 flows for the Cree tend to underestimate the 925 

low flows. The Avon and the Bush display poor scores in the low flows metrics MAM30APE and Q95APE compared with other 

catchments during the 1971-1980 period. The inclusion of low flows evaluation metrics in the LHS calibration procedure does 

not appear to have heavily impacted the performance of the model during high flows. The high flows that followed the 1975/76 

drought event are very well simulated, with the exception of the Lambourn and the Greet where there are slight discrepancies 

in the monthly peak flows. 930 

Daily flows for Jan 1975 – Dec 1976 (shown in Figure 8Figure 8) highlight the difference in variability between the catchments 

in the northern and southern parts of the UK. The variability is generally well simulated, though the GR4J model exhibits some 

difficulty in simulating the low flow variability in the southern catchments, with very little inter-monthly variability in the 

simulated discharge, although significant peaks are identified among the ensemble members. Note that the abnormal peaks of 

the observational record on the Lambourn in Sep-Dec of both 1975 and 1976 are the result of the West Berkshire Groundwater 935 

Scheme (WBGS) that was implemented during the drought to alleviate the extreme low flows, and are not accounted for in 

the model which has no human influence representation. Generally, LHS1 simulations are low among the LHS500 runs in the 

Cree, Bush, the Crimple (as seen in the monthly plots), but are close to the observations. This indicates thathighlights the 

importance of  selecting one the “best” simulation where a deterministic result is needed is more appropriate, in these cases, 

rather than than extracting a mean or median from the ensemble. 940 

As with the monthly flows, the Avon and the Bush show systematic overestimation of the low flows by the LHS1 run, whilst 

the Cree shows underestimation of low flows, with the exception of the most extreme low flows in Jul-Sep 1976. These mixed 

results that can be seen for the nine case study catchments highlight the variation in model performance among the 303 

modelled catchments, and emphasise the need for users to carefully appraise the evaluation metrics of the flow simulations for 

the catchments they are investigating. However, these catchments were deliberately selected to explore these variations, and 945 

the results shown in Section 4 demonstrate that the model performs well across a wide range of different catchment types at 

the national scale. 
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5.1.2 Standardised Streamflow Index (SSI) 

SSI data for the LHS1 runs have been calculated for all 303 catchments, and are freely available (Barker et al. (2018b), see 

Data Availability), but have also been calculated here for the LHS500 for the nine case study catchments. These data are used 950 

to evaluate how well the ensemble simulations reproduce the drought event accumulated deficit. For low flows, we consider 

SSI values of  -1 to -1.5 to indicate a moderate hydrological drought, -1.5 to -2 indicate a severe drought, and SSI values below 

-2 define an extreme drought (after Barker et al., 2016; McKee et al., 1993). 

Here, the SSI timeseries for the same ten year period (1971 to 1980) are appraised, and shown in Figure 9Figure 9. The 

uncertainty widths (UncW) in the SSI plots shown vary substantially between catchments and directly reflect the ranges seen 955 

in the flow timeseries: with the Lambourn showing a very low UncW from the LHS500, whilst the Greet, Tove and Otter show 

a wider range. In the Lambourn, Dee, and Bush catchments, the SSI derived from the observations frequently fall outside of 

the range of the LHS500, showing a low containment ratio (ContR). This behaviour is more pronounced in the SSI timeseries 

than the flow timeseries. The Dee catchment, for example, produced a ContR of 92.6% for the daily flow data over 1971-1980, 

but the SSI-12 ContR is just 30%. It is noticeable that the UncW of the SSI data are fairly even throughout the timeseries, 960 

whilst in the flow data, they appear to be wider during the more extreme high and low flow periods. There are two factors 

which may have contributed to these differences: firstly that the smoothed nature of the SSI-12 reduces the short term 

variability of the data (the ContR of the SSI-1 are closer to those of the flow data); and secondly, when deriving the SSI, the 

tails of the fitted distribution are more uncertain than for the average flows, which may result in convergence of the SSI values 

for the more extreme members of the LHS500 during periods of high and low flows. 965 

For the Lambourn, the negative SSI values (below normal flows) are underestimated and the positive SSI values (above normal 

flows) are overestimated showing the model is overemphasising the extreme events. In the Avon catchment the most extreme 

SSI deficit occurs in 1973, and the 1976 event is classed as “severe”, but not “extreme” for the observations and all but a few 

of the LHS500. The deficit in 1973 is simulated as being more extreme than the observations but the 1976 event is better 

captured. The uncertainty range in the Greet catchment is very wide, particularly for the SSI peak (drought termination) in 970 

1977, however the 1976 SSI deficit has a lower range among the LHS500. For the Tove, the SSI of the 1976 drought event is 

well simulated, as are those for the Crimple, despite some underestimation of SSI at other times in the 1970s. The Otter shows 

very good simulation of SSI-12 during this ten year period. 

SSI timeseries plots over the longer period 1975 to 2015 are provided in Figure S2 of the Supplementary Information. These 

plots show that although the exact magnitudes of the SSI deficits and excesses are not always captured by the model in some 975 

of the poorer performing catchments, the pattern of the SSI-12, the shape of the peaks and the troughs are very well represented.  
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5.2 Drought Event Accumulated Deficits 

This section explores the accumulated deficits of extracted drought events between 1975 and 2015 (the common observed 

period for all nine catchments), which are presented in Figure 10Figure 10.  

This plot shows that drought events are generally in good synchrony across the country. For these nine catchments, four major 980 

nationwide drought events using SSI-12 are evident: 1975-1978, 1989-1993, 1997-1998, and 2004-2006. Regional droughts 

include 1984 in the northern catchments, and 2010-2012 which affected England and Wales, but not Scotland and Northern 

Ireland.  There appears to be a relatively “drought poor” period in the south between 1977 and 1988, whilst the north shows a 

lack of droughts in the more recent period of 2006-2015.  

The observed events are very well captured by the model simulations. There are only four out of a total of 40 observed drought 985 

events across all nine catchments that are not detected by the simulated drought events: an event in 1992 in the Crimple, 1994 

and 2004 in the Dee, and 2006 in the Cree. In each of these cases, the SSI of the model simulations fall below -1, but do not 

reach -1.5 (see Figure S2), suggesting an overestimation of low flows, and therefore a slight underestimation of the drought 

deficit for this event. In contrast, there are some drought events that are identified from the model simulations that are not 

evident in the observed record, for example 1998 in the Avon and the Bush. In these events the model underestimates the flow, 990 

and therefore overestimates the drought deficit. In the Bush, this underestimation of flow continues during the low flow periods 

of 2002 and 2003-2006. 

In terms of timing and deficit, the 1995-1998 drought event demonstrates the most confidence among the simulations. The 

Crimple catchment shows some uncertainty about the timing of each of the events, and the majority of the LHS500 model 

simulations place the 2004-2006 event later than the observation. In Figure S2, it can be see that this is due to the fact that the 995 

intensity of the 2005 deficit was overemphasised by the model. Similarly, in Figure 10Figure 10, the 1975-1978 event in the 

Bush shows a wide range of mid-point dates (centre of the circles), and the deficit also varies. Overall, the deficits of the events 

are well captured by the modelled data: for example, the 2004-2006 event in the north showed smaller deficits than the 1975-

1978 event, and the modelled deficits reflect these differences. The modelled results for the 1997-1998 event in the Greet show 

two possible event timings, and the thickness of the circles indicate some differences in the simulated accumulated deficit 1000 

among the model parameterisations, though these differences are relatively small.  

On balance, the pattern of drought events is well simulated by the GR4J model, despite some small differences in magnitude 

and timing, with magnitude being better estimated than the timing. These results demonstrate that, despite the issues seen in 

the SSI timeseries plots, the dataset can provide good estimates of drought events and their characteristics. This highlights the 

potential of the model to reproduce hydrological drought events using just precipitation and evapotranspiration data, and shows 1005 

that the reconstructed flow timeseries will be valuable in appraising historic hydrological droughts over a longer period and 

wider spatial domain than the observations that are available. 
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Figure 10: Accumulated deficits of extracted drought events (using a threshold of SSI < -1.5) for nine case study catchments over 

the years 1975 to 2015. Circles are plotted along the x-axis according to the date of the mid-point of the extracted drought event. 1010 
The circle size represents the magnitude of the accumulated deficit. Drought events extracted from the observed data are shown in 

red (with a thick circle for visibility). Events extracted from the 500 ensemble members are shown with thinner black circles (these 

circles are semi-transparent, where these circles appear black, multiple ensemble members are simulating the event, and where they 

are thick, the ensemble members show different accumulated deficit values). Multiple, overlapping black circles suggest 

discrepancies in the timing of the drought event among the ensemble members. 1015 

6 Discussion 

The multi-objective calibration framework presented in this paper has produced modelled flow data with demonstrable high 

performance across a wide range of available observed records. This framework has been developed to enable nationally and 

temporally coherent flow simulation that can be applied to a wealth of applications, past, present and future. In this paper, the 

calibration framework has been applied to a wide range of catchments across the UK, allowing for a detailed exploration of 1020 

model performance across different hydrological regimes. Two potentially limiting factors in model performance were 

highlighted in this study: snowmelt, and human influences. 

The airGR snowmelt module was not employed in this study as only 15 of the 303 catchments showed snowmelt fractions 

greater than 0.15 (15%). These catchments were located along ten rivers, all in Scotland. Despite the lack of snowmelt 

processes here, all of the catchments met at least the “softest” evaluation thresholds set out in Section 3.2.3Error! Reference 1025 

source not found., with six, eight and one catchment meeting the hardest, middle and softest thresholds respectively. This 

implies that snowmelt only causes modelling issues for high altitude Scottish catchments. 

Human interactions are a common problem in hydrological modelling that remain largely understudied (Calvin and Bond-

Lamberty, 2018). Whilst global scale models have been advancing in socio-hydrology, making use of satellite information and 

governmental estimates of total water consumption, the data to support such endeavours is lacking (Bierkens, 2015). Small 1030 
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scale catchment models would need to rely on significant amounts of abstraction and licencing data as well as reservoir 

operation procedures, the details of which are often sensitive and/or unavailable.  The lack of abstraction processes in GR4J is 

likely to be responsible for some reduced model performance, particularly in the regions of Anglian and Southern England. 

The loss function (parameter X2 “inter-catchment exchange coefficient”) of the GR4J model can account for some systematic 

losses or gains, however human influence is often non-stationary (e.g. construction and operation of reservoirs, irrigation and 1035 

water transfer schemes). Including such processes would require significant amounts of abstraction and licencing data as well 

as reservoir operation procedures, the details of which are often sensitive and/or unavailable, especially at the national scale. 

For the Lee at Fieldes Weir and the Thames at Kingston naturalised river flow data, which attempt to remove the impact of 

human activity on the observed flow, were available. Whilst not included in this paper for consistency with the other 301 

catchments, calibration scores were slightly better for the naturalised flow data in these catchments, though both naturalised 1040 

and observed calibrations easily met the hardest thresholds. An alternative approach is to focus studies on the “near-natural” 

catchments, which are deemed to have minimal human influence. Of the 303 catchments included in this study, 115 are 

classified as near-natural and are part of the Low Flows Benchmark Network (Harrigan et al., 2017). Since many of the UK’s 

most significant catchments are heavily influenced, they were not excluded from this study, and the model does successfully 

manage to implicitly account for human influences in these large rivers. Localised issues in the model’s performance, and 1045 

therefore the quality of the reconstructed flow data, highlights the need for users to take caution when choosing a catchment 

from this set of 303. Depending on their needs, an alternative nearby catchment where model performance is better, may be 

more suitable if model performance is poor in the initially selected catchment.  

The modelling framework developed in this study has explored model parameter uncertainty in order to account for equifinality 

(Beven, 2006). 500,000 parameter realisations were run, and the best 500 of these were selected for each catchment to allow 1050 

for uncertainty quantification in applications of these flow data. Here, the uncertainty in the model runs was shown to vary 

more between catchments than over time (from 1890-2015, where long observational records were available). Whilst model 

parameter uncertainty was considered in this study, further sources of uncertainty can contribute to variations in model 

performance, including: model input data (precipitation and PET), flow data used for model calibration, and the choice of 

hydrological model (Smith et al., 2018b). 1055 

The impact of precipitation uncertainty has been shown to be more significant than PET in hydrological modelling (Paturel et 

al., 1995; Bastola et al., 2011; Guo et al., 2017). Perry and Hollis (2005) and  Legg (2015) state that the accuracy of gridded 

data is dependent on the density of the rain gauge network, with greater errors associated with sparse coverage. Therefore 

errors in the reconstructed precipitation data applied in this study will be higher in the early part of the record when the station 

density was lower. Since the model is calibrated to the more recent period 1982-2014, uncertainty from the rainfall data may 1060 

propagate through to the flow reconstructions in the early part of the record. However, from the moving window analysis of 

model performance (see Figure 6Figure 6), there does not appear to be significant degradation in the quality of flow simulations 

in the early part of the record. Tanguy et al. (2018) considered the impact of poorer quality and lower density of temperature 

data on the derivation of the PET dataset that was employed in this study and concluded that., whilst PET is an important 

variable for predicting runoff,  They concluded that, as the calibration of hydrological models can eliminate the influence of 1065 

degraded different PET inputs that result from low quality temperature data on runoff simulation can be limited by the adequate 

calibration of hydrological models  (Bai et al., 2016; Seiller and Anctil, 2016). Thus,, this the Tanguy et al. (2018) PET dataset 

is considered particularly suitable for use in hydrological models, especially if they are calibrated to this dataset. 

Uncertainties may also arise from the observational flow data used to calibrate models. Uncertainties from the precision of the 

instruments that measure the water level (stage), and uncertainties from the derivation of the stage-discharge relationship are 1070 

both particularly sensitive in the extreme flow ranges. For example, a 10mm error in stage measurement at the Q95 flow can 
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result in a 20% error in flow for around a third of the UKs gauging stations (National River Flow Archive, 2018). The dataset 

used in this study was taken from a reputable source (the NRFA) who in order to minimise such errors, conduct rigorous 

quality control procedures using both automatic and manual validation procedures annually (Dixon et al., 2013). Nevertheless, 

hydrometric data quality does vary across the network and errors tend to cluster in the extreme flow ranges, so hydrometric 1075 

uncertainty could be influential in some periods in catchments used herein – we recommend users consult the NRFA’s 

extensive station and catchment metadata (available at https://nrfa.ceh.ac.uk/) in conjunction with model performance 

information (Smith et al., 2018a) when using the flow reconstructions. 

Whilst the parameter uncertainty in the model was evaluated here, applying different model types and model structures can 

also yield dramatically different results. Many multi-model experiments have been conducted to assess the differences between 1080 

hydrological models (e.g. Warszawski et al., 2014;Vansteenkiste et al., 2014). Similarly, different structures of the same model 

(e.g. GR4J, GR5J and GR6J) can influence the results. However, Smith (2016) found that model parameter uncertainty can be 

as wide as that from using different hydrological models, and initial testing of the GR5J and GR6J models showed significant 

parameter interactions that resulted in poor simulations in many UK catchments. It was therefore decided that considering the 

parameter uncertainty of the GR4J model would be sufficient to devise an ensemble of flow reconstructions for this dataset 1085 

and study. Future work will investigate these simulations against a wider set of model runs using other model structures as 

part of a follow-up study. 

The modelling framework developed here has been shown to be fit-for-purpose for drought reconstruction, across a very wide 

range of catchment behaviours. The reconstructed series can be used to shed light on historical drought occurrence, 

characteristics (severity, duration, termination, seasonality) and variability. A first exploration of hydrological drought using 1090 

the reconstructions is presented in a companion paper by Barker et al. (2019).  The reconstructed data can support a wide range 

of future drought research applications, and also analysis of very long-term streamflow variability more generally, across the 

flow regime (given the calibration approach applied). The data can also be used to support drought and water resources 

planning activities, whether directly or to provide context for stochastic approaches to drought generation. Ensembles of 

historical drought events can be used to provide insight into the probabilities of the termination of a current event over a certain 1095 

time period (e.g. Parry et al., 2018). Knowledge of historic events can also be used to explore statistical correlations with 

atmospheric drivers of droughts that may help predict the onset of events (e.g. Lavers et al., 2015). In these approaches, 

extending the hydrological record by ~70 years significantly increases the sample of historic drought events from which to 

conduct such research. Furthermore, the modelled data may be used to extend streamflow records used in seasonal hydrological 

forecasting with a hydrological analogues method (e.g. Svensson, 2016). The model calibrations may be applied to studies of 1100 

the impacts of climate change on future hydrological extremes in the UK, such as in the Future Flows Hydrology project 

(Haxton et al., 2012), the outputs of which have been widely applied by water resources managers. The modelling framework 

developed in this study could extend the Future Flows Hydrology research using the more recent UKCP18 data (Met Office 

Hadley Centre, 2018;Met Office, 2017;Haxton et al., 2012). However, as with the Future Flows Hydrology project, users will 

need to be aware of the implications of the lack of artificial influence processes in the model. Ongoing work is applying these 1105 

reconstructions to drought and water resource planning case studies. The data availability section provides further information 

on accessing these datasets. 

7 Conclusions 

In this paper, a novel multi-objective calibration method was derived and tested for 303 catchments in the UK, and the 

calibrations were used to reconstruct river flows back to 1891. The GR4J model was applied and calibrated using Latin 1110 

Hypercube Sampling (LHS) and six evaluation metrics simultaneously to allow for the evaluation of high, median and low 

https://nrfa.ceh.ac.uk/
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flows, thus optimising the calibrations for a wide range of potential applications. A best run (LHS1) and 500 model 

parameterisations (LHS500) were used to assess model uncertainty. Overall, the multi-objective calibration procedure has 

yielded excellent model results when compared to the observations, with the exception of only a few catchments. The 

reconstructed flows were appraised over 30 year moving windows, and were shown to provide good simulations of flow in the 1115 

early parts of the record, where observations were available. Model performance and uncertainty during drought events was 

explored in nine case study catchments, and varied by catchment. The model simulations were used to derive the Standardised 

Streamflow Index, which allowed for an assessment of the model’s ability to simulate significant deviations from a catchment’s 

“norm”. The results showed that, despite observations regularly sitting outside the range of the LHS500, the peaks and troughs 

of the timeseries were well represented. Drought event accumulated deficits were extracted from the SSI data and the results 1120 

were overall very good, demonstrating that the data from these model calibrations are suitable for the identification and 

characterisation of hydrological drought events in the UK. 

This The contributions of this paper are threefold: Firstly, the multi-objective model calibration framework applied here has 

been shown to provide robust model calibrations that can be applied in studies of both general and extreme hydrology. This 

framework could be applied elsewhere across Europe, and indeed globally to allow for spatially and temporally consistent 1125 

simulations of hydrology with far reaching potential applications. Secondly, the model calibrations that have been derived for 

these 303 catchments in the UK can be used in further research and operational applications, such as for seasonal hydrological 

forecasting, or for assessing changes in river flows under climate change. Finally, this study has produced a crucial dataset of 

~125 years of seamless flow reconstructions across the UK that will allow for the spatial and temporal investigation and 

quantification of past drought events, as well as long term trends in flows, that have never before been possible. These methods 1130 

and results can provide a valuable step forward in our ability to plan for and forecast the onset, duration and termination of 

drought events in the UK, and overseas. 
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9 Data Availability 

Potential Evapotranspiration data: The PET dataset used in this study is freely available on the Environmental Information 

Data Centre (Tanguy et al., 2017). 1140 

Observed river flow data: Observed flow data was accessed via the National River Flow Archive, which provides daily and 

peak river flows for the UK for over 1500 gauging stations. (https://nrfa.ceh.ac.uk/)  

Reconstructed flow data: The flow reconstructions produced in this study are freely available on the Environmental 

Information Data Centre (EIDC, Smith et al., 2018a) along with associated metadata on the models performance. The LHS1 

and LHS500 model runs are provided separately within the EIDC dataset. The LHS1 files includes the deterministic simulation 1145 

based on LHS1 parameter set, plus the upper and lower daily limits from the LHS500 to allow for the interpretation of the 

parameter uncertainty without the need to assess the full ensemble. It should be noted however that these upper and lower 

bounds cannot be implemented as timeseries in their own right as they do not represent individual ensemble members, and are 

instead comprised of multiple runs. The LHS500 files contain all 500 timeseries, and each catchment has a metadata file 

https://nrfa.ceh.ac.uk/
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providing performance of each of the 500 runs for that catchment. The performance of the model in each catchment, as well 1150 

as the reconstructed flow timeseries, can be explored using an interactive web application at https://shiny-

apps.ceh.ac.uk/reconstruction_explorer/  

Standardised Streamflow Index data: The SSI data derived from the LHS1 runs are also freely available from the 

Environmental Information Data Centre (Barker et al., 2018b). This SSI data, along with further event analyses can be explored 

using an interactive web application at https://shiny-apps.ceh.ac.uk/hydro_drought_explorer/  1155 
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