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Abstract. Providing accurate soil moisture (SM) conditions
is a critical step in model initialization in weather forecast-
ing, agricultural planning, and water resources management.
This study develops monthly to seasonal (M2S) top layer SM
forecasts by forcing 1-3 month ahead precipitation forecasts5

with Noah3.2 Land Surface Model. The SM forecasts are de-
veloped over the Southeast US (SEUS) and the SM forecast-
ing skill is evaluated in comparison with the remotely sensed
SM observations collected by Soil Moisture Active Passive
(SMAP) satellite. Our results indicate potential in developing10

real-time SM forecasts. The retrospective 18-months (April
2015 - September 2016) comparison between SM forecasts
and the SMAP observations shows statistically significant
correlations of 0.62, 0.57, and 0.58 over 1-3 month lead times
respectively.15

1 Introduction

Seasonal climate forecasts provide beneficial information
for developing hydrologic forecasts that support planning
and management of water resources. Likewise, accurate soil
moisture (SM) forecasting can significantly assist the deci-20

sion making for agricultural systems. Most evaluation of cli-
mate forecasts has traditionally focused only on the skill in
predicting seasonal precipitation, temperature and the resul-
tant terrestrial fluxes, primarily monthly-to-seasonal stream-
flow (Devineni et al., 2008; Armal et al., 2018; Mazrooei25

et al., 2015) Also, studies have focused on the utility of cli-
mate forecasts for agriculture systems by evaluating the skill
in predicting seasonal crop yield under rain-fed agriculture
(Hansen et al., 2006). As rain-fed agriculture heavily de-

pends on actual soil moisture conditions and the stress that 30

crops face during the growing phase, long-range SM fore-
casts would be more advantageous to improve crop yield
forecasts. Moreover, accurate prediction of initial hydrologic
conditions (IHC) enhances the estimation of land surface
feedback to the atmosphere in regional climate models and 35

successively enhances the skill in seasonal hydrologic fore-
casts (Koster and Suarez, 2001; Berger and Entekhabi, 2001;
Wood et al., 2002).

Most efforts in developing SM forecasts through land-
surface models (LSMs) have actually been compared to 40

the model’s SM products under a simulation scheme -
using observation-based atmospheric forcings to execute the
model- as opposed to actual SM observations (Mo et al.,
2012; Mo and Lettenmaier, 2014). Nevertheless, systematic
evaluation of our ability to forecast actual SM has not been 45

carried out due to the limited availability of high quality ob-
served SM data over large domains. Thus, comparison of
SM forecasts with remotely sensed SM observations holds
a considerable potential. Remote sensing of SM observa-
tions using microwave scanners began in the late 1970s with 50

the Scanning Multichannel Microwave Radiometer (SMMR)
and continued with the Special Sensor Microwave/Imager
(SSM/I). In the past decade with the launch of Advanced
Microwave Scanning Radiometer (AMSR) there is a decade
long dataset (2002-2011) of SM estimates from space, and 55

the effort continued with the European Space Agency Soil
Moisture and Ocean Salinity Mission (SMOS). Recently
developed observations from Soil Moisture Active Passive
(SMAP) mission (Entekhabi et al., 2010) provides a great
opportunity in evaluating our ability to predict/forecast SM 60

conditions, because of its superior quality compared to other
satellite sensors (Chen et al., 2018). Thus, this study is mo-
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tivated by exploiting SMAP data to validate Monthly-to-
Seasonal soil moisture forecasting. SMAP being an L-band
sensor has a deeper penetration depth, hence a higher sensi-
tivity to moisture content in the top layer of soil. Also SMAP
data are provided at a 36km resolution and resampled at 9km5

resolution where the latter resolution makes it very appropri-
ate for our study. In addition, SMAP observations at 6am and
6pm capture the significant time points of the diurnal hydro-
logical cycle. (Entekhabi et al., 2010).

The main intent of this study is (1) to develop M2S SM10

forecasts from Noah3.2 LSM forced with climate forecasts
and (2) to evaluate the skill of SM forecasts based on SM
observations from SMAP satellite over the Southeast US
(SEUS). To our knowledge, this is the first effort that eval-
uates the skill of a LSM in developing SM forecasts based15

on SMAP observations over a large region. The next section
briefly describes the data and forecasting methodology, fol-
lowed by the results and evaluation of the forecasting skill
and discussion.

2 Hydroclimatic Data and Methodology20

This study utilizes Noah3.2 LSM to develop monthly
SM simulations and M2S SM forecasts over the SEUS.
Noah LSM has been developed from 1993 through multi-
institutional cooperation and has been widely used in oper-
ational weather and climate predictions (Ek et al., 2003). It25

also exhibits significant skill in developing monthly to sea-
sonal streamflow forecasts over the study region (Mazrooei
et al., 2015). The Noah3.2 LSM is executed within the
NASA’s Land Information System (LIS) framework (Ku-
mar et al., 2006) designed for high performance hydrolog-30

ical modeling. Under the forecasting scheme, precipitation
forecasts from ECHAM4.5 Atmospheric General Circula-
tion Model (AGCM) along with the hourly climatology of
non-precipitation meteorological forcing variables (e.g. wind
speed, humidity, net SW/LW radiations, etc.) are used to im-35

plement the LSM.
Phase 2 of the North American Land Data Assimilation

System (NLDAS-2) is a comprehensive dataset of meteoro-
logical forcings available at relatively fine spatio-temporal
resolution (hourly temporal scale and 1/8◦ spatial resolution)40

from 1979 to present (Mitchell et al., 2004). Hence, it pro-
vides a valuable basis to compute hourly climatological forc-
ings for hydrologic forecasting purpose. Under the forecast-
ing scheme, the hourly climatological forcings (i.e. hourly
mean of NLDAS-2 forcings over a period of 31 years 1979-45

2010) are fed to the LSM.
Land-surface IHCs are one of the key components of

LSMs in seasonal hydrologic forecasting where the pre-
dictability of the terrestrial fluxes is associated with the ac-
curacy of the IHCs (Wood et al., 2016). In order to prepare50

adequate estimates of IHCs prior to forecasting, NLDAS-2
meteorological forcings are used to run the Noah3.2 LSM
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Figure 1. Soil moisture forecasting schematic. a) Observed precip-
itation forcings from Maurer et al. (2002) and b) observed non-
precipitation land surface forcing fields from NLDAS-2 are imple-
mented into the NOAH3.2 LSM to simulate I) the Initial Hydrologic
Conditions (IHC) prior to each forecasting period. The IHCs are
then used along with c) 1-3 month ahead ECHAM4.5 precipitation
forecasts (spatially downscaled and temporally disaggregated, see
section 2.1) and d) climatological forcings (i.e., mean of NLDAS-
2 non-precipitation forcings over the period 1979-2010), in order
to execute the NOAH3.2 LSM under a forecasting scheme and to
develop II) 1-3 month ahead soil moisture forecasts.

in a simulation scheme (Figure 1). The computed hydrologic
conditions at the end of the simulation period are then used to
update the model’s IHCs at the beginning of each forecasting 55

period.

2.1 ECHAM4.5 Precipitation Forecasts

Besides the climatological forcings from NLDAS-2, precip-
itation forecasts from ECHAM4.5 AGCM are used in the
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forecasting approach. ECHAM4.5 climate forecasts are more
skillful than hourly climatology of NLDAS-2 precipitation
variable because they inherit the ENSO signals (Mazrooei
et al., 2015). ECHAM4.5 precipitation forecasts are obtained
from the International Research Institute for Climate and So-5

ciety (IRI) Climate Data Library (Li and Goddard, 2005).
These forecasts are available at 2.8◦ spatial resolution and
monthly time scales from January 1957 to present with lead
times up to 7-months ahead consisting of 24 ensemble mem-
bers. Constructed analogue Sea Surface Temperature (SST)10

forecasts have been used to develop the ECHAM4.5 AGCM
climate forecasts. The spatial and temporal resolutions of the
climate forecasts are much coarser than the resolution of the
Noah3.2 LSM forcing variables (i.e. 1/8◦), thus statistical
downscaling and disaggregation methods are employed in or-15

der to address this mismatch.
Monthly precipitation forecasts are first spatially down-

scaled from 2.8◦ to 1/8◦ resolution through a Principal Com-
ponent Regression (PCR) model and then a Kernel Nearest
Neighbor (K-NN) approach is applied in order to reproduce20

daily time-series of precipitation forecasts form monthly
forecasts. For each 1/8◦ grid cell over the study region, four
nearest 2.8◦ grid cells from ECHAM4.5 AGCM are identi-
fied as the PCR predictors and the observed monthly pre-
cipitation at 1/8◦ resolution from Maurer et al. (2002) is25

used to train the PCR model. The PCR model is executed
in a retroactive mode for each forecasting month (from April
2015 to September 2016) using 54 years of data (from 1957
to 2010) as the training period. This time period is the in-
tersection of the intervals of the observational data and the30

ECHAM4.5 forecasts. For example, in order to obtain down-
scaled forecasts for January 2016, all the January data from
1957 to 2010 serves as the training dataset. Next, using the K-
NN disaggregation approach, the downscaled monthly fore-
cast is compared to the historical observations of the same35

month (from 1949 to 2010) to identify and rank the near-
est neighbors (i.e. months with the closest quantity). The
observed daily precipitation corresponding to the identified
months are resampled based on Lall and Sharma (1996) ker-
nel. The K-NN temporal disaggregation scheme preserves40

the monthly precipitation totals during the daily-resampling
process. The explained steps are applied to the ECHAM4.5
forecasts in order to develop 1-3 month ahead daily precipita-
tion forecasts (Figure 1). Further details of downscaling and
disaggregation methods, the assessment of uncertainty prop-45

agation, and the seasonal skill of downscaled precipitation
forecasts can be found in Mazrooei et al. (2015).

Under the LSM forecasting mode (Figure 1), spatially
downscaled and temporally disaggregated precipitation fore-
casts along with the hourly climatology of the NLDAS-250

non-precipitation forcing variables are implemented to run
Noah3.2 LSM in 30-minute time steps. This setup is per-
formed at the beginning of each month over the period Febru-
ary 2015 - September 2016 in order to develop up to 3-
months ahead forecasts of hydrological fluxes. The Noah3.255

products are issued at daily time scale and at 0.25◦ spatial
resolution. Mean monthly SM forecasts of top 10cm layer of
soil is computed by averaging daily forecasted SM quanti-
ties.

2.2 SMAP Soil Moisture Data 60

The SMAP satellite was launched on January 31, 2015 de-
signed to measure near surface (0-5 cm) SM and land sur-
face freeze/thaw conditions with a complete global coverage
in 2-3 days (Entekhabi et al., 2010). In this study, Level-3
SMAP radiometer global daily SM data at 9 Km spatial reso- 65

lution is obtained from the National Snow and Ice Data Cen-
ter (NSIDC) (O’Neill et al., 2018). This data is available for
the time period April 2015 to present of which we used the
data over an 18-months period from April 2015 to September
2016. 70

To reproduce monthly SM observations matching spatio-
temporal resolution of the LSM products, 9km daily obser-
vations during a specific month are averaged and upscaled to
0.25◦. Given a 0.25◦ grid cell, the daily SMAP observations
within a circular window circumscribed on the grid cell are 75

averaged to represent the monthly observation for that loca-
tion.

Furthermore, for each grid cell a uniform bias correction
is applied to the timeseries of monthly SM forecasts from
Noah3.2 LSM based on the difference between the mean 80

of SMAP observations and the mean of forecasts over the
18-months study period. Monthly bias-corrected SM fore-
casts (in three different lead-times) are then compared to the
corresponding monthly time-series of SMAP observations
using correlation coefficient and Root Mean Squared Error 85

(RMSE) metric in order to quantify the forecasting skill.

3 Results

Figures 2 and 3 show the RMSE and correlation coeffi-
cients between the bias-corrected monthly SM forecasts and
monthly SMAP observations for 1-3 month lead times. Since 90

18 monthly values are used for the correlation quantification,
grids with insignificant correlation coefficient at 95% con-
fidence interval (±1.96/

√
n, where n denotes the length of

data points) are plotted in a gray scale (Steel et al., 1960).
From Figure 2, higher RMSE occur over regions with pre- 95

dominantly wetland soil (e.g. Mississippi) and over regions
with low content of clay abundant soil with slight swelling
potential (e.g. eastern side of North Carolina and South Car-
olina states) according to Olive et al. (1989). The RMSE
is also higher over the wetlands of the Everglades. The 100

SM forecasts from LSM has lower RMSE and higher cor-
relation over Alabama-Coosa-Tallapoosa (ACT), Tennessee
River Basins, and over the east flowing rivers of GA. SM
forecasts also have limited skill over the western parts of NC
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Figure 2. RMSE of the bias corrected 1-3 months ahead soil mois-
ture forecasts based on the SMAP soil moisture observations
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Figure 3. Correlation coefficient between 1-3 months ahead soil
moisture forecasts with the SMAP soil moisture observations. grid
cells with insignificant correlations (based on 18 monthly data
points) are grayed out

and SC with the correlation becoming insignificant as a result
of increasing forecast lead time.

Among all the 2121 grid cells covering our study domain,
about 23% of the grid cells show a slightly increased RMSE
due to a longer forecast lead time, mostly located in the5

southeast side of Appalachian mountains. Over most grid
points, the forecasting error, RMSE, does not change signif-
icantly with increase in lead time, which indicates the strong
role of IHCs and limited skill of precipitation forecasts over
the SEUS (Koster et al., 2010; Sinha et al., 2014). The spa-10

tially averaged RMSEs over the SEUS are equal to 0.039,
0.042 ,and 0.041 for 1-month, 2-month, and 3-month lead
times respectively. The minimal change in RMSE across dif-
ferent lead times expresses the strong memory (persistence)
of SM over SEUS. However, based on the correlation coeffi-15

cients in Figure 3, when the lead time increases from 1 month
to 3 months, number of grid cells with insignificant corre-
lation increases specifically over the southern side of Ap-
palachian. On the other hand, areas with significant presence
of deep soils (Effland, 2008) such as Mississippi, Alabama,20

and eastern side of Texas state indicate increased correlation
coefficients in longer forecasting lead times. Along with the
SM persistence, initializing the Noah3.2 LSM with simulated
hydrologic conditions has a strong influence in improving
the SM forecasting even for longer lead times (Shukla and25

Lettenmaier, 2011). The spatially averaged correlation coef-
ficients are equal to 0.62, 0.57, and 0.58 for 1-3 month lead
times respectively. Overall, the skill of the SM forecasts de-
clines slightly with increasing lead-time due to the errors in
imprecise precipitation forecasts.30

To further understand how the forecasts capture the vari-
ability in SM observations, two regions (each including four
grid cells) with high and low skill in forecasting are selected
and the anomalies around the mean of SM observations are
presented in Figure 4. This figure also includes linear model 35

fits and the prediction intervals at 95% confidence level. The
first column shows scatter plots between the anomalies of
the forecasts and the observations over four neighboring grid
cells with relatively low RMSE (0.019 on average) and a
strong correlation coefficient (0.726 on average) located in 40

Alabama state. The second column shows similar informa-
tion from the pack of four grid cells located in South Car-
olina with poor forecasting skill (high RMSE and low corre-
lations). The R2 quantity included in each plot indicates the
ability of forecasts in explaining the variability in SMAP ob- 45

servations, also the declining slope of the fitted line implies
the increasing forecasting error for longer lead times.

Good Forecast 
1-

m
o

n
th

 a
h

ea
d

2-
m

o
n

th
 a

h
ea

d
3-

m
o

n
th

 a
h

ea
d

0 0.1

SMAP

-0.1
-0.1 

0

0.1

F
C

S
T

R2:0.56

0 0.1

SMAP

-0.1
-0.1 

0

0.1

F
C

S
T

R2:0.53

0 0.1

SMAP

-0.1
-0.1 

0

0.1

F
C

S
T

R2:0.45

0 0.1

SMAP

-0.1
-0.1 

0

0.1

F
C

S
T

R2:0.12

0 0.1

SMAP

-0.1
-0.1 

0

0.1

F
C

S
T

R2:0.06

0 0.1

SMAP

-0.1
-0.1 

0

0.1

F
C

S
T

R2:0.00

Bad Forecast 

Figure 4. Scatter plots of soil moisture residuals for two sets of
sample grid cells with good and bad forecasting skills. The residuals
are centered around the mean of SMAP observations.
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4 Conclusion and Discussion

The main focus of this study is to develop monthly-
to-seasonal (M2S) soil moisture (SM) forecasts through
Noah3.2 LSM using ECHAM4.5 precipitation forecasts and
evaluate the skill in SM forecasting by a comparison with5

the newly emerging SM observations from the SMAP satel-
lite. Efforts have primarily focused on evaluating the skill of
M2S SM forecasting over CONUS US by comparing with
the model simulation driven by observed forcing as a bench-
mark (Mo et al., 2012; Mo and Lettenmaier, 2014). Inte-10

gration of the ECHAM4.5 precipitation forecasts with the
NLDAS-2 non-precipitation forcing variables supports the
idea to evaluate the LSM in real-time SM forecasting. Our
previous studies have also showed the robust performance
of ECHAM4.5 forecasts for improving streamflow forecast-15

ing (Sinha et al., 2014; Mazrooei and Sankarasubramanian,
2017). Both forecast verification metrics, correlation coef-
ficient and RMSE, show that the forecasted SM captures
the variability in SMAP observations with decent accuracy.
There is a slight skill reduction in SM forecasting as the fore-20

casting lead time increases.
To disseminate the proposed forecasting approach with

agencies, the hydroclimatology group at North Carolina State
University (NCSU) with collaboration of North Carolina
state Climate Office have developed a SM and streamflow25

forecasting portal that automatically develops forecasts in
real-time and updates the percentiles of SM forecasts by
comparing it with the climatological distribution of long-
term simulated SM (Arumugam et al., 2015). Most of the
skill in SM forecasting is predominantly influenced by up-30

dating model initial conditions prior to forecasting. The skill
of the SM forecasts also declines slightly with increasing
lead-time due to the errors in imprecise precipitation fore-
casts. This has also been observed in the context of stream-
flow forecasting where most of the skill in developing tercile35

streamflow forecasts primarily comes from updated initial
conditions (Mazrooei and Sankarasubramanian, 2017, 2019).

Yet, the specification and quantification of different
sources of uncertainty in SMAP data needs to be fully ad-
dressed to achieve a comprehensive assessment of forecast-40

ing skill. In addition, this study is limited using one partic-
ular GCM model for climate forecasts and one land surface
model for hydroclimatic modeling. Hence, our findings can
be expanded to future research by examining and combin-
ing different LSMs and climate models. For instance, multi-45

model precipitation forecasts tend to improve the reliability
of climate forecasts which could potentially improve the pre-
dictability of SM conditions. Moreover, the increasing avail-
ability of observational data from ongoing and future satellite
missions along with the implementation of data assimilation50

methods would presumably improve the accuracy of our es-
timations of model’s IHCs, and consequently increases the
hydrologic forecasting skill (Liu et al., 2012).

The main contribution of the paper is in systematic devel-
opment of M2S soil moisture forecasts through a distributed 55

land surface model contingent on climate forecasts. In con-
clusion, utilizing coarse scale climate forecasts along with
proper downscaling methods (e.g., statistical or dynamic
downscaling), provides valuable information to force land
surface models and predict future hydrologic conditions. The 60

introduced methodology in this manuscript is one detailed
process of hydrologic forecasting chain. And more broadly,
it can be embedded into an interactive forecasting toolkit in-
cluding multiple other approaches for hydrologic forecast-
ing. This system can be specifically designed for facilitating 65

water-related problems useful for natural resource managers
and agricultural users (Abdi and Endreny, 2019).

This study could be extended by applying the same
methodology using different LSMs along with precipitation
forecasts from multiple GCMs. As it was presented here, 70

the developed SM forecasts indicate promising skill over the
Southeast U.S. when evaluated against the soil moisture es-
timates from SMAP satellite. This work proposes a gainful
area for future investigations as the SM forecasts could be
evaluated based on the SM observations from other sources 75

such as the European Space Agency (ESA) Climate Change
Initiative (CCI), available for a longer time period compar-
ing to SMAP products. Also it is a point of interest to check
the accuracy of the forecasts over a selection of historical
drought events and assess the value of such forecasts in 80

drought management during severe events.
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