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Abstract. A set of complex processes contribute to generate river runoff, which in the hydrological sciences are typically 

divided into two major categories: surface runoff, sometimes called Hortonian flow, and baseflow-driven runoff or Dunne 

flow.  In this study, we examine the covariance of global satellite-based surface water inundation observations with two 

remotely sensed hydrological variables, precipitation, and terrestrial water storage, to better understand how apparent runoff 10 

generation responds to these two dominant forcing mechanisms. Terrestrial water storage observations come from NASA’s 

GRACE mission, while precipitation comes from the GPCP combined product, and surface inundation levels from the NASA 

SWAMPS product. We evaluate the statistical relationship between surface water inundation, total water storage anomalies, 

and precipitation values under different time lag and quality control adjustments between the data products. We find that the 

global prediction of surface inundation improves when considering a quality control threshold of 50% reliability for the 15 

SWAMPS data, and after applying time lags ranging from 1 to 5 months. Precipitation tends to be the dominant driver of 

surface water formation at zero time lag in most locations, while very wet tropical locations and high latitudes also contain a 

storage driven runoff component at variable time lags. 

1 Introduction 

There is a long history of research concerning the mechanisms that control runoff generation at the terrestrial land surface (e.g. 20 

Beven and Kirkby, 1976; Pearce et al., 1986; Lyon et al., 2006; Vivoni et al., 2007; Kirchner, 2009). In brief, it is generally 

well accepted that two major mechanisms are responsible for surface water formation: (1) excess precipitation and the 

limitation of infiltration causing surface runoff, or (2) the rising of the water table and deeper soil moisture to push more water 

into stream networks at low topography. If precipitation rates exceed infiltration rates, then precipitation dominates surface 

inundation development and is typically defined as Hortonian flow. If precipitation successfully infiltrates and soils become 25 

saturated, then subsurface soil water storage will dominate surface water formation, typically described as Dunne flow. These 

are core concepts within terrestrial hydrology; however, there are limited observational studies on these runoff generation 

mechanisms at scales larger than a catchment.  We are not aware of any studies that have assessed the contributions to surface 

water formation over a global domain. However, using existing data on global precipitation and water storage, and considering 
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how these two mechanisms influence surface inundation development, it is now possible to examine surface runoff 30 

mechanisms across a range of land surface conditions. 

 Satellite observations offer a means to observe changes in hydrology over a global domain, presenting a distinct 

advantage over in-situ observations in representing a variety of hydrological mechanisms and processes across ecosystems and 

land cover types. Previously published work has utilized a variety of measurements of catchment or basin antecedent 

conditions, such as soil moisture or vertically integrated water storage, to assess the influence of soil water on runoff generation 35 

(e.g. Koster et al., 2010; Reager et al., 2014). NASA’s Gravity Recovery and Climate Experiment (GRACE) mission (Tapley 

et al., 2004) offers a 15+ year observational record on the state of terrestrial water storage globally. GRACE measures a change 

in the gravitational potential that is often linearly related to the amount of water stored at the land surface beneath the satellites. 

While these measurements are increasingly uncertain at resolutions beneath ~150,000 km2, they offer a robust and highly 

accurate means to measure changes in storage for areas larger than 150,000 km2 (e.g. Wahr et al., 2006; Wiese et al., 2016) 40 

and offer a globally gridded data set of terrestrial water storage anomalies (TWSA) that is relatively easy to use.  Previously, 

GRACE observations have been applied to develop a flood potential index and to characterize the intensity of certain flood 

events based on storage pre-conditioning or “flood potential” (Reager et al., 2009; Reager et al., 2014). These studies serve as 

proof that integrated basin water storage is significant in understanding surface inundation changes.  

There is also extensive literature relating to the influence of precipitation on surface inundation (Guo et al., 2012; 45 

Kirchner, 2009). The Global Precipitation Climatology Project (GPCP) offers a globally gridded precipitation dataset that 

optimally combines satellite, in situ and land radar measurements into a single best product (Adler et al., 2003).  This 

precipitation data set can be used to assess the relationship between rainfall and surface water inundation globally.   

The satellite observations of TWSA and precipitation can be related to observations of surface water formation from 

the Surface WAter Microwave Product Series (SWAMPS) (Schroeder et al., 2014) dataset to better understand runoff 50 

generation.  SWAMPS was created based on optical and radiometric observations of surface reflectance that are often 

associated with water.  These observations are expressed in terms of fractional inundation, or the percentage of land occupied 

by surface water at a 0.25-degree grid resolution globally.  Schroeder et al. (2014) provide a quality control map expressed as 

likelihood or confidence that allows a user to mask out unreliable data at the quality threshold of their choosing.  

There are no previous studies on the hypothesized linear relationships between precipitation, storage and surface 55 

inundation across the globe.  We conduct such a study here too: (1) assess the viability of satellite data to quantify this 

relationship; (2) determine which mechanism has the more considerable influence in different regions, (3) characterize general 

behavior. We approach these goals through the development of a simple linear model of inundation based on remote sensing 

observations. 
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2 Data and Methods 60 

The datasets downloaded for this work include surface inundation (Surface WAter Microwave Product Series; SWAMPS), 

global precipitation estimates (Global Precipitation and Climatology Project; GPCP), and groundwater storage (Gravity 

Recovery and Climate Experiment; GRACE).  

SWAMPS is available from Columbia University at approximately 0.25° x 0.25° [approx. 25 km x 25 km] spatial 

resolution and daily temporal resolution from February 1st, 1992 to January 31st, 2017. The SWAMPS dataset reports a quality 65 

control map that represents the reliability of their published fractional surface water, which is influential in our reported results 

(Schroeder et al., 2014) (Fig. 1a).  Desert land covers have low reliability in their inundation measurements. The Sahara Desert 

has explicitly poor measurements due to limestone deposits. Other variables that were reported to interfere with the SWAMPS 

signal were snow and precipitating clouds. 

 70 
Figure 1: a) SWAMPS quality control map. b) Example of monthly SWAMPS measurements for August 2007. c) Fig. 

1b after locations less than 50% probability of validity are removed. 
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 GPCP is available from the National Oceanic & Atmospheric Administration's (NOAA) Earth System Research 

Laboratory at 2.5° x 2.5° [approx. 250 km x 250 km] spatial resolution and monthly temporal resolution from January 1979 to 75 

present (Adler et al., 2003). GPCP provides global precipitation measurements in mm/day (Fig. 2a). 

 GRACE measures the gravity anomaly detected by the orbiting satellites; the JPL GRACE Tellus group processes 

the anomalies and provides the change in total water storage across the globe [cm] (Fig. 2b). GRACE is available at a 3.0° x 

3.0° [approx. 300 km x 300 km] spatial resolution and monthly temporal resolution from April 2002 to June 2017 (Watkins et 

al., 2015, Wiese et al., 2016). 80 

 
Figure 2: a) Example of monthly GPCP measurements for August 2007. b) Example of monthly GRACE total water 

storage anomaly (TWSA) measurements for August 2007. 
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 After data acquisition, our preliminary step was to re-grid each dataset using linear interpolation to a common 0.5° x 85 

0.5° spatial resolution. Also, we averaged daily surface inundation measurements from SWAMPS to achieve monthly values. 

The timeframe for this work spanned April 2002 to October 2015, the common period amongst these products.  

This work involved assessing the viability of a single-linear regression (Eq. (1) and (2)), or multi-linear regression (Eq. (3)) 

model based on GPCP and GRACE, to predict surface inundation estimated by SWAMPS. 

𝑆𝑊𝐴𝑀𝑃𝑆	 = 	𝑚(𝐺𝑃𝐶𝑃) + 𝑏           (1) 90 

𝑆𝑊𝐴𝑀𝑃𝑆	 = 	𝑚(𝐺𝑅𝐴𝐶𝐸) + 𝑏           (2) 

𝑆𝑊𝐴𝑀𝑃𝑆	 = 	𝑚1(𝐺𝑃𝐶𝑃) +𝑚2(𝐺𝑅𝐴𝐶𝐸) + 𝑏                      (3) 

Using the correlation coefficients (R2) and regression coefficients (slope values; m, m1, and m2), we can statistically 

determine which mechanism will have a stronger influence on surface inundation developments. To further develop a model 

capable of capturing long-term variability across the globe, we utilized each dataset’s climatology. 95 

 To develop these climatology datasets, we calculate the long-term monthly average values. The resulting dataset 

would be a single value at each cell for each month, reflecting the average monthly signal occurring through the historical 

record. Using the climatology, we can observe the average annual hydrologic cycle anywhere across the globe.  

 After completing the regressions, multiple grid cells had negative regression coefficients. Negative regression 

coefficients are of concern because it should generally be impossible to have an inverse relationship between surface inundation 100 

and precipitation or groundwater storage. In most cases, time-lags between forcing and response (for example a high TWSA 

due to snow which only manifests as surface water 3 months later) are responsible for negative regression coefficients within 

the developed model and applying optimal lag corrected correlations improved our statistical strengths.  We conducted iterative 

cross-correlations between TWSA and inundation and between precipitation and inundation to statistically determine the most 

appropriate time correction at each cell location across the globe (Fig. 4). We applied two time-lag thresholds: 0 to 5 months 105 

and 0 to 11 months lag. Time lag corrections occur at each grid cell, which shifts the climatology signal of GRACE or GPCP 

within the phase of SWAMPS.   

 The final step in pre-processing the datasets is the removal of low-quality data from the SWAMPS dataset. Schroeder 

et al. (2014), issued a quality control (QC) map for the SWAMPS dataset (Fig. 1a) and this we set the quality threshold at 50% 

confidence or higher. As previously stated, desert regions (i.e., Sahara Desert, Southern Africa, and Western Australia) and 110 

snow-dominated regions (i.e., Rocky Mountains and Central Asia) have poor reliability in measurements, likely due to 

erroneous reflectivity, and are largely filtered out from the study domain (Fig. 1b and 1c). 

 In total, nine regression models were validated by calculating surface inundation and comparing to the SWAMPS 

dataset. Pearson’s R2, the root mean squared error (RMSE), coverage and a ratio between R2 and coverage were used to 

determine each model’s strength. We determined coverage by counting the number of cells within the global polygon; this 115 

analysis excluded Antarctica and Greenland which had no SWAMPS coverage. A model with a ratio closer to one describes a 

stronger model; this ratio is important because it considers maximizing coverage and correlation to observations. In choosing 
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the ‘best’ model, we are considering two things: (1) overall model performance at predicting surface inundation, and (2) the 

global coverage retained. With the final model, historical GRACE and GPCP measurements are used to calculate modeled 

surface inundation. A best-fit line is applied to display the relationship between modeled surface inundation and measured 120 

SWAMPS values.  

 After selecting the best model, we assessed model performance on a basin and global scale. Correlation statistics (R2 

and RMSE) between measured and model climatologies and scatterplots are used to present model performance at four highly 

studied basins: Amazon River in South America, Mackenzie River in Canada, Mississippi River in the USA, and Ob River in 

Russia. The difference between modeled and measured surface inundation highlights locations of over and under predictions 125 

across the global domain.We estimated the root-mean-squared error (RMSE) between modeled and measured surface 

inundation for our entire observational period to evaluate our model’s error in predictions across the historical record. Finally, 

the relative error of SWAMPS was calculated using Eq. (4) to determine the error between modeled and measured SWAMPS 

relative to the measured SWAMPS signal.  

We took the difference between normalized GPCP and GRACE slopes to determine whether groundwater storage or 130 

precipitation is relatively more influential in surface inundation developments. These variables were standardized to compare 

them on the same scale (Eq. (5)). Equation (6) is used to compare the standardized slopes. Flows were classified as Horton 

flows if the value was positive (i.e. precipitation was dominant in runoff generation). Flows were classified as Dunne flows if 

the value was negative (i.e. TWSA was dominant in runoff generation). Values closer to zero will show that both groundwater 

storage and precipitation are both equally important in surface inundation developments at that location. The methodology is 135 

displayed as a flowchart in Figure 3 to clarify our process further. 

𝐸𝑟𝑟𝑜𝑟	(%) = 	 6789
:;<

            (4) 

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑	𝑉𝑎𝑙𝑢𝑒𝑠 = 	 HIJ
K

           (5) 

𝐶𝑜𝑛𝑡𝑟𝑜𝑙	𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 = |𝐺𝑃𝐶𝑃| − |𝐺𝑅𝐴𝐶𝐸|          (6) 

 140 
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Figure 3: Methodology flowchart.  
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3 RESULTS  

Lag maps display the signal lag between SWAMPS and GRACE or SWAMPS and GPCP for 0 to 11 months (Fig. 4a and 4b) 145 

and 0 to 5 months (Fig. 4c and 4d). Locations in the white represent no lag or no data and areas in red represent long delays. 

The color-axis range is from 0 to 5 months of lag.  We can see minimal differences comparing the lags maps for 0 to 11 months 

correction and 0 to 5 months correction. Majority of the GRACE and GPCP signal is only out of phase with SWAMPS by at 

most five months. This is statistically supported in Table 1 because R2 and RMSE from all 0 to 11 month scenarios match their 

0 to 5 month time lag counterpart. We no longer considered all 0 to 11 month models beyond this point. 150 

 
Figure 4: Maps display the number of months between SWAMPS, GRACE, and GPCP signal that were statistically 

determined by cross-correlations. a) GPCP lag map with a time threshold of 0 to 11 months. b) GRACE lag 

map with a time threshold of 0 to 11 months. c) GPCP lag map with a time threshold of 0 to 5 months. d) 

GRACE lag map with a time threshold of 0 to 5 months. 155 

 

 Measured and modeled SWAMPS values are displayed using scatterplots (Fig. 5). The x-axis displays modeled 

SWAMPS while the y-axis represents measured SWAMPS. These plots reveal global surface inundation measurements from 

April 2002 to October 2015 without the consideration of quality control, referred to as QC, (Fig. 5a) and with QC (Fig. 5b). 

The red line displays the best fit relationship as determined by MATLAB’s statistical toolbox. We can statistically and visually 160 

see the significance of removing locations with less than 50% QC. The R2 increased (0.732 to 0.900) and RMSE decreased 
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(3.830 to 1.890) after QC was applied (Fig. 5). There is a large spread of surface inundation from the model (Fig. 5a), but after 

masking there is a clear trend line between modeled and measured SWAMPS (Fig. 5b). Further comparing the validation 

statistics between single and multi-linear models, we can see there isn’t much improvement. However, we know that a model 

with both GRACE and GPCP better represents the world compared to just considering one variable. A multi-linear regression 165 

model with a time lag correction improves in both RMSE and R² compared to the non-time corrected. Therefore, a multi-linear 

regression model with a time lag correction between 0 to 5 months is the most rigorous model for further analysis.  

 
Figure 5: Example of multi-linear regression model validation plots. a) Measured versus modeled SWAMPS with a 

time lag correction of 0 to 5 months b) Fig. 5a after locations less than 50% probability of validity are removed. 170 
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 Modeled SWAMPS using GRACE and GPCP (Fig. 6a) and measured SWAMPS (Fig. 6b) are displayed with a time 

lag correction between 0 and 5 months during August 15th, 2007. Green locations are reported to have high inundation values 

while white spots have low inundation values or no available data. The percent difference between these two maps (Fig. 6c) 

identifies locations of over and underestimation. The red, grey, and blue locations represent overestimations, minimal 175 

differences, and underestimations, respectively, between modeled and measured inundation. Majority of the domain is grey 

because the differences between small values of inundation are insignificant. Modeled SWAMPS has the largest limitations at 

locations with snow or ice (around the Great Lakes and northern parts of Russia) and in areas that experience seasonal 

monsoons (Bay of Bengal and west coast of South Africa).  

 180 
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Figure 6: Visual comparison of monthly modeled and measured SWAMPS. a) Modeled surface inundation. b) 

Measured surface inundation. c) The absolute difference between modeled and measured surface 

inundation. Modeled SWAMPS has a time correction of 0 to 5 months. 

 

 Regional model performance is assessed through correlation statistics between climatologies and scatterplots for 185 

measured and modeled inundation (Fig. 7). The Amazon (Fig. 7a-c), Mackenzie (Fig. 7d-f), Mississippi (Fig. 7g-7i), and Ob 

(Fig. 7j-l) River Basins were used for this analysis because their hydrology is well understood and a successful model should 

maintain its rigor in these significant areas. Blue, red, and green markers (Fig. 7a, 7d, 7g, and 7j) represent randomly selected 

cell locations along the river, measured and modeled climatologies are represented with solid and dashed lines using the same 

color scheme (Fig. 7b, 7e, 7h, and 7k); the cell coordinates are in Table 2. Red boxes (Fig. 7a, 7d, 7g, and 7j) outline the cells 190 

used in the scatterplots (Fig. 7c, 7f, 7i, and 7l) and their boundary coordinates are also in Table 2. Climatology correlation 

statistics are in Table 3. Similar to Figure 5b, the scatterplots relate measured and modeled inundation between April 2002 to 

October 2015 with QC applied for the cells within the boundaries. The red line displays the best fit line along with the 

calculated R2. The multi-linear regression model with a time lag correction between 0 to 5 months is used to calculate modeled 

inundation. Majority of the basins’ domains display strong statistics between the measured and modeled inundation (Table 3). 195 

Basins that experience varying snow seasons (Mississippi and Ob) have the largest modeled and measured inundation 

discrepancies (Fig. 7i and 7l). These two river basins have the largest spread in modelled versus measured about the best fit 

line and have reduced R2 correlations (0.511 and 0.629, respectively). Inadequate data during the snow season is limiting 

model performance during these times (no available measurements during winter months as seen in Fig. 7e and 7k).  
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 200 
Figure 7: Cells included in scatter plots are outlined by the red boxes and red, blue, and green dots denote the cell used 

for measured and modeled climatologies. Modeled inundation has a time correction of 0 to 5 months. a) 

Amazon map. b) Amazon measured and modeled climatologies. c) Amazon scatterplot. d) Mackenzie map. e) 

Mackenzie measured and modeled climatologies. f) Mackenzie scatterplot. g) Mississippi map. h) Mississippi 

measured and modeled climatologies. i) Mississippi scatterplot. j) Ob map. k) Ob measured and modeled 205 

climatologies. l) Ob scatterplot. 
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 To assess global model performance, we calculate the RMSE (Fig. 8a) between the measured and modeled time series 210 

at each grid cell. Low RMSE values represent small differences between long-term modeled and measure SWAMPS while 

high RMSE values tell us there are more considerable differences in the signals. Grey represents low error values while red 

displays more substantial error. White locations have no value. Long-term surface inundation (Fig. 8b) values range from 0 to 

8% with high values in green, low values and no value in white. Figure 8c displays errors in our modeled SWAMPS relative 

to the measured SWAMPS signal. Locations with heavy snow (northern parts of North America, Europe, and Central Asia) 215 

and regular annual cycles of inundation (India and Amazon) have more significant RMSE values compared to other locations.  
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Figure 8: a) RMSE between modeled and measured SWAMPS with time correction of 0 to 5 months. b) Long-term 

average (LTA) surface inundation. c) Error relative to the measured SWAMPS signal. 

 220 

 Depending on the global location, either GRACE, GPCP or both control surface inundation for the no time-lag 

correction (Fig. 9a), 0 to 5 months (Fig. 9b), and 0 to 11 month corrected models (Fig. 9c). Precipitation dominate locations 

are red, and groundwater storage controls blue locations. Grey areas represent locations controlled by both GRACE and GPCP. 

Areas shown in white represent no values. Overall, we determined that both GPCP and GRACE control majority of surface 

inundation developments across the world. By taking the standard deviation (σ) of the standardized modeled SWAMPS values 225 

(σ = 1.04), we determined the percentage of cells controlled by GRACE, GPCP or both. Cells with a difference less than our 

calculated standard deviation (-σ) were considered GRACE dominate. Cells with a difference greater than our calculated 

standard deviation (+σ) were GPCP dominate. Both groundwater and precipitation controlled cells have values within ±σ. 

Using these standards, we found groundwater storage controlled 8.3% of cells which produced Dunne flows. Precipitation 

controlled 6.9% of cells and generated Horton flows. Both variables controlled approximately 84.8% of cells.  230 
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Figure 9: Control variable maps with a) no time correction, b) time correction of 0 to 5 months, and c) time correction 

0 to 11 months. 
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 Maps with correlation values (Fig. 10, 11a, and 11b) have a color-axis from 0 to 1. Correlations closer to 1, displayed 235 

in yellow, represent stronger relationships between SWAMPS and the other dataset(s). Correlations closer to 0, presented in 

blue, represent weaker relationships between SWAMPS and the other datasets(s). We provided five correlation maps with 

different inputs: the no time-lag corrected model with SWAMPS and GRACE (Fig. 10a), the no time-lag corrected model with 

SWAMPS and GPCP (Fig. 10b), the no time-lag corrected model with SWAMPS, GRACE and GPCP (Fig. 10c and 11a), and 

the 0 to 5 month time corrected model with SWAMPS, GRACE, and GPCP (Fig. 11b).  240 

 Correlation maps from the single linear regressions comparing (Fig. 10a, and 10b), demonstrate limitations in 

correlation strengths. Using GRACE alone, there is a stronger relationship between total water storage and surface inundation 

within the Amazon River in South America. Precipitation and surface inundation display stronger correlations within the 

Middle East compared to groundwater storage and surface inundation. It is clear that these single linear models are capable of 

describing some surface inundation developments within specific regions, but not on a global scale.  245 

 There is a significant statistical improvement across the globe when including both groundwater storage and 

precipitation measurements in predicting surface inundation (Fig. 10c). Locations such as the Amazon, Mississippi and the 

Middle East have higher representation compared to the single linear models. The time-lag adjustment further improves our 

global correlations. Figures 11a and 11b display correlations with no time lag and 0 to 5 month time-lag corrections, 

respectively. We can see visual improvements within the multi-linear regression's correlations east of the Andes and between 250 

the Sierra and the Rocky Mountains after the applied time lag correction.  

 Regression coefficient maps (Fig. 11c-f) have a color-axis between -1 to 1. Grey displays small values, and red 

represents large values. Regression coefficients for GPCP and GRACE from the non-time corrected model are shown in Fig. 

11c and 11e while regression coefficients for GPCP and GRACE from the 0 to 5 months corrected model are displayed in Fig. 

11d and 11f, respectively. White locations represent no data. The time lag correction moderates the extreme GPCP slopes 255 

around Northern Canada and Midwest North America. GRACE slopes around the Great Lakes and Australia also reflect this 

relationship. 
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Figure 10: Correlation maps for no time-lag corrected regression models a) Single linear regression between SWAMPS 

and GRACE. b) Single linear regression between SWAMPS and GPCP. c) Multi-linear regression between 260 

SWAMPS, GRACE, and GPCP. 
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 265 
Figure 11: a) Multi-linear regression correlations with no time correction. b) Multi-linear regression correlations with 

a time correction of 0 to 5 months. c) GPCP regression coefficients for the model in Fig. 10a. d) GPCP 

regression coefficients for the model in Fig. 10b. e) GRACE regression coefficients for the model in Fig. 10a. f) 

GRACE regression coefficients for the model in Fig. 10b. 

 270 

https://doi.org/10.5194/hess-2019-292
Preprint. Discussion started: 8 July 2019
c© Author(s) 2019. CC BY 4.0 License.



19 
 

4 DISCUSSION 

The surface water formation across the majority of locations within our study domain are controlled almost equally by 

groundwater storage and precipitation forcings. In our results, for the locations where precipitation has a substantial lag time, 

groundwater storage tends to have a smaller lag time. The converse is also true, and an inverse relationship follows for a 

considerable GRACE lag and a slight GPCP lag. Sites such as the Amazon, Middle East, North America and parts of Asia 275 

reflect this pattern. Asia and the Middle East have larger lag times with groundwater storage compared to precipitation while 

the Amazon and North America have larger lag times with rainfall compared to groundwater storage.  

By emphasizing the climatology, we created a model of inundation based on precipitation and storage that captures 

and predicts the average seasonal cycle. In areas that are profoundly affected by interannual variability, such as that during 

ENSO events in locations such as Australia and Africa (Nicholson et al., 1997, Power et al., 1999, Ropelewski et al., 1987), 280 

our model under-predicts these infrequent anomalous fluxes. Heavy snow cover also creates detection issues within the 

SWAMPS surface water product. The effects of both snow and interannual variability may have influenced RMSE in these 

locations, and in general, the highest relative error occurs at high elevations and in locations that receive large amounts of 

snow, especially along the Rocky Mountains (Bales et al., 2006, Berghuijs et al., 2016, Yan et al., 2018). Rain-on-snow events 

or rapid snowmelt could contribute to a rise in surface inundation without a relative increase in precipitation or groundwater 285 

storage. These types of situations are not considered or captured by our model. 

No previous literature attempts to determine inundation developments with TWSA and precipitation measurements 

rather than just precipitation (Power et al., 1999, Prigent et al., 2007). However, there are studies on the watershed scale that 

have known control mechanisms. Papa et al. (2010) relate precipitation and river stage height to surface inundation extents 

within the Amazon. They report precipitation to lead inundation with an influence of snow and glacier melt. We determined 290 

precipitation and storage are equally accountable for the inundation developments in the Amazon. Strong correlations between 

inundation, precipitation, and storage support our result. Papa et al. (2007) relate snowmelt and river discharge to surface 

inundation within the Ob basin. Maximum inundation is reported to occur between May and June with little to no lag between 

river discharge and maximum inundation. We report inundation in the Ob Basin as water storage driven and our reported lags 

(maximum of one month) and modeled surface inundation climatology match their results. Temimi et al. (2005) predict 295 

flooding in the Mackenzie River Basin by relating river discharge to water surface fraction (WSF). The maximum flooding 

occurs during the spring when the snowpack melts and ice jams drive flooding. We report inundation developments to be 

controlled by both water storage and precipitation and the basin’s modeled climatology reflects the same peak season.  

Time lags between inundation and other variables have been well studied in hydrology (Hamilton et al., 2002, Power 

et al., 1999, Prigent et al., 2007). Our reported precipitation time lags show similarity with those reported by Prigent et al. 300 

(2007) in the Amazon and South America. Instead of GRACE observations, Hamilton et al. (2002) correlated river stage 

observations to inundated areas. They report time lags between river stage and inundation for the Roraima and Pantanal 

floodplains in South America as 1 and 1.5-month lag. We report the lags for those areas to be two months. Their use of the 
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nearest river stage station and 0.25° cells of the Scanning Multi-channel Microwave Radiometer (SMMR) dataset compared 

to the 0.5° cells of GRACE may account for this difference. 305 

 Our modeled inundation generally overpredicted locations with low surface inundation values. Areas along the Rocky 

Mountains, northern parts of Russia and Asia all experienced overpredictions. Other studies on surface inundation have also 

reported overestimations at locations with low inundation values (Prigent et al., 2007, Ticehurst et al., 2014). Issues such as 

cloud coverage, fire scars, heavily snowed areas and large variation in topography could contribute to these over predictions.  

5 CONCLUSION 310 

This work relates global surface inundation developments to measurements of total water storage and precipitation using 

NASA remote sensing observations. The novelty of this work is the combined application of the GRACE, GPCP and 

SWAMPS data products to study and classify runoff generation mechanisms. We determine a majority of the global surface 

inundation developments to be equally controlled by total water storage and precipitation. Our methods have the most 

significant errors at locations with low values of inundation, which agrees with current literature. Remote sensing has provided 315 

novel approaches to study general hydrology concepts on a global scale and holds much promise to further study phenomena 

in areas with limited in situ data. 

 
Data Availability. The data used in this work is publicly available. SWAMPS stable fractional surface inundation data can be 

downloaded from Columbia University’s International Research Institute for Climate and Society data library 320 

(https://iridl.ldeo.columbia.edu/SOURCES/.NASA/.JPL/.wetlands/.dailyinundation/.swamps_v3p1/?Set-Language=en). 

GPCP monthly average precipitation data is provided by NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, at 

https://www.esrl.noaa.gov/psd/data/gridded/data.gpcp.html. GRACE Mascon data are available at http://grace.jpl.nasa.gov, 

supported by the NASA MEaSUREs Program. 
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Model 
Lag 

Correction 

R² 

No QC 
RMSE 

Coverage 

No QC [%] 

R²/ Coverage 

[-] 

R² 

QC ≥ 50 
RMSE 

Coverage 

QC ≥ 50 [%] 

R²/ Coverage 

[-] 

GPCP+GRACE None 0.760 3.64 97.25 0.78 0.896 1.94 77.71 1.15 

GPCP+GRACE 0 to 5 0.732 3.83 97.12 0.75 0.900 1.89 77.58 1.16 

GPCP+GRACE 0 to 11 0.730 3.85 97.12 0.75 0.901 1.89 77.58 1.16 

GPCP None 0.911 3.37 97.64 0.93 0.974 1.46 78.10 1.25 

GRACE None 0.788 3.42 97.25 0.85 0.899 1.90 77.71 1.16 

GPCP 0 to 5 0.887 3.79 97.64 0.91 0.968 1.64 78.10 1.24 

GRACE 0 to 5 0.692 4.11 97.12 0.71 0.856 2.28 77.58 1.10 

GPCP 0 to 11 0.887 3.79 97.64 0.91 0.968 1.64 78.10 1.24 

GRACE 0 to 11 0.692 4.12 97.12 0.72 0.856 2.28 77.58 1.10 

 

Table 1: Model validation results; QC = Quality control, RMSE = Root mean squared error 400 
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Site 
Amazon Mackenzie Mississippi Ob 

Longitude Latitude Longitude Latitude Longitude Latitude Longitude Latitude 

Green -52.25 -1.25 -119.25 61.25 -89.75 32.75 71.25 60.75 

Blue -65.25 -2.25 -125.75 63.75 -88.75 37.25 80.75 56.25 

Red -56.25 -2.25 -131.25 66.25 -89.75 35.35 76.25 59.25 

Boundary 
-76.25 to 

-52.25 

-9.75 to 

3.25 

-134.25 to 

-112.75 

56.75 to 

67.75 

-91.25 to 

-87.75 

31.25 to 

38.75 

69.25 to 

81.75 

55.75 to 

65.25 

 

Table 2: Coordinates for basin sites and the boundaries for cells included in the scatterplots 
  405 
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Site 
Amazon Mackenzie Mississippi Ob 

R² RMSE R² RMSE R² RMSE R² RMSE 

Green 0.817 1.275 0.967 0.290 0.776 0.082 0.868 0.947 

Blue 0.889 0.455 0.955 0.009 0.855 0.389 0.886 0.544 

Red 0.916 1.356 0.994 0.148 0.855 0.466 0.909 0.265 

 

Table 3: Basin climatology correlation statistics 
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