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Abstract. A set of complex processes contribute to generate river runoff, which in the hydrological sciences are typically

divided into two major categories: surface runoff, sometimes called Hortonian flow, and baseflow-driven runoff or Dunne flow.

In this study, we examine the covariance of global satellite-based surface water inundation observations with two remotely

sensed hydrological variables, precipitation, and terrestrial water storage, to better understand how apparent runoff generation

responds to these two dominant forcing mechanisms in different regions of the world. Terrestrial water storage observations5

come from NASA’s GRACE mission, while precipitation comes from the GPCP combined product, and surface inundation

levels from the NASA SWAMPS product. We evaluate the statistical relationship between surface water inundation, total

water storage anomalies, and precipitation values under different time lag and quality control adjustments between the data

products. We find that the global estimation of surface inundation improves when considering a quality control threshold of

50% reliability for the SWAMPS data, and after applying time lags ranging from 1 to 5 months. Precipitation and total water10

storage equally control majority of surface inundation developments across the globe. The model tends to underestimate and

overestimate at locations with high interannual variability and with low inundation measurements, respectively.

1 Introduction

There is a long history of research concerning the mechanisms that control runoff generation at the terrestrial land surface (e.g.

Beven and Kirkby, 1976; Pearce et al., 1986; Lyon et al., 2006; Vivoni et al., 2007; Kirchner, 2009). In brief, it is generally well15

accepted that two major mechanisms are responsible for surface water formation: (1) excess precipitation and the limitation of

infiltration causing surface runoff, or (2) the rising of the water table and deeper soil moisture to push more water into stream

networks at low topography. If precipitation rates exceed infiltration rates, then precipitation dominates surface inundation

development and is typically defined as Hortonian flow. If precipitation successfully infiltrates and soils become saturated,

then subsurface soil water storage will dominate surface water formation, typically described as Dunne flow. These are core20

concepts within terrestrial hydrology; however, there are limited observational studies on these runoff generation mechanisms

at scales larger than a catchment. We are not aware of any studies that have assessed the contributions to surface water formation

over a global domain. However, using existing data on global precipitation and water storage, and considering how these two
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mechanisms influence surface inundation development, it is now possible to examine surface runoff mechanisms across a range

of land surface conditions.25

Satellite observations offer a means to observe changes in hydrology over a global domain, presenting a distinct advantage

over in-situ observations in representing a variety of hydrological mechanisms and processes across ecosystems and land cover

types. Previously published work has utilized a variety of measurements of catchment or basin antecedent conditions, such as

soil moisture or vertically integrated water storage, to assess the influence of soil water on runoff generation (e.g. Koster et al.,

2010; Reager et al., 2014). NASA’s Gravity Recovery and Climate Experiment (GRACE) mission (Tapley et al., 2004) offers a30

15+ year observational record on the state of terrestrial water storage globally. GRACE measures a change in the gravitational

potential that is often linearly related to the amount of water stored at the land surface beneath the satellites. While these

measurements are increasingly uncertain at resolutions beneath 150,000 km2, they offer a robust and highly accurate means to

measure changes in storage for areas larger than 150,000 km2 (e.g. Wahr et al., 2006; Wiese et al., 2016) and offer a globally

gridded data set of terrestrial water storage anomalies (TWSA) that is relatively easy to use. Previously, GRACE observations35

have been applied to develop a flood potential index and to characterize the intensity of certain flood events based on storage

pre-conditioning or “flood potential” (Reager and Famiglietti, 2009; Reager et al., 2014). These studies serve as proof that

integrated basin water storage is significant in understanding surface inundation changes.

There is also extensive literature relating to the influence of precipitation on surface inundation (Guo et al., 2012; Kirchner,

2009). The Global Precipitation Climatology Project (GPCP) offers a globally gridded precipitation dataset that optimally40

combines satellite, in situ and land radar measurements into a single best product (Adler et al., 2003). This precipitation data

set can be used to assess the relationship between rainfall and surface water inundation globally.

The satellite observations of TWSA and precipitation can be related to observations of surface water formation from the

Surface WAter Microwave Product Series (SWAMPS) (Schroeder et al., 2014) dataset to better understand runoff generation.

SWAMPS was created based on optical and radiometric observations of surface reflectance that are often associated with water.45

These observations are expressed in terms of fractional inundation, or the percentage of land occupied by surface water at a

0.25°grid resolution globally. Schroeder et al. (2014) provide a quality control map expressed as likelihood or confidence that

allows a user to mask out unreliable data at the quality threshold of their choosing.

For this study, we imagine a global land surface model, typically run at 1°globally (or at best, 0.25°globally), for which

topographic processes are represented empirically, and in which surface water formation follows Beven and Kirkby’s ‘top-50

model’ formulation (Beven and Kirkby, 1976). In this, topography and topographic heterogeneity are represented statistically,

and there are truly still aggregated (or “lumped’) runoff generation processes that occur at coarse resolution. At those scales,

topography is never explicitly represented, but instead, is represented implicitly as a grid-cell level characteristic that can in-

fluence lumped runoff generation. Here we have taken the same conceptual approach, for which we examine the aggregated

runoff generation across the entire 0.25°grid cell, and those results can be associated with topographic information but without55

an explicit representation of topography in the regression. This is a simple and valid approach that is observation-focused, in

order to later diagnose processes and mechanisms statistically.
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There are no previous studies on the hypothesized linear relationships between precipitation, storage and surface inundation

across the globe. We conduct such a study here to: (1) assess the viability of satellite data to quantify this relationship; (2)

determine which mechanism has the more considerable influence in different regions, (3) characterize general behavior. We60

approach these goals through the application of a simple linear regression model of inundation based on remote sensing

observations.

2 Data and Methods

The datasets downloaded for this work include surface inundation (Surface WAter Microwave Product Series; SWAMPS),

global precipitation estimates (Global Precipitation and Climatology Project; GPCP), and groundwater storage (Gravity Re-65

covery and Climate Experiment; GRACE).

SWAMPS is available from Columbia University at approximately 0.25°x 0.25°[approx. 25 km x 25 km] spatial resolution

and daily temporal resolution from February 1st, 1992 to January 31st, 2017. The SWAMPS dataset reports a quality con-

trol map that represents the reliability of their published fractional surface water, which is influential in our reported results

(Schroeder et al., 2014) (Fig. 1a). Desert land covers have low reliability in their inundation measurements. The Sahara Desert70

has explicitly poor measurements due to limestone deposits. Other variables that were reported to interfere with the SWAMPS

signal were snow and precipitating clouds.

GPCP is available from the National Oceanic & Atmospheric Administration’s (NOAA) Earth System Research Laboratory

at 2.5°x 2.5°[approx. 250 km x 250 km] spatial resolution and monthly temporal resolution from January 1979 to present

(Adler et al., 2003). GPCP provides global precipitation measurements in mm/day (Fig. 2a).75

GRACE measures the gravity anomaly detected by the orbiting satellites; the JPL GRACE Tellus group processes the

anomalies and provides the change in total water storage across the globe [cm] (Fig. 2b). GRACE is available at a 3.0°x

3.0°[approx. 300 km x 300 km] spatial resolution and monthly temporal resolution from April 2002 to June 2017 (Watkins

et al., 2015; Wiese et al., 2016).

After data acquisition, our preliminary step was to re-grid each dataset using linear interpolation to a common 0.5°x80

0.5°spatial resolution. Also, we averaged daily surface inundation measurements from SWAMPS to achieve monthly val-

ues. The timeframe for this work spanned April 2002 to October 2015, the common period amongst these products. This work

involved assessing the viability of a single-linear regression (Eq. (1) and (2)), or multi-linear regression (Eq. (3)) model based

on GPCP and GRACE, to represent surface inundation estimated by SWAMPS. Precipitation and water storage long-term

anomalies, a component of the total signal, are known to be globally correlated with a known lag Humphrey et al. (2016).85

We utilize full signal in the regressions to ensure levels of orthogonality between precipitation and water storage that avoid

collinearity.

SWAMPS =m(GPCP )+ b (1)
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SWAMPS =m(GRACE)+ b (2)90

SWAMPS =m1(GPCP )+m2(GRACE)+ b (3)

Using the correlation coefficients (R2) and regression coefficients (slope values; m, m1, and m2), we can statistically deter-

mine which mechanism will have a stronger influence on surface inundation developments. To further capture the long-term

variability across the globe, we utilized each dataset’s climatology.95

To develop these climatology datasets, we calculate the long-term monthly average values. The resulting dataset would be a

single value at each cell for each month, reflecting the average monthly signal occurring through the historical record. Using

the climatology, we can observe the average annual hydrologic cycle anywhere across the globe.

After completing the regressions, multiple grid cells had negative regression coefficients. Negative regression coefficients

are of concern because it should generally be impossible to have an inverse relationship between surface inundation and100

precipitation or groundwater storage. In most cases, time-lags between forcing and response (for example a high TWSA due

to snow which only manifests as surface water 3 months later) are responsible for negative regression coefficients within

the regressions and applying optimal lag corrected correlations improved our statistical strengths. We conducted iterative

cross-correlations between TWSA and inundation and between precipitation and inundation to statistically determine the most

appropriate time correction at each cell location across the globe (Fig. 4). We applied two time-lag thresholds: 0 to 5 months105

and 0 to 11 months lag. Time lag corrections occur at each grid cell, which shifts the climatology signal of GRACE or GPCP

within the phase of SWAMPS.

The final step in pre-processing the datasets is the removal of low-quality data from the SWAMPS dataset. Schroeder

et al. (2014), issued a quality control (QC) map for the SWAMPS dataset (Fig. 1a) and this we set the quality threshold at

50% confidence or higher. As previously stated, desert regions (i.e., Sahara Desert, Southern Africa, and Western Australia)110

and snow-dominated regions (i.e., Rocky Mountains and Central Asia) have poor reliability in measurements, likely due to

erroneous reflectivity, and are largely filtered out from the study domain (Fig. 1b and 1c).

In total, nine regression models were validated by calculating surface inundation and comparing to the SWAMPS dataset.

Pearson’s R2, the root mean squared error (RMSE),and a ratio between R2 and coverage were used to determine each model’s

strength. Coverage is considered the number of SWAMPS grid cells with numerical values within the global coastline; for115

example, analysis excluded Antarctica and Greenland because there is no SWAMPS data for these regions. A model with a

ratio closer to one describes a stronger model; this ratio is important because it considers maximizing coverage and correlation

to observations. In choosing the ‘best’ model, we are considering two things: (1) overall model performance at estimating

surface inundation, and (2) the global coverage retained. With the final model, historical GRACE and GPCP measurements

are used to estimate surface inundation (referred to as modeled surface inundation). A best-fit line is applied to display the120

relationship between modeled surface inundation and measured SWAMPS values.
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After selecting the best model, we assessed model performance on a basin and global scale. Correlation statistics (R2 and

RMSE) between measured and model climatologies and scatterplots are used to present model performance at four highly

studied basins: Amazon River in South America, Mackenzie River in Canada, Mississippi River in the USA, and Ob River

in Russia. The difference between modeled and measured surface inundation highlights locations of over- and underestima-125

tions across the global domain. We estimated the root-mean-squared error (RMSE) between modeled and measured surface

inundation for our entire observational period to evaluate our model’s error in estimations across the historical record. Finally,

the relative error of SWAMPS was calculated using Eq. (4) to determine the error between modeled and measured SWAMPS

relative to measured SWAMPS long term average (LTA).

We took the difference between normalized GPCP and GRACE slopes to determine whether groundwater storage or precip-130

itation is relatively more influential in surface inundation developments. These variables were standardized to compare them

on the same scale (Eq. (5)). Equation (6) is used to compare the standardized slopes. Flows were classified as Horton flows if

the value was positive (i.e. precipitation was dominant in runoff generation). Flows were classified as Dunne flows if the value

was negative (i.e. TWSA was dominant in runoff generation). Values closer to zero will show that both groundwater storage

and precipitation are both equally important in surface inundation developments at that location. The methodology is displayed135

as a flowchart in Figure 3 to clarify our process further.

Error(%) =
RMSE

LTA
(4)

Standardized V alues=
x−µ
σ

(5)

140

Control V ariable= |GPCPSlope| − |GRACESlope| (6)

3 Results

Lag maps display the signal lag between SWAMPS and GRACE or SWAMPS and GPCP for 0 to 11 months (Fig. 4a and 4b)

and 0 to 5 months (Fig. 4c and 4d). Locations in the white represent no lag or no data and areas in red represent long delays.

The color-axis range is from 0 to 5 months of lag. We can see minimal differences comparing the lags maps for 0 to 11 months145

correction and 0 to 5 months correction. Majority of the GRACE and GPCP signal is only out of phase with SWAMPS by at

most five months. This is statistically supported in Table 1 because R2 and RMSE from all 0 to 11 month scenarios match their

0 to 5 month time lag counterpart. We no longer considered all 0 to 11 month models beyond this point.

Measured and modeled SWAMPS values are displayed using scatterplots (Fig. 5). The x-axis displays modeled SWAMPS

while the y-axis represents measured SWAMPS. These plots reveal global surface inundation measurements from April 2002150

to October 2015 without the consideration of quality control, referred to as QC, (Fig. 5a) and with QC (Fig. 5b). The red
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line displays the best fit relationship as determined by MATLAB’s statistical toolbox. We can statistically and visually see the

significance of removing locations with less than 50% QC. The R2 increased (0.732 to 0.900) and RMSE decreased (3.830 to

1.890) after QC was applied (Fig. 5). There is a large spread of surface inundation from the model (Fig. 5a), but after masking

there is a clear trend line between modeled and measured SWAMPS (Fig. 5b). Further comparing the validation statistics155

between single and multi-linear models, we can see there isn’t much improvement (Table 1). However, we know that a model

with both GRACE and GPCP better represents the world compared to just considering one variable. A multi-linear regression

model with a time lag correction improves in both RMSE and R2 compared to the non-time corrected. Therefore, a multi-linear

regression model with a time lag correction between 0 to 5 months is the most rigorous model for further analysis.

Modeled SWAMPS using GRACE and GPCP (Fig. 6a) and measured SWAMPS (Fig. 6b) are displayed with a time lag160

correction between 0 and 5 months during August 2007. Green locations are reported to have high inundation values while

white spots have low inundation values or no available data. The percent difference between these two maps (Fig. 6c) iden-

tifies locations of over and underestimation. The red, grey, and blue locations represent overestimations, minimal differences,

and underestimations, respectively, between modeled and measured inundation. Majority of the domain is grey because the

differences between small values of inundation are insignificant. Modeled SWAMPS has the largest limitations at locations165

with snow or ice (around the Great Lakes and northern parts of Russia) and in areas that experience seasonal monsoons (Bay

of Bengal and west coast of South Africa).

Regional model performance is assessed through correlation statistics between climatologies and scatterplots for measured

and modeled inundation (Fig. 7). The Amazon (Fig. 7a-c), Mackenzie (Fig. 7d-f), Mississippi (Fig. 7g-7i), and Ob (Fig. 7j-l)

River Basins were used for this analysis because their hydrology is well understood and a successful model should maintain its170

rigor in these significant areas. Blue, red, and green markers (Fig. 7a, 7d, 7g, and 7j) represent randomly selected cell locations

along the river, measured and modeled climatologies are represented with solid and dashed lines using the same color scheme

(Fig. 7b, 7e, 7h, and 7k); the cell coordinates are in Table 2. Red boxes (Fig. 7a, 7d, 7g, and 7j) outline the cells used in

the scatterplots (Fig. 7c, 7f, 7i, and 7l) and their boundary coordinates are also in Table 2. Climatology correlation statistics

are in Table 3. Similar to Figure 5b, the scatterplots relate measured and modeled inundation between April 2002 to October175

2015 with QC applied for the cells within the boundaries. The red line displays the best fit line along with the calculated R2.

The multi-linear regression model with a time lag correction between 0 to 5 months is used to calculate modeled inundation.

Majority of the basins’ domains display strong statistics between the measured and modeled inundation (Table 3). Basins that

experience varying snow seasons (Mississippi and Ob) have the largest modeled and measured inundation discrepancies (Fig.

7i and 7l). These two river basins have the largest spread in modelled versus measured about the best fit line and have reduced180

R2 correlations (0.511 and 0.629, respectively). Inadequate data during the snow season is limiting model performance during

these times (no available measurements during winter months as seen in Fig. 7e and 7k).

To assess global model performance, we calculate the RMSE (Fig. 8a) between the measured and modeled time series at

each grid cell. Low RMSE values represent small differences between long-term modeled and measure SWAMPS while high

RMSE values tell us there are more considerable differences in the signals. Grey represents low error values while red displays185

more substantial error. White locations have no value. Long-term surface inundation (Fig. 8b) values range from 0 to 8% with
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high values in green, low values and no value in white. Figure 8c displays errors (Eq. (4)) in our modeled SWAMPS relative to

the measured SWAMPS signal. Locations with heavy snow (northern parts of North America, Europe, and Central Asia) and

regular annual cycles of inundation (India and Amazon) have more significant RMSE values compared to other locations.

Depending on the global location, either GRACE, GPCP or both control surface inundation for the no time-lag correction190

(Fig. 9a), 0 to 5 months (Fig. 9b), and 0 to 11 month corrected models (Fig. 9c). Precipitation dominate locations are red,

and groundwater storage controls blue locations. Grey areas represent locations controlled by both GRACE and GPCP. Areas

shown in white represent no values. Overall, we determined that both GPCP and GRACE control majority of surface inundation

developments across the world. By taking the standard deviation (σ) of the standardized modeled SWAMPS values (σ =

1.04), we determined the percentage of cells controlled by GRACE, GPCP or both. Cells with a difference less than our195

calculated standard deviation (-σ) were considered GRACE dominate. Cells with a difference greater than our calculated

standard deviation (+σ) were GPCP dominate. Both groundwater and precipitation controlled cells have values within ±σ.

Using these standards, we found groundwater storage controlled 8.3% of cells which produced Dunne flows. Precipitation

controlled 6.9% of cells and generated Horton flows. Both variables controlled approximately 84.8% of cells.

Maps with correlation values (Fig. 10, 11a, and 11b) have a color-axis from 0 to 1. Correlations closer to 1, displayed in200

yellow, represent stronger relationships between SWAMPS and the other dataset(s). Correlations closer to 0, presented in blue,

represent weaker relationships between SWAMPS and the other datasets(s). We provided five correlation maps with different

inputs: the no time-lag corrected model with SWAMPS and GRACE (Fig. 10a), the no time-lag corrected model with SWAMPS

and GPCP (Fig. 10b), the no time-lag corrected model with SWAMPS, GRACE and GPCP (Fig. 10c and 11a), and the 0 to 5

month time corrected model with SWAMPS, GRACE, and GPCP (Fig. 11b).205

Correlation maps from the single linear regressions demonstrate limitations in correlation strengths (Fig. 10a and 10b).

Using GRACE alone, there is a stronger relationship between total water storage and surface inundation within the Amazon

River in South America. Precipitation and surface inundation display stronger correlations within the Middle East compared to

groundwater storage and surface inundation. It is clear that these single linear models are capable of describing some surface

inundation developments within specific regions, but not on a global scale.210

There is a significant statistical improvement across the globe when including both groundwater storage and precipitation

measurements in estimating surface inundation (Fig. 10c). Locations such as the Amazon, Mississippi and the Middle East have

higher representation compared to the single linear models. The time-lag adjustment further improves our global correlations.

Figures 11a and 11b display correlations with no time lag and 0 to 5 month time-lag corrections, respectively. We can see

visual improvements within the multi-linear regression’s correlations east of the Andes and between the Sierra and the Rocky215

Mountains after the applied time lag correction.

Regression coefficient maps (Fig. 11c-f) have a color-axis between -1 to 1. Grey displays negative values, and red represents

large values. Regression coefficients for GPCP and GRACE from the non-time corrected model are shown in Fig. 11c and 11e

while regression coefficients for GPCP and GRACE from the 0 to 5 months corrected model are displayed in Fig. 11d and 11f,

respectively. White locations represent no data. The time lag correction moderates the extreme GPCP slopes around Northern220

Canada and Midwest North America. GRACE slopes around the Great Lakes and Australia also reflect this relationship.
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4 Discussion

The surface water formation across the majority of locations within our study domain are controlled almost equally by ground-

water storage and precipitation forcings. In our results, for the locations where precipitation has a substantial lag time, ground-

water storage tends to have a smaller lag time. The converse is also true, and an inverse relationship follows for a considerable225

GRACE lag and a slight GPCP lag. Sites such as the Amazon, Middle East, North America and parts of Asia reflect this

pattern. Asia and the Middle East have larger lag times with groundwater storage compared to precipitation while the Amazon

and North America have larger lag times with rainfall compared to groundwater storage.

By emphasizing the climatology, we created a model of inundation based on precipitation and storage that captures and

estimates the average seasonal cycle. In areas that are profoundly affected by interannual variability, such as that during ENSO230

events in locations such as Australia and Africa (Nicholson and Kim, 1997; Power et al., 1999; Ropelewski and Halpert,

1987), our model under-estimates these infrequent anomalous fluxes. Heavy snow cover also creates detection issues within

the SWAMPS surface water product. The effects of both snow and interannual variability may have influenced RMSE in these

locations, and in general, the highest relative error occurs at high elevations and in locations that receive large amounts of

snow, especially along the Rocky Mountains (Bales et al., 2006; Berghuijs et al., 2016; Yan et al., 2018). Rain-on-snow events235

or rapid snowmelt could contribute to a rise in surface inundation without a relative increase in precipitation or groundwater

storage. These types of situations are not considered or captured by our model.

No previous literature attempts to determine inundation developments with TWSA and precipitation measurements rather

than just precipitation Power et al. (1999); Prigent et al. (2007). However, there are studies on the watershed scale that have

known control mechanisms. Papa et al. (2010) relate precipitation and river stage height to surface inundation extents within the240

Amazon. They report precipitation to lead inundation with an influence of snow and glacier melt. We determined precipitation

and storage are equally accountable for the inundation developments in the Amazon. Strong correlations between inundation,

precipitation, and storage support our result. Papa et al. (2007) relate snowmelt and river discharge to surface inundation within

the Ob basin. Maximum inundation is reported to occur between May and June with little to no lag between river discharge and

maximum inundation. We report inundation in the Ob Basin as water storage driven and our reported lags (maximum of one245

month) and modeled surface inundation climatology match their results. Temimi et al. (2005) predict flooding in the Mackenzie

River Basin by relating river discharge to water surface fraction (WSF). The maximum flooding occurs during the spring when

the snowpack melts and ice jams drive flooding. We report inundation developments to be controlled by both water storage and

precipitation and the basin’s modeled climatology reflects the same peak season.

Time lags between inundation and other variables have been well studied in hydrology (Hamilton et al., 2002; Power et al.,250

1999; Prigent et al., 2007). Our reported precipitation time lags show similarity with those reported by Prigent et al. (2007) in

the Amazon and South America. Instead of GRACE observations, Hamilton et al. (2002) correlated river stage observations to

inundated areas. They report time lags between river stage and inundation for the Roraima and Pantanal floodplains in South

America as 1 and 1.5-month lag. We report the lags for those areas to be two months. Their use of the nearest river stage station
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and 0.25°cells of the Scanning Multi-channel Microwave Radiometer (SMMR) dataset compared to the 0.5°cells of GRACE255

may account for this difference.

Our modeled inundation generally overestimated locations with low surface inundation values. Areas along the Rocky Moun-

tains, northern parts of Russia and Asia all experienced overestimations. Other studies on surface inundation have also reported

overestimations at locations with low inundation values (Prigent et al., 2007; Ticehurst et al., 2014). Issues such as cloud

coverage, fire scars, heavily snowed areas and large variation in topography could contribute to these overestimations.260

5 Conclusions

This work relates global surface inundation developments to measurements of total water storage and precipitation using NASA

remote sensing observations. The novelty of this work is the combined application of the GRACE, GPCP and SWAMPS

data products to study and classify runoff generation mechanisms. We determine a majority of the global surface inundation

developments to be equally controlled by total water storage and precipitation. Our methods have the most significant errors at265

locations with low values of inundation, which agrees with current literature. Remote sensing has provided novel approaches to

study general hydrology concepts on a global scale and holds much promise to further study phenomena in areas with limited

in situ data.
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Figure 1. a) SWAMPS quality control map. b) Example of monthly SWAMPS measurements for August 2007. c) Fig. 1b after locations less

than 50% probability of validity are removed.
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Figure 2. a) Example of monthly GPCP measurements for August 2007. b) Example of monthly GRACE total water storage anomaly

(TWSA) measurements for August 2007.
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Figure 3. Methodology flowchart.
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Figure 4. Maps display the number of months between SWAMPS, GRACE, and GPCP signal that were statistically determined by cross-

correlations. a) GPCP lag map with a time threshold of 0 to 11 months. b) GRACE lag map with a time threshold of 0 to 11 months. c) GPCP

lag map with a time threshold of 0 to 5 months. d) GRACE lag map with a time threshold of 0 to 5 months.
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Figure 5. Example of multi-linear regression model validation plots. a) Measured versus modeled SWAMPS with a time lag correction of 0

to 5 months b) Fig. 5a after locations less than 50% probability of validity are removed.
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Figure 6. Visual comparison of monthly modeled and measured SWAMPS. a) Modeled surface inundation. b) Measured surface inundation.

c) The absolute difference between modeled and measured surface inundation. Modeled SWAMPS has a time correction of 0 to 5 months.
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Figure 7. Cells included in scatter plots are outlined by the red boxes and red, blue, and green dots denote the cell used for measured and

modeled climatologies. Modeled inundation has a time correction of 0 to 5 months. a) Amazon map. b) Amazon measured and modeled

climatologies. c) Amazon scatterplot. d) Mackenzie map. e) Mackenzie measured and modeled climatologies. f) Mackenzie scatterplot. g)

Mississippi map. h) Mississippi measured and modeled climatologies. i) Mississippi scatterplot. j) Ob map. k) Ob measured and modeled

climatologies. l) Ob scatterplot.
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Figure 8. a) RMSE between modeled and measured SWAMPS with time correction of 0 to 5 months. b) Long-term average (LTA) surface

inundation. c) Error relative to the measured SWAMPS signal.
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Figure 9. Control variable maps with a) no time correction, b) time correction of 0 to 5 months, and c) time correction 0 to 11 months.
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Figure 10. Correlation maps for no time-lag corrected regression models a) Single linear regression between SWAMPS and GRACE. b)

Single linear regression between SWAMPS and GPCP. c) Multi-linear regression between SWAMPS, GRACE, and GPCP.
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Figure 11. a) Multi-linear regression correlations with no time correction. b) Multi-linear regression correlations with a time correction of 0

to 5 months. c) GPCP regression coefficients for the model in Fig. 11a. d) GPCP regression coefficients for the model in Fig. 11b. e) GRACE

regression coefficients for the model in Fig. 11a. f) GRACE regression coefficients for the model in Fig. 11b.
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Table 1. Model validation results; QC = Quality control, RMSE = Root mean squared error

Model
Lag

Correction

R2

No QC
RMSE

Coverage

No QC [%]

R2/ Coverage

[-]

R2

QC ≥ 50
RMSE

Coverage

QC ≥ 50 [%]

R2/ Coverage

[-]

GPCP+GRACE None 0.760 3.64 97.25 0.78 0.896 1.94 77.71 1.15

GPCP+GRACE 0 to 5 0.732 3.83 97.12 0.75 0.900 1.89 77.58 1.16

GPCP+GRACE 0 to 11 0.730 3.85 97.12 0.75 0.901 1.89 77.58 1.16

GPCP None 0.911 3.37 97.64 0.93 0.974 1.46 78.10 1.25

GRACE None 0.788 3.42 97.25 0.85 0.899 1.90 77.71 1.16

GPCP 0 to 5 0.887 3.79 97.64 0.91 0.968 1.64 78.10 1.24

GRACE 0 to 5 0.692 4.11 97.12 0.71 0.856 2.28 77.58 1.10

GPCP 0 to 11 0.887 3.79 97.64 0.91 0.968 1.64 78.10 1.24

GRACE 0 to 11 0.692 4.12 97.12 0.72 0.856 2.28 77.58 1.10
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Table 2. Coordinates for basin sites and the boundaries for cells included in the scatterplots

Site
Amazon Mackenzie Mississippi Ob

Longitude Latitude Longitude Latitude Longitude Latitude Longitude Latitude

Green -52.25 -1.25 -119.25 61.25 -89.75 32.75 71.25 60.75

Blue -65.25 -2.25 -125.75 63.75 -88.75 37.25 80.75 56.25

Red -56.25 -2.25 -131.25 66.25 -89.75 35.35 76.25 59.25

Boundary
-76.25 to

-52.25

-9.75 to

3.25

-134.25 to

-112.75

56.75 to

67.75

-91.25 to

-87.75

31.25 to

38.75

69.25 to

81.75

55.75 to

65.25
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Table 3. Basin climatology correlation statistics

Site
Amazon Mackenzie Mississippi Ob

R2 RMSE R2 RMSE R2 RMSE R2 RMSE

Green 0.817 1.275 0.967 0.290 0.776 0.082 0.868 0.947

Blue 0.889 0.455 0.955 0.009 0.855 0.389 0.886 0.544

Red 0.916 1.356 0.994 0.148 0.855 0.466 0.909 0.265
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