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Abstract. A set of complex processes contribute to generate river runoff, which in the hydrological sciences are typically
divided into two major categories: surface runoff, sometimes called Hortonian flow, and baseflow-driven runoff or Dunne flow.
In this study, we examine the covariance of global satellite-based surface water inundation observations with two remotely
sensed hydrological variables, precipitation, and terrestrial water storage, to better understand how apparent runoff generation
responds to these two dominant forcing mechanisms in different regions of the world. Terrestrial water storage observations
come from NASA’s GRACE mission, while precipitation comes from the GPCP combined product, and surface inundation
levels from the NASA SWAMPS product. We evaluate the statistical relationship between surface water inundation, total water
storage anomalies, and precipitation values under different time lag and quality control adjustments between the data products.
We find that the global prediction-estimation of surface inundation improves when considering a quality control threshold of
50% reliability for the SWAMPS data, and after applying time lags ranging from 1 to 5 months. Precipitation terds-to-be-the

esand total water storage equally control majority of
surface inundation developments across the globe. The model tends to underestimate and overestimate at locations with high
interannual variability and with low inundation measurements, respectively.

1 Introduction

There is a long history of research concerning the mechanisms that control runoff generation at the terrestrial land surface (e.g.
Beven and Kirkby, 1976; Pearce et al., 1986; Lyon et al., 2006; Vivoni et al., 2007; Kirchner, 2009). In brief, it is generally well
accepted that two major mechanisms are responsible for surface water formation: (1) excess precipitation and the limitation of
infiltration causing surface runoff, or (2) the rising of the water table and deeper soil moisture to push more water into stream
networks at low topography. If precipitation rates exceed infiltration rates, then precipitation dominates surface inundation
development and is typically defined as Hortonian flow. If precipitation successfully infiltrates and soils become saturated,
then subsurface soil water storage will dominate surface water formation, typically described as Dunne flow. These are core
concepts within terrestrial hydrology; however, there are limited observational studies on these runoff generation mechanisms

at scales larger than a catchment. We are not aware of any studies that have assessed the contributions to surface water formation
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over a global domain. However, using existing data on global precipitation and water storage, and considering how these two
mechanisms influence surface inundation development, it is now possible to examine surface runoff mechanisms across a range
of land surface conditions.

Satellite observations offer a means to observe changes in hydrology over a global domain, presenting a distinct advantage
over in-situ observations in representing a variety of hydrological mechanisms and processes across ecosystems and land cover
types. Previously published work has utilized a variety of measurements of catchment or basin antecedent conditions, such as
soil moisture or vertically integrated water storage, to assess the influence of soil water on runoff generation (e.g. Koster et al.,
2010; Reager et al., 2014). NASA’s Gravity Recovery and Climate Experiment (GRACE) mission (Tapley et al., 2004) offers a
15+ year observational record on the state of terrestrial water storage globally. GRACE measures a change in the gravitational
potential that is often linearly related to the amount of water stored at the land surface beneath the satellites. While these
measurements are increasingly uncertain at resolutions beneath 150,000 km?, they offer a robust and highly accurate means to
measure changes in storage for areas larger than 150,000 km? (e.g. Wahr et al., 2006; Wiese et al., 2016) and offer a globally
gridded data set of terrestrial water storage anomalies (TWSA) that is relatively easy to use. Previously, GRACE observations
have been applied to develop a flood potential index and to characterize the intensity of certain flood events based on storage
pre-conditioning or “flood potential” (Reager and Famiglietti, 2009; Reager et al., 2014). These studies serve as proof that
integrated basin water storage is significant in understanding surface inundation changes.

There is also extensive literature relating to the influence of precipitation on surface inundation (Guo et al., 2012; Kirchner,
2009). The Global Precipitation Climatology Project (GPCP) offers a globally gridded precipitation dataset that optimally
combines satellite, in situ and land radar measurements into a single best product (Adler et al., 2003). This precipitation data
set can be used to assess the relationship between rainfall and surface water inundation globally.

The satellite observations of TWSA and precipitation can be related to observations of surface water formation from the
Surface WAter Microwave Product Series (SWAMPS) (Schroeder et al., 2014) dataset to better understand runoff generation.
SWAMPS was created based on optical and radiometric observations of surface reflectance that are often associated with water.
These observations are expressed in terms of fractional inundation, or the percentage of land occupied by surface water at a
0.25°grid resolution globally. Schroeder et al. (2014) provide a quality control map expressed as likelihood or confidence that
allows a user to mask out unreliable data at the quality threshold of their choosing.

For this study, we imagine a global land surface model, typically run at 1°globally (or at best, 0.25°¢globally), for which

topographic processes are represented empirically, and in which surface water formation follows Beven and Kirkby’s ‘topmodel’
formulation (Beven and Kirkby, 1976). In this, topography and topographic heterogeneity are represented statistically, and
there are truly still aggregated (or “lumped’) runoff generation processes that occur at coarse resolution. At those scales,
topography is never explicitly represented, but instead, is represented implicitly as a grid-cell level characteristic that can
influence lumped runoff generation. Here we have taken the same conceptual approach, for which we examine the aggregated
runoff generation across the entire 0.25%¢rid cell, and those results can be associated with topographic information but without
an explicit representation of topography in the regression. This is a simple and valid approach that is observation-focused, in
order to later diagnose processes and mechanisms statistically.
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There are no previous studies on the hypothesized linear relationships between precipitation, storage and surface inundation
across the globe. We conduct such a study here toeto: (1) assess the viability of satellite data to quantify this relationship; (2)
determine which mechanism has the more considerable influence in different regions, (3) characterize general behavior. We
approach these goals through the development-application of a simple linear regression model of inundation based on remote

sensing observations.

2 Data and Methods

The datasets downloaded for this work include surface inundation (Surface WAter Microwave Product Series; SWAMPS),
global precipitation estimates (Global Precipitation and Climatology Project; GPCP), and groundwater storage (Gravity Re-
covery and Climate Experiment; GRACE).

SWAMPS is available from Columbia University at approximately 0.25°x 0.25°[approx. 25 km x 25 km] spatial resolution
and daily temporal resolution from February 1st, 1992 to January 31st, 2017. The SWAMPS dataset reports a quality con-
trol map that represents the reliability of their published fractional surface water, which is influential in our reported results
(Schroeder et al., 2014) (Fig. 1a). Desert land covers have low reliability in their inundation measurements. The Sahara Desert
has explicitly poor measurements due to limestone deposits. Other variables that were reported to interfere with the SWAMPS
signal were snow and precipitating clouds.

GPCP is available from the National Oceanic & Atmospheric Administration’s (NOAA) Earth System Research Laboratory
at 2.5°x 2.5°[approx. 250 km x 250 km] spatial resolution and monthly temporal resolution from January 1979 to present
(Adler et al., 2003). GPCP provides global precipitation measurements in mm /day (Fig. 2a).

GRACE measures the gravity anomaly detected by the orbiting satellites; the JPL GRACE Tellus group processes the
anomalies and provides the change in total water storage across the globe [cm] (Fig. 2b). GRACE is available at a 3.0°x
3.0°[approx. 300 km x 300 km] spatial resolution and monthly temporal resolution from April 2002 to June 2017 (Watkins
etal., 2015; Wiese et al., 2016).

After data acquisition, our preliminary step was to re-grid each dataset using linear interpolation to a common 0.5°x
0.5°spatial resolution. Also, we averaged daily surface inundation measurements from SWAMPS to achieve monthly val-
ues. The timeframe for this work spanned April 2002 to October 2015, the common period amongst these products. This work
involved assessing the viability of a single-linear regression (Eq. (1) and (2)), or multi-linear regression (Eq. (3)) model based

on GPCP and GRACE, to represent surface inundation estimated by SWAMPS. Precipitation and water storage long-term

anomalies, a component of the total signal, are known to be globally correlated with a known lag Humphrey et al. (2016).
We utilize full signal in the regressions to ensure levels of orthogonality between precipitation and water storage that avoid

SWAMPS = m(GPCP) +b (1)
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SWAMPS = m(GRACE) +b )

SWAMPS =mi(GPCP)+my(GRACE) +b 3)

Using the correlation coefficients (R?) and regression coefficients (slope values; m, m;, and m,), we can statistically deter-
mine which mechanism will have a stronger influence on surface inundation developments. To further develop-a-medel-capable
of-eapturing-capture the long-term variability across the globe, we utilized each dataset’s climatology.

To develop these climatology datasets, we calculate the long-term monthly average values. The resulting dataset would be a
single value at each cell for each month, reflecting the average monthly signal occurring through the historical record. Using
the climatology, we can observe the average annual hydrologic cycle anywhere across the globe.

After completing the regressions, multiple grid cells had negative regression coefficients. Negative regression coefficients
are of concern because it should generally be impossible to have an inverse relationship between surface inundation and
precipitation or groundwater storage. In most cases, time-lags between forcing and response (for example a high TWSA due
to snow which only manifests as surface water 3 months later) are responsible for negative regression coefficients within the
developed-modelregressions and applying optimal lag corrected correlations improved our statistical strengths. We conducted
iterative cross-correlations between TWSA and inundation and between precipitation and inundation to statistically determine
the most appropriate time correction at each cell location across the globe (Fig. 4). We applied two time-lag thresholds: 0 to 5
months and 0 to 11 months lag. Time lag corrections occur at each grid cell, which shifts the climatology signal of GRACE or
GPCP within the phase of SWAMPS.

The final step in pre-processing the datasets is the removal of low-quality data from the SWAMPS dataset. Schroeder
et al. (2014), issued a quality control (QC) map for the SWAMPS dataset (Fig. 1a) and this we set the quality threshold at
50% confidence or higher. As previously stated, desert regions (i.e., Sahara Desert, Southern Africa, and Western Australia)
and snow-dominated regions (i.e., Rocky Mountains and Central Asia) have poor reliability in measurements, likely due to
erroneous reflectivity, and are largely filtered out from the study domain (Fig. 1b and 1c¢).

In total, nine regression models were validated by calculating surface inundation and comparing to the SWAMPS dataset.
Pearson’s R?, the root mean squared error (RMSE),eoverage-and a ratio between R? and coverage were used to determine each

model’s strength. We-determined-coverage-by-counting-Coverage is considered the number of eells-SWAMPS grid cells with
numerical values within the global pelygen:-this-coastline; for example, analysis excluded Antarctica and Greenland which

had-no-SWAMPS-coveragebecause there is no SWAMPS data for these regions. A model with a ratio closer to one describes a
stronger model; this ratio is important because it considers maximizing coverage and correlation to observations. In choosing
the ‘best’ model, we are considering two things: (1) overall model performance at predieting-estimating surface inundation,
and (2) the global coverage retained. With the final model, historical GRACE and GPCP measurements are used to ealeulate
estimate surface inundation (referred to as modeled surface inundation). A best-fit line is applied to display the relationship

between modeled surface inundation and measured SWAMPS values.
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After selecting the best model, we assessed model performance on a basin and global scale. Correlation statistics (R and
RMSE) between measured and model climatologies and scatterplots are used to present model performance at four highly
studied basins: Amazon River in South America, Mackenzie River in Canada, Mississippi River in the USA, and Ob River in
Russia. The difference between modeled and measured surface inundation highlights locations of ever-and-underpredictions
over- and underestimations across the global domain. We estimated the root-mean-squared error (RMSE) between modeled
and measured surface inundation for our entire observational period to evaluate our model’s error in predietions-estimations
across the historical record. Finally, the relative error of SWAMPS was calculated using Eq. (4) to determine the error between
modeled and measured SWAMPS relative to the-measured-SWAMPS-signalmeasured SWAMPS long term average (LTA).

We took the difference between normalized GPCP and GRACE slopes to determine whether groundwater storage or precip-
itation is relatively more influential in surface inundation developments. These variables were standardized to compare them
on the same scale (Eq. (5)). Equation (6) is used to compare the standardized slopes. Flows were classified as Horton flows if
the value was positive (i.e. precipitation was dominant in runoff generation). Flows were classified as Dunne flows if the value
was negative (i.e. TWSA was dominant in runoff generation). Values closer to zero will show that both groundwater storage
and precipitation are both equally important in surface inundation developments at that location. The methodology is displayed

as a flowchart in Figure 3 to clarify our process further.

RMSFE
Error(%) = TTA 4)
Standardized Values = S ()]
o
Control Variable = |GPCPSlope| — |GRACESlope| (6)
3 Results

Lag maps display the signal lag between SWAMPS and GRACE or SWAMPS and GPCP for 0 to 11 months (Fig. 4a and 4b)
and 0 to 5 months (Fig. 4c and 4d). Locations in the white represent no lag or no data and areas in red represent long delays.
The color-axis range is from 0 to 5 months of lag. We can see minimal differences comparing the lags maps for 0 to 11 months
correction and 0 to 5 months correction. Majority of the GRACE and GPCP signal is only out of phase with SWAMPS by at
most five months. This is statistically supported in Table 1 because R> and RMSE from all 0 to 11 month scenarios match their
0 to 5 month time lag counterpart. We no longer considered all O to 11 month models beyond this point.

Measured and modeled SWAMPS values are displayed using scatterplots (Fig. 5). The x-axis displays modeled SWAMPS
while the y-axis represents measured SWAMPS. These plots reveal global surface inundation measurements from April 2002

to October 2015 without the consideration of quality control, referred to as QC, (Fig. 5a) and with QC (Fig. 5b). The red



155

160

165

170

175

180

185

line displays the best fit relationship as determined by MATLAB’s statistical toolbox. We can statistically and visually see the
significance of removing locations with less than 50% QC. The R? increased (0.732 to 0.900) and RMSE decreased (3.830 to
1.890) after QC was applied (Fig. 5). There is a large spread of surface inundation from the model (Fig. 5a), but after masking
there is a clear trend line between modeled and measured SWAMPS (Fig. 5b). Further comparing the validation statistics
between single and multi-linear models, we can see there isn’t much improvement (Table 1). However, we know that a model
with both GRACE and GPCP better represents the world compared to just considering one variable. A multi-linear regression
model with a time lag correction improves in both RMSE and R? compared to the non-time corrected. Therefore, a multi-linear
regression model with a time lag correction between O to 5 months is the most rigorous model for further analysis.

Modeled SWAMPS using GRACE and GPCP (Fig. 6a) and measured SWAMPS (Fig. 6b) are displayed with a time lag
correction between 0 and 5 months during August +5th;2007. Green locations are reported to have high inundation values
while white spots have low inundation values or no available data. The percent difference between these two maps (Fig.
6¢) identifies locations of over and underestimation. The red, grey, and blue locations represent overestimations, minimal
differences, and underestimations, respectively, between modeled and measured inundation. Majority of the domain is grey
because the differences between small values of inundation are insignificant. Modeled SWAMPS has the largest limitations
at locations with snow or ice (around the Great Lakes and northern parts of Russia) and in areas that experience seasonal
monsoons (Bay of Bengal and west coast of South Africa).

Regional model performance is assessed through correlation statistics between climatologies and scatterplots for measured
and modeled inundation (Fig. 7). The Amazon (Fig. 7a-c), Mackenzie (Fig. 7d-f), Mississippi (Fig. 7g-7i), and Ob (Fig. 7j-1)
River Basins were used for this analysis because their hydrology is well understood and a successful model should maintain its
rigor in these significant areas. Blue, red, and green markers (Fig. 7a, 7d, 7g, and 7j) represent randomly selected cell locations
along the river, measured and modeled climatologies are represented with solid and dashed lines using the same color scheme
(Fig. 7b, 7e, 7h, and 7k); the cell coordinates are in Table 2. Red boxes (Fig. 7a, 7d, 7g, and 7j) outline the cells used in
the scatterplots (Fig. 7c, 71, 7i, and 71) and their boundary coordinates are also in Table 2. Climatology correlation statistics
are in Table 3. Similar to Figure 5b, the scatterplots relate measured and modeled inundation between April 2002 to October
2015 with QC applied for the cells within the boundaries. The red line displays the best fit line along with the calculated R?.
The multi-linear regression model with a time lag correction between O to 5 months is used to calculate modeled inundation.
Majority of the basins’ domains display strong statistics between the measured and modeled inundation (Table 3). Basins that
experience varying snow seasons (Mississippi and Ob) have the largest modeled and measured inundation discrepancies (Fig.
7i and 71). These two river basins have the largest spread in modelled versus measured about the best fit line and have reduced
R? correlations (0.511 and 0.629, respectively). Inadequate data during the snow season is limiting model performance during
these times (no available measurements during winter months as seen in Fig. 7e and 7k).

To assess global model performance, we calculate the RMSE (Fig. 8a) between the measured and modeled time series at
each grid cell. Low RMSE values represent small differences between long-term modeled and measure SWAMPS while high
RMSE values tell us there are more considerable differences in the signals. Grey represents low error values while red displays

more substantial error. White locations have no value. Long-term surface inundation (Fig. 8b) values range from O to 8% with
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high values in green, low values and no value in white. Figure 8c displays errors (Eq. (4)) in our modeled SWAMPS relative to
the measured SWAMPS signal. Locations with heavy snow (northern parts of North America, Europe, and Central Asia) and
regular annual cycles of inundation (India and Amazon) have more significant RMSE values compared to other locations.

Depending on the global location, either GRACE, GPCP or both control surface inundation for the no time-lag correction
(Fig. 9a), 0 to 5 months (Fig. 9b), and 0 to 11 month corrected models (Fig. 9c). Precipitation dominate locations are red,
and groundwater storage controls blue locations. Grey areas represent locations controlled by both GRACE and GPCP. Areas
shown in white represent no values. Overall, we determined that both GPCP and GRACE control majority of surface inundation
developments across the world. By taking the standard deviation (o) of the standardized modeled SWAMPS values (o =
1.04), we determined the percentage of cells controlled by GRACE, GPCP or both. Cells with a difference less than our
calculated standard deviation (-o) were considered GRACE dominate. Cells with a difference greater than our calculated
standard deviation (+0) were GPCP dominate. Both groundwater and precipitation controlled cells have values within +o.
Using these standards, we found groundwater storage controlled 8.3% of cells which produced Dunne flows. Precipitation
controlled 6.9% of cells and generated Horton flows. Both variables controlled approximately 84.8% of cells.

Maps with correlation values (Fig. 10, 11a, and 11b) have a color-axis from O to 1. Correlations closer to 1, displayed in
yellow, represent stronger relationships between SWAMPS and the other dataset(s). Correlations closer to 0, presented in blue,
represent weaker relationships between SWAMPS and the other datasets(s). We provided five correlation maps with different
inputs: the no time-lag corrected model with SWAMPS and GRACE (Fig. 10a), the no time-lag corrected model with SWAMPS
and GPCP (Fig. 10b), the no time-lag corrected model with SWAMPS, GRACE and GPCP (Fig. 10c and 11a), and the O to 5
month time corrected model with SWAMPS, GRACE, and GPCP (Fig. 11b).

Correlation maps from the single linear regressions eemparing-demonstrate limitations in correlation strengths (Fig. 10a 5
and 10b);-demonstrate-limitations-in—eorrelationstrengths. Using GRACE alone, there is a stronger relationship between total
water storage and surface inundation within the Amazon River in South America. Precipitation and surface inundation display
stronger correlations within the Middle East compared to groundwater storage and surface inundation. It is clear that these
single linear models are capable of describing some surface inundation developments within specific regions, but not on a
global scale.

There is a significant statistical improvement across the globe when including both groundwater storage and precipitation
measurements in predieting-estimating surface inundation (Fig. 10c). Locations such as the Amazon, Mississippi and the Mid-
dle East have higher representation compared to the single linear models. The time-lag adjustment further improves our global
correlations. Figures 11a and 11b display correlations with no time lag and O to 5 month time-lag corrections, respectively. We
can see visual improvements within the multi-linear regression’s correlations east of the Andes and between the Sierra and the
Rocky Mountains after the applied time lag correction.

Regression coefficient maps (Fig. 11c-f) have a color-axis between -1 to 1. Grey displays smat-negative values, and red
represents large values. Regression coefficients for GPCP and GRACE from the non-time corrected model are shown in Fig.
I1c and 1le while regression coefficients for GPCP and GRACE from the 0 to 5 months corrected model are displayed in

Fig. 11d and 11f, respectively. White locations represent no data. The time lag correction moderates the extreme GPCP slopes
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around Northern Canada and Midwest North America. GRACE slopes around the Great Lakes and Australia also reflect this

relationship.

4 Discussion

The surface water formation across the majority of locations within our study domain are controlled almost equally by ground-
water storage and precipitation forcings. In our results, for the locations where precipitation has a substantial lag time, ground-
water storage tends to have a smaller lag time. The converse is also true, and an inverse relationship follows for a considerable
GRACE lag and a slight GPCP lag. Sites such as the Amazon, Middle East, North America and parts of Asia reflect this
pattern. Asia and the Middle East have larger lag times with groundwater storage compared to precipitation while the Amazon
and North America have larger lag times with rainfall compared to groundwater storage.

By emphasizing the climatology, we created a model of inundation based on precipitation and storage that captures and
prediets—estimates the average seasonal cycle. In areas that are profoundly affected by interannual variability, such as that
during ENSO events in locations such as Australia and Africa (Nicholson and Kim, 1997; Power et al., 1999; Ropelewski and
Halpert, 1987), our model under-prediets-under-estimates these infrequent anomalous fluxes. Heavy snow cover also creates
detection issues within the SWAMPS surface water product. The effects of both snow and interannual variability may have
influenced RMSE in these locations, and in general, the highest relative error occurs at high elevations and in locations that
receive large amounts of snow, especially along the Rocky Mountains (Bales et al., 2006; Berghuijs et al., 2016; Yan et al.,
2018). Rain-on-snow events or rapid snowmelt could contribute to a rise in surface inundation without a relative increase in
precipitation or groundwater storage. These types of situations are not considered or captured by our model.

No previous literature attempts to determine inundation developments with TWSA and precipitation measurements rather
than just precipitation Power et al. (1999); Prigent et al. (2007). However, there are studies on the watershed scale that have
known control mechanisms. Papa et al. (2010) relate precipitation and river stage height to surface inundation extents within the
Amazon. They report precipitation to lead inundation with an influence of snow and glacier melt. We determined precipitation
and storage are equally accountable for the inundation developments in the Amazon. Strong correlations between inundation,
precipitation, and storage support our result. Papa et al. (2007) relate snowmelt and river discharge to surface inundation within
the Ob basin. Maximum inundation is reported to occur between May and June with little to no lag between river discharge and
maximum inundation. We report inundation in the Ob Basin as water storage driven and our reported lags (maximum of one
month) and modeled surface inundation climatology match their results. Temimi et al. (2005) predict flooding in the Mackenzie
River Basin by relating river discharge to water surface fraction (WSF). The maximum flooding occurs during the spring when
the snowpack melts and ice jams drive flooding. We report inundation developments to be controlled by both water storage and
precipitation and the basin’s modeled climatology reflects the same peak season.

Time lags between inundation and other variables have been well studied in hydrology (Hamilton et al., 2002; Power et al.,
1999; Prigent et al., 2007). Our reported precipitation time lags show similarity with those reported by Prigent et al. (2007) in

the Amazon and South America. Instead of GRACE observations, Hamilton et al. (2002) correlated river stage observations to
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inundated areas. They report time lags between river stage and inundation for the Roraima and Pantanal floodplains in South
America as 1 and 1.5-month lag. We report the lags for those areas to be two months. Their use of the nearest river stage station
and 0.25°cells of the Scanning Multi-channel Microwave Radiometer (SMMR) dataset compared to the 0.5°cells of GRACE
may account for this difference.

Our modeled inundation generally overpredieted-overestimated locations with low surface inundation values. Areas along
the Rocky Mountains, northern parts of Russia and Asia all experienced everpredictionsoverestimations. Other studies on
surface inundation have also reported overestimations at locations with low inundation values (Prigent et al., 2007; Ticehurst

et al., 2014). Issues such as cloud coverage, fire scars, heavily snowed areas and large variation in topography could contribute

to these everpredictionsoverestimations.

5 Conclusions

This work relates global surface inundation developments to measurements of total water storage and precipitation using NASA
remote sensing observations. The novelty of this work is the combined application of the GRACE, GPCP and SWAMPS
data products to study and classify runoff generation mechanisms. We determine a majority of the global surface inundation
developments to be equally controlled by total water storage and precipitation. Our methods have the most significant errors at
locations with low values of inundation, which agrees with current literature. Remote sensing has provided novel approaches to
study general hydrology concepts on a global scale and holds much promise to further study phenomena in areas with limited

in situ data.

Data availability. The data used in this work is publicly available. SWAMPS stable fractional surface inundation data can be down-
loaded from Columbia University’s International Research Institute for Climate and Society data library (https://iridl.ldeo.columbia.edu/
SOURCES/.NASA/.JPL/.wetlands/.dailyinundation/.swamps_v3p1/?Set-Language=en). GPCP monthly average precipitation data is pro-
vided by NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, at https://www.esrl.noaa.gov/psd/data/gridded/data.gpcp.html. GRACE Mascon
data are available at http://grace.jpl.nasa.gov, supported by the NASA MEaSUREs Program.
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Figure 1. a) SWAMPS quality control map. b) Example of monthly SWAMPS measurements for August 2007. c) Fig. 1b after locations less
than 50% probability of validity are removed.
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(TWSA) measurements for August 2007.
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inundation. c¢) Error relative to the measured SWAMPS signal.
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Table 1. Model validation results; QC = Quality control, RMSE = Root mean squared error

Model Lag 2 RMSE Coverage R?/ Coverage 2 RMSE Coverage R?/ Coverage
Correction | No QC No QC [%] [-] QC > 50 QC > 50 [%] [-]

GPCP+GRACE None 0.760 3.64 97.25 0.78 0.896 1.94 77.71 1.15
GPCP+GRACE Oto5 0.732 3.83 97.12 0.75 0.900 1.89 77.58 1.16
GPCP+GRACE Oto 11 0.730 3.85 97.12 0.75 0.901 1.89 77.58 1.16
GPCP None 0911 3.37 97.64 0.93 0.974 1.46 78.10 1.25
GRACE None 0.788 342 97.25 0.85 0.899 1.90 77.71 1.16
GPCP Oto5 0.887 3.79 97.64 0.91 0.968 1.64 78.10 1.24
GRACE Oto5 0.692 4.11 97.12 0.71 0.856 2.28 77.58 1.10
GPCP Oto 11 0.887 3.79 97.64 0.91 0.968 1.64 78.10 1.24
GRACE Oto 11 0.692 4.12 97.12 0.72 0.856 2.28 77.58 1.10
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Table 2. Coordinates for basin sites and the boundaries for cells included in the scatterplots

Amazon Mackenzie Mississippi Ob
Site

Longitude | Latitude | Longitude | Latitude | Longitude | Latitude | Longitude | Latitude

Green -52.25 -1.25 -119.25 61.25 -89.75 32.75 71.25 60.75

Blue -65.25 -2.25 -125.75 63.75 -88.75 37.25 80.75 56.25

Red -56.25 -2.25 -131.25 66.25 -89.75 35.35 76.25 59.25
-76.25t0 | -9.75to0 | -13425t0 | 56.75t0 | -91.25t0 | 31.25to | 69.25t0 | 55.75to

Boundary
-52.25 3.25 -112.75 67.75 -87.75 38.75 81.75 65.25
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Table 3. Basin climatology correlation statistics

Amazon ‘ Mackenzie ‘ Mississippi ‘ Ob ‘

‘ Site ‘
\ \ R? ‘RMSE‘ R2 ‘RMSE‘ R2 ‘RMSE‘ R? ‘RMSE‘

0.290 | 0.776 | 0.082 | 0.868 | 0.947
0.544

Green | 0.817 | 1.275 | 0.967
Blue | 0.889 | 0.455 | 0.955
Red 0916 | 1.356 | 0.994

0.009 | 0.855 | 0.389 | 0.886
0.148 | 0.855 | 0.466 | 0.909 | 0.265
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P1116-18: This last line of the abstract is not a conclusion that | got from reading the paper.
Now it seems that this is one of your main points, whereas in the text you find that most
areas have mixed time lags and are driven by both precipitation and water storage.

e Line 16 — 18 will be changed to “Precipitation and total water storage equally control
majority of surface inundation developments across the globe. The model tends to
underestimate and overestimate at locations with high interannual variability and with
low inundation measurements, respectively” to properly state our conclusions.

P2 156-58. Here you clearly state 3 research questions. These are not reflected well in the
abstract. Also, | feel that the characterization of general behavior is limited.

Is there a typo on line 56? Is “too” supposed to be “to” for “We conduct such a study here
too:...?”

e Lines 9 — 11 in the abstract touch on these research questions. I will update the sentence
to “In this study, we examine the covariance of global satellite-based surface water
inundation observations with two remotely sensed hydrological variables, precipitation,
and terrestrial water storage, to better understand how apparent runoff generation
responds to these two dominant forcing mechanisms in different regions of the world” in
the final manuscript as it includes reference to our regional analysis.

P5 187: you mention the common period amongst the 3 satellite products is April 2002-
October 2015, but the previous paragraph mention that all satellite products are avail- able
until 2017 or present. So why October 2015?

e  When I first accessed the data, GPCP was only available till Oct. 2015. While I was
writing the manuscript, the extent of the data had been updated and we did not extend the
analysis period.

P51 96: is each dataset’s climatology based on the 2002-2015 period? Then | would not call it
a climatology as it only spans 13 years, rather ‘the 2002-2015 average’.

e The climatology of a region is defined as weather conditions averaged over a period of
time. We feel this is a sufficient time frame to use for a climatology.

P51105-107: | don’t understand the concept of the two time-lag thresholds. Do you check the
cross-correlations for up to 5 months lag as well as up to 11? Also, if you are using a
climatology (i.e. 12 months), going up to 11 months lag makes little sense to me to start with.

e Correct, we check the cross-correlations for up to 5 months lag as well asup to 11. We
check up to 11 months to ensure there are no erroneous lags and no significant statistical
improvement in the results.



P5 | 114: please explain what coverage means. E.g. grid cells covered by SWAMPS? (I'm also
not very familiar with GIS so the term polygon is also unfamiliar to me).

e Lines 114 — 116 will be changed to, “Pearson’s R?, the root mean squared error (RMSE),
and a ratio between R? and coverage were used to determine each model’s strength.
Coverage is considered the number of SWAMPS grid cells with numerical values within
the global coastline; for example, analysis excluded Antarctica and Greenland because
there is no SWAMPS data for these regions.” to clarify our use of coverage.

P6 eq. 4-6: abbreviation LTA is not explained here. Also does ‘slope’ refer to m1, m2 in
Equation 3? | thought those were determined using the climatologies, but then determining
the standardized values (Eq 5) would not make sense, hence I’'m confused at the methods
here. Or are these equations only used for the four highly studied basins, i.e. Eq 5 shows the
standardized value determined by the gridcells in the basins? Also, Eq 6 could be re-written to
make it clearer that the control variable is determined by the slopes, e.g. slopegpcp -
slopegrace.

e The “measured SWAMPS signal” (Line 129) will be changed to “measured SWAMPS
long term average (LTA)”. “Slope” in general refers to the m variables and m; and m» are
specifically used to determine the control variable. Slopes at each grid cell are determined
through the regressions which utilize our developed climatologies. We standardized the
calculated slopes to determine the control variable. Since GRACE and GPCP function on
different ranges and units, we can expect the slopes to reflect the spread and magnitude of
their dataset. We remove the slopes’ spread and magnitude by subtracting and dividing
by the average and standard deviation of all the calculated slopes per variable. Therefore,
when we use Equation 6 our inputs are fairly compared. Equation 6 will be rewritten as:
Control Variable = |GPCP Slope| — |GRACE Slope]|

P8 1150: “we no longer consider all 0-11 month models”, yet it is shown in Fig 9.

e 0 — 11 month model results are provided to provide a thorough analysis. We felt readers
would like to see the insignificant differences between the 0 — 5 and 0 — 11 month models
for themselves.

P8 Fig4: just a small suggestion to make the figures easier to read, at least in my opinion.
Maybe place a small text within the figures, rather than having the reader disentangle which
figure represents which dataset and which lag threshold (also goes for other figures).

e The authors feel the figure captions sufficiently state which dataset and lag threshold
are applied per (sub)figure.

P91164: “we can see” ... “we know”. Actually | can’t see or know because so far I've only
seen the results of the multi-linear regression (Fig 5) and not the single regression models.
The comparison for single and multi-linear regression only shows up in Fig 10 (without time



lags). So | would rephrase or re-order, as you mention in this para- graph that a ‘multi-linear
regression model with a time lag correction between 0 and 5 months is the most rigorous for
further analysis’, so | was a bit surprised to see Fig 10 discussed later on.

e | am referencing the validation statistics provided in Table 1 in Line 164. | will add
“(Table 1)” after “there isn’t much improvement” to clarify this statement is result of
the validation results in Table 1.

P101173: 1 assume you mean August 2007 rather than specifically August 15th 2007.

e Yes, thank you. This will be changed to “August 2007 in the final revision to prevent
confusion.

P101177-179: 1 got a bit confused which dataset has which limitations in which lo- cations.
SWAMPS data has limitations over desert and mountainous areas shown in Fig 1, but
modeled SWAMPS (maybe better to call it modeled inundation rather than SWAMPS?) has
limitations in areas with snow and ice or seasonal monsoon areas, so that is related to
limitations in either GPCP or GRACE?

e The limitations of SWAMPS are reflected in modeled SWAMPS. Areas heavy in snow
and ice often report missing values or inconsistent measurements in SWAMPS (example
in Figure 7e). We attribute the underestimations in areas affected by large interannual
variability to the limited shared data period between the datasets and to utilizing
climatologies which would reflect the average behavior.

P11 1198-199: related to the above, is the inadequate data related to GPCP or GRACE?

e Areas heavy in snow and ice often report missing values or inconsistent measurements in
SWAMPS (example in Figure 7e).

P12 Fig 7: if there are no available measurements in winter, then the scatter plots reflect only
the summer / fall months?

e These validation plots reflect the modeled versus measured inundation per month within
the domain (163 months between April 2002 to October 2015). It is possible there were
no measurements at a location for all winters, no measurements for only a single winter
month (NaNs for Dec., values for Jan.), or no measurements during a specific year (NaNs
for Winter 2007, values for Winter 2008). With this understanding, we expect the scatter
plots in snow/ice dominated regions to reflect some winter trends, but not as thorough as
locations that are not limited by snow/ice.

P13 1210-216: refer back to Eq 4-6 to help the reader remember how you determined your
error.



e [ will add text that references the equations in the final revision.

P14 1224: “white areas represent no values” this is repeatedly mentioned in the text but not
in the captions. It would be OK to mention this clearly once (white areas are masked using
SWAMPS quality map).

e White areas represent low values and/or no value depending on the figure and is stated
whenever referenced for the reader. | would prefer to leave the text referencing the
white as is to prevent possible confusion.

P16 1241: bracket goes before ‘comparing’ instead of ‘Fig’.

e Thank you for catching this. We will remove “comparing” and the following comma in
the final revision.

P16 1252-257: Regression coefficient refers to Eq 3 (m1, m2, called slope elsewhere)?
Furthermore, you use a scale from -1 to 1 whereas in lines 99-107 you mention that negative
regression coefficients should be impossible, and therefore you introduce time lags. So why
are there still negative values in Figure 11? Should results for those grid cells not be trusted?
The color scale is also a bit misleading, as grey values (towards -1) do not reflect small values
(around 0), but the orange colors do.

e We hypothesized it should be generally impossible to have negative slopes because we
wouldn’t expect GRACE or GPCP to be inversely related to SWAMPS. However, we see
this occur within the data before a time lag correction (Fig 11c and 11f) and after the
correction (Fig. 11d and 11f). Some of the negative values are attributed to time lag and
are reduced through the applied corrections. Other negative values tend to occur in
regions with known limitations (areas of high elevation, snow dominated, and poor
SWAMPS reliability) and are discussed in the manuscript. My apologies on the wording.
The phrase will be changed to “Grey displays negative values” in the final submission.

e Figure 11c and 11e reflect slopes for the model in Figure 11a (multi-linear regression
with no time lag). Figure 11d and 11f reflect slopes for the model in Figure 11b (multi-
linear regression a time correction of 0 to 5 months). The caption was mislabeled and will
be corrected.

Overall: | felt it was a bit confusing that the terms GRACE / TWSA / water storage, GPCP /
precipitation, SWAMPS / runoff generation / inundation are used interchange- ably.

e These satellites and their respective measurements are core terminology within the
literature.



This manuscript assessed a linear regression model for predicting surface inundation
(SWAMPS) using two predictors, gridded precipitation product (GPCP) and GRACE TWS
anomalies (TWSA). While the problem may be interesting, the hypothesis and approach
taken were too naive or even erroneous. - TWS is highly correlated to pre- cipitation (with
potential lag adjustments) in most areas (see Humphrey et al., 2016, Figure 8a). From linear
regression theory, any time you have collinearity, the results may look weird. - The authors’
hypothesis is that surface water inundation is linearly correlated to precipitation amount.
This may not be true from topography perspective. As a case in example, heavy storm in
mountainous areas will result in different inundation extent than that in plain areas. -
SWAMPS is daily data and surface inundation is often more meaningful at daily or even sub-
daily scales. At the monthly scale, SWAMPS basically shows surface water bodies that can be
well delineated from Landsat data. Why do we need your model in the first place? - | looked
at the GPCP description, which says “The Version 2.3 monthly product covers the period
January 1979 to the present, with a delay of two to three months for data reception and
processing.” Similarly, GRACE monthly data product has several months of data processing
latency. So the significance of this linear regression approach (requiring GRACE and GPCP) for
flood inundation is limited. - The scale 0.25deg is too coarse for water managers who are
interested in inundation.

We thank the reviewer for their comments and wish to address each of them in detail.
The reviewer has raised some valid concerns, from the perspective of improving the articulation
of the motivation and approach in our work. However, there is some fundamental
misunderstanding in this review that needs to be addressed in detail.

We see the reviewer’s comments have been distributed across three major contextual
points. First, the reviewer appears to assume that the motivation of this study was to develop a
sort of operational predictive tool, for which data latency would be a critical issue and for which
the spatial scale of the study may be limiting. In fact, that assumption is erroneous, this study
was never focused at addressing an operational need at all. It is instead a scientific study of
processes critical to better understanding global and large scale hydrology. The purpose of our
work was to explore and characterize surface inundation developments with precipitation and
water storage for the first time using NASA remote sensing data products. To our knowledge,
this was a first attempt at considering two contributors in surface inundation generation and
attempting to understand “which process dominates inundation, and where”. These insights
could be useful to hydrologists and to global land surface modelers, but are not intended to be
used for operational forecasting.

We would like to take specific note of the reviewer’s comment “Why do we need your model
in the first place?”, which we honestly find a bit shortsighted. To clarify, we are not proposing
an operational “model” here at all, we are conducting a study of processes and their spatial
distribution globally. As scientists, we perform studies to better understand mechanisms and
processes that cause the phenomena we observe. Then we assemble these studies into a
manuscript and publish it to advance the community knowledge of that phenomena. That is



“why we need” this study, and why we need science in general. The question of “why do we
need your model in the first place” presents a bit of a ridiculous perspective.

Towards the exploration of observed surface water generation, we apply a regression model
framework to better understand mechanisms, but the model itself is not a product or an
outcome. ltis simply a tool to address the mapping of dominant processes. This difference in
motivation is important in understanding the paper we believe and it seems the reviewer has
missed that point with this question.

We have modified the manuscript to make this point more clearly, so that there is no confusion
between a scientific process study and an operational development study. Though we had
never mentioned an operational motivation for this work, we have now removed all text that
may have implied an operational need, and changed the lines listed below to now read as
follows:

e From “prediction” to “estimation” (Line 15).

o “We approach these goals through the application of a simple linear regression model of
inundation based on remote sensing observations” (Line 58).

e From “predict surface inundation” to “represent surface inundation” (Line 89).

e “To further capture the long-term variability across the globe, we utilized each dataset’s
climatology” (Line 95).

e From “developed model” to “regressions” (Line 103).

e “With the final model, historical GRACE and GPCP measurements are used to estimate
surface inundation (referred to as modeled surface inundation)” (Lines 120).

e From “predicts” to “estimates” (Line 279).

Second, it seems that the reviewer was concerned with the coarse scale of the study,
but also simultaneously concerned that topographic heterogeneity will drive inundation
patterns at fine scales. These comments can be read as inconsistent, but hopefully we can
clarify our approach. For this study, we imagine a global land surface model, typically run at 1
degree globally (or at best, 0.25 degrees globally), for which topographic processes are
represented empirically, and in which surface water formation follows Beven and Kirkby’s
‘topmodel’ formulation. In this, topography and topographic heterogeneity are represented
statistically, and there are truly still aggregated (or “lumped’) runoff generation processes that
occur at coarse resolution. At those scales, topography is never explicitly represented, but
instead, is represented implicitly as a grid-cell level characteristic that can influence lumped



runoff generation. Here we have taken the same conceptual approach, for which we examine
the aggregated runoff generation across the entire 0.25-degree grid cell, and those results can
be associated with topographic information but without an explicit representation of
topography in the regression. This is a simple and valid approach that is observation-focused,
in order to later diagnose processes and mechanisms statistically.

To clarify this fact for readers of the study, we have added text to this effect, between
lines 54 and 55 in the manuscript.

Third, it seems that the reviewer is not convinced of the orthogonality of precipitation
and terrestrial water storage anomaly time series. In fact, as the reviewer has highlighted and
as explained in Humphrey et al., 2016, and many, many excellent papers before that one, there
is approximately a 3-month time lag between precipitation (a flux), and storage (a state), on
average globally. This time lag between the rate and the state does in fact create orthogonality
between the two time series, similar to the orthogonality between a sine and a cosine wave.
Leveraging this orthogonality is what allows us to apply a multiple regression and disaggregate
the effects of these two processes. That is the entire premise of the approach, so we
empathize that having misunderstood this fact, the reviewer would be confused by our
methodology.

To make this point more clearly, we have added text in the method section on the
orthogonality of precipitation and storage time series (at end of line 89):

“Precipitation and water storage long-term anomalies, a component of the total signal,
are known to be globally correlated with a known lag (Humphrey et al., 2016). We utilize full
signal in the regressions to ensure levels of orthogonality between precipitation and water
storage that avoid collinearity.”



