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Abstract. An automatic workflow to measure surface flow velocities in rivers is introduced, including a Python tool. The method is based on PTV 

and comprises an automatic definition of the search area for particles to track. Tracking is performed in the original images. Only the final tracks 

are geo-referenced, intersecting the image observations with water surface in object space. Detected particles and corresponding feature tracks are 

filtered considering particle and flow characteristics to mitigate the impact of sun glare and outliers. The method can be applied to different 10 

perspectives, including terrestrial and aerial (i.e. UAV) imagery. To account for camera movements images can be co-registered in an automatic 

approach. In addition to velocity estimates, discharge is calculated using the surface velocities and wetted cross-section derived from surface models 

computed with structure-from-motion and multi-media photogrammetry. The workflow is tested at two river reaches (paved and natural) in 

Germany. Reference data is provided by ADCP measurements. At the paved river reach highest deviations of flow velocity and discharge reach 

4 % and 5 %, respectively. At the natural river highest deviations are larger (up to 31 %) due to the irregular cross-section shapes hindering accurate 15 

contrasting of ADCP- and image-based results. The provided tool enables the measurement of surface flow velocities independently of the 

perspective from which images are acquired. With the contact-less measurement spatially distributed velocity fields can be estimated and river 

discharge in previously ungauged and unmeasured regions can be calculated, solely requiring some scaling information. 

1 Introduction 

Measuring discharge of rivers is a major task in hydrometry because of its importance in many hydrological and geomorphological research 20 

questions, e.g. to understand the characteristics of catchments and their adaption to climatic changes. Different approaches exist to apply the 

velocity-area-method to measure discharge relying on information about the flow velocity and the wetted river cross-section area. Established tools 

to retrieve flow velocities are the application of current meters, acoustic devices (i.e. acoustic Doppler current profilers) or surface velocity radar 
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(Herschy, 2008, Merz, 2010, Morgenschweis, 2010, Gravelle, 2015, Welber et al. 2016). However, these velocity estimation methods are either 

labour intense, require minimum water depths, need prolonged measurement periods or can endanger the operator during flood measurements.  25 

A promising alternative are remote sensing tools utilising image-based approaches. Due to their flexibility (only a camera is needed) they are used 

frequently exploiting various sensors and platforms for data acquisition. For instance, RGB sensors have been used (e.g. Muste et al., 2008) as well 

as thermal cameras (e.g. Puelo et al., 2012). Ran et al. (2016) demonstrated the suitability of a low-cost Raspberry Pi camera to observe flash floods 

and Le Coz et al. (2016) and Guillén et al. (2017) illustrated the usability of crowd-sourced imagery for post-flood analysis. Image-based setups 

allow for the assessment of temporally changing flow dynamics (Sidorchuk et al., 2008) due to the potential continuous recording of entire river 30 

reaches. Furthermore, small-scale investigations are enabled as shown by Legout et al. (2012), who measured the spatial distribution of surface 

runoff from mm- to cm-depth, at a range where other methods are failing. 

Various algorithms exist for surface flow velocity monitoring from image-based observations deploying tracking tools. Four tracking approaches 

are applied frequently in the field to monitor rivers. The first method is large scale particle image velocimetry (LSPIV) originally introduced by 

Fujita et al. (1998). This approach uses tracking of features at the water surface that are caused due to natural occurring floating particles or free 35 

surface deformations caused by ripples or waves e.g. due to wind or turbulences (Muste et al., 2008). In general, the area of interest (i.e. the water 

surface) is divided in sub-regions and these sub-regions are used as templates. In the subsequent images, the corresponding areas are searched for 

using correlation techniques.  

Fujita et al. (2007) advanced the LSPIV approach by an algorithm called space time image velocimetry (STIV). STIV performs faster, because 

tracking is performed in 1D instead of 2D. Profiles are extracted along the main flow direction to subsequently draw particle movements along the 40 

time axis (i.e. change along the profiles within succeeding frames) leading to a space-time image. The resulting angle of the pattern within that 

image resolves into the flow velocity.  

The third possibility is the usage of optical flow algorithms developed in the computer vision community. For instance, the Lucas-Kanade (Lucas 

& Kanade, 1981) operation has been utilized to measure surface velocities of large floods or small rivers (Perks et al., 2016 or Lin et al., 2019, 

respectively). The method aims to minimize grey scale value differences between template and search area adapting the parameters of an affine 45 

transformation within an optimization procedure. Finally, particle tracking velocimetry (PTV) is a tracking option that uses correlation techniques 

as in LSPIV. However, instead of using entire sub-regions as templates single particles are detected first and then searched for in the subsequent 

images.  

LSPIV is the most widely used method and can be considered as matured (Muste et al., 2011). Amongst others, it enabled the measurement of the 

hysteresis phenomena during flood events (Tsubaki et al., 2011, Muste et al., 2011). However, LSPIV mostly underestimates velocities, which is 50 
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revealed in more detail by Tauro et al. (2017), who prefer PTV instead. In contrast to LSPIV PTV does not assume similar flow conditions for the 

entire search area and it is not influenced by surface frictional resistance (Lewis and Rhoads, 2015) or standing waves (Tsubaki et al., 2011). 

Besides surface flow velocity another parameter has to be considered to derive discharge measurements from image-based tracking approaches. 

The depth averaged flow velocity, used in the velocity-area-method, does not necessarily correspond to the surface flow velocity, which is amongst 

others due to the influence of river bed roughness. Therefore, a so called velocity coefficient has to be used to adjust the surface velocities (Creutin 55 

et al., 2003, Le Coz et al., 2010). Usually, the deeper the flow the higher the coefficient is assumed (Le Coz et al., 2010). The coefficient can vary 

with different river cross-sections (Le Coz et al., 2010) and it can change within the same cross-section due to varying water depths, which is likely 

for irregular profiles (Gunawan et al., 2012). Muste et al. (2008) state that the coefficient mostly ranges between 0.79 to 0.93, but values as low as 

0.55 have been measured (Genc et al., 2015). Considering the correct velocity coefficient is important because it has a high impact on the discharge 

estimation error in remote sensing approaches (Dramais et al., 2011). 60 

When flow-velocities and velocity coefficient are known, the area of the river cross-section is needed to calculate the discharge with the velocity-

area method (e.g. Hauet et al., 2008). Different tools exist for contactless river cross-section area measurement. Muste et al. (2014) show that it is 

possible to use velocity pattern measured with LSPIV to retrieve flow depth in shallow flow conditions. Another approach is the utilization of 

ground penetrating radar as illustrated for larger rivers by Costa et al. (2000). An additional increasingly used method to retrieve the topographic 

(and thus cross-section) information of the river reach is the usage of structure-from-motion (SfM) photogrammetry (Eltner et al., 2016). For 65 

instance, Ran et al. (2016) capture stereo images to reconstruct the 3D information of a river reach from overlapping images during low flow 

conditions. However, if water is present during data acquisition and the river bed is still visible the underwater measurements have to be corrected 

for refraction impacts (Mulsow et al., 2018) or else heights of points below the water surface will be underestimated. Woodget et al. (2015) introduce 

a workflow to account for refraction using a constant correction value for the case of Nadir viewing image collection. Dietrich (2017) extends this 

correction procedure for the case of oblique imagery. Detert et al. (2017) were the first to perform fully contact-less, image-based discharge 70 

estimations using refraction corrected river cross-sections (adapting Woodget et al., 2015) and surface flow velocities, all measured from UAV 

imagery. However, the authors relied on a seeded flow to apply LSPIV. 

Image-based tracking approaches can be applied to imagery captured terrestrially as well as from aerial platforms. In the case of aerial imagery, the 

utilization of UAVs for data acquisition is increasing. The advantage of drones is their flexibility and allowance to capture runoff patterns during 

high flow conditions (e.g. Tauro et al., 2016, Perks et al., 2016, Detert et al., 2017, Koutalakis et al., 2019), even enabling real-time data processing 75 

(Thumser et al., 2018). However, a challenge to overcome is the correction of camera movements during the UAV flight. Although camera mounts 

are commonly stabilised, remaining motions need to be accounted for. Tauro et al. (2016) subtract velocities measured in stable areas outside the 

river from velocities tracked in the river. Another possibility is the usage of co-registration. Thereby, either features (e.g. SIFT features; Lowe, 
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2004) are searched for in stable areas (Fujita et al., 2015, Blois et al., 2016) or Ground Control Points (GCPs) are detected (Le Boursicaud et al., 

2016). Subsequently, these image points are matched across the images. Afterwards, this information is used to apply a perspective transformation 80 

to each image to fit them to a reference image. However, so far stable areas are still masked manually.  

In the case of terrestrial data acquisition, the conversion of pixel measurements to metric velocity values is more challenging compared to UAV 

data due to a stronger deviation of the perspective from an orthogonal projection, which leads to decreasing accuracies with increasing distance to 

the sensor. Therefore, Kim et al. (2008) suggest to avoid camera setups with tilting angles larger than 10°. Most approaches ortho-rectify the images 

prior tracking to allow for a correct scaling of the image tracks. However, performing the tracking in the original image would be favoured to 85 

minimize interpolation errors, especially for oblique camera setups, and to solely transform the tracked image point coordinates into object space 

(Stumpf et al., 2015). 

Several software tools already exist to perform image-based velocimetry (e.g. PTVlab from Brevis et al. 2011, PIVlab from Thielicke and Stamhuis 

2014, Fudaa-LSPIV at https://forge.irstea.fr/projects/fudaa-lspiv, KU-STIV developed by Fujita, or RIVeR from Patalano et al. 2017). These tools 

cover different processing steps and tracking options to retrieve surface flow velocities and discharge. In this study, we combine the entire workflow 90 

from video, either captured with UAV or from terrestrial camera, to velocity of river reaches, considering image stabilization, automatic feature 

search area extraction, PTV, track filtering and metric velocity retrieval via forward ray intersection. An automatic flow velocity measurement tool 

(FlowVelo tool) for image velocimetry is presented and provided by public domain to overcome existing gaps discussed before. It is independent 

from the data acquisition scheme and relies on PTV. Camera movements are accounted for in a fully automatic approach if a sufficient amount of 

shore area is visible. Furthermore, the search area for features to track, i.e. the river area, is extracted automatically solely requiring water level 95 

information and a 3D surface model of the river reach. The 3D surface model is calculated from image data with SfM photogrammetry additionally 

considering multi-media photogrammetry to retrieve both, topography and bathymetry. In order to improve tracking results, detected features and 

velocity tracks are filtered with different methods. Finally, we estimate discharge from surface flow velocities and cross sectional areas. The 

FlowVelo tool and the whole workflow are investigated for two river reaches, paved and natural, at which velocities and discharges are compared 

to ADCP references. 100 

2 Methods 

In this study, the FlowVelo tool is introduced that allows for the measurement of flow velocity from videos independently from the acquisition 

platform, i.e. either aerial or terrestrial. Different parameter options for feature detection and tracking as well as track filtering are explained. Two 
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experimental study sites have been chosen to evaluate the performance of video based flow velocity estimation using camera frames acquired from 

different perspectives. First the experimental study sites are introduced and afterwards the tool is explained. 105 

2.1 Areas of interest 

The experimental study sites are short river reaches in Saxony, Germany (fig. 1). One studied river reach is situated at the Wesenitz. This river 

originates in the Lausitzer highlands, has a catchment size of about 280 km², and exhibits a river length of 83 km. The area of interest is located at 

the river gauge station Elbersdorf, which is operated by the Saxon state company for environment and agriculture. Here, annual average water level 

and discharge for the hydrological year 2017 are 48 cm and 2.4 m²/s, respectively. Field campaigns were conducted on March 31st and on April 4th 110 

2017. During the campaigns water level amounted 51 cm (discharge 2.7 m³/s). The investigated river section at the Wesenitz is paved but influenced 

by local sand banks at the river bottom. During the data acquisition the river had a width of about 10 m. 

The other river is the Freiberger Mulde, which originates in the Ore Mountains, has a catchment size of about 2980 km², and displays a river length 

of 124 km. The area of interest is located close the gauge Nossen. Average discharge and water level for the hydrological year 2016 are 5.6 m³/s 

and 65 cm, respectively. The gauge station is located 1 km upstream of the studied river reach. The field campaign was conducted on October, 26th 115 

2016. During this day discharge and water level were 5.7 m³/s and 68 cm. The approximated river width was 15 m. The chosen region of interest 

at the Freiberger Mulde is a natural river section with non-uniform flow conditions. 

2.2 Data acquisition 

Different data was collected during the field campaigns at both river sections. Amongst others ADCP measurements were performed as flow 

velocity reference, GCPs were defined to geo-reference the video data and UAV and terrestrial imagery were acquired to perform image-based 120 

flow velocity estimation. 

2.2.1 ADCP measurements 

For the ADCP measurements the moving boat approach with StreamPro from RDI is used. Velocity profiles were measured with a blanking range 

of 14 cm near the water surface. Data were processed using the AGILA software from the German Federal Institute of Hydrology (BfG). 

Measurements along the boat track were projected onto a reference cross sectional area. Afterwards surface flow velocities were extrapolated to 125 

allow for a comparison to the image-based values. For the extrapolation, power functions were fitted to the measured vertical velocity profile for 

each individual ADCP ensemble using the software AGILA (for more detail see Adler, 1993 and Morgenschweis, 2010). Then, velocities at the 

water surface were calculated with these functions. Thus, all ADCP measurements of the profile were considered to extrapolate surface velocities. 
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At the Wesenitz ADCP measurements were performed at one cross-section in eight repetitions (fig. 1a). Average water surface velocity was about 

0.7 m/s and resulting discharge amounts 2.7 m³/s (table 1). At the Freiberger Mulde three cross-sections were chosen (fig. 1b) to acquire data that 130 

allows for a spatially distributed assessment of the image-based data. Average river surface velocities ranged between 0.60 m/s and 0.76 m/s (table 

1).  

The spatial variation of flow velocities is larger at the Freiberger Mulde, where measurements were performed in a natural river reach, which is in 

contrast to the flow velocity range at the Wesenitz, where data was captured at a standardized gauge station. Thus, only one profile was measured 

at the Wesenitz. The discharge at the Freiberger Mulde is 5.88 m³/s on average but reveals a standard deviation of 0.25 m³/s. Estimated discharge 135 

of the river reach therefore reveals a variation of about 4 %, which can be attributed to inconsistencies during data acquisition. A decrease of the 

velocity coefficient, which has been derived from the ADCP measurements, with decreasing water depth is observed. At the Freiberger Mulde 

cross-sections 1 and 3 (Table 1) have lower water depth compared to profile 2. Thus, the velocity coefficients are lower.  

2.2.2 Image-based data 

At both river reaches video sequences were acquired with terrestrial cameras and with a camera installed at the UAV Asctec Falcon 8. The airborne 140 

image data was captured at flying heights of about 20 m and 30 m at the Wesenitz and Freiberger Mulde, respectively. Videos were captured with 

a frame rate of 25 frames per second (fps) and with a resolution of 1920 x 1080 pixels using the camera Sony NEX-5N with a fixed lens with a 

focal length of 16 mm. The ground sampling distance (GSD) is about 7 mm at the Wesenitz and about 9 mm at the Freiberger Mulde. 

The terrestrial cameras were installed at bridges across the river (fig. 1). At the Wesenitz three cameras were installed to evaluate the performance 

of different cameras (fig. 1a). Two Canon EOS 1200D and one Canon EOS 500D were setup. The 1200D cameras captured video sequences with 145 

25 fps and with a resolution of 1920 x 1080 pixels. The 500D captured frames with a higher rate (30 fps) and smaller image resolution 

(1280 x 720 pixels). All three cameras were facing downstream. At the Freiberger Mulde the camera Casio EX-F1, equipped with a zoom lens 

fixed to 7.5 mm, was used. Videos were captured with 30 fps and a resolution of 640 x 480 pixels. The camera was facing upstream. 

The terrestrial cameras were calibrated for both rivers to allow for the correction of image distortion impacts. To estimate the interior geometry of 

the cameras, images of an in-house calibration field have been captured in a specific calibration pattern (Luhmann et al., 2014). These images, 150 

together with approximate coordinates of the calibration field and approximations of the interior camera orientations were used in a free-network 

bundle adjustment within Aicon 3D Studio to calibrate each camera. More details regarding the workflow are given in Eltner and Schneider (2015). 
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2.3 High resolution topography of the river reaches 

Local 3D surface models describing the topography of the river reaches are necessary to scale the image measurements. Therefore, high resolution 

topography data was acquired at both rivers using SfM photogrammetry (Eltner et al., 2016, James et al., 2019). SfM in combination with multi-155 

view stereo matching (MVS) allows for the digital reconstruction of the topography from overlapping images and some GCPs. Thereby, 

homologous image points in overlapping images are detected and matched automatically. From these homologous points and some assumptions 

about the interior camera model, the position and orientation of each captured image (i.e. camera pose) can be calculated. With known network 

geometry, a dense point cloud can be computed, reconstructing the 3D information for almost each image pixel. The resulting 3D surface models 

are geo-referenced during the reconstruction or afterwards via GCPs. 160 

At the Wesenitz the 3D surface model of the river reach was calculated from 85 terrestrially captured images with a Canon EOS 600D (20 mm fixe 

lens) and from 20 UAV images (Eltner et al., 2018). The SfM calculations were performed in Agisoft Metashape. At the Freiberger Mulde seven 

frames of the video sequence, which is also used for later PTV processing, were utilized to perform SfM photogrammetry to retrieve the 

corresponding 3D model of the river reach. 

GCPs made of white circles on a black background were installed in order to reference the 3D data as well as the image-based velocity 165 

measurements. They were measured with a total station at the Freiberger Mulde and during the first campaign at the Wesenitz. During the second 

campaign at the Wesenitz GCPs were extracted from cobblestone corners (with sufficient contrast) at the gauge, which are visible in the terrestrial 

images used for the 3D model reconstruction. GCPs were measured in at least five images for sufficient redundancy and thus more reliable 

coordinate calculation. 

The bathymetric information of the river reaches was retrieved using the same UAV data as for the topographic information above the water level. 170 

Refraction impacts are accounted for using the tool provided by Dietrich (2017). Underwater points, camera poses and interior camera parameters 

as well as the water level need to be provided. The corrected point clouds can be noisy and were therefore filtered and smoothed in CloudCompare 

using a statistical outlier filter to detect isolated points and using a moving least square filter. Eltner et al. (2018) revealed that cm-accuracies can 

be reached using multi-media SfM at the Wesenitz river reach. Due to opaque water conditions at the Freiberger Mulde, imagery of a previous 

UAV flight (six weeks earlier and with no flood events happening during that period) had to be used to reconstruct the underwater area. 175 

2.4 Surface Flow Velocity Workflow – the FlowVelo tool 

This chapter introduces the general approach to measure surface flow velocities from either terrestrial or airborne video sequences. Thereby, 

essential processing steps are described in more detail. The FlowVelo tool is realized in Python and using the OpenCV library (Bradski, 2000). 

Fig. 2 illustrates the entire data processing workflow of the tool. 
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2.4.1 Frame preparation 180 

Video sequences are converted into individual frames prior to the data processing. Afterwards, image co-registration is necessary if the camera is 

not stable during video capturing, as it is the case for the UAV data. Each frame of the entire video sequence is co-registered to the first frame of 

the same sequence to correct camera movements and thus to enable that all frames capture the same scene. This processing step is preformed fully 

automatically. In each frame Harris corner features are detected (Harris & Stephens, 1988), which are then matched to the first frame of the sequence 

using SIFT (Lowe, 2004) or ORB descriptors (Rublee et al., 2011). The suitability of co-registration in different conditions and over longer periods 185 

of time has been illustrated in Eltner et al. (2018), who introduce a terrestrial camera gauge for water level measurements. 

Harris features in the water region are detected as outliers due to their changing appearance between subsequent frames leading to matching failure. 

And if moving features in the water area still might be matched, they are latest filtered during the parameter estimation of the homography because 

these points will be considered as outliers during the model fitting with RANSAC (Fischler & Bolles, 1981). Thus, only stable and reliable 

homologous image points outside the river are kept and used to calculate the homography parameters between the first frame and all subsequent 190 

frames. Finally, a perspective transformation is applied to ensure that all frames fit to the first image. It has to be mentioned that this approach is 

only working as long as enough stable areas are visible on both river shores.  

In the FlowVelo tool five parameters can be set to adjust the co-registration of each individual scenery. The maximum number of keypoints defines 

how many features are maximally searched for in each frame. Larger numbers can increase the robustness and accuracy of matching but also the 

processing time. The number of good matches determines how many matched features between two frames are needed minimally to find the 195 

homography. Again, larger values increase the robustness, but they can also lead to a failure of processing if fewer feature matches are found than 

appointed here. Furthermore, it can be defined, which feature descriptor is chosen for matching, if features are matched back and forth increasing 

the accuracy and processing time, and if image co-registration is performed to the first frame or in a series to each consequent frame of the sequence. 

2.4.2 Finding features to track 

A search area in the river region has to be defined to detect particles before tracking. This is due to the circumstance that most feature detectors 200 

look for regions with high contrast. Therefore, points of interest would be found on the land, where contrast is usually higher than on the water 

surface. Thus, in a first step the river area has to be masked in the images and defined as the search area for tracking before applying particle 

detection. 

Feature search area and pose estimation 

The feature search area is a region of interest that is defined as a function of the water level to mask the image. The water level and a 3D surface 205 

model of the river reach (fig. 3a) observed by the camera have to be known to define this water area automatically. The 3D surface model is clipped 
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with the water level value to keep solely the points below the water surface. Afterwards, these points are projected into image space (fig. 3b). 

Therefore, information about the pose and the interior geometry of the camera is necessary. In the FlowVelo tool information about the camera 

pose is either estimated with spatial resection considering the GCP coordinates in image and object space and the interior camera parameters (for 

more details see Eltner et al., 2018) or it can be simply stated if the pose has been defined by other measures. 210 

Next, the 3D point cloud of the observed river reach is projected into a 2D image (fig. 3b). To fill gaps, potentially arising for 3D surface models 

with low resolution, a morphological closing is performed. Finally, the contour of the underwater area is extracted to define the search mask for the 

individual frames. If several contours are detected, the largest contour is chosen. If a 3D surface model is not present for automatic feature search 

area detection, the area of interest for tracking can also be provided via a mask file. 

Feature detection and filtering 215 

Particles are detected with the Shi-Tomasi feature (or good feature to track; GFTT) detector (Shi & Tomasi, 1994). Thereby, features are detected 

similar to the Harris corner detector but a different score is considered to decide for a valid feature (fig. 3c). Many more feature detectors are 

possible. Tauro et al. (2018) test several methods and show that the GFTT detector performs well and also finds features in regions of poor contrast.  

The elimination of particles, which are not suitable for tracking, is necessary. For instance, reflections of sunlight at waves showing high contrasts 

on the water surface need to be removed to avoid erroneous tracking of fake particles (Lewis and Rhoads, 2015). Therefore, a nearest neighbour 220 

search is performed to find areas with strong clusters of particles. If there are too many features within a defined search radius, the particle will be 

excluded from further analysis. In addition, features are removed that reveal brightness values below a threshold, e.g. to avoid the inclusion of wave 

shadows as features. 

2.4.3 Feature tracking 

When features have been detected, they are tracked through subsequent frames (fig. 4). This tracking is performed using normalised cross 225 

correlation (NCC). Normalization allows accounting for brightness and illumination differences between different frames. The positions of the 

detected features are chosen to define templates with a specific kernel size (mostly 10 pixels in this study, Appendix 2). In the next frame NCC is 

performed within a defined search area (mostly 15 pixels in this study, Appendix 2) to find the positions with highest correlation scores for each 

feature, potentially corresponding to the new positions on the water surface of the migrated particles.  

To refine the matching, an additional subpixel accurate processing is performed. Thereby, template and matched search area of the same size are 230 

converted into the frequency domain to measure the phase shift between both and afterwards the subpixel peak location its determined with a 

weighted centroid fit. The final matched locations define the new templates for tracking in the next frame. This tracking approach is performed for 

a specified number of frames. In this study, features are tracked for 20 frames and new features are detected every 15th frame. It can be suitable to 
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detect features more frequently than the number of frames they are tracked across, because features can change their appearance and new features 

can enter the area of view although the already detected features are still tracked. 235 

2.4.4 Track filtering 

Figure 4 shows that false tracking results can still occur, e.g. tracks that significantly deviate from the main flow direction. This is amongst others 

due to remaining speckle detected as features or due to tracking of features with low contrast leading to ambiguous matching scores. Therefore, 

resulting velocity tracks need to be filtered. Tauro et al. (2018) remove false trajectories considering minimum track length and track orientation. 

In this study, we also make assumptions about the flow characteristics of the river (fig. 5). We consider six parameters; minimum frame amount of 240 

a tracked feature, minimum and maximum tracking distances, flow steadiness, range of track directions, and deviation from average flow direction. 

Each track has to fulfil these criteria to be considered as a reliable velocity information. Thereby, each track is the combination of the individual 

sub-tracks from frame to frame, with feature detection performed in the first frame.  

The first criterion considers the minimum percentage of frames across which the features have to be traceable (here 65 % ).The underlying 

assumption is that if the feature is only traceable across a few frames then it is more likely not a well-defined flowing particle at the water surface 245 

but may for instance be a speckle occurrence due to sun glare. However, the minimum value can be set to 0 to avoid any constraints regarding flow 

velocities and camera frame rates.  

The second and third filter criteria are the distances across which features were tracked, comprising thresholds for minimum and maximum 

distances. The distance thresholds can be roughly approximated when image scale and the range of expected river flow velocity is known. In this 

study, the minimum and maximum distance parameters are set to 0.1 and 10 pixels, respectively.  250 

The fourth criterion considers the directional flow behaviour of the feature with a steadiness parameter. Therefore, directions of sub-tracks (from 

frame to frame) are analysed for each track. Tracks are excluded when the standard deviation is above a defined threshold (30° in this study). The 

idea is that river observations are performed during nearly uniform flow conditions. Thus, high frequencies of changes in flow directions within a 

track indicate measurement errors and should be filtered. In addition to this steadiness parameter, the range of all sub-track directions is also 

considered as a measure of the flow behaviour. If the range is above a defined thresholds, the track will be excluded (here 120°).  255 

For the last criterion the main flow direction of the river is examined. The average direction of all tracks is calculated and if the direction of the 

individual tracks are larger or below a buffer threshold (here 30°), they are rejected from further processing. The buffer value has to be defined 

considering the general variability of the river surface flow pattern. The lower the parameter is chosen the more a uniform flow is assumed. It has 

to be noted that the directional filter has a limited applicability in more complex flow conditions, e.g. turbulent, non-uniform rivers. In such situation, 

local filters should be preferred over these global values. 260 
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2.4.5 Velocity retrieval 

In the last processing stage, measured distances are transformed from pixel values to metric units to receive flow velocities in the unit of m/s. With 

known camera pose and interior camera geometry image measurements can be projected into object space. This leads to a 3D representation of the 

light ray emerging from the image plane and proceeding through the camera’s projection centre. 3D object coordinates of an image measurement 

can be calculated by intersecting its ray with a 3D surface model of the river. In this case the water surface, assumed as planar at the water level, 265 

defines the location of intersection. The starting and ending points of each track are intersected with the water plane to retrieve real world 

coordinates. From the distance between start and end, and considering the camera’s frame rate as well as the number of tracked frames, metric flow 

velocities are retrieved. Finally, the metric velocity tracks are filtered once more with a statistical outlier filter to remove remaining outliers (fig. 6). 

The threshold is defined as the sum of the average velocity with a multiple of its standard deviation (e.g. Thielicke & Stamhuis, 2014). The lower 

the multiple is chosen, the more features will be filtered and only tracks will be kept, which have values close to the average velocity. In this study, 270 

the parameter was set to 1.5. This processing step is more important for challenging tracking situations. 

Regarding tracking reliability, it should be noted that in the case of terrestrial cameras with an oblique view onto the river velocity measurements 

are preferred closer to the sensor. Particles move across a larger number of pixels in close range to the camera than in further distances, e.g. an 

erroneous measurement of 1 pixel close to the camera might result to measurement error of 1 cm whereas in further distance it can correspond to 

1 m. Furthermore, tracking accuracy decreases significantly in far ranges due to increasing glancing ray intersections with the water surface. 275 

2.5 Discharge estimation 

The bathymetric information as well as the flow velocities are needed to calculate the discharge. Thereby, sole UAV data can be used as shown by 

Detert et al. (2017). In this study, we cut river cross-sections from the reconstructed bathymetry and topography at the approximate locations of the 

ADCP measurements. Afterwards, we extract the water level information by manually detecting the water line in at least three overlapping images 

and spatially intersecting these point measurements in the object space.  280 

The surface flow velocity values are averaged and multiplied with the velocity coefficients estimated from the ADCP measurements to account for 

depth-averaged velocities (Table 1). This approach is suitable at the Wesenitz. But at the Freiberger Mulde the method is restricted due to the 

irregular river cross-sections limiting the application of a constant velocity coefficient. Finally, discharge is estimated by multiplying the cross-

section area with the depth-averaged velocity. 
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3 Results and Discussion 285 

In this chapter, results of the accuracies of the image processing are displayed, tracked flow velocities are evaluated, and discharge estimations are 

analysed. 

3.1 Accuracy assessment of camera pose estimation and image co-registration 

To enable an accurate measurement of flow velocities it is necessary to consider how well the camera pose has been estimated. Furthermore, for 

cameras in motion the accuracy of frame co-registration has to be evaluated as well, to ensure that tracked movements of the particles indeed 290 

correspond to river flow instead of camera movements. 

The accuracy of camera pose estimation can be estimated because more than three GCPs are available. In general, the camera pose will be calculated 

more accurately if GCPs are distributed around the area of interest in the object space and if images capture them in such a way that they cover the 

entire image extent because it allows for a stable image-to-object geometry. Furthermore, for highest accuracy demands GCPs need to be measured 

with high accuracy in object space and ideally with sub-pixel accuracy in image space. At both river reaches accuracies are better for the terrestrial 295 

cameras (table 2), which is due to a higher GSD as cameras are significantly closer to the area of interest compared to the UAV cameras. At the 

Wesenitz, another reason for the larger deviations is the circumstance that well marked, artificial GCPs were used for the terrestrial images, whereas 

GCPs were extracted from the 3D surface models to estimate the UAV camera pose leading to lower point coordinate accuracies.  

Small template regions (10 pixels in size) in stable areas have been chosen (fig. 6) to estimate the accuracy of frame co-registration. At the Freiberger 

Mulde only GCPs could be used as templates because the remaining area of interest is covered by vegetation that changes frequently. At the 300 

Wesenitz cobble stone corners close to the river surface are chosen because it is important to see how well co-registration performs close to the 

water body for which velocities are estimated. Each extracted reference location is tracked through the frame sequence via NCC. In case of a perfect 

alignment, the templates should remain at the same image location throughout the sequence. In this study, at the Freiberger Mulde average deviation 

between tracked frames to the first frame amounts 0.5 ± 0.6 pixels for all templates, which corresponds to a co-registration accuracy of 4.3 ± 5.2 

mm. At the Wesenitz, co-registration reveals an accuracy of 1.0 ± 1.6 pixels (6.8 ± 11.3 mm). The lower image coverage of the right shore at the 305 

Wesenitz leads to a lower quality of the frame co-registration when compared to the Freiberger Mulde reach because features for frame matching 

are only kept outside the water area as the appearance of the river surface changes too quickly. Therefore, higher deviations are measured at the 

right shore than at the left shore. Considering only the matched targets at the left river side reveals an error range similar to the Freiberger Mulde. 
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3.2 Flow velocity measurements at the Wesenitz 

The tracking results and retrieved flow velocities show a diverse picture for the different cameras. For instance, the final number of flow velocity 310 

tracks is different for each device (table 2). The lowest number of tracks is measured for the UAV camera. However, this camera solely captured a 

very short video sequence (about three seconds) that could be used for tracking. Furthermore, GSD of the UAV data is much lower than the GSD 

of the terrestrial cameras due to a larger sensor to object distance. The terrestrial cameras reveal a significantly denser field of flow velocity tracks 

(fig. 7). The terrestrial cameras captured videos of a length of about half a minute. Although video lengths of the terrestrial cameras are similar, the 

number of final velocity tracks is varying. The camera closest to the water surface and with the least oblique view (1200D-II) reveals the highest 315 

track number. Camera 1200D-I reveals a lower number of velocity measurements, although frame resolution and focal length are the same and 

video length is even longer. The third camera (500D) depicts lowest track number, which is mainly due to a lower frame resolution.  

Besides considerations of the camera geometry, track filtering is another very important aspect to retrieve reliable velocity measurements. The 

filtered track number is about a magnitude lower than the raw track amount for the terrestrial cameras (table 2) highlighting the importance of video 

sequences with sufficient temporal duration. Thus, tracking should be performed as long as possible to increase the robustness of velocity filtering. 320 

Comparing the range of flow velocity values between the different terrestrial cameras and the UAV camera reveals a good fit (fig. 7), which 

also coincides with the ADCP reference (table 3). Furthermore, regions of faster and slower velocities are revealed in the terrestrial image data that 

also show within the acoustic data. The average deviation of all cameras to the ADCP measurements are calculated for video-based track values 

that are within a maximal perpendicular distance to the ADCP profile of 1 m. The difference amounts to 0.03 ± 0.06 m/s. However, it is difficult 

to perform exact comparison to the ADCP measurements because the precise location of the ADCP cross-section in the local coordinate system of 325 

the river reach is not known as the ADCP boat was not equipped with any positioning tool and its movement across the water surface was neither 

tracked nor synchronised. Therefore, accuracy assessment of the spatial velocity pattern is limited. Nevertheless, we were able to identify the start 

and end points of the cross-sections at the shore in the imagery. Therefore, we could approximately estimate the locations of the cross-sections in 

the decimetre range, which allows for velocity comparison if the surface flow velocity pattern does not become too variable within shortest 

distances. This has to be kept in mind, when assessing the velocity differences, especially at the Freiberger Mulde. 330 

Average surface flow velocities from the image-based measurements are higher or similar to the (extrapolated) ADCP retrieved surface velocity of 

0.7 m/s, except for camera 1200D-II, which depicts lower values; also compared to the other cameras (table 4). A potential reason is the different 

coverage of the cross-section with measured velocity values. 1200D-II reveals the highest velocity value density and covers a larger part of the 

cross-section (fig. 7). More regions with lower velocities are measured by the 1200D-II, whereas the other cameras feature less cross-section 

coverage and more values are measured in areas of faster velocities. 335 
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Interestingly, an impact of the missing camera calibration of the UAV images is not obvious. Lens distortion parameters were only modelled for 

the terrestrial cameras but were discarded for the UAV camera. The impact is assumed to be minimal because the camera distortion is usually 

especially large for cameras with very wide angles, which is not the case for the UAV camera. Furthermore, the distortion impact is more important 

when features are tracked for large distances in the image, which is also not the case in this study because features are mostly tracked between 

subsequent frames for only a few pixels. 340 

3.3 Flow velocity measurements at the Freiberger Mulde 

At the Freiberger Mulde a more diverse spatial velocity pattern becomes obvious (fig. 8). Especially the UAV data reveals areas of increased and 

decreased velocities along the river reach. Velocity ranges coincide with the ADCP measurements. Average deviations of the closest tracks to the 

reference values (similar approach to chapter 3.2) are on average -0.01 ± 0.07 m/s for the terrestrial and UAV camera and for all cross-sections. 

However, velocities are either overestimated or underestimated at different profiles and for different cameras (table 3). The flow velocities for the 345 

UAV data is lower at profile 3 compared to the reference. However, due to the strong changes of flow velocities within short distances, especially 

at cross-section 3 (fig. 1), a possible reason can be false mapping of ADCP values to image-based values. The assumption that velocity 

underestimation at that cross-section is due to imprecise point-based velocity comparison is backed when comparing the average cross-section 

UAV-retrieved surface velocity (table 4) with the average ADCP velocity. In that case, the UAV data reveals larger values (0.79 versus 0.76 m/s, 

respectively), confirming the observations at cross-section 1 and 2. 350 

The terrestrial camera depicts a lower spatial density of velocities compared to the terrestrial cameras at the Wesenitz (table 2), although the video 

sequence has comparable length. This is due to the significantly lower image resolution as well as the larger distance to the object. Therefore, less 

features are detectable. The average flow velocity at cross-section 1 as well as the average of contrasted individual velocity tracks are smaller than 

the reference. However, error behaviour of the image-based data might be less favourable at cross-section 1, where the comparison is made for 

image tracks measured at the far reach of the image. The sharp glancing angles at the water surface lead to higher uncertainties of the corresponding 355 

3D coordinate. 

The decision about how to set the parameters for tracking (e.g. patch size) and filtering (e.g. statistical threshold) remains challenging, especially 

in long-term applications when spatio-temporal flow conditions can change strongly (Hauet et al., 2008). Thus, in future studies intelligent decision 

approaches for corresponding parameters need to be developed, for instance where measurements are performed iteratively with changing 

parameters. 360 
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3.4 Camera based discharge retrieval 

Discharge estimations at the Wesenitz do not show large deviations between the cameras because velocity estimates showed low deviations, as well 

(table 4). Solely camera 1200D-II displays a lower discharge. Average discharge for all cameras amounts to 2.7 m³/s, which corresponds to the 

discharge measured by the ADCP. Deviations to the reference are below 4 %, highlighting the great potential of UAV application to retrieve 

discharge estimates solely from image data in regular river cross-sections. Standard deviations of the discharge estimations due to the consideration 365 

of the standard deviation of the surface flow velocities is small, ranging from 0.18 m³/s (7 %) to 0.56 m³/s (8 %) at the Wesenitz and Freiberger 

Mulde, respectively (table 4). 

At the Freiberger Mulde, discharge estimates do not fit as well to the reference measurements. Velocities are only observed in the main flow of the 

river, where flow velocities are higher. Deviations to the ADCP reference are larger for the terrestrial camera, whose measurements are only 

compared to profile 1, which shows the a largest range of flow velocity and depicts very low values outside the main flow (fig. 1). Comparing 370 

single velocity values to nearby ADCP measurements, instead of comparing averaged cross-section information, reveals that the accuracies of 

image-based velocity measurements are indeed higher (table 3). Neglecting the slower flow velocities in the shallower river region outside the main 

flow leads to overestimated discharge values for the irregular shaped cross-sections, which is in contrast to the regular cross-section at the Wesenitz. 

In addition, using the average velocity coefficient is adverse because the irregular profile shape indicates a changing coefficient (Kim et al., 2008).. 

Another important issue that needs to be noted is the circumstance that the image-based discharge estimation reveals a high variability that is 375 

sensitive to the defined wetted cross-section extracted with the defined water level. For instance, at the Wesenitz already 1 cm offset in the water 

level value causes a discharge difference of 0.08 m³/s (3 %) and 3 cm cause a difference of 7 % (0.2 m³/s). Different studies already highlight that 

the correct water level is important for accurate discharge estimation due to the wetted cross-section area error but that it is less relevant for the 

accuracy of the flow velocities due to erroneous ortho-rectification (Dramais et al., 2011, Le Boursicaud et al., 2016, Leitao et al., 2018). 

3.5. Limits and perspectives 380 

In this study, a workflow for surface flow velocity and discharge measurements in rivers using terrestrial and UAV imagery was tested successfully. 

In general, three main processing steps are necessary, i.e. retrieving terrain information via SfM photogrammetry, estimating the flow velocity with 

PTV and eventually calculating the discharge with the information from both previous steps. However, some constraints need to be considered. 

The FlowVelo tool requires at least the video frames, the camera pose (either estimated within in the tool considering GCP information or provided 

externally), the water level and some estimates of the interior camera geometry (at least focal length and sensor size and resolution are needed). 385 

Furthermore, if the camera was not stable during the image acquisition, camera movements can be corrected automatically if sufficient shore areas 

are visible in the frames. With this information and pre-processing scaled river surface velocities are retrievable fully automatically.  
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However, some characteristics of the tool have to be considered. One aspect is the shore visibility in the frames for the co-registration. To guarantee 

at larger rivers large enough stable areas that are large enough at larger rivers increasing the flying height might be necessary, potentially reducing 

the visibility of features to track. Alternatively, cameras with wider opening angles might be needed, potentially resulting in stronger lens distortions. 390 

Furthermore, assumptions about the flow characteristics need to be made for successful filtering, which implies either some experience with image 

velocimetry in riverine environments or some trials to find the most suitable filtering parameters. Consideration of a suitable choice of the threshold 

of the statistical outlier filter is important, as well. If the filter is chosen too strictly, it can lead to the loss of valid velocity tracks, which is especially 

probable in rivers with complex flow patterns and a large range of velocities. Another important factor of the image velocimetry tool to consider is 

the impact of the choices of thresholds on processing time. On the one hand, the more often features are detected and the more frames they are 395 

tracked across, the more reliable and robust tracking results are possible because track filtering will receive a larger sample for processing. However, 

tracking more features across an increased number of frames also increases processing time significantly, which is especially relevant for cameras 

with high frame rates and image resolutions. Nevertheless, in this study the maximum processing time (for the terrestrial cameras at the Wesenitz 

that captured videos with lengths of about half a minute) was still below 5 minutes on an average computer.  

Measuring surface velocities implies sensitivities to external impacts such as winds, waves, or raindrops, potentially falsifying an already established 400 

ratio between surface and average flow velocity, i.e. velocity coefficient, due to decreasing or increasing the surface velocity depending on the wind 

and wave direction and velocity. However, windy and rainy conditions should be avoided using any surface velocity measurement. The accuracy 

and reliability of the surface velocity measurement can be improved by adding traceable particles to increase the seeding density as shown by Detert 

et al. 2017. In this study, only natural particles floating at the river surfaces at both study areas were used, which did not cover the entire observed 

cross-section, leading to data gaps complicating the retrieval of discharge from the sparsely distributed velocity values.  405 

However, tThe FlowVelo tool does not provide discharge information, yet, because discharge estimation requires additional parameters, which 

need to be determined prior using image velocimetry as an accurate automatic remote sensing approach. For instance, the water level and the related 

cross sectional area are needed as well as the velocity coefficient has to be known, which is a point of uncertainty especially at irregular river 

reaches. In this study, the velocity coefficient was estimated from the ADCP measurements dividing the mean velocity of the cross-section with 

the average surface velocity. However, alternative approaches, e.g. hydraulic modelling, should be analysed in more detail in future studies to 410 

evaluate if they can support the retrieval of more suitable velocity coefficients. This becomes especially interesting due to novel possibilities of 

high resolution bathymetric and topographic data, e.g. using SfM approaches for river mapping.  
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Conclusion 

In this study, we introduce a remote sensing workflow for automatic flow velocity calculation and discharge estimation. The approach can be 

applied to terrestrial as well as aerial imagery. Thus, the importance of the acquisition scheme is secondary. However, visibility of tracked particles 415 

across the entire river cross-section is relevant as indicated by comparison of three different terrestrial cameras observing nearly the same river 

reach but revealing variations in the velocity estimates.  

Camera movements during the video acquisition are stabilized using an automatic image co-registration method. To estimate flow velocity, particles 

on the water surface are detected and tracked using PTV. A feature search area is defined automatically solely relying on information about the 

water level and the topography of the river reach. The detected and tracked particles are filtered with cluster analysis and by making assumptions 420 

about the flow characteristics. Discharge is retrieved using the depth-averaged flow velocity and the wetted cross-section, which is derived from a 

3D surface model reconstructed with multi-media photogrammetry applied to UAV imagery. 

Two study sites have been observed with different terrestrial cameras and with a UAV platform. Comparing the results with ADCP reference 

measurements reveal a high accuracy potential for surface flow velocities calculated with PTV and automatic image co-registration, especially at 

standard gauging setups (maximal error of 4 %). At irregular cross-sections accuracy assessment of velocity tracking is limited due to high demands 425 

of position accuracies of the reference measurements. Discharge estimates with maximal errors of 5 % could be achieved at the standard track 

cross-section. At irregular profiles discharge calculation reveals significantly higher differences to reference measurements of 7 - 31 %. This is, 

amongst other reasons, due to incomplete velocity measurements across the entire river cross-section, leading to discharge overestimation when 

tracks are only retrieved in the faster flowing river region. Thus, further improvements of the tool for irregular cross-sections as well as considering 

artificial flow seeding is advisable in future studies. 430 

The workflow, including the provided velocity tracking tool FlowVelo tool, allows for a contact-less measurement of spatially distributed surface 

velocity fields and to estimate river discharge in previously ungauged and unmeasured regions, making it especially suitable for applications to 

assess flood events. 

 

 435 

 

Code and data availability. The data used in this study and the tracking tool FlowVeloTool are available at http://dx.doi.org/10.25532/OPARA-32 

and https://github.com/AnetteEltner/FlowVeloTool, respectively. 

 



18 

 

Author contributions. AE conceptualized the study, wrote the Python tool and drafted the manuscript. AE, HS, JG acquired, processed and analysed 440 

the data. HS and JG reviewed the draft. 

 

Competing interests. The authors declare no competing interests. 

 

Acknowledgements. We thank the European Social Fund (ESF) for funding this project (grants 100270097 and 100235479). These investigations 445 

are part of the research project “extreme events in small and medium catchments (EXTRUSO).” Furthermore, we are grateful for provided data 

sources by Andreas Kaiser and the Saxon state company for environment and agriculture. And we thank André Kutscher for helpful input to the 

tracking toolbox. The data used in this study and the tracking tool software FlowVelo tTool are available at OPARA and 

https://github.com/AnetteEltner/FlowVeloTool, respectively. Finally, we are grateful for the reviews provided by Salvatore Manfreda and one 

anonymous referee that helped to improve the original manuscript. 450 

 

References 

Adler, M. (1993). Messungen von Durchflüssen und Strömungsprofilen mit einem Ultraschall-Doppler-Gerät (ADCP). Wasserwirtschaft, ,83(4), 

192–196. 

Blois, G., Best, J. L., Christensen, K. T., Cichella, V., Donahue, A., Hovakimyan, N., Pakrasi, I. (2016). UAV-based PIV for quantifying water-455 

flow processes in large-scale natural environments. In 18th International Symposium on the Application of Laser and Imaging Techniques to Fluid 

Mechanics. 

Bradski, G. (2000). The OpenCV Library. Dr. Dobb’s Journal of Software Tools. 

Brevis, W., Niño, Y., Jirka, G. H. (2011). Integrating cross ‐ correlation and relaxation algorithms for particle tracking velocimetry. Experiments 

in Fluids, 50(1), 135 – 147. 460 

Costa, J. E., Spicer, K. R., Cheng, R. T., Haeni, F. P., Melcher, N. B., Thurman, E. M., Plant, W.J., Keller, W. C. (2000). Measuring stream 

discharge by non-contact methods: A proof-of-concept experiment. Geophysical Research Letters, 4, 553–556. 

Creutin, J. D., Muste, M., Bradley, A. A., Kim, S. C., & Kruger, A. (2003). River gauging using PIV techniques: a proof of concept experiment on 

the Iowa River. Journal of Hydrology, 277, 182–194. 



19 

 

Detert, M., Johnson, E. D., & Weitbrecht, V. (2017). Proof‐of‐concept for low‐cost and non‐contact synoptic airborne river flow measurements. 465 

International Journal of Remote Sensing, 38(8–10), 2780–2807.  

Dietrich, J. T. (2017). Bathymetric Structure-from-Motion: extracting shallow stream bathymetry from multi-view stereo photogrammetry. Earth 

Surface Processes and Landforms, 42(2), 355–364.  

Dramais, G., Le Coz, J., Camenen, B., & Hauet, A. (2011). Advantages of a mobile LSPIV method for measuring flood discharges and improving 

stage-discharge curves. Journal of Hydro-Environment Research, 5(4), 301–312.  470 

Eltner, A., Kaiser, A., Castillo, C., Rock, G., Neugirg, F., & Abellan, A. (2016). Image-based surface reconstruction in geomorphometry – merits, 

limits and developments. Earth Surface Dynamics, 4, 359–389.  

Eltner, Anette, Elias, M., Sardemann, H., & Spieler, D. (2018). Automatic Image-Based Water Stage Measurement for Long- Term Observations 

in Ungauged Catchments. Water Resources Research, (54), WR023913.  

Eltner, Anette, & Schneider, D. (2015). Analysis of Different Methods for 3D Reconstruction of Natural Surfaces from Parallel-Axes UAV Images. 475 

The Photogrammetric Record, 30(151), 279–299.  

Fischler, M. A., Bolles, R. C. (1981). Random sample consensus: a paradigm for model fitting with applications to image analysis and automated 

cartography. Communications of the ACM, 24(6), 381-395. 

Fujita, I., Muste, M., Kruger, A. (1998). Large-scale particle image velocimetry for flow analysis in hydraulic engineering applications. Journal of 

Hydraulic Research, 36(3), 397-414. 480 

Fujita, I., Watanabe, H., & Tsubaki, R. (2007). Development of a non ‐ intrusive and efficient flow monitoring technique : The space ‐ time image 

velocimetry (STIV). International Journal of River Basin Management ISSN:, 5, 105–114.  

Fujita, I., Notoya, Y., Shimono, M. (2015). Development of UAV-based river surface velocity measurement by STIV based on high-accurate image 

stabilization techniques. E-proceedings of the 36th IAHR World Congress. 

Genç, O., Ardıçlıoğlu, M., & Necati, A. (2015). Calculation of mean velocity and discharge using water surface velocity in small streams. Flow 485 

Measurement and Instrumentation, 41, 115–120.  

Gravelle, R. (2015). Discharge Estimation: Techniques and Equipment. In: Geomorphological Techniques, Chap. 3, Sec. 3.5, British Society for 

Geomorphology. 

Guillén, F., Patalano, A., García, C. M., & Bertoni, J. C. (2017). Use of LSPIV in assessing urban flash flood vulnerability. Natural Hazards, 87, 

383–394.  490 

Gunawan, B., Sun, X., Sterling, M., Shiono, K., Tsubaki, R., Rameshwaran, P., & Knight, D. W. (2012). The application of LS-PIV to a small 

irregular river for inbank and overbank flows. Flow Measurement and Instrumentation, 24, 1–12.  



20 

 

Harris, C., Stephens, M. (1988). A Combined Corner and Edge Detector. In: Proc. of 4th Alvey Vision Conference, 147-155. 

Hauet, A., Kruger, A., Krajewski, W. F., Bradley, A., Muste, M., Creuting, J.-D., Wilson, M. (2008). Experimental System for Real-Time Discharge 

Estimation Using an Image-Based Method. Journal of Hydrologic Engineering, 13(2), 105–110. 495 

Herschy, R. W. (2008). Streamflow Measurement. CRC Press, 3rd edition, 510 pp. 

James, M., Chandler, J., Eltner, A., Fraser, C., Miller, P., Mills, J., Noble, T., Robson, S., Lane, S. (2019). Guidelines on the use of Structure from 

Motion Photogrammetry in Geomorphic Research. 

Kim, Y., Muste, M., Hauet, A., Krajewski, W. F., Kruger, A., & Bradley, A. (2008). Stream discharge using mobile large-scale particle image 

velocimetry: A proof of concept. Water Resources Research, 44, W09502.  500 

Koutalakis, P., Tzoraki, O., & Zaimes, G. (2019). UAVs for Hydrologic Scopes : Application of a Low-Cost UAV to Estimate Surface Water 

Velocity by Using Three Different Image-Based Methods. Drones, 3(14).  

Le Boursicaud, R., Pénard, L., Hauet, A., Thollet, F., & Le Coz, J. (2016). Gauging extreme floods on YouTube: Application of LSPIV to home 

movies for the post-event determination of stream discharges. Hydrological Processes, 30, 90–105.  

Le Coz, J., Hauet, A., Pierrefeu, G., Dramais, G., & Camenen, B. (2010). Performance of image-based velocimetry (LSPIV) applied to flash-flood 505 

discharge measurements in Mediterranean rivers. Journal of Hydrology, 394, 42–52.  

Le Coz, Jérôme, Patalano, A., Collins, D., Guillén, N. F., García, C. M., Smart, G. M., Bind, J., Chiaverini, A., Le Boursicaud, R.L., Dramais, G., 

Braud, I., Braud, I. (2016). Crowdsourced data for flood hydrology: Feedback from recent citizen science projects in Argentina, France and New 

Zealand. Journal of Hydrology, 541, 766–777. 

Legout, C., Darboux, F., Hauet, A., Esteves, M., Renaux, B., Denis, H., & Cordier, S. (2012). High spatial resolution mapping of surface velocities 510 

and depths for shallow overland flow. Earth Surface Processes and Landforms, 73, 984–993.  

Leitão, J. P., Peña-haro, S., Lüthi, B., Scheidegger, A., Moy, M., & Vitry, D. (2018). Urban overland runo ff velocity measurement with consumer-

grade surveillance cameras and surface structure image velocimetry. Journal of Hydrology, 565(June), 791–804.  

Lewis, Q., Rhoads, B. (2015). Resolving two-dimensional flow structure in rivers using large-scale particle image velocimetry: An example from 

a stream confluence. Water Resources Research, 51, 7977–7994.  515 

Lowe, D. (2004). Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision, 60(2), 91-110. 

Lucas, B. D., Kanade, T. (1981). An iterative image registration technique with an application to stereo vision. IJCAI, 121-130. 

Luhmann, T., Robson, S., Kyle, S., Boehm, J. (2014). Close-Range Photogrammetry and 3-D Imaging, 2nd edition, De Gruyter, Berlin, Germany, 

683 pp. 



21 

 

Merz, J. (2010). Discharge Measurements in Low Flow Conditions With ADCP Technology – First Experiences in Nepal. Journal of Hydrology 520 

and Meteorology, 7 (1), 40-48. 

Morgenschweis, G. (2010). Hydrometrie, Springer-Verlag Berlin Heidelberg, 582 pp. 

Mulsow, C., Kenner, R., Bühler, Y., Stoffel, A., & Maas, H.-G. (2018). Subaquatic digital elevation models from UAV-imagery. International 

Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, XLII-2, 739-744.  

Muste, M., Fujita, I., & Hauet, A. (2008). Large-scale particle image velocimetry for measurements in riverine environments. Water Resources 525 

Research, 44, W00D14.  

Muste, M., Hauet, A., Fujita, I., Legout, C., & Ho, H. C. (2014). Capabilities of large-scale particle image velocimetry to characterize shallow free-

surface flows. Advances in Water Resources, 70, 160–171. 

Muste, M., Ho, H., & Kim, D. (2011). Considerations on direct stream flow measurements using video imagery: Outlook and research needs. 

Journal of Hydro-Environment Research, 5, 289–300. 530 

Patalano, A., Marcelo Garcia, C., Rodriguez, A. (2017). Rectification of Image Velocity Results (RIVeR): A simple and user-friendly toolbox for 

large scale water surface Particle Image Velocimetry (PIV) and Particle Tracking Velocimetry (PTV). Computers & Geosciences, 109, 323-33. 

Perks, M. T., Russell, A. J., & Large, A. R. G. (2016). Technical note : Advances in flash flood monitoring using unmanned aerial vehicles (UAVs). 

Hydrology and Earth System Sciences, 20, 4005–4015.  

Puleo, J. A., Mckenna, T. E., Holland, K. T., & Calantoni, J. (2012). Quantifying riverine surface currents from time sequences of thermal infrared 535 

imagery. Water Resources, 48, W01527.  

Ran, Q. H., Li, W., Liao, Q., Tang, H. L., & Wang, M. Y. (2016). Application of an automated LSPIV system in a mountainous stream for continuous 

flood flow measurements. Hydrological Processes, 30, 3014–3029.  

Rublee, E., Rabaud, V., Konolige, K., & Bradski, G. (2011). ORB: An efficient alternative to SIFT or SURF. IEEE International Conference on 

Computer Vision (ICCV). 540 

Sidorchuk, A., Schmidt, J., & Cooper, G. (2008). Variability of shallow overland flow velocity and soil aggregate transport observed with digital 

videography. HYDROLOGICAL PROCESSES, 22, 4035–4048. 

Stumpf, A., Augereau, E., Delacourt, C., & Bonnier, J. (2016). Photogrammetric discharge monitoring of small tropical mountain rivers: A case 

study at Rivière des Pluies, Réunion Island. Water Resources Research, 52, WR018292.  

Tauro, F., Piscopia, R., & Grimaldi, S. (2017). Streamflow Observations From Cameras: Large-Scale Particle Image Velocimetry or Particle 545 

Tracking Velocimetry? Water Resources Research, 53, 10374–10394.  

https://ieeexplore.ieee.org/xpl/conhome/6118259/proceeding
https://ieeexplore.ieee.org/xpl/conhome/6118259/proceeding


22 

 

Tauro, Flavia, Petroselli, A., & Arcangeletti, E. (2016). Assessment of drone-based surface fl ow observations. HYDROLOGICAL PROCESSES, 

30, 1114–1130.  

Tauro, Flavia, Tosi, F., Mattoccia, S., Toth, E., Piscopia, R., & Grimaldi, S. (2018). Optical Tracking Velocimetry (OTV): Leveraging Optical Flow 

and Trajectory-Based Filtering for Surface Streamflow Observations. Remote Sensing, 10, rs10122010.  550 

Thielicke, W., Stamhuis, E. (2014). PIVlab - Towards User-friendly, Affordable and Accurate Digital Particle Image Velocimetry in MATLAB. 

Journal of Open Research Software, 2, e30. 

Thumser, P., Haas, C., Tuhtan, J. A., Fuentes-Pérez, J. F., & Toming, G. (2017). RAPTOR-UAV: Real-time particle tracking in rivers using an 

unmanned aerial vehicle. Earth Surface Processes and Landforms, 42, 2439–2446.  

Tsubaki, R., Fujita, I., Tsutsumi (2011). Measurement of the flood discharge of a small-sized river using an existing digital video recording system. 555 

Journal of Hydro-environment Research, 5, 313-321. 

Welber, M., Le Coz, J., Laronne, J., Zolezzi, G., Zamler, D., Dramais, G., Hauet, A., Salvaro, M. (2016). Field assessment of noncontact stream 

gauging using portable surface velocity radars (SVR). Water Resources Research, 52, WRO17906. 

Woodget, A. S., Carbonneau, P. E., Visser, F., & Maddock, I. P. (2015). Quantifying submerged fluvial topography using hyperspatial resolution 

UAS imagery and structure from motion photogrammetry. Earth Surface Processes and Landforms, 40(1), 47–64.  560 

 

 

  



23 

 

 

Figure 1: Areas of interest at the Wesenitz (a) and the Freiberger Mulde (b) displayed with UAV orthophotos calculated from video frames. Surface 565 

flow velocities measured with an ADCP and the corresponding locations of the measurement cross-sections within the river are illustrated. Ground 

control points (GCPs) are used to reference the image data at both river reaches. Red squares highlight GCPs used for terrestrial and UAV data at 

the Freiberger Mulde and UAV data at the Wesenitz. Green squares show location of GCPs used for terrestrial imagery at the Wesenitz. Check 

points (blue squares) are used to assess the accuracy of the 3D reconstruction from video frames at the Freiberger Mulde. Camera locations of the 

terrestrial image sequence acquisition are illustrated as pictograms and corresponding image extent areas are shown (displayed area of interests in 570 

RGB correspond to the aerial image extents).  
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Table 1: River velocities measured with ADCP 575 

 

Profile 

Mean 

velocity 

(m/s) 

Mean surface 

velocity (m/s) 

Max. surface 

velocity (m/s) 

Velocity 

coefficient 

(-) 

Cross-

section 

area (m²) 

Discharge 

(m²/s) 

Wesenitz - 0.59 0.70 0.82 0.84 4.63 2.72 

Freiberger 

Mulde 

1 0.48 0.60 0.92 0.80 11.75 5.60 

2 0.58 0.70 0.93 0.83 10.45 6.01 

3 0.59 0.76 1.03 0.78 10.30 6.04 
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Figure 2: Workflow to retrieve flow velocities from video sequences. 
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 580 

Figure 3: Defining the search area to extract particles to track. a) 3D point cloud of the investigated river reach at the Wesenitz. Coloured points 

(colorized with RGB information according to their real world object colour) are 3D points above the water surface reconstructed with SfM 

photogrammetry. White points are 3D points below the water surface reconstructed with SfM and corrected for refraction effects. b) 3D point cloud 

below the water level projected into image space. Green line depicts contour line, which is used as search mask for feature detection. c) Detected 

and filtered features considered for tracking (blue circles). 585 
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Figure 4: Exemplary display of the tracking result from one frame to the next. 

 

 590 
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Figure 5: Result of tracked features after filtering has been applied to the video sequence of camera 500D (with a temporal length of 23 seconds). 

Sub-tracks are displayed and the number of tracks refers to full tracks (combination of sub-tracks). a) Raw tracks prior any filtering. b) Filtered 

tracks after applying minimum and maximum distance thresholds. c) Filtered tracks after applying a minimum count of sub-tracks over which 595 

features need to be tracked. d) Filtered tracks after considering standard deviation of sub-track directions. e) Filtered tracks after considering 
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deviation from average flow direction and range of orientation angels of sub-tracks directions. f) Filtered tracks converted into metric values to 

receive flow velocities in the unit m/s. 

 

 600 

 

Table 2: Accuracy of camera pose estimation and density of tracking results. s0 corresponds to the average reprojection error after the adjusted 

spatial resection. 

     accuracy tracking density 

 

 

 standard deviation (m) 

s0 

(pixel) 

number 

of frames 

number of 

raw tracks 

number of 

final tracks 

     X Y Z     

W
es

en
it

z
 

 UAV camera 0.172 0.274 0.162 1.1 78 271 58 

 500D 0.027 0.066 0.039 0.9 690 3552 439 

 1200D-I 0.042 0.169 0.080 3.2 700 4781 603 

 1200D-II 0.041 0.127 0.073 1.6 640 14786 1239 

F
re

i.
 

M
u

ld
. 

 UAV camera 0.085 0.078 0.031 0.5 73 844 126 

 Casio EX-F1 0.018 0.010 0.015 0.3 750 3886 334 
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Figure 6: Accuracy of co-registration of video frames to single master frame displayed in image space (black axis) and the corresponding accuracy 

in object space (red axis) at the river Wesenitz (a) and Freiberger Mulde (b). Note that the images are only extracts form the original (bigger) 

images. 
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Figure 7: Flow velocities estimated at the Wesenitz using video frames captured with three different terrestrial cameras and a camera on an UAV 

platform. Final tracks after statistical outlier filter (fig. 5f) are displayed. Green border indicates area, in which image-based measurements are 

compared to ADCP velocities. 
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Table 3: Deviation between ADCP measurements and video based flow velocities. Differences are calculated for tracks within a range of 1 m and 

closest to the ADCP measurements. 

  surface velocity difference [m/s]  

    average standard deviation track count 
W

es
en

it
z
 

UAV camera 0.03 0.07 10 

500D 0.00 0.06 24 

1200D-I 0.02 0.07 56 

1200D-II 0.08 0.06 88 

average 0.03 0.06 - 

F
re

ib
er

g
er

 M
u

ld
e 

UAV camera  profile 1 0.03 0.09 8 

UAV camera  profile 2 0.01 0.06 8 

UAV camera  profile 3 -0.05 0.06 8 

Casio EX-F1 profile 1 -0.01 0.05 10 

average 0.01 0.07 - 
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Table 4: Discharge estimated using flow velocities and cross-sections retrieved from UAV data. 

    
  

average surface flow 

velocity at the cross-

section [m/s] 

Cross-

section 

area [m²] 

Discharge[m³/s] 

  
  Average 

Standard 

deviation 

W
es

en
it

z
 

UAV camera 0.71 

4.57 

2.73 0.27 

500D  0.72 2.76 0.15 

1200D-I  0.71 2.72 0.16 

1200D-II   0.67 2.58 0.16 

average    2.70 0.18 

std dev     0.08  

F
re

ib
er

g
er

 M
u

ld
e 

UAV camera 

profile 1 0.79 11.61 7.34 0.74 

profile 2 0.77 10.35 6.60 0.60 

profile 3 0.79 9.19 5.64 0.43 

Casio EX-F1 profile 1 0.76 11.61 7.06 0.46 

average     6.66 0.56 

std dev    0.75  

 625 
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Figure 8: Flow velocities estimated at the Freiberger Mulder using video frames captured with a terrestrial camera and a camera on an UAV 

platform. Green border indicates area, in which image-based measurements are compared to ADCP velocities. 
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