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Abstract  

 10 

Groundwater level data is monitored by environmental agencies to support sustainable use of groundwater resources. For 

this purpose a high spatial coverage of the monitoring networks and continuous monitoring in high temporal resolution is 

desired. This leads to large data sets that have to be quality checked and analysed to distinguish local anthropogenic 

influences from natural variability of the groundwater level dynamics at each well. Both technical problems with the 

measurements as well as local anthropogenic influences can lead to local anomalies in the hydrographs. We suggest a fast 15 

and efficient screening method for identification of well-specific peculiarities in hydrographs of groundwater head 

monitoring networks. The only information required is a set of time series of groundwater head all measured at the same 

instants of time. For each well of the monitoring network a reference hydrograph is calculated, describing expected “normal” 

behaviour at the respective well as it is typical for the monitored region. The reference hydrograph is calculated by multiple 

linear regression of the observed hydrograph with the “stable” principal components (PCs) of a principal component analysis 20 

of all groundwater head series of the network as predictor variables. The stable PCs are those PCs which were found in a 

random subsampling procedure to be rather insensitive to the specific selection of analysed observation wells, respectively 

complete series, and to the specific selection of measurement dates. Hence they can be considered to be representative for the 

monitored region in the respective period. The residuals of the reference hydrograph describe local deviations from the 

normal behaviour. Peculiarities in the residuals allow to quality check the data for measurement errors and identify wells 25 

with possible anthropogenic influence. The approach was tested with 141 groundwater head series of the state authority 

groundwater monitoring network in northeast Germany covering the period from 1993 to 2013 in approximately weekly 

resolution.  
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1 Introduction 40 

Sustainable management of groundwater resources aims to ensure that the abstraction of groundwater does not exceed 

groundwater recharge in the long run (e.g., Gleeson et al., 2012). This resonates in the water framework directive of the 

European Union which demands to achieve and maintain a good status of groundwater quantity, including the obligation to 

monitor the temporal development with sufficient spatial and temporal resolution to be able to distinguish between 

anthropogenic influences and natural variability (EU, 2000). 45 

In practice negative trends in the observed groundwater head time series serve often as first indication for anthropogenic 

effects. However, negative trends in hydrological systems do not necessarily imply anthropogenic influence, but might be 

rather indications of naturally occurring long term persistence (Hurst, 1951; Mandelbrot and Ness, 1968; Mandelbrot and 

Wallis, 1969) induced for example by the natural fluctuation of climatic drivers (e.g., Koutsoyiannis, 2006). Thus continuity 

of hydrologic records for more than “just” a few decades is mandatory to incorporate this issue in water management 50 

(Hirsch, 2011). This holds the more for groundwater monitoring due to the much more pronounced filtering of short term 

fluctuations in the subsurface compared to precipitation, soil moisture or streamflow (Skøien et al., 2003).  

Thus, sustainable management of groundwater resources requires a spatially differentiated and comprehensive monitoring of 

the groundwater level covering its temporal development continuously over decades which leads to large data sets. Checking 

the data quality at the wells of a spatially comprehensive network can be very time consuming. Measurement errors as well 55 

as local anthropogenic influences lead to anomalies at individual sites. Thus, local anomalies in the hydrographs can serve as 

indication for both aspects. That requires a reference, either in the form of observed hydrographs measured at specific 

observation wells which are considered representative for undisturbed behaviour typical for the region (e.g., Winter et al., 

2000; Gangopadhyay et al., 2001), or in form of some kind of modelled regional reference hydrograph. Here, we focus on 

the second case. 60 

One option is to apply a physically-based model for that purpose. Depending on the characteristics of the region and the 

level of considered details the amount of required data can be quite demanding (cf. discussion in Coppola et al., 2003). A 

non-exhaustive list of typical basic requirements includes climatological data to drive the model, data on the hydraulic 

properties of the subsurface which could comprise various aquifers, data on land use or time series of water abstraction, etc. 

That information is required in a spatially distributed manner. In many cases, the monitoring effort, the effort to set up the 65 

model, the complexity of the model and the demand on data are substantial obstacles for environmental authorities or 

consultants at larger spatial scales. 

Consequently, in practice some model parameters will serve during calibration as surrogate for missing data. For example, 

Wriedt (2017) calculated for each observation well in a monitoring network a “theoretical climatic hydrograph” by fitting the 

monthly climatic water balance to the observed groundwater hydrograph using a damping and a translation factor. Here, the 70 

fitting of the damping and the translation factor compensated for missing information on different properties of the analysed 

groundwater system like different substrates, flow paths, etc. 

Another option is to fit empirical models based on the relationships between easy to obtain independent variables and the 

observed water level. This has been performed for example by means of multiple linear regression (Hodgson, 1978), 

artificial neural networks (Coulibaly et al., 2001; Coppola et al., 2003), the combination of an artificial neural network and a 75 

linear autoregressive model with exogenous input (Wunsch et al., 2018) or the combination of different methods from the 

fields of exploratory data analysis, information theory and machine learning (Sahoo et al., 2017). Those data-driven 

approaches make efficient use of the available data and are therefore recommended as a relatively cost and time efficient 

way to model groundwater level in areas with limited data (Hodgson, 1978; Coulibaly et al., 2001; Coppola et al., 2003). 

Another benefit is that the respective models can easily be updated once new measurements or additional variables become 80 

available (Coppola et al., 2003). 
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Here, we suggest to derive local reference time series based on a Principal Component Analysis (PCA) of a set of monitored 

time series. This approach does not require any other data than the time series of water level all measured at the same 

instants of time. PCA is one of the most established, fastest and computationally cheapest statistical approaches to 

summarize the spatiotemporal variability of a set of spatially distributed time series. Based on the linear correlation structure 85 

of the data set linearly independent principal components (PCs) are derived. Each PC is associated with one characteristic 

spatiotemporal pattern. Except from being fast and computationally very cheap, PCA is readily implemented in most of the 

common statistical software packages. 

In analogy to climatology (e.g. Richman, 1986), the spatiotemporal patterns of the PCs have been used for long in hydrology 

as a compact description of the dominant modes of hydrological variability in a region. Pioneering studies used it to describe 90 

dominant modes of streamflow variability in the European USSR (Smirnov, 1972, 1973), USA and Southern Canada 

(Bartlein, 1982), the USA alone (Lins, 1985a,b, 1997) and different regions of Sweden (Gottschalk, 1985). The leading PCs 

were used in combination with cluster analysis for the classification of streamflow (Hannah et al., 2000) and groundwater 

(Triki et al., 2014) hydrographs into groups with similar dynamics, which allowed for example to reduce the effort of 

modelling of all the time series in a groundwater monitoring network to a few representative hydrographs (Upton and 95 

Jackson, 2011). These approaches have to be distinguished from using PCs for the identification of prevailing processes or 

functional relationships (e.g., Longuevergne et al., 2007; Lewandowski et al., 2009; Hohenbrink et al., 2016) which is 

beyond the scope of this paper.  

To our knowledge, the application of PCA based approaches in the context of compact description of hydrological variability 

focussed so far mainly on the leading PCs, that is, the main modes of hydrological variability on the scale of the analysed 100 

data set, like the main regional spatiotemporal patterns in a monitoring network. For example, Smirnov (1973) used the 

leading PCs for filtering small scale disturbances from the large scale patterns of long-period streamflow fluctuations in the 

European USSR. In groundwater monitoring, the leading PCs were used for example in the evaluation of groundwater 

monitoring networks to identify the observation wells which were most representative for the analysed region (Winter et al., 

2000; Gangopadhyay et al., 2001). 105 

In this study, we used the leading principal components (PCs) of a set of groundwater head time series of a large scale 

monitoring network to decompose the observed hydrographs into a reference part and a residual part for each site separately. 

The reference hydrograph of an observation well describes the part of the observed hydrograph which is considered typical 

for the monitored region. It is determined by multiple linear regression of the observed hydrograph with the “stable” PCs as 

predictor variables. The “stable” PCs are determined by comparing the results of a series of PCAs which were performed 110 

with different randomly selected subsets of the complete data set. The sub data sets were derived in the spatial domain as 

random selections of the observation wells, respectively complete series, and in the temporal domain as random selections of 

the measurement dates. Those PCs that turned out to be rather insensitive to the specific selection of analysed wells and 

measurement dates were defined as sufficiently stable and considered to be representative for the monitored region in the 

analysed period. The residual part of the hydrograph depicts the local deviations from the normal behaviour at the respective 115 

observation well, which is then analysed for peculiarities pointing to technical problems or anthropogenic effects. Other 

applications of the reference hydrograph, like gap-filling in series which were not included in the PCA, are shortly discussed. 

In contrast to other PCA applications this approach does neither require any interpretation of the leading PCs nor any explicit 

spatial analysis. The approach was tested with 141 groundwater head time series of the authority’s groundwater monitoring 

network of the German Federal State of Mecklenburg-Vorpommern covering the period from 1993 to 2013 in approximately 120 

weekly resolution. 
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2 Data 

2.1 Study region 

The Federal State of Mecklenburg-Vorpommern is located in the Northeast of Germany (Figure 1) covering an area of 125 

23,214 km² (Statistikportal, 2018). The hydrogeological structure in the area consists of several regional aquifer systems of 

Pleistocene origin that are considered to be in general hydraulically separated (Manhenke et al., 2001). The aquifers consist 

mainly of sandy and gravelly sediments, the intermediate aquitards mainly of till. The Pleistocene sediments usually overlie 

Tertiary sediments and can comprise more than 100 m. Within the Tertiary sediments the Rupelian clay layer hydraulically 

separates the underlying saline Tertiary groundwater from the fresh groundwater (Manhenke et al., 2001). However, at some 130 

locations upwelling salty groundwater reaches the surface (compare LUNG (1984) and figure 2.11-6 in Martens and 

Wichmann (2007)), indicating that the hydraulic separation of the regional aquifer systems is not everywhere complete. 

Groundwater in Mecklenburg-Vorpommern is monitored by the federal state office of Environment, Nature Conservation 

and Geology (LUNG). Monitoring comprised the uppermost three regional aquifer systems, but not all of them are 

contiguous (Hennig et al., 2002). In addition to the regional aquifer systems, in some areas shallow local aquifers with an 135 

extent of usually a few km
2
, occasionally more than 100 km

2
, have been identified and are monitored as well (Hilgert and 

Hennig, 2017). These local aquifers are not strictly hydraulically decoupled from the regional aquifer systems, but their 

hydraulic connection is inhibited (Hilgert and Hennig, 2017). A mean annual groundwater recharge of +122.3 mm for the 

whole Mecklenburg-Vorpommern was estimated for the years 1971 to 2000 by Hilgert (2009) based on the work of Hennig 

and Hilgert (2007). A map of the spatial distribution of the mean annual groundwater recharge is provided by the LUNG 140 

(LUNG, 2009). For the same period a mean annual temperature of 8.5 °C and a mean annual precipitation of 593 mm were 

observed by the German Weather Service (DWD) (DWD, 2018). 

 

 

Figure 1: Map of the study area and the selection of groundwater observation wells (N=141) in the federal state of Mecklenburg-145 
Vorpommern (highlighted by grey shading in the inset map). The administrative borders of Germany and of the federal state of 

Mecklenburg-Vorpommern were obtained from GADM (2017). 
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2.2 Groundwater head data and preprocessing 

Groundwater level data was available for 583 groundwater observation wells of the groundwater monitoring network of the 150 

LUNG. In general, the data set covered a range of different monitoring periods. The mean time span from the first 

measurement till the last measurement of all observation wells was approximately 19.9 years. At some wells monitoring 

started as early as 1953. Especially in the beginning of the monitoring irregular measurement intervals were a rather 

common feature. In the last decades the state office aimed to take measurements consistently at least every 1
st
, 8

th
, 15

th
 and 

22
th

 day of the month.  155 

For this study, we selected 141 wells that covered the 20 years monitoring period from 1993-11-01 to 2013-10-22 (Figure 1). 

Seventeen sites with known anthropogenic effects were excluded beforehand. The dates of the readings of each of the 141 

groundwater head series are shown in Figure S1. The variety of days between subsequent readings is shown for each series 

in Figure S2. The mean, minimum and maximum of all 141 series’ mean measurement intervals were 5.3, 1.5 and 13.6 days. 

The mean, minimum and maximum of all 141 series’ maximum time gaps between subsequent measurement dates were 160 

24.3, 10 and 88 days. All data gaps were linearly interpolated. Subsequently, regular quasi weekly time series were 

generated by selecting readings of the 1
st
, 8

th
, 15

th
 and 22

th
 of each month of the 20 years period. This resulted in a set of 141 

groundwater head time series each with readings at the same 960 quasi weekly measurement dates (see the most left column 

of Figure S1). Thus, the last “quasi-week” exhibited different lengths for the different months. 

The observation wells were irregularly distributed (Figure 1). This is a consequence of the mission of the state office to 165 

monitor possible anthropogenic influences on groundwater level, thus focusing on more densely populated areas. At 35 sites 

wells were screened at different depths. Distances between closest observation wells ranged from 0 km, at the sites with 

several wells, to 20.2 km, with a mean distance between closest wells of 3.4 km. At each site, the screens were numbered 

from the surface downwards (Figure 1). Different numbers of the screens do not necessarily imply different aquifers. 

Comparing two observation wells of different sites, a higher screen number does not imply that the distance of the screen or 170 

of the water level to the surface is larger as well (Figure 2). The mean depth to groundwater, measured as distance of 

groundwater head to the cap of the well head during the observation period, ranged from 0.65 m to 30.96 m, with a mean of 

6.30 m and a standard deviation of 5.36 m. The distribution of monitored mean depths to groundwater was heavily biased 

towards smaller depths (Figure 2). Due to the complex hydrogeological setting, the capture zones of the wells usually are not 

known with sufficient detail.  175 

As a rough approximation of the autocorrelation of the time series in spite of the not completely regular weekly sampling 

intervals the correlation of the series with itself shifted by one time step were assessed, yielding a correlation coefficient of r 

= 0.97 with a standard deviation of 0.04. The correlation in the spatial domain between the series of closest adjacent 

observation wells was substantially weaker with a mean correlation of r = 0.76 and exhibited substantially larger variability 

with a standard deviation of 0.24.  180 
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Figure 2 Mean depths to groundwater at the observation wells in m of the complete set of series and separately for each screen 

number. 

 

3 Methods 185 

3.1 Principal component analysis 

The spatiotemporal variability in the groundwater head monitoring network was summarized with linearly independent 

principal components (PCs) determined by principal component analysis (PCA). The PCs are derived by an eigenvalue 

decomposition of the covariance matrix of the analysed set of variables, that is, the observed groundwater head series. To 

achieve equal weighting of all series, we applied PCA to the z-scaled groundwater head series, thus each series was scaled to 190 

zero mean and standard deviation of one. This corresponds to performing PCA with the correlation matrix of the 

groundwater head series.  

Each PC consists of an eigenvalue, eigenvector (loadings) and scores. The size of the eigenvalue of a PC in relation to the 

sum of all eigenvalues of all PCs corresponds to the share of variance in the data set that is assigned to that PC. The loadings 

are the weights in the linear combination of the analysed variables, here the z-scaled groundwater head series, to calculate 195 

the scores of the PCs. 

In this study, the analysed data set consisted of a set of time series all covering the same period and exhibiting the same 

dates. Thus, the scores of the PCs are times series with the same dates as the analysed time series. Please note, that this 

condition is a requirement for the suggested application of the reference hydrograph in this study. The Pearson correlation 

coefficient was used to describe the relationships between the observed groundwater head time series and that of a selected 200 

PC. This yielded for each PC a characteristic spatial pattern of “occurrence” of the respective PC time series at the 

observation wells. The Pearson correlation values of this relationship correspond to the spatial pattern of the loadings of a PC 

multiplied with the square root of the eigenvalue of the respective PC. For better readability of the results we used here the 

Pearson correlation values for the maps of the loadings. Thus, each PC is associated with a characteristic temporal pattern 

(time series of the scores) and spatial pattern (loadings). 205 

We performed PCA with the function “prcomp” of the default package “stats” in R version 3.4.1 (R Core Team, 2017). For 

more details on PCA, please see Jolliffe (2002). 
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3.2 Stability of PCs 

Being a data driven approach, the PCA results are depending on the selection of data. Thus, for the assessment of the typical 210 

regional behaviour it is crucial to use only those PCs which are rather insensitive to the specific selection of analysed 

observation wells, respectively complete series, and to the specific selection of measurement dates and hence can be 

considered to be representative for the monitored region in the studied period. 

To assess the stability of spatial patterns of the PC loadings on the scale of the network, we performed 10,000 PCAs based 

on random subsamples of the 960 quasi-weekly measurement dates and compared the PC loadings of the different runs. We 215 

calculated the squared Pearson correlation coefficient (R
2
) of all combinations of loadings of PC 1 of the different PCA runs, 

all combinations of loadings of PC 2 of the different PCA runs, etc. for all PCs with eigenvalue larger one. This so called 

Kaiser criterion is a common threshold to select in case of PCA of z-scaled variables only those PCs which summarize more 

variance of the data set than one of the analysed variables (Jolliffe, 2002). The whole stability analysis was performed with 

subsamples of 70% of all measurement dates. Analogously, we performed the stability analysis of temporal patterns of the 220 

PC scores with 10,000 PCAs each based on random selections of 70% of the 141 complete groundwater head series. We 

considered only those PCs as stable of which the correlations of both, the spatial as well as the temporal patterns, exhibited a 

median R
2
 > 0.9. 

 

3.3 Well specific reference hydrograph and residuals 225 

The focus of this study is to present an approach to quickly screen all groundwater head series in a comprehensive 

monitoring network for problems with data quality and anthropogenic effects. For this purpose each observed hydrograph is 

decomposed into a “normal” part describing the behaviour as it is typical for the monitored region and the well specific 

deviations from it. The “normal” behaviour at each observation well was estimated as well specific reference hydrograph by 

multiple linear regression of the observed series with the time series of the scores of the stable PCs. The residuals from the 230 

regression (residuals), which is the part of the series that has not been assigned to the reference hydrograph describe the local 

deviations from the normal behaviour at each observation well.  

In contrast to many other approaches, it is not required that the residuals are white noise or alike. Possible systematic 

structures in the residuals like trends, seasonal patterns, sudden shifts or distinct periods of deviations at a specific well are 

not captured by the stable PCs and therefore indicative that the respective pattern is not representative for the whole data set, 235 

but a local peculiarity instead. The squared linear correlation coefficient R
2
 of the observed versus the respective reference 

hydrographs was used for a first assessment which observation wells exhibit rather normal behaviour and which do not. 

Analysing the temporal pattern of the residuals in the context of expert knowledge and other information available for the 

respective observation wells can then be used to derive hypotheses on the causing drivers.  

 240 

4 Results 

4.1 Stability of PCs 

The first ten PCs of the PCA of the complete data set exhibited eigenvalues larger one. Thus in the following we present the 

results of the first ten PCs only. The comparison of the spatial patterns of the PCAs which were performed with the sub 

datasets based on the random subsampling of the measurement dates is summarized in Figure 3a. In general, the median 245 

correlation between the loadings of the PCs of the different PCAs was decreasing and the variability of correlation between 

the loadings was increasing with increasing rank of the PCs (Figure 3b). All PCs except the 8
th

 and the 10
th

 exhibited notably 

stable spatial patterns with a median correlation of R
2
 > 0.9. 
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The comparison of the temporal patterns of the PCAs which were performed with the sub datasets based on the random 

selections of observation wells, respectively complete series, is summarized in Figure 3b. Generally, with increasing rank of 250 

the PCs the median correlation between the scores of the PCs of the different PCAs was decreasing and the variability of 

correlation between the scores was increasing (Figure 3b). Only the first four PCs exhibited notably stable temporal patterns 

with a median correlation of R
2
 > 0.9. 

Accordingly, the first four PCs were considered stable on the scale of the network, accounting for 80.8% of the observed 

variance in the groundwater head series. The variance assigned was for PC 1: 48.3%, PC 2: 17.2%, PC 3: 9.5% and PC 4: 255 

5.8%. The assigned temporal and spatial patterns of the complete data set with all 141 series are shown in Figure 4 and 

Figure 5, respectively. In the following the analysis is restricted to these four stable PCs. 

 

 

Figure 3: Comparison of the PCA results of the stability analysis. (a) Correlation of loadings based on the random subsampling of 260 
the measurement dates to assess the stability of spatial patterns. (b) Correlation of scores based on the random selection of 

observation wells, respectively complete series, to assess the stability of temporal patterns. The boxes indicate the quartiles, the 

whiskers all dates which are within the range of the first quartile - 1.5* the interquartile range, respectively the third quartile + 

1.5* the interquartile range. Percentage of values outside the whiskers of a boxplot is given in the labelling of the x-axis for each 

PC.  265 
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Figure 4: Time series of scores of the stable PCs 1 to 4. 

 

Figure 5: Spatial patterns of loadings of the stable PCs 1 to 4. 270 
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4.2 Well specific reference hydrograph and residuals 

At each well, the residuals of the reference hydrograph were checked for peculiarities. We present here two examples. At 

well Deven (Figure 6) the observed hydrograph was in general very well represented by the well specific reference 

hydrograph (R
2
 = 0.84). The mean depth to groundwater was 9.52 m. A single period stuck out in the plot of the residuals. At 275 

the end of October 1998 the residuals showed a sudden shift of approximately 17 cm towards higher water level, followed by 

a similar sudden shift “back to the old level” in December 1999. Those shifts were neither outstanding in the observed time 

series itself nor in the reference hydrograph. 

Observation well Neubrandenburg UP exhibited in general a relatively good fit of observed series and reference hydrograph 

(R
2
 = 0.77) with the exception of two outstanding periods in 1997-1998 and 2007-2008, a series of minor deviations before 280 

1997 and another relatively strong deviation in 2011 (Figure 7b and d). The mean depth to groundwater was 4.61 m. For 

comparison we considered the close-by observation well NB-Hotel Vier Tore approximately 600 m further south which was 

formerly excluded from the PCA due to known anthropogenic influence (section 2.2). The mean distance of well head to 

groundwater level was 3.74 m. Here we calculated the reference hydrograph in the same manner as multiple linear regression 

of the observed hydrograph with PCs 1–4. Again the observed series exhibited in general a relatively good fit with the 285 

reference hydrograph (Figure 7c and d). However, compared to observation well Neubrandenburg UP the two periods of 

strong deviation in 1997-1998 and 2007-2008 were more pronounced in the residuals and, in contrast to observation well 

Neubrandenburg UP, clearly visible in the observed series as well. This was reflected in a substantially weaker correlation 

between the observed series and the reference hydrograph (R
2
 = 0.46). 

 290 

 

Figure 6: (a) Location of the well, information on the observation well and correlation of the observed series with the reference 

hydrograph and with the residuals. (b) Time series of hydraulic head (black) and the reference hydrograph (blue) of well Deven. 

(c) Time series of residuals. 
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 295 

Figure 7 (a) Location of the wells, information on the observation wells and correlation of the observed series with the reference 

hydrographs and with the residuals. Time series of hydraulic head (black) and the reference hydrographs (blue) of (b) 

Neubrandenburg UP and (c) NB-Hotel Vier Tore. (d) Time series of the residuals of Neubrandenburg UP (red) and of NB-Hotel 

Vier Tore (dark cyan).  

 300 

5 Discussion 

5.1 Stability of PCs  

To select only those PCs which are representative for the monitored region in the analysed period a series of PCAs were 

performed based on randomly selected subsets of the complete data set to identify the stable PCs, that is, those PCs of which 

the assigned spatial patterns (loadings) and temporal patterns (scores) were rather insensitive to the selection of analysed 305 

observation wells and measurement dates. Only the stable PCs were considered for the further analysis.  

Earlier studies which used PCA to summarize hydrological variability in a region analysed the stability of their results in a 

similar way (Smirnov, 1973; Lins 1985a). Those attempts were limited to the comparison of a few PCAs, respectively a few 

different configurations of the data set. The correlation analysis in this study extended the assessment of stability of PCs 

towards random selections of the analysed data. An important difference to the aforementioned studies is that the selections 310 

did not occur en bloc but randomly among all observation wells and all measurement dates. 
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The comparison of the results of the 10,000 variants of PCA revealed that the stability of individual PCs decreased in general 

with decreasing rank of the PCs (Figure 3). Clear differences between the stability of temporal and spatial patterns of the 

PCs were observed. PCA results were more sensitive to changes in the selection of considered observation wells (Figure 3b) 

than to changes in the selection of measurement dates (Figure 3a). This likely reflects the stronger mean correlation between 315 

subsequent observations at the sites (autocorrelation) compared to the mean correlation of the series of closest adjacent sites 

(spatial domain) (section 2.2). The first four PCs were found to be stable (Figure 3). This gave some confidence that their 

spatial and temporal patterns were indeed characteristic for the monitored region in the analysed period and not restricted to 

the specific selection of observation wells or measurement dates. Compared to the established Kaiser criterion (section 3.1) 

the number of considered PCs was reduced from ten to four. 320 

 

5.2 Well specific reference hydrographs and residuals 

To account for well specific peculiarities we examined the time series of residuals of the reference hydrographs (for example 

Figure 6 and Figure 7). These peculiarities might be of different origin. First of all they might be caused merely by technical 

problems. For example we interpreted the single period in 1999 which sticks out in the plot of the residuals of observation 325 

well Deven as a step-wise shift of the logger (Figure 6c). This shift was in phase with the seasonal pattern of the observed 

series and was therefore not obvious from the visual inspection of the observed series alone, while it was clearly visible in 

the residuals.  

An example for well-specific peculiarities in the residuals due to local anthropogenic influence is given in Figure 7. 

Observation well NB-Hotel Vier Tore was excluded from the PCA because its hydrograph was known to be influenced by 330 

the lowering of groundwater level due to construction works of underground car parks in 1997-1998 and 2007-2008 

approximately 100 and 200 m apart, respectively. While this influence was clearly visible in the observed series at that 

observation well (Figure 7c), it was not obvious in the observed series at observation well Neubrandenburg UP, especially 

not the second deviation in 2007-2008 (Figure 7b). This is most probably because Neubrandenburg UP was further away 

from both construction sites, namely approximately 400 m each. However, in the residuals both periods became clearly 335 

visible for both observation wells although to different degrees at the two wells (Figure 7d). 

Such clear assignment of anthropogenic influence to a local deviation from the regional behaviour is only possible if the 

scale of the respective effect is rather local in comparison to the scale of the monitoring network as a whole, and the scale of 

spatiotemporal resolution of the network in particular. The latter enables a distinct localization of the influence. An 

anthropogenic effect which induces similar groundwater head dynamics at a substantial amount of the series of the data set 340 

would be incorporated in the leadings PCs (Wriedt et al., 2017), and thus would affect the reference hydrographs. However, 

such an effect is hardly likely. Moreover, the presented approach does not differentiate anthropogenic from “natural” effects 

per se. Rather, it decomposes the time series into regional patterns which can be assigned to many or all time series of the 

data set and local patterns which are restricted to a few or single sites. Another restriction is that PCA considers only 

temporal patterns of groundwater head, but ignores the absolute values. Thus, it does not allow any inferences whether the 345 

observed groundwater head on average is higher or lower than it would be under natural conditions. 

The spatial clustering of observation wells indicated a spatial bias of the monitoring (Figure 1). It reflected the focus of the 

monitoring on anthropogenic water use, for example close to settlements, towns, etc., which is prerequisite for sustainable 

water management. Because all the series were equally weighted by z-scaling (section 3.1), the derived PCs and 

consequently the determined normal behaviour were biased towards areas with higher density of observation wells (Karl et 350 

al., 1982). This should be considered for any interpretation of the reference hydrographs, respectively the general behaviour 

of the groundwater level in the region, as well as the local deviations. However, in this study, the stable PCs used for the 
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estimation of the regional behaviour turned out to be rather robust with respect to the selection of observation wells (section 

4.1), suggesting that the results were not primarily determined by the local clustering of the observation wells. 

In general, the reference hydrograph is a relatively good-natured and robust PCA application for mainly two reasons. First, 355 

the selection of the considered PCs is transparent and reproducible. The approach prevents the consideration of PCs which 

exhibit pronounced instability of the associated spatial and temporal patterns, for example PCs with “degenerate 

eigenvalues”, that is eigenvalues which are indistinguishable within their range of uncertainties (Hannachi et al., 2007). 

Second, not the single PCs are used, but the combination of the stable PCs. Thus, it is not necessary to interpret single PCs as 

drivers of groundwater head variability, distinct processes or alike. Consequently, describing the regional behaviour with the 360 

reference hydrograph is also applicable in cases in which the interpretation of single PCs is severely hampered, for example 

if the associated spatial patterns of the PCs mainly reflect the shape of the analysed domain (domain shape dependence) 

(Buell, 1975, 1979; Richman, 1986, 1993).  

Some PCA applications involve rotation of the considered PCs to achieve more simple structures, respectively more 

localized spatial patterns, which might support the interpretation of single PCs (Lins, 1985b; Richman, 1986; Jolliffe, 1987; 365 

Jolliffe, 2002; Hannachi et al., 2007). It is possible to combine such applications with the reference hydrograph application. 

For the suggested screening application rotation of the PCs does not change the results, as long as the rotation is performed 

with all stable PCs or only with a subset of the stable PCs. Than the reference hydrographs, respectively the residuals, are the 

same whether they are calculated from the rotated or the un-rotated PCs. Concerning the reference hydrographs the decisive 

question is which PCs are included in the calculation.  370 

The presented approach uses the spatiotemporal variability in a large set of groundwater head series to determine individual 

reference hydrographs for each observation well. Thus, it does neither require the identification of clusters of similar wells or 

single reference wells, nor assumptions on the catchments of the wells, hydraulic connection between the wells, etc. This is 

in contrast to approaches which select some of the monitored wells as reference observation wells being representative for 

the whole monitoring network or for subgroups or sub-regions only. For example other PCA applications used the clustering 375 

of observation wells in the scatterplot of loadings of PC 1 versus PC 2 to identify “index” wells for each cluster (Winter al., 

2000) or applied PCA directly to subgroups of a monitoring network, which were determined based on an estimation of the 

physical relatedness of the observation wells before, to identify firstly the “principal wells” of the subgroups and 

subsequently the most representative wells for the whole network by ranking all wells according to their number of 

occurrences as principal well (Gangopadhyay et al. 2001). 380 

However, despite the different approaches of how to determine the most representative observation wells it has to be 

considered that observation wells which are of little representative value for the whole monitoring network might be of high 

informative value for example with respect to anthropogenic influence specific to single observation wells. In contrast to the 

selection of single wells which are considered especially representative or atypical for the network, the suggested approach 

in this study enables to order all wells in a network quickly according to their representativeness and yields for each well an 385 

estimation of the local well-specific behaviour. 

 

5.3 Other applications 

In addition to the presented applications in this study, other applications of the reference hydrographs and residuals are 

possible. One option is to use the series of the stable PCs (scores) as predictor variables in a linear regression to fill gaps in 390 

hydraulic head series which were not analysed with the PCA but which exhibit some overlap with the monitoring period 

covered by the PCA. For example the reference hydrograph of observation well NB-Hotel Vier Tore (Figure 7c) was 

calculated although the groundwater head series was not part of the PCA. In this study it was merely used for identification 

of the influence of the construction works, but it could be used to replace the periods which were influenced by the 
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construction works with an estimation of unaffected groundwater head dynamics as well (Figure 7c). In the spatial domain, 395 

calculating the Pearson correlation of excluded series with the stable PCs for limited overlapping time periods can be used to 

extend the spatial coverage of the loadings maps. For both applications, the random subsampling analysis can be used to 

estimate how many missing values in the series might be tolerable. For this data set we would be confident to consider series 

with up to 30% missing values during the 20 years-period. The maximum time gap in this study was 88 days (section 2.2) 

and most of the time gaps were substantially smaller (Figures S1 and S2). Thus, the results are most likely less stable for a 400 

few long gaps compared to numerous but short gaps. 

Another application is to identify distinct reference observation wells by selecting those observation wells at which the 

correlation between the reference hydrograph and the observed series is above a certain threshold, for example R
2
 > 0.9. 

Those would be considered as most representative observation wells for the whole monitoring network. In case the period 

covered by the series of the reference observation wells exceeds the period covered by the PCA, they can be used as 405 

predictor variables in a linear regression to extrapolate the series of the stable PCs scores. 

The methods to extend the spatial and temporal coverage of the PCs should be handled with care. However, because only the 

stable PCs were used, there should be no major bias, as long as the extension is performed only for some years or small 

numbers of additional series. If new data are available, that cover a larger area or a longer period, it is in general preferable 

to perform a new PCA with all available data to account for systematic changes in the temporal dynamics of the analysed 410 

groundwater system, and systematic changes in the monitoring network geometry and spatial distribution of the observation 

wells. 

The detection of changes in characteristic temporal patterns (scores) and their occurrence in the monitoring network (maps of 

loadings) between different observation periods is another application of the reference hydrographs and their residuals. It has 

to be noted that a direct comparison of the temporal patterns of two periods can only be performed for temporally 415 

overlapping periods. For non-overlapping periods, a comparison is restricted to general time series characteristics like for 

example the timing or amplitude of a seasonal pattern. 

6 Conclusions 

We suggested and tested a PCA based approach for the fast and efficient screening of time series of groundwater head of a 

monitoring network for technical problems and anthropogenic effects. Here, each observed series is decomposed in two 420 

parts. The reference hydrograph part describes “normal” behaviour as it is typical for the respective study region. The 

residual part describes local deviations from the normal behaviour. Peculiarities in the residuals serve as indication for 

technical problems or anthropogenic influence. The reference hydrograph at each well is calculated by multiple linear 

regression of the observed hydrograph with the stable PCs. The stable PCs are those which are considered representative for 

the monitored region in the analysed period. They were identified in a random subsampling procedure as those PCs of which 425 

the associated spatial and temporal patterns are relatively insensitive to the specific selection of analysed data points in space 

and time, here the observation wells and measurement dates. The approach to determine the stable PCs is transparent and 

reproducible. 

The application of the reference hydrographs and their residuals proved to be a straightforward way to quality check the data 

and to identify candidates for local anthropogenic influence. Both applications are actually an interpretation of the temporal 430 

dynamics of local anomalies in the observed groundwater head series. In contrast to other approaches the identification of 

those local anomalies is based on the correlation among the observed groundwater head series only and not based on 

physical models or empirical relationships with any predictors of groundwater head dynamics. It also does not require an 

interpretation of single PCs as distinct physical processes or functional relationships. This limitation with respect to direct 

physical interpretation of the results brings with it the benefit that the only information required are series of (groundwater) 435 
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hydraulic head readings all measured at the same instants of time. Other suggested applications for the stable PCs are for 

example data-driven gap-filling in the observed series, spatial and temporal extrapolation of the reference hydrographs or the 

identification of distinct reference observation wells. 

The computational demand is very low. Time series of the well specific deviations from normal behaviour (residuals) are 

easily derived and enable a fast screening for well-specific peculiarities. In monitoring practice, the well-specific residuals 440 

can be used to distribute resources according to the “normality” of an observation well, in particular to support the decision 

which observation wells, respectively which series, should be investigated in more detail. Furthermore it can be used to 

categorize the deviations from the normal behaviour. Thus, we recommend the presented approach as a fast screening tool 

for the assessment of comprehensive groundwater monitoring networks.  

 445 
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