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Abstract 15 

Long-term, available rainfall data are very important for karst flood simulations and 16 

forecasting. However, in karst areas, there is often a lack of effective precipitation available to 17 

build distributed hydrological models. Forecasting karst floods is highly challenging. 18 

Quantitative precipitation forecasts (QPF) and estimates (QPEs) could provide rational 19 

methods to acquire the available precipitation results for karst areas. Furthermore, coupling a 20 

physically-based hydrological model with the QPF and QPEs felicitously could largely 21 

enhance the performance and extend the lead time of floods forecasting in karst areas, the 22 

performance of coupling the Weather Research and Forecasting Quantitative Precipitation 23 

Forecast (WRF QPF) and Precipitation Estimations through Remotely Sensed Information 24 

based on the Artificial Neural Network-Cloud Classification System (PERSIANN-CCS 25 

QPEs) with a new fully distributed and physical hydrological model, the Karst-Liuxihe model 26 

in flood simulations and forecasting in karst area. This study served 2 main purposes: one 27 

purpose is to compare the performances of WRF QPF and PERSIANN-CCS QPEs for rainfall 28 
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forecasting in karst river basins. The other purpose is to test the effective feasibility and 29 

application of the karst flood simulation and forecasting by coupling the 2 weather models 30 

with a new Karst -Liuxihe model. The new Karst-Liuxihe model improved the structure of the 31 

model by adding the karst mechanism based on the Liuxihe model as follows: 1. Refine the 32 

model structure and put forward the concept of karst hydrological response units (KHRUs) in 33 

the model. The KHRU, as the smallest unit of the Karst-Liuxihe model, is defined in this 34 

paper to be suitable for karst basins; 2. Increase the calculations of water movement rules in 35 

the epikarst zone and underground river, such as the division of slow flow and rapid flow in 36 

the epikarst zone and the exchange of water flow between the karst fissures and conduit 37 

systems; thus, the convergence of the underground runoff calculation method is improved to 38 

be suitable for karst water-bearing media; and 3. Add some necessary hydrogeological 39 

parameters in the coupled model to reflect the true conditions of rainfall-runoff in the karst 40 

underlying surface. Moreover, the flood detention and peak clipping effects due to the 41 

upstream karst depressions during flooding were considered and reasonably calculated in the 42 

coupled model. The flood detention effect can affect the peak flow time error simulated in the 43 

model and make the true peak flow appear later; the flood peak clipping effect can affect the 44 

flood peak flow relative errors and the simulation errors of floods volume. The consideration 45 

of these 2 factors in the model makes the flood simulations and forecasting effects more 46 

credible. The rainfall forecasting result show that the precipitation distribution of the 2 47 

weather models was very similar compared with the observed rainfall result. However, the 48 

precipitation amounts forecasted by WRF QPF were larger than that measured by the rain 49 

gauges, while the quantities were smaller by the PERSIANN-CCS QPEs. A postprocessing 50 

algorithm was adopted in this paper to correct the rainfall results by the 2 weather models. 51 

The karst flood simulation and forecasting results showed that the flood peak flow 52 

simulations were better by coupling the Karst-Liuxihe model with the PERSIANN-CCS 53 

QPEs, and coupling the Karst-Liuxihe model with WRF QPF could extend the lead time of 54 

flood forecasting largely, as a maximum lead time of 96 hours can provide an adequate 55 

amount of time for flood warnings and emergency responses. The satisfying and rational karst 56 

flood simulation evaluation indices proved that coupling the 2 weather models with the new 57 

Karst-Liuxihe model could be effectively used for karst river basins, which provides great 58 

practical application prospects for karst flood simulations and forecasting. In addition, the 59 

postprocessing method used to revise the 2 weather models in this paper is feasible and 60 

effective, and this method can largely improve the coupled model application effectiveness 61 

and prospect in karst river basins. 62 

1 Introduction 63 

In karst areas, the general lack of long-term meteorological data, especially precipitation 64 

data, is a great challenge to the simulation and forecasting of flood events based on 65 
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hydrological models (Li et al., 2019). Quantitative Precipitation Forecasts and Estimates 66 

(QPF and QPEs) are methods that may enable precipitation data in karst river basins to be 67 

easily obtained. The Weather Research and Forecasting (WRF) model, a type of QPF 68 

technology, is regarded as a new generation mesoscale weather forecasting 69 

model that could provide rainfall data with high accuracy at 1-10 km horizontal resolution 70 

(Skamarock et al., 2005). Furthermore, the WRF QPF can forecast rainfall data with a long 71 

lead time in karst areas, which is very important for flood warnings and mitigation because 72 

more time is provided for flood emergency responses (Tingsanchali, 2012). In this study, the 73 

maximum lead time is 96 hours, which can be the greatest factor of concern for decision 74 

makers in flood forecasting (Han et al., 2007). The PERSIANN-CCS is a QPE technology by 75 

weather satellites, which could estimate long-term and high-resolution rainfall data (Yang et 76 

al., 2004, 2007). However, only a few studies of rainfall forecasting based on WRF QPF and 77 

PERSIANN-CCS QPEs have been conducted in karst areas until now, and even if there are 78 

studies, the practical accuracy is generally poor. In addition, the flood simulation and 79 

forecasting results of coupling these weather models with hydrological models have poor 80 

precision in karst river basins due to the system error stack of the models as well as the 81 

complex hydrogeological conditions of karst water-bearing media (Ford and Williams, 1989; 82 

Kovacs and Perrochet, 2011). 83 

Generally, there are only a few rain gauges in karst river basins. Especially in the 84 

upstream areas of the basins, which comprise mountains and valleys with complex 85 

topographies, it is difficult to set up rain gauges to effectively obtain rainfall data. The study 86 

area in this paper is the Liujiang basin with 5.8×10^4 km2 drainage area; however, there are 87 

only 66 rain gauges. On average, there is only approximately 1 rain gauge per 1,000 km2, and 88 

the representativeness is too weak to reflect the actual rainfall that occurs in the basin. Under 89 

these circumstances, effective precipitation results could potentially be acquired by using 90 

numerical weather models in karst river basins. In recent years, numerical weather prediction 91 

models have become increasingly mature with the great progress of the 3S (the remote 92 

sensing/RS, geography information system/GIS, and global positioning system/GPS) 93 

technologies and can provide a global range of rainfall forecasting products with reasonable 94 

and high precision. 95 

The current mainstream numerical weather models include the European Centre Weather 96 

Forecasts model (Molteni et al., 1996), the Japan Meteorological Agency weather model 97 

(Takenaka et al., 2011), the QPEs by weather radars (Rafieei et al., 2014; Delrieu et al., 2014; 98 

Faure et al., 2015), WRF QPF (Skamarock et al., 2008), satellite QPEs (Bartsotas et al., 2017; 99 

Wardhana et al., 2017), and others. Among these weather models, WRF QPF and 100 

PERSIANN-CCS QPEs may be better ways to acquire precipitation results effectively in 101 

karst basins. The lead time of the QPF by the latest WRF model is 1-15 days (Ahlgrimm et al., 102 

2016). Therefore, coupling the hydrological model with WRF QPF for floods warning and 103 
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forecasting, the lead time could be extended greatly (Zappa et al., 2010). In comparison to this 104 

model, the observed precipitation by rain gauges has no lead time because the precipitation 105 

has already fallen to the ground. The lead time of WRF QPF in this study was 96 hours. That 106 

is, the equivalent of a 96-hour lead time of flood forecasting, which is very important for the 107 

safe transfer of people and property before the floods. PERSIANN-CCS QPEs could offer 108 

reasonable rainfall data with high precision, and coupling this model with the distributed 109 

hydrological model gave good results in karst flood simulations (Ji et al., 2019). 110 

Several scholars at home and abroad have achieved acceptable results using numerical 111 

weather models (Hu et al., 2013; Stenz, 2014; Bartsotas et al., 2017; Wardhana et al., 2017). 112 

However, some uncertainty remains that cannot be neglected in the model application, which 113 

results in the poor precision of these weather models (Goudenhoofdt and Delobbe, 2009). In 114 

this study, 2 effective measures could be used to reduce the uncertainty and improve the 115 

precision of the weather models in the karst river basins. One is to choose a suitable model 116 

spatial resolution, which could largely affect modelling effects. A initial spatial resolution for 117 

WRF QPF and PERSIANN-CCS QPEs are 20 km×20 km and 0.04°×0.04°, respectively. 118 

After many tests, the best spatial resolution for the 2 weather models in the study area is 200 119 

m×200 m, which can well match the hydrological model in this paper. The other measure is to 120 

reduce the systematic errors of the weather models. A postprocessing algorithm was proposed 121 

in this paper to correct WRF QPF and PERSIANN-CCS QPE results in the karst area, which 122 

could reduce the rainfall result uncertainties and make the results easier to receive and more 123 

credible. 124 

A hydrological model, as a physics-mathematics computational tool, is an important 125 

method used to accurately simulate and forecast flood events. Where the precipitation occurs, 126 

which is the hydrological model input data, could be the driving factor in flood forecasting 127 

(Li et al., 2017). Coupling a hydrological model with WRF QPF and PERSIANN-CCS QPEs 128 

has a great capacity and prospect for floods simulations and forecasting in karst areas. 129 

However, the traditional hydrological models such as lumped models have considerable 130 

disadvantages in karst flood simulations and forecasting. The complex hydrogeological 131 

conditions and highly anisotropic karst aquifers as well as water-bearing media in karst areas 132 

cause flood processes to be more complex and nonlinear than those in non-karst basins 133 

(Goldscheider and Drew, 2007; Hartmann et al., 2013). Lumped hydrological models have a 134 

simple model structure, and only a few hydrogeological data are required for modelling. 135 

These models usually treat the catchment as a whole unit and ignore the spatial variations in 136 

rainfall-runoff as well as the complexity of the underground space structure of karst aquifers 137 

(White, 2007). Additionally, the lumped model parameters are homogenized or generalized, 138 

and the same set of parameters are adopted for the whole basin, which results in poor 139 

precision of flood forecasting applications in karst areas (Scanlon et al., 2003). Physically 140 

based distributed hydrological models have great application potential and capabilities in 141 
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improving the performance of karst flood event forecasting than lumped hydrological models 142 

(Ambroise et al., 1996). In a karst river basin, the entire basin could be divided into many grid 143 

units known as the karst sub-basins by the DEM data in the distributed models, and by 144 

coupling the grid rainfall with WRF QPF and PERSIANN-CCS QPEs, the actual karst 145 

development characteristics and rainfall-runoff processes can be precisely reflected. 146 

Therefore, the distributed hydrological models are better than the lumped models for flood 147 

simulations and forecasting in karst river basins. To improve the performance and precision, 148 

in this study, the karst subbasins will be further divided into smaller grid units known as karst 149 

hydrology response units (KHRUs) in the distributed hydrological model. 150 

Shustert and White (1971) made a good attempt to use a distributed model in karst areas. 151 

After that, an increasing number of distributed models have been used in karst flood 152 

forecasting (Quinlan and Ewers, 1985; Ambroise et al., 1996; White, 2002, 2005, 2007; 153 

Gallegos et al., 2013). Ghasemizadeh (2012) introduced several commonly used distributed 154 

hydrological models and their application effects in karst watersheds. However, there are 2 155 

obvious shortcomings with the distributed hydrological models when used in karst areas. One 156 

is the problem of an insufficient data supply. In particular, it is highly challenging to build 157 

distributed models because of the lack of necessary hydrogeological data. The other is the 158 

problem of model calculation efficiency. In general, there are many parameters in the 159 

distributed models, which require many computational resources, which leads to low 160 

efficiency (Chen et al., 2017). In this paper, the hydrogeological data problem is solved by a 161 

field survey and tracing test as well as a drill-hole pumping test. In addition, the property data 162 

of the study area, including the DEM data, the soil types and the land use types, could be 163 

downloaded expediently from the internet at no cost. An improved Particle Swarm 164 

Optimization method (Chen et al., 2016) was used for parameter optimization, and the use of 165 

this algorithm could improve the computing efficiency of the distributed model and reduce 166 

the uncertainty in the parameters. 167 

Currently, there is no unified, widely agreed upon and highly practical distributed karst 168 

hydrological model being used around the world. Some distributed models may work 169 

accurately in the local area but may not be transferable to another karst basin. Moreover, no 170 

such model with high precision could be generally applicable to a typical karst watershed in 171 

southwest China, where karst is the most developed. Therefore, we hope to find a distributed 172 

hydrological model that has general applicability to the karst area in southwest China through 173 

the application of the model proposed in this study. In this paper, the feasibility and 174 

application effects of coupling a new karst hydrological model, i.e., the Karst-Liuxihe model 175 

with WRF QPF and PERSIANN-CCS QPEs in karst floods simulations and forecasting are 176 

studied. Conducting this study served 2 purposes: one purpose was to synthetically compare 177 

the performances of WRF QPF and PERSIANN-CCS QPEs in rainfall forecasting in the 178 

study area. The other purpose was to verify the performance and feasibility of karst flood 179 
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simulations by coupling the 2 weather models with the new Karst-Liuxihe model. The new 180 

Karst-Liuxihe model is improved by adding the karst mechanism based on the Liuxihe model 181 

prototype (Chen, 2009). The improvements are described below: (1) The karst water-bearing 182 

medium is simplified in the model settings. (2) The model structure is refined, as the minimal 183 

model structure is divided into KHRUs in this study. (3) The karst mechanism is added to the 184 

model calculation, where the calculation principle of the fluid migration rule in the epikarst 185 

zone is increased, including the flow movement rule in the shallow karst fissure network; the 186 

unsaturated zone, the rapid flow and the slow flow in the model are divided, and the hydraulic 187 

relationship between the karst fissure and the conduit systems is calculated. (4) The 188 

calculation principle of the groundwater confluence to the basin outlet is improved. (5) Some 189 

necessary hydrogeological parameters that are suitable for karst aquifers are added to the 190 

model, including the permeability coefficient K and so on. There are 14 parameters in the 191 

original Liuxihe model, and the parameter number increased to 20 in the Karst-Liuxihe 192 

model. 193 

In this study, both weather models, i.e., WRF QPF and PERSIANN-CCS QPEs, can 194 

provide high-resolution grid rainfall data, which are coupled with the Karst-Liuxihe model 195 

could make a satisfactory effect in karst floods simulations and forecasting. This model is 196 

applied to the Liujiang karst basin, which is the area of China where karst is the most 197 

developed. The karst flood simulation effect of the coupled model is excellent. In particular, 198 

the simulation error of the flood peak flow is effectively controlled. Moreover, the maximum 199 

lead time of rainfall forecasting can reach 96 hours, which makes a significant difference for 200 

flood warnings and the secure transfer of people and property before the occurrence of 201 

flooding. The coupling proposed in this study could be applied to other karst river basins in 202 

China and even around the world due to the reasonable and acceptable flood simulation 203 

effects. 204 

2 Study area and data 205 

2.1 Geology and landforms 206 

The study area of this paper is the Liujiang karst river basin, which located at 207 

23.9°~24.5°N, 108.9°~109.7°E in southwest China. The channel length of Liujiang river is 208 

about 1,120 km and the area is about 5.8×10^4 km2. It is the most developed karst basin of 209 

China, as shown in Fig. 1a, the map of Liujiang watershed. The carbonate rocks distribution 210 

area is about 1.9×10^4 km2, which are mainly distributed in the northern part of the watershed. 211 

The peak forest plain in the downstream basin and the peak cluster depression in the middle 212 

and upper reaches are the dominant landforms of the study area. The karst valley is the main 213 

landform in the south, where the underlying bedrock, which mainly comprises carbonate and 214 

dolomite. A large area of limestone is distributed in the western part, where the peak cluster 215 

depression is dominant. Hilly and mountain are the dominant landforms in the eastern part. In 216 
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particular, the highest mountain in the basin is Leigong Mountain, which has an elevation of 217 

2124 m (as shown in Fig. 1b) and is located in the northeast basin. The dominant landforms in 218 

the central part and downstream are the peak forest plains. 219 

Figure 1. The sketch map of Liujiang karst watershed. 220 

The upstream area of the basin is located in the southern part of the ancient 221 

Paleocaledonian fold belt and the southeastern edge of the southwest China depositional area, 222 

where a large area of sedimentary rock is distributed. The outcrop strata in the basin are 223 

ancient and intact and mainly include Sinian, Cambrian, Silurian, Ordovician, Upper 224 

Devonian, Lower Carboniferous, Upper Permian, Lower Triassic, Paleogene, Quaternary 225 

Pleistocene and Holocene. 226 

After a long karst landform evolutionary process, karst development in the basin is now 227 

very mature. At first, there were mainly small karst doline funnels in the basin; then, the 228 

landform evolved into a peak cluster depression (as shown in Fig. 2, photographs of the 229 

middle and upper reaches) as carbonate rocks continued to be eroded by karst water as well as 230 

the fluviraption of allogeneic water, especially the Liujiang River. Under these interior 231 

erosional effects and exterior fluviraption for so many years, the geomorphological evolution 232 

reached an old age, i.e., the peak cluster depressions had evolved to the peak forests 233 

(Williams, 1987), especially in the downstream (as shown in Fig. 2, photograph of the 234 

downstream reaches). 235 

Figure 2. The karst landform evolution of the Liujiang basin. 236 

2.2 Precipitation, karst flood and property data 237 

The Liujiang River, a rain-source river, the average annual precipitation in the basin is 238 

between 1400 and 1700 mm. The flood season is from May to September, and the flood 239 

volume can account for 80% of total runoff. The maximum peak flow is 2.59×104 m3 s-1 (in 240 

2009, as shown in Fig.12 in the section 6.3). The water level rise over a 24-hour period can be 241 

as high as 12.1 m (in 1978). The mean annual maximum flood peak discharge is 15,200 m3 s-1, 242 

and the maximum 7-day mean flood volume is 5.38 billion m3. In the upper reaches, most of 243 

the landforms are deep-cut canyons shaped like a “V” except in the river source regions. The 244 

elevation of these canyons is usually greater than 1000 m with a relative height of 500~700 m 245 

(as shown in Fig. 1b). In these canyons, the runoff responds quickly to rainfall, and the area is 246 

prone to regional flood disasters. 247 

The flood characteristics are closely related to rainstorms, the watershed topography and 248 

the karst landform. Larger floods are mostly multipeak processes, and an increase lasts only a 249 

short period of time, i.e., the flood peak occurs quickly and recedes quickly in terms of the 250 

flood response, which usually causes considerable damage. In the 1990s, the frequency and 251 
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intensity of rainstorms and flood disasters were increasing with the increase in extreme 252 

weather. The north-eastern and western areas of the basin are the main flood sources, and this 253 

the area where the most developed karst is located. Especially the karst conduits are well 254 

developed in the underground aquifer. According to the tracing test conducted in Liujiang 255 

basin, during the flood season, the flood velocity can reach to 43-130 km/d. The maximal 256 

velocity is 173 km/d, which indicates the karst underground rivers are well developed in the 257 

study area. The karst features can significantly affect the hydrologic process, especially 258 

during the rainfall-runoff process in the model. It is highly challenging to accurately simulate 259 

the karst water cycle rules and forecast the floods changeable trends in the future. 260 

In the study area, there are total of 66 rain gauges, 156 grid gauges for WRF QPF and 131 261 

grid gauges for PERSIANN-CCS QPEs (as shown in Fig. 1a), respectively. And 5 floods that 262 

occurred from 2008-2013 were used to verify the performance of coupling the Karst-Liuxihe 263 

model with WRF QPF and PERSIANN-CCS QPEs. Hourly precipitation from the rain gauges 264 

was adopted to revise the products of the 2 weather models in this paper. The property data of 265 

the watershed are mainly the DEM data, the soil types as well as the land use types. These 266 

property data could be downloaded easily from the internet at no cost: (1) The DEM data are 267 

from http://srtm.csi.cgiar.org, last accessed: 02 April 2019. (2) The land use types can be 268 

downloaded from http://landcover.usgs.gov, last accessed: 02 April 2019. (3) The soil types 269 

are from http://www.isric.org, last accessed: 05 April 2019. After resampling in the ArcGIS 270 

10.2, these property data are downscaled to the same resolution as the hydrological model in 271 

this paper. 272 

3 WRF QPF and PERSIANN-CCS QPEs 273 

3.1 WRF QPF12 274 

The WRF QPF used in this study was the WRF Advanced Research model version 3.4 275 

(Skamarock et al., 2008), which is a 3-dimensional and nonhydrostatic system that can 276 

forecast complex weather changes on cloud scale and synoptic scale well. This model is 277 

especially precise at 1-10 km horizontal resolution, which can satisfy the practical application 278 

requirements of rainfall forecasting in this study. WRF QPF was applied in this study using 279 

the following configurations: (1) The domain of the WRF QPF model is set at 24° N and 280 

109°E, as the location of the basin is 23.9°~24.5°N, 108.9°~109.7°E. (2) The vertical 281 

structure of the model includes 28 levels with the Lambert conformal projection (Li et al., 282 

2015). (3) The initial temporal and spatial resolutions were 3-hour and 20 km×20 km, 283 

respectively. Following downscaling, the temporal and spatial resolutions were 1-hour and 284 

200 m×200 m, respectively. The downscaled method, which was calculated in ArcGIS 10.2 285 

through the statistical scales relationship between the DEM data and weather model (Fan et 286 

al., 2017). (4) The entire basin was covered by 156 grid gauges based on the WRF QPF. The 287 
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rainfall forecasting was produced with a lead time of 96 hours (other results of lead times 288 

such as 24, 48 and 72 h have also been calculated (Li et al., 2017)). (5) The WRF QPF results 289 

were evaluated and revised by comparing the rainfall data from the rain gauges. 290 

The WRF QPF parameters were set according to the following configurations: (1) The 291 

single-moment, 3-class microphysics parameterization is used in this study (Hong and Lim, 292 

2006). (2) The Yonsei University (YSU) planetary boundary layer scheme and the Kain-293 

Fritsch cumulus parameterization (Kain, 2004) are adopted to optimize the cumulus 294 

parameters. (3) Other physics schemes for the model parameters used in this paper include the 295 

Goddard scheme (Chou and Suarez, 1994), Rapid Radiative Transfer Model (Mlawer et al., 296 

1997) and the NOAH scheme (Ek et al., 2003). More details on the WRF QPF model and its 297 

parameter settings can be found in the research results of previous studies (Li et al., 2015; Li 298 

et al., 2017). 299 

3.2 PERSIANN-CCS QPEs 300 

The PERSIANN-CCS QPEs (Yang et al., 2004, 2007), which is developed based on the 301 

PERSIANN prototype system (Hsu et al., 1999); this system is a next-generation rainfall 302 

estimation system based on geostationary satellites that use computer imaging technology and 303 

pattern recognition technology. The PERSIANN-CCS QPE system was based on 304 

geostationary infrared imagery and daytime visible imagery (Soroosh et al., 2000). The 305 

system is automated for estimating precipitation through the use of satellite remote sensing 306 

technology. The parameters of the PERSIANN system could be optimized efficiently by a 307 

self-adaptive artificial neural network (Yang et al., 2007).  308 

The model setup, parameter optimization and rainfall estimation procedures of 309 

PERSIANN-CCS (Hsu, 2007; Li et al., 2017) can be found in operating manuals and user 310 

guides from http://chrs.web.uci.edu/projects_nasa.php, last accessed: 15 April 2019. However, 311 

in practical application, the PERSIANN-CCS QPE model does not have to be built to obtain 312 

the rainfall data in a particular study area. Worldwide products of QPEs based on the 313 

PERSIANN-CCS including the rainfall results in this paper could be easily downloaded at no 314 

cost from http://cics.umd.edu/ipwg/us_web.html, last accessed: 18 March 2019. Therefore, 315 

the rainfall data from the PERSIANN-CCS QPEs could be obtained expediently in karst areas 316 

where rain gauges are usually lacking.  317 

The specific operational steps for the PERSIANN-CCS QPEs in this study area are as 318 

follows: (1) Determine the time and scope of the study area, i.e., the rainfall occurrence and 319 

end time as well as the location according to the longitude and latitude. (2) Download the 320 

estimated precipitation data by the PERSIANN-CCS. (3) Analyze and appraise the products 321 

of PERSIANN-CCS QPEs by comparing the observed rainfall by rain gauges. (4) Revise the 322 

PERSIANN-CCS QPEs products by using appropriate methods. 323 

The PERSIANN-CCS QPE products can generate precipitation data at a time interval of 324 
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30 min and a spatial resolution of 0.04°×0.04° (Yang et al., 2007). The spatial resolution was 325 

downscaled to 200 m×200 m using a downscaling method (Fan et al., 2017) to suit the 326 

resolution of the Karst-Liuxihe model in this paper. The time interval was changed to 1 hour. 327 

3.3 Forecasting and evaluation of the precipitation results 328 

There are total of 66 rain gauges, 156 grid gauges of WRF QPF and 131 grid gauges of 329 

PERSIANN-CCS QPEs in this study area, respectively. These grid gauges can cover the 330 

entire basin (as shown in Fig. 1a) and provide a representative rainfall product. The WRF 331 

QPF model offers rainfall forecasting with a lead time of 96 hours, while the rainfall 332 

estimation results of PERSIANN-CCS have no lead time. The hourly precipitation data for 333 

2008, 2009, 2011, 2012 and 2013 from the products of the 2 weather models were produced, 334 

compared and revised in this study by using the observed precipitation data of rain gauge. 335 

The forecasting, estimation and comparison of the rainfall results by the 3 precipitation 336 

products, i.e., the WRF QPF model, the PERSIANN-CCS QPEs, and the rain gauge 337 

precipitation are shown in Figs. 3, 4, 5, 6 and 7, respectively. 338 

Figure 3. The rainfall results of the 3 precipitation products (2008). 339 

Figure 4. The rainfall results of the 3 precipitation products (2009). 340 

Figure 5. The rainfall results of the 3 precipitation products (2011). 341 

Figure 6. The rainfall results of the 3 precipitation products (2012). 342 

      Figure 7. The rainfall results of the 3 precipitation products (2013). 343 

Figs. 3-7 showed the average value of the rainfall results of the WRF QPF model, the 344 

PERSIANN-CCS QPEs, and the rain gauge precipitation, where (a), (b), and (c) are the 345 

average values of the rainfall results according to the rain gauge, WRF QPF, and 346 

PERSIANN-CCS QPEs, respectively. (d) and (e) are the quantile-quantile plot, a 45-degree 347 

line here is drawn to compare the rainfall results of the 2 weather models and the rain gauge 348 

precipitation, respectively. 349 

According to the results shown in Figs. 3-7, the rainfall distributions appeared to be quite 350 

similar with WRF QPF, the PERSIANN-CCS QPEs, and observed precipitation by rain gauge. 351 

Especially from Figs.3-7 (d) and (e), the 2 precipitation plots, i.e., WRF QPF and the rain 352 

gauge precipitation, PERSIANN-CCS QPEs and the precipitation by rain gauge were very 353 

closely distributed around the 45-degree lines, meant the distribution of these 3 rainfall 354 

products were close to one another. However, a relative error of the 3 rainfall products cannot 355 

be ignored. The results from the WRF QPF were larger than those from the rain gauges, while 356 

the PERSIANN-CCS QPEs were smaller, which meant that relative errors exist between the 357 

weather model precipitation values and the rain gauge precipitation. 358 

To further quantitatively evaluate and compare the rainfall results of the 2 weather 359 

models with the rain gauge precipitation, the average precipitations of the 3 rainfall products 360 

were listed in Table 1. 361 
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Table 1. The quantitative rainfall comparison results of the 3 precipitation products. 362 

From the rainfall results listed in Table 1, some relative errors between the 2 weather 363 

models and the rain gauge precipitation cannot be ignored. The average precipitation values 364 

of WRF QPF were larger than the rain gauge precipitation, while the PERSIANN-CCS QPEs 365 

values were smaller. The relative errors between the PERSIANN-CCS QPEs and the 366 

precipitation by rain gauge were less than those of the WRF QPF and the rain gauge 367 

precipitation. The rainfall estimation results according to PERSIANN-CCS had no lead time, 368 

while the WRF QPF model offered rainfall forecasting with a lead time of 96 hours, which 369 

meant a lead time of 96 hours for flood forecasting by coupling the Karst-Liuxihe model with 370 

WRF QPF model in this study. 371 

The average relative errors were 17% and -14% for WRF QPF and PERSIANN-CCS 372 

QPEs, respectively. These errors are considerable relative errors and cannot be ignored. 373 

Therefore, an effective method should be used to reduce these relative errors and make the 374 

rainfall results by the 2 weather models more credible and receivable. 375 

3.4 Postprocessing of the 2 weather models 376 

To make the quantitative values of the rainfall results from WRF QPF and PERSIANN-377 

CCS QPEs closer to those of the observed precipitation by rain gauge, which means to make 378 

the forecasting rainfall results are more credible, the precipitation products according to the 2 379 

weather models were revised using the rain gauge precipitation that was considered as the 380 

true precipitation of the basin. The procedures of postprocessing the 2 precipitation products 381 

are as follows. 382 

1. The average values of WRF QPF and PERSIANN-CCS QPEs were calculated according to 383 

this equation: 384 

                          1
WRF/PERSIANN-CCS

N

i i

i

PF

P
N




                                        (1) 385 

where
 WRF/PERSIANN-CCSP

 
are the average values of the precipitation results based on WRF QPF 386 

and PERSIANN-CCS QPEs,
 iP  is the precipitation of the 2 weather models at i grid gauge,

 
387 

iF  are the watershed areas of i grid gauge, and N are the grid gauges numbers. 388 

2. Average values of the observed precipitation based on rain gauge by this equation: 389 
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                                             (2) 390 

where
 2P are the average values of the rain gauge precipitation,

 
M are the rain gauge numbers, 391 

and jP are the average values of the observed precipitation of j rain gauge. 392 

3. Average values of the rain gauge precipitations were adopted to correct the WRF QPF and 393 

PERSIANN-CCS QPEs using this equation: 394 

                                                
' 2

WRF/PERSIANN-CCS

i i

P
P P

P
                                              (3) 395 

where
 

'

iP  is the quantitative value of the precipitation according to WRF QPF and 396 

PERSIANN-CCS QPEs after revision at i grid gauge, and iP  are the precipitation values of 397 

the 2 weather models at the i grid gauge. 398 

This postprocessing method made the rainfall results based on the PERSIANN-CCS 399 

QPEs and WRF QPF closer to the observed rainfall results by rain gauges, which can largely 400 

reduce the systematic errors of the 2 weather models. Therefore, the revision method 401 

described in this study was feasible. After the postprocessing, the precipitation products based 402 

on the 2 weather models were fed into the Karst-Liuxihe model to validate the model’s 403 

feasibility in karst flood events simulations and forecasting in the study area. 404 

4 Hydrological model 405 

4.1 The Liuxihe model 406 

The Liuxihe model, a fully physically-based distributed hydrological model, was 407 

proposed by Y, Chen (Chen, 2009), and this model earned its name through the first 408 

significant successes in flood forecasting in the Liuxihe River basin, Guangdong Province, 409 

China. The Liuxihe model has achieved many reasonable and gratifying research results in 410 

the past decade (Chen, 2009, 2018; Fan et al., 2012; Liao et al., 2012; Chen et al., 2016, 2017), 411 

which is especially significant for flood forecasting in some reservoirs and catchments (Li et 412 

al., 2017, 2019; Hui et al., 2018). 413 

The entire structure of Liuxihe model is divided into 7 sub-models, including the 414 

watershed delineator and data mining sub-model, the unit classification and section 415 

estimation sub-model, the rainfall fusion calculation sub-model, the evapotranspiration 416 
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calculation sub-model, the rainfall-runoff calculation sub-model, the confluence calculation 417 

sub-model, the parameter sensitivity analysis and the parameter optimization sub-model. In 418 

the vertical structure of the Liuxihe model, there are 3 layers from top to bottom: the canopy 419 

layers, the soil layers and the underground layers, respectively. And the horizontal structure is 420 

also divided into 3 types: the river cells, the hill slope cells and the reservoir cells. More 421 

details of the Liuxihe model structure and its application effects can be found in the studies by 422 

Chen (2009, 2018) and Li (2017, 2019). 423 

4.2 Karst-Liuxihe model 424 

The Liuxihe model prototype is a terrestrial hydrological mechanism model, which is 425 

particularly useful in rainfall-runoff and confluence calculations, as the model performs well 426 

in forecasting the river surface. To be suitable for karst basins, the structure of the Liuxihe 427 

model should be improved to effectively adapt to the complex karst hydrogeological 428 

conditions, which involves adding the karst mechanism to the model. A new distributed 429 

hydrological model in this study, the Karst-Liuxihe model, was proposed on the prototype of 430 

Liuxihe model to simulate and forecast the karst flood events. The process of improving the 431 

structure of the Karst-Liuxihe model is summarized as follows. 432 

1. Make the karst water-bearing media simplification in the model 433 

In general, the karst hydrological process is hard to accurately forecast using a 434 

hydrological model due to the complicated and anisotropic hydrogeological conditions of the 435 

karst aquifers. Therefore, the water-bearing media in the karst aquifer must be effectively 436 

simplified before building the model. First, the karst underground river system was 437 

generalized into a multiple spatial structure in the model, where the water movement rules of 438 

the underground river could be intelligible and computable. Second, the groundwater 439 

movement patterns are divided into slow flow and rapid flow in the model. Slow flow mainly 440 

exists in the tiny karst fissures, and rapid flow mainly occurs in wide karst cracks, conduits, 441 

sinkholes and the underground river. Atkinson (1977) noted that when the width of the karst 442 

fissure exceeds 10 cm, the water flow in the karst water-bearing medium is a non-Darcy flow, 443 

i.e., turbulence with a rapid speed. The 10-cm width of the karst fissure was treated as a 444 

threshold in this study, and when the width exceeded 10 cm, the groundwater movement 445 

pattern was divided by the rapid flow. Otherwise, the flow was slow flow. In fact, a threshold 446 

of 10 cm is sufficient in terms of contribution to flooding, especially for such a large study 447 

area (5.8×10^4 km2).  448 

2. Refine model structure and divide into KHRUs 449 

The entire study area would be divided into a lot of grid cells by the high-resolution 450 

DEM data, and these grid cells are known as karst sub-basins. The confluence path for each 451 

karst sub-basin to the outlet of the basin is clear. Furthermore, to be suitable for the complex 452 
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karst aquifer and water-bearing media in karst basins, the model structure must be fine 453 

enough to meet the flood simulation and forecasting requirements. Therefore, the karst 454 

subbasins can be further divided into many KHRUs using GIS technology combined with the 455 

karst landform in this paper, and the spatial variations in the karst subbasins can be subtly 456 

described. Each KHRU had its own model parameters, and calculations of the entire karst 457 

hydrological process, including calculations of precipitation, evapotranspiration, rainfall-458 

runoff and confluence, are independent of each other in each KHRU. This type of multiple 459 

spatial structure in the model could effectively make maximum use of the limited 460 

meteorological and hydrogeological data. In the vertical structure of the KHRU in the Karst-461 

Liuxihe model, there are 5 layers, including the vegetation cover, the soil layer, the epikarst 462 

zone, the bedrock layer as well as the underground river. Water movement and exchange 463 

rules between the karst fissure and conduit in the epikarst zone were reasonably considered in 464 

this study. Fig. 8 shows the structure map of the KHRU. 465 

a. The structure of the KHRU and the partial enlarged detail 466 

b. A picture of the KHRU 467 

Figure 8. The 3-dimensional spatial structure of the KHRU. 468 

In Fig. 8, the partially enlarged details of Fig. 8a and b show the 3-dimensional spatial 469 

model of the KHRU that is built in our laboratory, which is used to observe the slow and 470 

rapid flows transfer into the karst fissures and conduits more intuitively. This process may be 471 

necessary and helpful for modelling. 472 

3. Increase the calculation of water movement rules in the karst aquifers  473 

There is no module to address the water movement rules in the epikarst zone in the 474 

Liuxihe model prototype. In the Karst-Liuxihe model in this study, the karst aquifer system 475 

was divided into karst fissure and conduit systems, in which the water movement rule was 476 

divided into slow flow and rapid flow. The 10-cm width of the karst crack is a threshold 477 

(Atkinson, 1977); when the width exceeds 10 cm, the water movement pattern is divided by 478 

the rapid flow. Otherwise, the flow is the slow flow. The karst fissure systems were mainly 479 

the rock matrix and some small fissures, while the conduit systems include the wide fissures 480 

and conduits as well as the karst shaft, sinkhole, and underground river during the floods. The 481 

water movement was slow in the small karst fissure system and obeys Darcy's law. Therefore, 482 

in the Karst-Liuxihe model, the system was generalized to an equivalent porous medium. A 483 

3-dimensional equation of groundwater motion was used to describe the slow flow: 484 

xx yy zz s

h h h h
K K K W S

x x y y z z t

            
         

            
             (4) 485 

where xxK , yyK , and zzK  are the permeability coefficients of the rock mass in the X, Y, and 486 
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Z directions, respectively, m d-1; h is the groundwater head, m; W is the source-sink term, d-1; 487 

sS is the storage coefficient, m-1; and t is the time, d. 488 

The conduit systems were generalized to multiple circular tubes, considering that the 489 

tubes were mostly under pressure during the floods. Thus, the conduit systems were bearing 490 

tubes in this paper. In these bearing tubes, when the groundwater was in a state of laminar 491 

flow, the water flows of the tubes were calculated by the Hagen-Poiseuille equation: 492 

 493 

2 2

32 32

gd h gd h
Q A A

x l



 

 
   

 
                                  (5) 494 

where Q is the water flow of the laminar flow, m3 s-1; A is the tube cross-sectional area, m2; d 495 

is the pipe diameter, m;  is the density of the underground water, kg m-3; g  is gravity 496 

acceleration, m s-2;  = /   is the coefficient of kinematic viscosity, and this value can be 497 

calculated from the temperature (Shoemaker, 2008); / = /h x h l    is the hydraulic slope 498 

of the tubes, and  is the tube curvature, which is a dimensionless parameter here. 499 

When the groundwater was in a state of turbulent flow, the water flows of the tubes were 500 

calculated by the Darcy-Weisbach equation: 501 

 502 
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                                  (6) 503 

where Q is the water flow of the turbulent flow, m3 s-1; f  is the friction factor, dimensionless 504 

here; ck is the average tube wall height, m; = /eR Vd   is the Reynolds Number, and V is the 505 

average velocity of the tubes, m s-1. The Reynolds Number is divided into the upper Reynolds 506 

Number and the lower Reynolds Number to determine whether the flow in the tubes is 507 

laminar and turbulent. When there was laminar flow, the Reynolds Number at that time was 508 

greater than the upper Reynolds Number. Then, the groundwater in the tubes transitioned 509 

from laminar flow to turbulent flow. When there was turbulent flow, the Reynolds Number at 510 

that time was less than the lower Reynolds Number, and the groundwater in the tubes 511 

transitioned from turbulent flow to laminar flow. 512 

In the unsaturated zone of the karst aquifer, there is usually an exchange of water 513 

between slow flow and rapid flow, i.e., the exchange of water exists between each conduit 514 
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node and the connecting fissure node, and the exchange of water flow could be calculated 515 

using this equation: 516 
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                                           (7) 517 

where , ,i j k  is the exchange coefficient at grid cell i, j, k of the KHRU, m2 s-1; nh  is the head 518 

value of the corresponding tube node, m; , ,i j kh  is the head value of the grid cell i, j, k, m; np 519 

is the tube number than connected the i, j, k tube node;  
, ,w i j k

K  is the permeability 520 

coefficient of the tube wall, m d-1; ipd  is the pipe diameter of tube ip, m; ipl  is the length of 521 

the connection between the i and p tube node, m; ip  is the tube curvature, and ipr  is the tube 522 

radius, m. 523 

4. Add some necessary hydrogeological parameters to the model 524 

In the original Liuxihe model, there are 14 parameters that require optimization, and 525 

after adding the karst mechanism and especially by adding some necessary hydrogeological 526 

parameters in the Karst-Liuxihe model. Then, the parameters were increased to 20, and 527 

among them 18 need to be optimized. The remaining 2 parameters were the flow direction 528 

and slope, which can be directly calculated from the high-resolution DEM data. 529 

 These added parameters could represent the underground water movement rules in the 530 

epikarst zone and the underground river. The 6 added parameters are the macro crack volume 531 

ratio, V; the permeability coefficient, K; the specific yield of the aquifer, χ; thickness of the 532 

karst aquifer, h; depletion coefficient, ω; and channel roughness, n1. The parameters added 533 

into the Karst-Liuxihe model will inevitably lead to uncertainties in the model during flood 534 

simulation and forecasting, so the parameter sensitivity must be effectively analysed and 535 

evaluated. In this study, a parameter sensitivity analysis method, known as the multiparameter 536 

sensitivity analysis (MPSA) by Choi (1999) et al., was developed based on the Generalised 537 

likelihood uncertainty estimation (GLUE) method to evaluate the parameter sensitivity in the 538 

model. 539 

5. Coupled model set up 540 

5.1 Model setup 541 

In general, there are many pits in the karst areas, and some of which are the false pits. 542 
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The existence of false pits is due to wrong data and systematic errors of DEM itself. These 543 

false pits need to be reasonably filled before building the coupled model. Because there are 544 

karst depressions and sinkholes in the karst areas, which cause true pits to exist, the model 545 

retained these true pits, including the depressions and sinkholes. These true pits in the study 546 

area play an important role in the flood transmission process and can be found through a field 547 

survey. Due to the detention effect and peak clipping in the karst depressions, the 548 

hydrological process is delayed, especially for the flood peak flow. This effect must be 549 

considered in the coupled model, which can make a better performance for the model in karst 550 

flood events simulations and forecasting. Before building the model, whether there exists a 551 

detention effect and peak clipping in the karst depressions and sinkholes in the study area is a 552 

key factor. If so, the storage capacity and size of these pits must be determined by a field 553 

survey during floods. The capacity can be deduced according to the water level, and the 554 

amounts of stranded floods near the pits must be considered in the water balance calculation 555 

in the model. The specific calculation steps in the coupled model are shown below. 556 

1. First, the limit discharge capacity of the underground river entrance in the study area, i.e., 557 

Qmax, was deduced through a field investigation and monitoring. 558 

2. Then, the water inflow from the entrance of the underground river, i.e., Qin, can be 559 

calculated through the coupled model. 560 

3. The relationship between Qin and Qmax was compared to determine whether the flood 561 

detention phenomenon was generated. 562 

If Qin > Qmax, the flood detention phenomenon is generated, and then, the flow of the 563 

underground river outlet, Qout= Qmax is generated. The water storage of the flood detention 564 

from the entrance of the underground river, Qs, is as follows: 565 

Qs = Qs1+Qin-Qmax                                                                  (8) 566 

where Qs is the water storage of the flood detention during this period, m3 s-1; Qs1 is the water 567 

storage of the flood detention from the preceding time period, m3 s-1; and if there is no flood 568 

detention, i.e., Qs1=0. 569 

If Qin ≤ Qmax, and Qs1=0, then 570 

Qout= Qin                                                            (9) 571 

If Qin ≤ Qmax, Qs1>0, and Qin+ Qs1≤ Qmax, then  572 

Qout= Qin+ Qs1                                                                             (10) 573 

 Otherwise, if Qin ≤ Qmax, Qs1>0, and Qin+ Qs1> Qmax, then 574 

Qout= Qmax                                                 (11) 575 
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In this study, the entire karst basin was divided into 1,469,900 KHRUs in the Karst-576 

Liuxihe model using the 200 m×200 m high-resolution DEM data. There were 6,696 river 577 

cells and 1,463,204 hill slope cells. The river system was divided into a 4-order stream based 578 

on Strahler’s method, which is shown in Fig. 1a. The KHRU in the coupled model (Fig. 8), 579 

which is the smallest unit, was proposed to effectively reflect the complicated 580 

hydrogeological condition of the underlying surface and karst aquifers. All the hydrological 581 

processes, including evapotranspiration and rainfall-runoff, confluence as well as the 582 

parameter optimization, were calculated on this KHRU and because the KHRU was 583 

completely physically-based, the differences in the complex hydrogeological characteristics 584 

of karst aquifers could be truly reflected. Therefore, the model effect and performance in karst 585 

forecasting could be reliably improved in this way. 586 

After division of the KHRUs, i.e., model setup was finished, the postprocessed WRF QPF 587 

and the PERSIANN-CCS QPEs results were fed into the Karst-Liuxihe model to validate its 588 

feasibility in karst floods simulations and forecasting. 589 

5.2 Parameter optimization 590 

There are 20 parameters in the Karst-Liuxihe model, and among these parameters, 18 591 

needed to be optimized. In this study, an improved PSO algorithm, mainly the algorithm 592 

parameters, were revised to improve the performance and convergence efficiency (Chen et al., 593 

2016); this improvement can largely improve the accuracy of the coupled model in flood 594 

simulations and forecasting in a karst basin. The observed rainfall and karst flood event data 595 

as well as the hydrogeological data of the karst underlying the surface and aquifer were 596 

adopted to optimize the parameters of the Karst-Liuxihe model in this paper. These data were 597 

fully physically-based that can describe the complex karst water-bearing medium effectively. 598 

There are 30 floods in the study area from 1982-2013, which were used to verify the 599 

model effect in the karst hydrological processes simulations and prediction. The flood 600 

prediction results were very good (Li et al., 2019), implied that the model can be effectively 601 

applied in karst areas. In this study, 8 karst flood events, including floods 2005061400, 602 

2006060400, 2007070800, 2008060900, 200906090800, 201106010900, 201206022000 and 603 

201306011400, were used to test the coupled model performance in the karst floods 604 

forecasting, i.e., coupling the Karst-Liuxihe model with the 2 weather models, WRF QPF and 605 

PERSIANN-CCS QPEs. Among these flood events, floods 2005061400, 2006060400, 606 

2007070800 and 2008060900 were used for parameter optimization, and the best flood 607 

simulation based on these four floods was used for the final parameter optimization. The 608 

remainder of the floods were adopted for model validation. The parameter evolution results of 609 

the coupled model are shown in Fig. 9. 610 

Figure 9. The parameter evolution results. 611 
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6 Results and discussion 612 

6.1 Results of the parameter optimization 613 

From the parameter evolution results in Fig. 9, the parameter evolution process began very 614 

volatile, and after a few cycles, approximately 20 times, the evolution leveled off and held 615 

steady after 40 cycles, which signified that the parameter optimization had converged. The 616 

thickness of a lines in Fig. 9 indicates the sensitivity of the parameters, and the thicker the 617 

line is, the more sensitive the parameter will be. The sensitivity of the parameters will be 618 

elaborated upon in the next section of the paper (section 6.2). The karst floods simulation 619 

effects based on parameter optimization were drawn in Fig. 10, and the evaluation indices of 620 

the flood simulations were listed in Table 2. 621 

Figure 10. The karst floods simulation effects of the coupled model. 622 

Table 2. Evaluation indices for the karst floods simulation effects. 623 

From Fig. 10, the karst flood simulated effect of flood 2008060900 was the best, especially 624 

for the simulated flood peak flow, was the closest to observed peak flow. To further compare 625 

the effects of the flood simulations, the 6 evaluation indices, including the Nash-Sutcliffe 626 

coefficient/C; the coefficient of the water balance/W; the correlation coefficient/R; the flood 627 

peak flow relative error/E%; the process relative error/P% as well as the flood peak flow time 628 

error/T(hours), were listed in Table 2. These indices were also the best for modelling flood 629 

2008060900. Therefore, flood 2008060900 was finally used for the parameter optimization. 630 

The reasonable simulated flood processes based on the improved PSO algorithm for the 631 

coupled model were suited the practically observed values very well (as shown in Fig. 10 and 632 

Table 2), which implied that the parametric optimization method in this study, i.e., the 633 

improved PSO algorithm was feasible and effective. 634 

6.2 Model uncertainty analysis 635 

The uncertainty analysis of the coupled model in this study could be effectively solved 636 

with 3 aspects: 1. Ensure the reliability of the model input data, which include rainfall data, 637 

karst flood events, and hydrogeological data. Among these data, the rainfall data can be 638 

reliably obtained by WRF QPF and PERSIANN-CCS QPEs; the karst flood events were 639 

obtained from the local hydrology department, and the hydrogeological data were obtained 640 

through a field survey and tracer testing in the study area. 2. Solve the uncertainty problem of 641 

model structure through model structure and function improvement (as shown in section 4.2). 642 

3. Solve the uncertainty problem of the model parameters. 643 

The uncertainty analysis of the parameters for the coupled model mainly means the 644 

parameters sensitivity analysis in this study. The sensitivity analysis method used in this 645 

paper, which is known as MPSA (Choi et al., 1999), was improved on the Generalized 646 

Likelihood Uncertainty Estimation (GLUE) algorithm. The Nash-Sutcliffe coefficient/C, as 647 
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the objective function, was used to analyse the sensitivity of the coupled model parameters in 648 

this study, the equation of the objective function was as follows: 649 
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                                  (12) 650 

where NSE was the value of the objective function, i.e., Nash-Sutcliffe coefficient/C; 
iQ  651 

and '

iQ  were observed and simulated water flows, respectively, m3 s-1, Q  was the average 652 

observed water flow value, m3 s-1, and n was the observed period numbers, hours. 653 

Table 3 shows the results of the parameters sensitivity calculation. In Table 3, the closer 654 

the value of the objective function for the parameter is to 1, the more sensitive the parameter 655 

will be. 656 

Table 3. The calculation results of the coupled model parameters sensitivity. 657 

From the results shown in Table 3, the value of the objective function for the parameter-658 

saturated water content, θsat was the maximum one. This means that the parameter, θsat is the 659 

most sensitive parameter of the Karst-Liuxihe model. The parameter sensitivity is also shown 660 

in Fig. 9. The thickness of the line in Fig. 9 indicates the parameter sensitivity, and the thicker 661 

the line, the more sensitive the parameter will be, which can represent the sensitivity of 662 

parameters more intuitively. From Table 4 and Fig. 9, the sequence of parameter sensitivity 663 

of the Karst-Liuxihe model was as follows: θsat > θs >θfc > Ks > V > K> χ > h > z > b > Sw > 664 

Sp > n > n1 > ω > λ> Ep > Cwl. The name of these parameters are shown in Table 3. 665 

6.3 Floods simulations with the postprocessed 2 weather models 666 

In this study, to analyse the effects of the karst flood simulation using the initial WRF 667 

QPF, the PERSIANN-CCS QPEs and their postprocessed results, the karst flood events, 668 

floods from 2008-2013 were simulated by the coupled model. The results comparisons are 669 

shown in Fig. 11 to Fig. 15. 670 

Figure 11. The flood simulation results of flood 2008060900 based on the coupled model. (a) 671 

is the postprocessed WRF flood simulation result, and (b) is the postprocessed PERSIANN-672 

CCS flood simulation result. 673 

Figure 12. The flood simulation results of flood 200906090800 based on the coupled model. 674 
(a) is the postprocessed WRF flood simulation result, and (b) is the postprocessed 675 
PERSIANN-CCS flood simulation result. 676 

Figure 13. The flood simulation results of flood 201106010900 based on the coupled model. 677 
(a) is the postprocessed WRF flood simulation result, and (b) is the postprocessed 678 
PERSIANN-CCS flood simulation result. 679 
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Figure 14. The flood simulation results of flood 201206022000 based on the coupled model. 680 
(a) is the postprocessed WRF flood simulation result, and (b) is the postprocessed 681 
PERSIANN-CCS flood simulation result. 682 

Figure 15. The flood simulation results of flood 201306011400 based on the coupled model. 683 
(a) is the postprocessed WRF flood simulation result, and (b) is the postprocessed 684 
PERSIANN-CCS flood simulation result. 685 

From Fig. 11 to Fig. 15, the floods simulations with the original WRF QPF and 686 

PERSIANN-CCS QPEs products were unsatisfactory, especially for the simulated peak flows. 687 

In contrast, the coupled model performance with the postprocessed WRF QPF and 688 

PERSIANN-CCS QPEs were better. The simulated flood peak errors of the postprocessed 689 

weather models were effectively reduced. For further comparison, the 6 evaluation indices of 690 

the floods simulations with the original weather models and the postprocessed models are 691 

shown in Table 4. 692 

Table 4. The evaluation indices of karst floods simulations with the original WRF QPF and 693 

PERSIANN-CCS QPEs and their postprocessed values. 694 

From Table 4, all of these 6 evaluation indices with the postprocessed WRF QPF and 695 

PERSIANN-CCS QPEs had improved than those with the original 2 weather models. For the 696 

WRF QPF, after postprocessing, the average water balance coefficient increased by 8%;the 697 

average Nash-Sutcliffe coefficient increased by 3%; and the average correlation coefficient 698 

increased by 2%. While the average process relative error decreased by 5%; the average peak 699 

flow relative error decreased by 5%;and the peak flow time error decreased by 2 hours, 700 

respectively. For the postprocessing PERSIANN-CCS QPEs, the average Nash-Sutcliffe 701 

coefficient increased by 5%; the average water balance coefficient increased by 4%; and the 702 

average correlation coefficient increased by 4%; While the average process relative error 703 

decreased by 5%; the average peak flow relative error decreased by 6%; and the average peak 704 

flow time error decreased by 3 hours, respectively. Obviously these evaluation indices were 705 

getting better following postprocessing of WRF QPF and PERSIANN-CCS QPEs, which 706 

implied that the postprocessing method for the 2 weather models in this study was effective 707 

and reasonable. 708 

6.4 Verify the coupled model performance by comparing 3 kinds of precipitation 709 

products 710 

There are 3 kinds of precipitation products that are used in this study, i.e., rain gauge 711 

precipitation, postprocessed WRF QPF and postprocessed PERSIANN-CCS QPEs. The 712 

effects of different types of precipitation products on the flood process simulated by 713 

hydrological model are calculated and compared to test their performance. The flood events 714 

included floods from 2008-2013, which were simulated by the coupled model. The results 715 

comparison is shown in Fig. 16, and Table 5.  716 
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Figure 16. The karst floods simulated effects of the coupled model with the 3 precipitation 717 

products. 718 

Table 5. The evaluation indices of karst floods simulations with the 3 precipitation products. 719 

From Fig. 16 and Table 5, the flood processes simulated by the Karst-Liuxihe model 720 

using the rain gauge precipitation were better than those of the postprocessed WRF QPF and 721 

PERSIANN-CCS QPEs. The rain gauge precipitation can directly reflect the actual rainfall 722 

situation in the basin, which is the reason that the rain gauge precipitation, taken as the true 723 

value, was used to calibrate the weather models in this paper. However, this kind of 724 

precipitation based on rain gauge measurements has no lead time because the rain has fallen 725 

to the ground. In addition, there is usually a shortage of rain gauges in karst areas. Therefore, 726 

the WRF QPF and the PERSIANN-CCS QPEs were adopted to obtain the effective 727 

precipitation in the study area. From Fig. 16 and Table 5, compared with the karst flood 728 

processes simulated with the postprocessed WRF QPF, the flood simulated results with the 729 

postprocessed PERSIANN-CCS QPEs were slightly better. In particular, the peak flow 730 

simulation demonstrated the superiority of the postprocessed PERSIANN-CCS QPEs. 731 

However, the rainfall estimation results from PERSIANN-CCS have no lead time, while the 732 

WRF QPF can offer rainfall forecasting with a lead time of 96 hours, which means that there 733 

is a lead time of 96 hours for flood forecasting by coupling the Karst-Liuxihe model with the 734 

WRF QPF. This lead time of the coupled model can provide more responses time for floods 735 

warnings. 736 

The satisfying flood simulated results in Fig. 16 and their rational evaluation indices in 737 

Table 5 proved that coupling the 2 weather models with the Karst-Liuxihe model in this paper 738 

was feasible and effective for the Liujiang basin. In particular, the flood detention and peak 739 

clipping effect of the upstream karst depressions were considered in the coupled model 740 

calculation, making the water balance calculation in the model more reasonable and reflecting 741 

the actual flood evolution process in the karst area; the average coefficients of water balance/ 742 

W for the precipitation by rain gauges, WRF QPF and PERSIANN-CCS QPEs were 0.92, 743 

1.07, and 0.89, respectively (as shown in Table 5). The water amount is basically balanced in 744 

the model. Furthermore, the flood detention effect made the flood peak appear later in reality, 745 

and by contrast, the simulated peak flow time came earlier, despite the flood detention effect 746 

being considered in the model. The average peak time error, T for the rain gauge precipitation, 747 

WRF QPF and PERSIANN-CCS QPEs were -5, -6, and -4, respectively. In some ways, these 748 

results provide an extra amount of lead time for flood forecasting. The peak clipping effect 749 

considered in the coupled model brought the simulated peak flow value closer to that of the 750 

observed value. The average peak flow relative error, E for the rain gauge precipitation, WRF 751 

QPF and PERSIANN-CCS QPEs were 4%, 12%, and 8%, respectively (as shown in Table 5). 752 
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Therefore, coupling the Karst-Liuxihe model with the postprocessed WRF QPF and 753 

PERSIANN-CCS QPEs could largely improve the precision of the karst flood simulations 754 

and forecasting. 755 

7 Conclusion 756 

The precipitation result, as a hydrological model input data, is one of the driving factors 757 

that makes the model work swimmingly. However, it is often hard to acquire effective rainfall 758 

results in karst areas. In this paper, WRF QPF and PERSIANN-CCS QPEs were adopted to 759 

obtain acceptable precipitation results for the Liujiang karst river basin. A postprocessed 760 

method was proposed to revise the rainfall products using these 2 weather models. To test the 761 

effectiveness of this revision, the Karst-Liuxihe model was coupled with the postprocessed 762 

WRF QPF and PERSIANN-CCS QPEs to simulate the floods of Liujiang karst watershed. 763 

The Karst-Liuxihe model proposed in this study performed well in the flood simulations and 764 

forecasting. The model structure and function was improved from various aspects, including 765 

refining the model structure by putting forward the KHRUs in the model, increasing the 766 

calculations of water movement rules in the epikarst zone and underground river, and by 767 

adding some necessary hydrogeological parameters to the coupled model to reflect the true 768 

conditions of rainfall-runoff in the karst underlying surface. The reasonable flood events 769 

simulated effects by the improved Karst-Liuxihe model proved that the postprocessed method 770 

proposed to revise the weather models in this paper was feasible. The following conclusions 771 

were obtained from the study results of this paper. 772 

1. The quantitative precipitation results produced by WRF QPF and PERSIANN-CCS QPEs 773 

were quite closed to the observed rainfall data by rain gauge, especially in the rainfall 774 

distribution. However, there is a relative error between the precipitation of the weather 775 

models and the rain gauge, which was 17% with WRF QPF and -14% with PERSIANN-CCS 776 

QPEs. This finding implied that WRF QPF overestimated the precipitation value, while 777 

PERSIANN-CCS QPEs underestimated the precipitation values. The postprocessing method 778 

proposed in this study could largely reduce these relative errors. 779 

2. The model parametric uncertainty analysis showed that the parameter-saturated water 780 

content, θsat was the most sensitive. The parameter sensitivity sequence of the Karst-Liuxihe 781 

model was: θsat > θs >θfc > Ks > V > K> χ > h > z > b > Sw > Sp > n > n1 > ω > λ> Ep > Cwl. 782 

3. Compared with the karst floods events simulated effects based on the initial 2 weather 783 

models, the floods simulations with the postprocessed WRF QPF and PERSIANN-CCS QPEs 784 

were much better. For the postprocessed WRF QPF, the average water balance coefficient, 785 

Nash-Sutcliffe coefficient, and correlation coefficient were increased by 8%,3%,2%, 786 

respectively. While the average peak flow relative error, process relative error, and the peak 787 

flow time error were decreased by 5%,5%,2 hours, respectively. For the postprocessed 788 
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PERSIANN-CCS QPEs, the average water balance coefficient, Nash-Sutcliffe coefficient, 789 

and correlation coefficient were increased by 4%,5%,4%, respectively. While the average 790 

peak flow relative error, process relative error, and the peak flow time error were decreased 791 

by 6%,5%,3 hours, respectively. It was obvious that the postprocessed method proposed in 792 

this study was effective and feasible. 793 

4. The flood processes simulated by the Karst-Liuxihe model using the rain gauge 794 

precipitation were the best. Compared with the simulated floods with the postprocessed WRF 795 

QPF, the simulation effects with the postprocessed PERSIANN-CCS QPEs were slightly 796 

better, especially in the peak flow simulation. However, the rainfall data by the PERSIANN-797 

CCS QPEs had no lead time, which was applicable to the simulation and inversion after the 798 

occurrence of floods. However, coupling the Karst-Liuxihe model with the WRF QPF model 799 

resulted in a lead time of 96 hours in the flood forecasting, which can provide an adequate 800 

amount of time for flood warnings and emergency responses. The satisfying flood simulated 801 

results proved that coupling the 2 weather models with the Karst-Liuxihe model in this paper 802 

was feasible and reasonable for the Liujiang karst river basin. 803 

5. The flood detention and peak clipping effect of the upstream karst depressions were 804 

calculated in the coupled model, which enabled the model to reflect the actual flood evolution 805 

processes in the study area. The simulated average coefficients of water balance/W for the 806 

observed precipitation by rain gauge, WRF QPF and PERSIANN-CCS QPEs were 0.92, 1.07, 807 

and 0.89, respectively. The simulated average peak time error, T for the rain gauge 808 

precipitation, WRF QPF and PERSIANN-CCS QPEs were -5, -6, and -4, respectively, and in 809 

a way, provided extra lead time for the flood warning and forecasting. The simulated average 810 

value of the peak flow relative error, E for the rain gauge precipitation, WRF QPF and 811 

PERSIANN-CCS QPEs were 4%, 12%, and 8%, respectively, which were close to that of the 812 

observation values. These results proved that coupling the Karst-Liuxihe model with the 813 

postprocessed WRF QPF and PERSIANN-CCS QPEs in this paper could largely improve the 814 

precision of karst floods simulations and forecasting. This coupled model could be effectively 815 

adopted in other karst areas like Liujiang karst basin. 816 
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Figures 841 

 842 

a. Gauges map (The black patches of the map are karst areas) 843 
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 844 

b. Elevation map 845 

Figure 1. The sketch map of Liujiang karst watershed. 846 
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 847 

Figure 2.  The karst landform evolution of the Liujiang basin（The photographs of the basin 848 

upstream is from http://guilinkarst.com/en/nd.jsp?id=113, last access:10 April 2019. The 849 
photographs of the middle reaches is captured by planet institute at 850 
https://mp.weixin.qq.com/s?mpshare=1&scene=22&mid=2247521167&sn= 851 
a3bf8521fda8e297ed58eae7e07bdc67&idx=1&__biz=MzIyOTQ1OTYzMw%3D%3D&chks852 
m=e8408051df3709477da49ef4362bf2f40db5279360c32f118575b71d596af78d098beea814d853 
8&srcid=0402YfBsf64zXrtsVpHoAuHg#rd, last access:2 April 2019. And the photographs of 854 
the basin downstream is from http://travel.sohu.com/ 855 
20130221/n366552284_2.shtml, last access:10 April 2019). 856 
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 857 

a. Rain gauge precipitation                                        b. WRF QPF 858 

  859 

c. PERSIANN-CCS QPEs 860 

  861 
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d. Quantile–quantile plot of WRF QPF     e. Quantile–quantile plot of PERSIANN-  862 

 and Rain gauge precipitation                    CCS QPEs and Rain gauge precipitation                               863 

Figure 3. The rainfall results of the 3 precipitation products (2008). 864 

 865 

a. Rain gauge precipitation                                        b. WRF QPF 866 

 867 
c. PERSIANN-CCS QPEs 868 
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 869 
d. Quantile–quantile plot of WRF QPF     e. Quantile–quantile plot of PERSIANN-  870 

 and Rain gauge precipitation                    CCS QPEs and Rain gauge precipitation         871 
Figure 4. The rainfall results of the 3 precipitation products (2009). 872 

 873 
a. Rain gauge precipitation                                        b. WRF QPF 874 
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 875 

c. PERSIANN-CCS QPEs 876 

 877 

  878 
d. Quantile–quantile plot of WRF QPF     e. Quantile–quantile plot of PERSIANN-  879 

 and Rain gauge precipitation                    CCS QPEs and Rain gauge precipitation         880 
Figure 5. The rainfall results of the 3 precipitation products (2011). 881 

https://doi.org/10.5194/hess-2019-285
Preprint. Discussion started: 8 August 2019
c© Author(s) 2019. CC BY 4.0 License.



33 

 

 882 
a. Rain gauge precipitation                                        b. WRF QPF 883 

 884 
c. PERSIANN-CCS QPEs 885 

  886 
 887 
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d. Quantile–quantile plot of WRF QPF     e. Quantile–quantile plot of PERSIANN-  888 

 and Rain gauge precipitation                    CCS QPEs and Rain gauge precipitation         889 
Figure 6. The rainfall results of the 3 precipitation products (2012). 890 

 891 
a. Rain gauge precipitation                                        b. WRF  892 

 893 
c. PERSIANN-CCS QPEs 894 
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 895 

d. Quantile–quantile plot of WRF QPF     e. Quantile–quantile plot of PERSIANN-  896 

 and Rain gauge precipitation                    CCS QPEs and Rain gauge precipitation         897 
Figure 7. The rainfall results of the 3 precipitation products (2013).898 

 899 
a. The structure of the KHRU and the partial enlarged detail 900 
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 901 

b. A picture of the KHRU 902 

Figure 8. The 3-dimensional spatial structure of the KHRU. 903 

 904 

Figure 9. The parameter evolution results. 905 
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 906 

a. Flood 2005061400                                    b. Flood 2006060400 907 

 908 

c. Flood 2007070800                                               d. Flood 2008060900 909 

Figure 10. The karst floods simulation effects of the coupled model. 910 

 911 
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       (a)                                                               (b) 912 

Figure 11. The flood simulation results of flood 2008060900 based on the coupled model. (a) 913 

is the postprocessed WRF flood simulation result, and (b) is the postprocessed PERSIANN-914 

CCS flood simulation result. 915 

 916 

  (a)                                                              (b) 917 

Figure 12. The flood simulation results of flood 200906090800 based on the coupled model. 918 
(a) is the postprocessed WRF flood simulation result, and (b) is the postprocessed 919 
PERSIANN-CCS flood simulation result. 920 

 921 

   (a)                                                                   (b) 922 
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Figure 13. The flood simulation results of flood 201106010900 based on the coupled model. 923 
(a) is the postprocessed WRF flood simulation result, and (b) is the postprocessed 924 
PERSIANN-CCS flood simulation result. 925 

 926 

   (a)                                                             (b) 927 

Figure 14. The flood simulation results of flood 201206022000 based on the coupled model. 928 
(a) is the postprocessed WRF flood simulation result, and (b) is the postprocessed 929 
PERSIANN-CCS flood simulation result. 930 

       931 

  (a)                                                                     (b) 932 

Figure 15. The flood simulation results of flood 201306011400 based on the coupled model. 933 
(a) is the postprocessed WRF flood simulation result, and (b) is the postprocessed 934 
PERSIANN-CCS flood simulation result. 935 

 936 
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 937 
       (a)    flood 2008060900                          (b) flood 200906090800 938 

 939 
(c) flood 201106010900                         (d) flood 201206022000 940 

 941 
(e) flood 201306011400 942 

Figure 16. The karst floods simulated effects of the coupled model with the 3 precipitation 943 

products. 944 
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Tables 945 

Table 1. The quantitative rainfall comparison results of the 3 precipitation products. 946 

Floods Type 
Average 

precipitation (mm) 

Relative 

bias % 

200806090200  

rain gauge 1.37    

WRF QPF 1.55  13  

PERSIANN-CCS QPEs 1.22  -11  

200906090800  

rain gauge 0.74    

WRF QPF 0.88  19  

PERSIANN-CCS QPEs 0.62  -16  

201106010900  

rain gauge 0.42    

WRF QPF 0.46  10  

PERSIANN-CCS QPEs 0.39  -7  

201206022000  

rain gauge 0.78    

WRF QPF 0.95  22  

PERSIANN-CCS QPEs 0.63  -19  

201306011400  

rain gauge 0.53    

WRF QPF 0.65  23  

PERSIANN-CCS QPEs 0.43  -20  

average value 

rain gauge 0.77    

WRF QPF 0.90  17  

PERSIANN-CCS QPEs 0.66  -14  

Table 2. Evaluation indices for the karst floods simulation effects. 947 

Floods 

The Nash–

Sutcliffe 

coefficient/C 

The 

correlation 

coefficient/R 

The 

process 

relative 

error/P% 

The peak 

flow 

relative 

error/E% 

The 

coefficient 

of water 

balance/W 

The peak 

time 

error/T(hour) 

2005061400  0.87 0.92 0.2 0.13 1.08 -7 

2006060400  0.91 0.89 0.17 0.07 0.92 -5 

2007070800  0.89 0.93 0.14 0.09 1.12 -8 

2008060900  0.93 0.95 0.08 0.05 0.94 -3 

Table 3. The calculation results of the coupled model parameters sensitivity. 948 

Floods 
Potential 

evaporation/Ep 

Evaporation 

coefficient/λ 

Wilting 

percentage/Cwl 

The saturated 

water 

content/θsat 

The 

saturation 

permeability 

coefficient/θs 

The macro 

crack 

volume 

ratio/V 

2005061400 

0.05 0.06 0.04 0.9 0.88 0.75 

The field 

capacity/θfc 

The soil 

layer 

thickness/z 

The saturated 

hydraulic 

conductivity/Ks 

The soil 

coefficient/b 

The bottom 

slope/Sp 

The bottom 

width/Sw 

0.86 0.67 0.83 0.66 0.36 0.48 

The slope 

roughness/n 

The channel 

roughness/n1 

The depletion 

coefficient /ω 

The 

permeability 

coefficient /K 

The specific 

yield of the 

aquifer /χ 

Thickness 

of the karst 

aquifer/h 

https://doi.org/10.5194/hess-2019-285
Preprint. Discussion started: 8 August 2019
c© Author(s) 2019. CC BY 4.0 License.



42 

 

0.25 0.17 0.13 0.75 0.73 0.68 

2006060400 

Potential 

evaporation/Ep 

Evaporation 

coefficient/λ 

Wilting 

percentage/Cwl 

The saturated 

water 

content/θsat 

The 

saturation 

permeability 

coefficient/θs 

The macro 

crack 

volume 

ratio/V 

0.07 0.13 0.05 0.95 0.91 0.83 

The field 

capacity/θfc 

The soil 

layer 

thickness/z 

The saturated 

hydraulic 

conductivity/Ks 

The soil 

coefficient/b 

The bottom 

slope/Sp 

The bottom 

width/Sw 

0.9 0.64 0.89 0.6 0.55 0.59 

The slope 

roughness/n 

The channel 

roughness/n1 

The depletion 

coefficient /ω 

The 

permeability 

coefficient /K 

The specific 

yield of the 

aquifer /χ 

Thickness 

of the karst 

aquifer/h 

0.3 0.27 0.14 0.75 0.73 0.69 

2007070800 

Potential 

evaporation/Ep 

Evaporation 

coefficient/λ 

Wilting 

percentage/Cwl 

The saturated 

water 

content/θsat 

The 

saturation 

permeability 

coefficient/θs 

The macro 

crack 

volume 

ratio/V 

0.14 0.24 0.08 0.92 0.84 0.75 

The field 

capacity/θfc 

The soil 

layer 

thickness/z 

The saturated 

hydraulic 

conductivity/Ks 

The soil 

coefficient/b 

The bottom 

slope/Sp 

The bottom 

width/Sw 

0.81 0.63 0.77 0.61 0.51 0.57 

The slope 

roughness/n 

The channel 

roughness/n1 

The depletion 

coefficient /ω 

The 

permeability 

coefficient /K 

The specific 

yield of the 

aquifer /χ 

Thickness 

of the karst 

aquifer/h 

0.45 0.4 0.31 0.7 0.69 0.68 

2008060900 

Potential 

evaporation/Ep 

Evaporation 

coefficient/λ 

Wilting 

percentage/Cwl 

The saturated 

water 

content/θsat 

The 

saturation 

permeability 

coefficient/θs 

The macro 

crack 

volume 

ratio/V 

0.18 0.26 0.11 0.94 0.92 0.78 

The field 

capacity/θfc 

The soil 

layer 

thickness/z 

The saturated 

hydraulic 

conductivity/Ks 

The soil 

coefficient/b 

The bottom 

slope/Sp 

The bottom 

width/Sw 

0.88 0.73 0.82 0.64 0.53 0.6 

The slope 

roughness/n 

The channel 

roughness/n1 

The depletion 

coefficient /ω 

The 

permeability 

coefficient /K 

The specific 

yield of the 

aquifer /χ 

Thickness 

of the karst 

aquifer/h 

0.47 0.45 0.36 0.8 0.75 0.72 

 949 

 950 

 951 
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Table 4. The evaluation indices of karst floods simulations with the original WRF QPF and 952 

PERSIANN-CCS QPEs and their postprocessed values. 953 

Floods Types 

The Nash–

Sutcliffe 

coefficient/C 

The 

correlation 

coefficient/R 

The 

process 

relative 

error/P% 

The peak 

flow 

relative 

error/E% 

The 

coefficient 

of water 

balance/W 

The peak 

time 

error/T(h) 

200806090000  

WRF QPF 0.72  0.80  25  18  1.02  -9  

The 

postprocessed 

WRF QPF 

0.78  0.82  20  13  0.95  -7  

PERSIANN-

CCS QPEs 
0.76  0.83  21  6  0.92  -10  

The 

postprocessed 

PERSIANN-

CCS QPEs 

0.83  0.88  18  5  0.94  -4  

200906090800  

WRF QPF 0.81  0.82  24  20  1.12  -6  

The 

postprocessed 

WRF QPF 

0.83  0.83  20  14  1.06  -4  

PERSIANN-

CCS QPEs 
0.82  0.81  28  18  0.79  -6  

the 

postprocessed 

PERSIANN-

CCS QPEs 

0.85  0.87  22  12  0.85  -3  

201106010900  

WRF QPF 0.79  0.81  26  14  1.15  -7  

The 

postprocessed 

WRF QPF 

0.83  0.83  20  10  1.08  -6  

PERSIANN-

CCS QPEs 
0.85  0.85  21  12  0.92  -8  

The 

postprocessed 

PERSIANN-

CCS QPEs 

0.91  0.87  19  6  0.94  -6  

20120602200  

WRF QPF 0.78  0.82  18  13  1.28  -10  

The 

postprocessed 

WRF QPF 

0.81  0.83  10  11  1.15  -8  

PERSIANN-

CCS QPEs 
0.86  0.84  16  15  0.78  -7  

the 

postprocessed 

PERSIANN-

CCS QPEs 

0.92  0.89  9  6  0.85  -4  

201306011400  

WRF QPF 0.78  0.82  13  21  1.20  -8  

The 

postprocessed 

WRF QPF 

0.82  0.85  9  12  1.12  -6  
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PERSIANN-

CCS QPEs 
0.82  0.89  12  17  0.85  -5  

The 

postprocessed 

PERSIANN-

CCS QPEs 

0.86  0.91  8  9  0.87  -4  

average value 

WRF QPF 0.78  0.81  21  17  1.15  -8  

The 

postprocessed 

WRF QPF 

0.81  0.83  16  12  1.07  -6  

PERSIANN-

CCS QPEs 
0.82  0.84  20  14  0.85  -7  

The 

postprocessed 

PERSIANN-

CCS QPEs 

0.87  0.88  15  8  0.89  -4  

Table 5. The evaluation indices of karst floods simulations with the 3 precipitation products. 954 

Floods Type 

Nash–

Sutcliffe 

coefficient/C 

Correlation 

coefficient/R 

Process 

relative 

error/P% 

Peak flow 

relative 

error/E% 

The 

coefficient 

of water 

balance/W 

Peak time 

error/T 

(hour) 

200806090000  

rain gauge 0.85 0.91 15 3 0.89 -6 

WRF QPF 0.78  0.82  20  13  0.95  -7  

PERSIANN-

CCS QPEs 
0.83  0.88  18  5  0.94  -4  

200906090800  

rain gauge 0.95 0.92 17 4 0.9 -2 

WRF QPF 0.83  0.83  20  14  1.06  -4  

PERSIANN-

CCS QPEs 
0.85  0.87  22  12  0.85  -3  

201106010900  

rain gauge 0.95 0.92 16 3 1.02 -7 

WRF QPF 0.83  0.83  20  10  1.08  -6  

PERSIANN-

CCS QPEs 
0.91  0.87  19  6  0.94  -6  

20120602200  

rain gauge 0.93 0.91 8 5 0.89 -6 

WRF QPF 0.81  0.83  10  11  1.15  -8  

PERSIANN-

CCS QPEs 
0.92  0.89  9  6  0.85  -4  

201306011400  

rain gauge 0.95 0.94 7 6 0.92 -4 

WRF QPF 0.82  0.85  9  12  1.12  -6  

PERSIANN-

CCS QPEs 
0.86  0.91  8  9  0.87  -4  

average value 

rain gauge 0.93  0.92  13  4  0.92  -5  

WRF QPF 0.81  0.83  16  12  1.07  -6  

PERSIANN-

CCS QPEs 
0.87  0.88  15  8  0.89  -4  

 955 
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