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Abstract. Soil water content (θ) influences the climate system by controlling fraction of incoming solar and longwave 10 

energy that is converted into evapotranspiration (ET). Therefore, investigating the coupling strength between θ and 11 

ET is important for the study of land surface/atmosphere interactions. Physical models are commonly tasked with 12 

representing the coupling between θ and ET; however, few studies have evaluated the accuracy of model-based 13 

estimates of θ/ET coupling (especially at multiple soil depths). To address this issue, we use in-situ AmeriFlux 14 

observations to evaluate θ/ET coupling strength estimates acquired from multiple land surface models (LSMs) and an 15 

ET retrieval algorithm – the Global Land Evaporation Amsterdam Model (GLEAM). For maximum robustness, 16 

coupling strength is represented using the sampled normalized mutual information (NMI) between θ estimates 17 

acquired at various vertical depths and surface evaporation flux expressed as a fraction of potential evapotranspiration 18 

(fPET, the ratio of ET to potential ET). Results indicate that LSMs and GLEAM are generally in agreement with 19 

AmeriFlux measurements in that surface soil water content (θS) contains slightly more NMI with fPET than vertically 20 

integrated soil water content (θV). Overall, LSMs and GLEAM adequately capture variations in NMI between fPET 21 

and θ estimates acquired at various vertical depths. However, GLEAM significantly overestimates the NMI between 22 

θ and ET and the relative contribution of θS to total ET. This bias appears attributable to differences in GLEAM’s ET 23 

estimation scheme relative to the other two LSMs considered here (i.e., the Noah model with multi–parameterization 24 

options and the Catchment Land Surface Model). These results provide insight into improved LSM model structure 25 

and parameter optimization for land surface-atmosphere coupling analyses. 26 

Keywords. Land surface/atmosphere interaction, soil water content, evapotranspiration 27 

1 Introduction 28 

Soil water content (θ) modulates water and energy feedbacks between the land surface and the lower atmosphere by 29 

determining the fraction of incoming solar energy that is converted in evapotranspiration (ET) (Seneviratne et al., 30 

2010, 2013). In water-limited regimes, θ exhibits a dominant control on ET, and therefore exerts significant terrestrial 31 

control on the earth’s water and energy cycles. Accurately representing θ/ET coupling in land surface models (LSMs) 32 

is therefore expected to improve our ability to project the future frequency of extreme climates (Seneviratne et al., 33 

2013).  34 

A key question is how the constraint of θ on ET and H varies as θ is vertically integrated over deeper vertical soil 35 

depths. Given the tendency for the time scales of θ dynamics to vary strongly with depth, the degree to which the ET 36 

is coupled with vertical variations in θ determines the temporal scale at which θ variations are propagated into the 37 

lower atmosphere. Therefore, in order to represent θ/ET coupling, and thus land/atmosphere interactions in general, 38 

LSMs must accurately capture the relationship between vertically varying θ values and ET. Unfortunately, their ability 39 

to do so remains an open question.  40 

Recently, land surface/atmosphere coupling strength has been investigated by sampling mutual information proxies 41 

(e.g., correlation coefficient or other coupling indices) between time series of θ and ET observations (or air temperature 42 
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proxies for ET). Results suggest that, even when confined to very limited vertical support (e.g., within the top 5 cm 43 

of the soil column), surface θ estimates retain significant information for describing overall θ control on local climate 44 

(Ford and Quiring, 2014b; Qiu et al., 2014; Dong and Crow, 2018; Dong and Crow, 2019). These findings are in 45 

contrast with the common perception that ET is constrained only by θ values within deeper soil layers (Hirschi et al., 46 

2014). Hence, it is necessary to examine whether LSMs can realistically reflect observed variations of θ/ET coupling 47 

strength within the vertical soil profile. 48 

Previous studies examining the θ/ET relationship have generally been based on Pearson product-moment correlation 49 

(Basara and Crawford, 2002; Ford et al., 2014a), which captures only the strength of a linear relationship between two 50 

variables. However, the coupling between θ and ET is generally nonlinear. Therefore, non-parametric mutual 51 

information measures are generally more appropriate. Nearing et al. (2018) used information theory metrics (transfer 52 

entropy, in particular) to measure the strength of direct couplings between different surface variables, including soil 53 

water content, and surface energy fluxes at short timescales in several LSMs. They found that the LSMs are generally 54 

biased as compared with strengths of couplings in observation data, and that these biases differ across different study 55 

sites. However, they did not look specifically at the effect of vertical water content profiles or of subsurface soil water 56 

content on partitioning surface energy fluxes. 57 

Here we apply the information theory-based methodology of Qiu et al. (2016) to examine the relationship between 58 

the vertical support of θ estimates and their mutual information (MI) with respect to ET. Our approach is based on 59 

analyzing the MI content between ET and θ time series - acquired from both LSMs, ET retrieval algorithm – the 60 

Global Land Evaporation Amsterdam Model (GLEAM) and AmeriFlux in-situ observations. MI values are then 61 

normalized by entropy in the corresponding ET time series to remove the effect of inter-site variations to generate 62 

estimates of Normalized Mutual Information (NMI) between θ and ET. Both surface (roughly 0–10 cm) soil water 63 

content (θS) and vertically integrated (0–40 cm) soil water content (θV) are considered to capture the impact of depth 64 

on NMI results. AmeriFlux-based NMI results are then compared with analogous NMI results obtained from LSM-65 

based and GLEAM-based θ and ET time series.  66 

2 Data and Methods 67 

The AmeriFlux network provides temporally continuous measurements of θ, surface energy fluxes and related 68 

environmental variables for sites located in a variety of North American ecosystem types, e.g., forests, grasslands, 69 

croplands, shrublands and savannas (Boden, et al., 2013). To minimize sampling errors, AmeriFlux sites lacking a 70 

complete 3-year summer months (June, July and August) daily time series between the years of 2003 and 2015 (i.e., 71 

3×92=276 daily observations in total) of θS,  θV and latent heat flux (LE) are excluded here - resulting in the 34 72 

remaining eligible AmeriFlux sites listed in Table 1. These sites cover a variety of climate zones within the contiguous 73 

United States (CONUS). Table 1 gives background information on these 34 sites including local land cover 74 

information. Hydro-climatic conditions in each site are characterized using the aridity index (AI) – calculated using 75 

CRU (Climate Research Unit, v4.02) monthly precipitation and potential evaporation (PET) datasets. 76 
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As described above, θ/ET coupling assessments made using AmeriFlux observations are compared with those using 77 

state-of-the-art LSMs including the Noah model with multi–parameterization options (NOAHMP) and Catchment 78 

Land Surface Model (CLSM). In addition, θ and ET retrievals provided by the Global Land Evaporation Amsterdam 79 

Model (GLEAM) are also considered. See below for details on all three approaches. To avoid any spurious correlations 80 

between θ and ET due to seasonality, all NMI analyses are performed on θ and ET time series anomalies acquired 81 

during the period 2003–2015. The θ and ET anomalies are calculated by removing the seasonal cycle – defined as 31-82 

day window averages centered on each day-of-year sampled across all years of the 2003–2015 historical data record 83 

– from the raw θ and ET time series data. The analysis is limited to the CONUS during summer months (June, July 84 

and August) when θ/ET coupling is expected to be maximized.  85 

Table 1 Attributes of selected AmeriFlux sites 86 

AmeriFlux sites Land cover 
Elevation 

[m] 

Top-

layer 

depth 

[cm] 

Bottom-

layer 

depth 

[cm] 

ARM SGP Main Cropland 314 10a 20b 

ARM USDA UNL OSU 
Woodward Switchgrass 1 

Grassland 611 10 30 

Audubon Research Ranch Grassland 1469 10 20 

Bondville Cropland 219 10c 20 

Brookings Grassland 510 10 20 

Chimney Park Evergreen needleleaf forest 2750 0-15 15-45 

Duke Forest Hardwoods Deciduous broadleaf forest 168 10 25 

Duke Forest Open Field Grassland 168 10 25 

Fermi Agricultural Cropland 225 2.5 10 

Fermi Prairie Grassland 226 2.5 10 

Flagstaff Managed Forest Evergreen needleleaf forest 2160 2 10 

Flagstaff Unmanaged Forest Woody savannas 2180 2 10 

Flagstaff Wildfire Grassland 2270 2 10 

Fort Peck Grassland 634 5d 20 

Freeman Ranch Woodland Woody savannas 232 10 20 

Glacier Lakes Ecosystem 
Experiments Site 

Evergreen needleleaf forest 3190 5 10 

Howland Forest Main Mixed forest 60 NA NA 

Lucky Hills Shrubland Open shrubland 1372 5 15 

Marys River Fir Site Evergreen needleleaf forest 263 10 20 

Metolius Intermediate Pine Evergreen needleleaf forest 1253 0-30 NA 

Missouri Ozark Deciduous broadleaf forest 219 10 100 

Nebraska SandHills Dry Valley Grassland 1081 10 25 

Quebec Boreal Cutover Site Evergreen needleleaf forest 400 5 20 

Quebec Mature Boreal Forest Site Evergreen needleleaf forest 400 5 10 

Santa Rita Creosote Open shrubland 991 2.5 12.5 

Santa Rita Mesquite  Woody savannas 1116 2.5-5 5-10 

Sherman Island Grassland -5 10 20 
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Sylvania Wilderness Mixed forest 540 5 10 

Tonzi Ranch Woody savannas 169 0 20 

University of Michigan Biological 
Station 

Deciduous broadleaf forest 234 0-30 NA 

Vaira Ranch Grassland 129 0 10 

Walker Branch Deciduous broadleaf forest 343 5 10 

Willow Creek Deciduous broadleaf forest 515 5 10 

Wind River Field Station Evergreen needleleaf forest 371 30e 50f 
 87 
a Was 5 cm prior to 4/13/2005 88 
b Was 25 cm prior to 4/13/2005 89 
c Was 5 cm prior to 1/1/2006 90 
d Was 10 cm (2003-2008) 91 
e Was 0-30 cm prior to 2007 92 
f  Unavailable prior to 2007 93 

2.1 Ground-based AmeriFlux measurements 94 

The Level 2 (L2) AmeriFlux LE and sensible heat (H) flux observations are based on high-frequency (typically > 10 95 

Hz) eddy covariance measurements processed into half-hourly averages by individual AmeriFlux investigators. LE 96 

and θ observations at a half-hour time step and without gap-filling procedures are collected from the AmeriFlux Site 97 

and Data Exploration System (see http://ameriflux.ornl.gov/). The LE and θ observations are further aggregated into 98 

daily (0 to 24 UTC) values, and daily LE is converted into daily ET using the latent heat of vaporization. Daily ET 99 

values based on less than 30% half-hourly coverage (i.e., < 15 half-hourly observations per day) are considered not 100 

representative at a daily time scale and therefore excluded.  101 

Soil water content measurements are generally available at two discrete depths that vary between the AmeriFlux sites 102 

(Table 1). Here, the top (i.e., closest to the surface) soil water content observation is always used to represent surface 103 

soil water content (θS). Since the depth of this top-layer measurement varies between 0 and 15 cm (see Table 1), we 104 

consider the surface-layer measurement θS to be roughly representative of 0–10 cm (vertically integrated) θ. 105 

Given variations in the depth of the lower AmeriFlux θ observations (see Table 1), we applied a variety of approaches 106 

for estimating vertically integrated soil water content (θV). Our first approach, hereinafter referred to as Case I, is 107 

based on the application of an exponential filter (Wagner et al., 1999; Albergel et al., 2008) to extrapolate θS to a 108 

consistent 40-cm bottom layer depth. Therefore, only θS is used to derive θV and the bottom-layer (or second layer) 109 

AmeriFlux θ measurement is neglected in this case. The application of the exponential filter requires a single time-110 

scale parameter T. Since θ measurements from United States Department of Agriculture’s Soil Climate Analysis 111 

Network (SCAN) are taken at fixed soil depth, we utilized this dataset to determine the most appropriate parameter T 112 

at AmeriFlux sites. Following Qiu et al. (2014), first, we estimated the optimal parameter T (Topt) for the extrapolation 113 

of θ measurements from 10 cm to 40 cm depth and established a global relationship between Topt and site-based 114 

NDVI (MOD13Q1 v006, 250m, 16-day) (Topt = 2.098 × exp(–1.895 × (NDVI + 0.6271)) + 2.766). Then, this global 115 
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relationship (Goodness of Fit R2: 0.85) is applied to AmeriFlux sites to extrapolate 0–10 cm θS times series into 0–40 116 

cm θV.  117 

Previous research has suggested that such a filtering approach does not significantly squander ET information present 118 

in actual measurements of θV (Qiu et al., 2014; Qiu et al., 2016). Nevertheless, since the quality of θV estimates is 119 

important in our analysis, we also calculated two additional cases where 0–40 cm θV is estimated using: 1) the bottom-120 

layer soil water content measurement acquired at each AmeriFlux site (hereinafter, Case II) and 2) linear interpolation 121 

of θS and the bottom-layer AmeriFlux soil water content measurement (hereinafter, Case III). The sensitivity of key 122 

results to these various cases is discussed below.  123 

2.2 LSM-based and GLEAM-based simulations 124 

Simulations is acquired from NOAHMP (Niu et al., 2011) and CLSM (Koster et al., 2000) LSMs embedded within 125 

the NASA Land Information System (LIS, Kumar et al., 2006) and the GLEAM ET retrieval algorithm (Miralles et 126 

al., 2011). Both NOAHMP and CLSM are set-up to simulate 0.125° θ profiles at a 15-minute time step using North 127 

America Land Data Assimilation System, Phase 2 (NLDAS-2) forcing data. A 10-year model spin-up period (1992 to 128 

2002) is applied for NOAHMP and CLSM.    129 

NOAHMP numerically solves the one-dimensional Richards equation within four soil layers of thicknesses of 10, 30, 130 

60, and 100 cm. Major parameterization options relevant to θ simulation include options for canopy stomatal resistance 131 

parameterization and schemes controlling the effect of θ on the vegetation stress factor β. Here we employed the Ball‐132 

Berry‐type stomatal resistance scheme and Noah-type soil water content factor controlling the β factor. The specific 133 

expressions are as follows: 134 

 𝛽 = ∑
∆Zi

Zroot

Nroot

i=1

min (1.0, 
θi−θwilt

θref−θwilt
) (1) 135 

where θwilt and θref are respectively soil water content at witling point (m3 m−3) and reference soil water content (m3 136 

m−3), which is set as field capacity during parameterization. θi and Δzi are soil water content (m3 m−3) and soil depth 137 

(cm) at ith layer, Nroot and zroot are total number of soil layers with roots and total depth (cm) of root zone, respectively.  138 

Following the Ball-Berry stomatal resistance scheme, the θ-controlled β factor and other multiplicative factors 139 

including temperature, foliage nitrogen simultaneously determine the maximum carboxylation rate Vmax as follows:  140 

 Vmax = Vmax25 αvmax

Tv-25

10   f(N) f(Tv) β (2) 141 

where Vmax25 is maximum carboxylation rate at 25°C (μmol CO2 m−2 s−1); αvmax is a parameter sensitive to vegetation 142 

canopy surface temperature Tv; f(N) is a factor representing foliage nitrogen and f(Tv) is a function that mimics thermal 143 

breakdown of metabolic processes. Based on Vmax, photosynthesis rates per unit LAI including carboxylase-limited 144 

(Rubisco limited, denoted by AC) type and export-limited (for C3 plants, denoted by AS) type are calculated 145 
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respectively. The minimum of AC, AS and light-limited photosynthesis rate determines stomatal resistance rs, and 146 

consequently affects ET over vegetated areas. For the complete NOAHMP configuration, please see Table S1 in the 147 

supplementary material. 148 

CLSM simulates the 0–2 and 0–100 cm soil water content and evaporative stress as a function of simulated θ and 149 

environmental variables. ET is then estimated based on the estimated evaporative stress and land-atmosphere humidity 150 

gradients. Energy and water flux estimates are iterated with soil state estimates (e.g., θ and soil temperature) to ensure 151 

closure of surface energy and water balances. For a detailed explanation of CLSM physics, please refer to Koster et 152 

al. (2000). 153 

GLEAM is a set of algorithms dedicated to the estimation of terrestrial ET and root-zone θ from satellite data. In this 154 

study, the latest version of this model (v3.2a) is employed. In GLEAM, the configuration of soil layers varies as a 155 

function of the land-cover type. Soil stratification is based on three soil layers for tall vegetation (0–10, 10–100, and 156 

100–250 cm), two layers for low vegetation (0–10, 10–100 cm) and only one layer for bare soil (0–10 cm) (Martens 157 

et al., 2017).   158 

The cover-dependent PET (mm day-1) of GLEAM is calculated using the Priestley and Taylor (1972) equation based 159 

on observed air temperature and net radiation. Following this, estimates of PET are converted into actual transpiration 160 

or bare soil evaporation (depending on the land-cover type, ET (mm day-1)), using a cover-dependent, multiplicative 161 

stress factor S (–), which is calculated as a function of microwave vegetation optical depth (VOD) and root-zone θ 162 

(Miralles et al., 2011). The related expressions are as follows:  163 

 ET  =  PET × S + Ei (3) 164 

 𝑆 = √
VOD

VODmax
(1 − (

𝜃c−𝜃𝜔

𝜃c−𝜃wilt
)

2

) (4) 165 

where Ei is rainfall interception (mm); S essentially represents the fPET (see Sect. 2.3) estimated by GLEAM; 𝜃c (m3 166 

m−3) is the critical soil water content and 𝜃ω (m3 m−3) is the soil water content of the wettest layer, assuming that plants 167 

withdraw water from the layer that is most accessible. Based on (4), GLEAM S (or fPET) tend to become more 168 

sensitive to θ in areas of low VOD seasonality (i.e., low differences between VOD and VODmax). As for bare soil 169 

conditions, S is linearly related to surface soil water content (θ1): 170 

 S  = 1 −
𝜃c−𝜃1  

𝜃c−𝜃wilt
. (5) 171 

To resolve variations in the vertical discretization of θ applied by each model, we linearly interpolated NOAHMP, 172 

CLSM and GLEAM outputs into daily 0–10 and 0–40 cm soil water content values using depth-weighted averaging. 173 
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2.3 Variable indicating soil water content and surface flux coupling 174 

Soil water content – ET coupling can be diagnosed using a variety of different variables derived from ET, e.g. the 175 

fraction of PET (fPET, the ratio of ET and PET) or the evaporative fraction (EF, the ratio of LE and the sum of LE 176 

and sensible heat). Since ET is strongly tied to net radiation (Rn) (Koster et al., 2009), both fPET and EF are 177 

advantageous in that they normalize ET by removing the impact of non-soil water content influences on ET (e.g., net 178 

radiation, wind speed and soil heat flux (G)). However, since sensible heat flux is not provided in the GLEAM dataset, 179 

we are restricted here to using fPET.  180 

It should be noted that the applied meteorological forcing data for NOAHMP and CLSM are somewhat different from 181 

those used for GLEAM. Therefore, to minimize the impact of this difference, NOAHMP and CLSM fPET are 182 

computed from North American Regional Reanalysis (NARR) using the modified Penman scheme of Mahrt and Ek 183 

(1984) while GLEAM fPET is calculated using its own internal PET estimates. To examine the impact of PET source 184 

on results, AmeriFlux fPET calculations are duplicated using both GLEAM- and NARR-based PET values.  185 

2.4 Information measures 186 

Mutual information (MI) (Cover and Thomas, 1991) is a nonparametric measure of correlation between two random 187 

variables. MI and the related Shannon-type entropy (SE, Shannon, 1948) are calculated as follows. Entropy about a 188 

random variable ζ is a measure of uncertainty according to its distribution pζ and is estimated as the expected amount 189 

of information from pζ sample: 190 

 SE(pζ) = Eζ [-ln(pζ ( ζ ))]. (6) 191 

Likewise, MI between ζ and another variable ψ can be thought of as the expected amount of information about variable 192 

ζ contained in a realization of ψ and is measured by the expected Kullback-Leibler (KL) divergence (Kullback and 193 

Leibler, 1951) between the conditional and marginal distributions over ζ:  194 

 MI(ζ;ψ) = Eψ[D(pζ∣ψ‖pζ)]. (7)  195 

In this context, the generic random variables ζ and ψ represent fPET and θ (soil water content) respectively. The 196 

observation space of the target random variable fPET is discretized using a fixed bin width. As bin width decreases, 197 

entropy increases but mutual information asymptotes to a constant value. On the other hand, increased bin width 198 

requires more sample size, which cannot always be satisfied. The trick is choosing a bin width where the NMI values 199 

stabilize with sample size. After a careful sensitivity analysis, we choose a fixed bin width of 0.25 [-] for fPET and 200 

make sure that each AmeriFlux site have enough samples to accurately estimate the NMI, and change of this constant 201 

bin width from 0.1–0.5 [-] will not significantly alter our conclusions. Following Nearing et al. (2016), a bin width of 202 

0.01 m3 m−3 (1% volumetric water content) for θ is applied. Integrations required for MI calculation in Eq. (7) are then 203 

approximated as summations over the empirical probability distribution function bins (Paninski, 2003).  204 
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By definition, the MI between two variables represents the amount of entropy (uncertainty) in either of the two 205 

variables that can be reduced by knowing the other. Therefore, the MI normalized by the entropy of the AmeriFlux-206 

based fPET measurements represents the fraction of uncertainty in fPET that is resolvable given knowledge of the soil 207 

water content state (Nearing et al., 2013). Unlike Pearson’s correlation coefficient, MI is insensitive to the impact of 208 

nonlinear variable transformations. Therefore, it is well suited to describe the strength of the (potentially non-linear) 209 

relationship between θ and fPET.  210 

Here, we applied this approach to calculate the MI content between soil water content representing different vertical 211 

depths (as reflected by θS and θV) and fPET at each AmeriFlux site. All estimated site-specific MI are normalized by 212 

the entropy of the corresponding AmeriFlux-based fPET measurements to remove the effect of inter-site entropy 213 

variations on the magnitude of NMI differences. The resulting normalized MI calculations between both θS and θV 214 

and fPET are denoted as NMI(θS, fPET) and NMI(θV, fPET) respectively.  215 

The underestimation of observed θ/ET coupling via the impact of mutually-independent θ and ET errors in AmeriFlux 216 

observations (Crow et al. 2015) is minimized by focusing on the ratio between NMI(θS, fPET) and NMI (θV, fPET). 217 

Therefore, relative comparisons between NMI(θS, fPET) and NMI(θV, fPET) are based on examining the size of their 218 

mutual ratio NMI(θS, fPET)/NMI (θV, fPET). To quantify the standard error of NMI differences between various soil 219 

water content products, we applied a nonparametric, 500-member bootstrapping approach and calculated pooled 220 

average of sampling errors across all sites assuming spatially independent sampling error.  221 

Finally, we also examined the impact of potential nonlinearity in the θ/ET relationship by comparing non-parametric 222 

NMI results with comparable inferences based on a conventional Pearson’s correlation calculation. The correlation-223 

based coupling strength between θS and fPET is denoted as R(θS, fPET) and between θV and fPET as R(θV, fPET). 224 

3 Results 225 

3.1 Comparison of NMI(θS, fPET) and NMI(θV, fPET) 226 

Figure 1 contains boxplots of modelled and observed NMI(θS, fPET) and NMI(θV, fPET),  i.e., the relative magnitude 227 

of fPET information contained in surface soil water content and vertically-integrated (0–40 cm) soil water content 228 

estimated from case I, sampled across all the AmeriFlux locations listed in Table 1. According to the AmeriFlux 229 

ground measurements, median values of NMI(θS, fPET) and NMI(θV, fPET) (across all sites) are near 0.3 [-]. This 230 

suggests that approximately 30% of the uncertainty (i.e., entropy at this particular bin width of 0.25 [-]) in fPET can 231 

be eliminated given knowledge of either surface or vertically integrated soil water content state. This is consistent 232 

with earlier results in Qiu et al., (2016) who used similar metrics to evaluate θ/EF (evaporative fraction) coupling 233 

strength. The sampled medians of NMI(θS, fPET) and NMI(θV, fPET) estimated by the NOAHMP and CLSM models 234 

are similar to these (observation-based) AmeriFlux values. With the single exception that the CLSM predicts much 235 

larger site-to-site variation in NMI(θS, fPET).  236 
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In contrast, NMI(θS, fPET) and NMI(θV, fPET) values sampled from GLEAM θ and fPET estimates are biased high 237 

(with median NMI(θS, fPET) and NMI(θV, fPET) values of about 0.5 and 0.4 [-], respectively) with respect to all other 238 

estimates.  239 

 240 

Fig.1 The θ/ET coupling strengths for summertime anomaly time series acquired from various LSMs, GLEAM and AmeriFlux 241 
measurements: (a) NMI(θS, fPET) and NMI(θV, fPET) individually and (b) NMI(θS, fPET) normalized by NMI(θV, fPET). 242 

Both LSMs and GLEAM overall exhibit significantly (at p = 0.05 [-] confidence, using the 34 AmeriFlux site-243 

collocated samples pixels for pair t-test) higher NMI(θS, fPET) compared to NMI(θV, fPET) – implying the surface 244 

soil water content observations contain more fPET information than vertically-integrated soil water content 245 

observations. However, the observed difference between NMI(θS, fPET) and NMI(θV, fPET) is less discernible in 246 

AmeriFlux measurements (Fig. 1(a)).  247 

Here, AmeriFlux observations are used as a baseline for LSM and GLEAM evaluation. However, it should be stressed 248 

that random observation errors in θ and fPET will introduce a low bias into AmeriFlux-based estimates of both NMI(θS, 249 

fPET) and NMI(θV, fPET) (Crow et al., 2015) and thus their difference as well. To address this concern, Fig. 1(b) 250 
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plots the ratio of NMI(θS, fPET) and NMI(θV, fPET), which effectively normalizes (and therefore minimizes) the 251 

impact of random observation errors. As discussed above, these ratio results illustrate the general tendency for NMI(θS, 252 

fPET) > NMI(θV, fPET). They also highlight the tendency for GLEAM to overvalue θS (relative to θV) when estimating 253 

fPET. A second approach for reducing the random error of θ and fPET measurement errors is the Triple Collocation 254 

(TC)-based correction applied in Crow et al. (2015). However, this approach is currently restricted to linear correlation 255 

and cannot be applied to estimate NMI. Future work will examine extending the information-based TC approach of 256 

Nearing et al. (2017) to the examination of NMI.  257 

3.2 Sensitivity of AmeriFlux-based NMI(θS, fPET)/NMI(θV, fPET)  258 

As mentioned in Sect. 2.1, an important concern is the impact of interpolation errors used to estimate 0–40 cm θV from 259 

AmeriFlux θS observations acquired at non-uniform depths. To ensure that different methods for calculating 260 

AmeriFlux θV values do not affect the main conclusion of this study, we configured three cases for θV calculation, and 261 

compared their NMI(θS, fPET)/NMI(θV, fPET) results in Fig. 2. Case I reflects the baseline use of the exponential 262 

filter described in Sect. 2.1. However, slight changes to AmeriFlux results are noted if alternative approaches are used. 263 

Specifically, AmeriFlux-based NMI(θV, fPET) increases and closes the gap with NMI(θS, fPET) if the bottom-layer 264 

soil water content measurements are instead directly used as θV (Case II) or if 0–40 cm θV is based on the linear 265 

interpolation of the two AmeriFlux θ observations (Case III), the impact of this modest sensitivity on key results is 266 

discussed below. 267 
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 268 

Fig.2 The θ/ET coupling strengths for summertime anomaly time series from AmeriFlux measurements using three different θV 269 
calculation methods: (a) NMI(θS, fPET) and NMI(θV, fPET) individually and (b) NMI(θS, fPET) divided by NMI(θV, fPET) for 270 
multiple θV cases. Case I is based on the application of an exponential filter to extrapolate 0–10 cm θS to a consistent 0–40 cm 271 
bottom layer depth, while Cases II and III refer to the direct use of only the bottom layer measurement and a linear interpolation of 272 
both the top and bottom layer, respectively, to calculate θV (see Sect. 2.1 for details on each case). 273 

In addition, switching from GLEAM- to NARR-based PET when calculating fPET for AmeriFlux-based NMI(θS, 274 

fPET) and NMI(θV, fPET) does not qualitatively change results and produces only a very slight (~6%) increase in the 275 

median NMI(θS, fPET)/NMI(θV, fPET) ratio.  276 

3.3 Spatial distribution of NMI(θS, fPET) and NMI(θV, fPET)  277 

Figure 3 plots the spatial distribution of NMI(θS, fPET) and NMI(θV, fPET) results for each of the individual 34 278 

AmeriFlux sites listed in Table 1. The climatic regime is represented by AI (aridity index) values plotted as the 279 

background color in Fig. 3. It can be seen in Fig. 3 that NMI(θS, fPET) estimates from LSMs and GLEAM are spatially 280 

related to hydro-climatic conditions, as NOAHMP and CLSM predict that θS is moderately coupled with fPET (i.e., 281 

NMI(θS, fPET) of 0.3–0.5 [-]) in the arid southwestern US (AI<0.2) and only loosely coupled with fPET in the 282 
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relatively humid eastern US. A similar decreasing trend of NMI(θS, fPET) from the southwestern to eastern US is also 283 

captured by GLEAM. However, as noted above, GLEAM generally overestimates NMI(θS, fPET) and NMI(θV, fPET) 284 

compared to NOAHMP, CLSM and AmeriFlux. In contrast, a relatively weaker spatial pattern emerges in AmeriFlux-285 

based NMI(θS, fPET) results. In addition, spatial patterns for NMI(θS, fPET) are less defined than for NMI(θV, fPET) 286 

in all four datasets. 287 

Scatterplots in Fig. 4 summarize the spatial relationship between LSM- and GLEAM-based NMI(θS, fPET) and 288 

NMI(θV, fPET) results versus AmeriFlux observations across different land use types. While observed levels of 289 

correlation in Fig. 4 are relatively modest, there is a significant level (p<0.05) of spatial correspondence between 290 

LSMs modelled and observed NMI results only over forest sites – motivating the need to better understand processes 291 

responsible for spatial variations in NMI results. In addition, stratifying NMI(θS, fPET)/NMI(θV, fPET) ratio results 292 

according to vegetation type (Fig. A1) confirms that NMI(θS, fPET) slightly exceeds NMI(θV, fPET) across all 293 

vegetation types (and thus all rooting depths characterizing each vegetation type). This suggests that our analysis is 294 

not severely affected by variations in the depth of θ measurements. For further discussion on the impact of land cover 295 

on NMI results, please see Appendix A.  296 
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 297 

Fig. 3 NMI(θS, fPET) (left column) and NMI(θV, fPET) (right column) estimates at AmeriFlux sites for: (a) NOAHMP, (b) CLSM, 298 
(c) GLEAM and (d) AmeriFlux. Marker color reflects NMI magnitudes and symbol type reflects local land cover type at each site. 299 
Background color shading reflects aridity index (AI) values.  300 

 301 
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Fig. 4 Scatterplot of LSM-based and GLEAM-based (a) NMI(θS, fPET) and (b) NMI(θV, fPET) results versus AmeriFlux 303 
observations. Red symbols represent simulations from NOAHMP36; blue symbols represent simulations from CLSM2 and green 304 
symbols represent GLEAM retrievals. 305 

3.4 Sensitivity of NMI(θS, fPET)/NMI(θV, fPET) ratio to climatic conditions 306 

Figure 5 further summarizes the NMI(θS, fPET) /NMI(θV, fPET) ratio as a function of AI for all four products 307 

(NOAHMP, CLSM, GLEAM and AmeriFlux). Error bars represent the standard deviation of sampling errors 308 

calculated from a 500-member bootstrapping analysis. With increasing AI, there is a significant decreasing trend in 309 

both NMI(θS, fPET) and NMI(θV, fPET) for all three simulations, with a goodness-of-fit above 0.5 (figure not shown). 310 

For all cases, the NMI(θS, fPET)/NMI(θV, fPET) ratios are consistently greater than unity under all climatic conditions. 311 

However, the estimated NMI(θS, fPET)/NMI(θV, fPET) ratios from all three simulations (NOAHMP, CLSM and 312 

GLEAM) exhibit quite different trends with respect to AI. The NMI(θS, fPET)/NMI(θV, fPET) ratio for CLSM 313 

decreases with increasing AI, with a moderate goodness-of-fit value of 0.28, while GLEAM estimates of NMI(θS, 314 

fPET)/NMI(θV, fPET) shows an opposite increasing trend with increasing AI. Conversely, there is relatively lower 315 

sensitivity of the NMI(θS, fPET)/NMI(θV, fPET) ratio to AI captured in the AmeriFlux measurements.  316 

Connecting these findings to spatial distribution of NMI(θS, fPET) and NMI(θV, fPET) (Fig. 3) confirms that the 317 

relative magnitudes of NMI(θS, fPET) and NMI(θV, fPET) for both LSMs and GLEAM are spatially related to hydro-318 

climatic regimes. In contrast, this link is weaker in the AmeriFlux measurements which, except for a small fraction of 319 

very low AI sites, do not appear to vary as a function of AI. These conclusions are not qualitatively impacted by 320 

looking at NMI(θS, fPET) and NMI(θV, fPET) differences, as opposed to their ratio as in Fig. 5, or by looking at R(θS, 321 

fPET) and R(θV, fPET) instead of NMI.  322 
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 323 

Fig. 5 For a) NOAHMP, (b) CLSM, (c) GLEAM and (d) AmeriFlux estimates, the ratio of NMI(θS, fPET) and NMI(θV, fPET) as 324 
a function of AI across all AmeriFlux sites.  325 

4 Discussion and conclusion 326 

Since transpiration dominates the global ET (Jasechko et al., 2013), deep-layer soil water content (θV) is generally 327 

considered to contain more ET information than that of surface soil water content (θS) – given plant transpiration is 328 

balanced by root water uptake from deeper soils (Seneviratne et al., 2010). However, this assumption is rarely tested 329 

using models and/or observations. Here, we apply normalized mutual information (NMI) to examine how the vertical 330 

support of a soil water content product affects its relationship with concurrent surface ET.  331 

Specifically, using AmeriFlux ground observations, we examine whether (NMI-based) estimates of LSMs and 332 

GLEAM θS versus ET and θV versus ET coupling strength accurately reflect observations acquired at a range of 333 

AmeriFlux sites. In general, compared to the baseline case of exponential filter extrapolated 40-cm bottom layer θV, 334 

LSMs and GLEAM agree with AmeriFlux observations in that the overall fPET information contained in θS is slightly 335 

higher than that of θV (Fig. 1). However, the sensitivity analysis showed this difference between NMI(θS, fPET) and 336 

NMI(θV, fPET) diminishes when using different methods for calculating θV using AmeriFlux observations (Fig. 2). 337 

As a result, this result should be viewed with caution.  338 
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While NOAHMP and CLSM derived NMI(θS, fPET) and NMI(θV, fPET) results are generally consistent with the 339 

AmeriFlux observations, GLEAM overestimates NMI(θS, fPET), NMI(θV, fPET), and the ratio NMI(θS, 340 

fPET)/NMI(θV, fPET) relative to observations. Although both LSMs and GLEAM are based on the same classical 341 

two-section (soil water content-limited and energy-limited) ET regimes framework (Sect. 2.2), they differ in two 342 

fundamental aspects. First, the evaporative stress factor S is represented as a more direct and strong function of soil 343 

water content in GLEAM - see Eqs. (4) and (5) - which leads to the overestimation of θ/ET coupling strength. This is 344 

consistent with our results that GLEAM generally overestimates NMI(θS, fPET) and NMI(θV, fPET) consistently 345 

across all land covers, compared to AmeriFlux-based estimates. On the other hand, NOAHMP and CLSM approximate 346 

ET in the manner of biophysical models, and expresses biophysical control on ET through the stomatal resistance rs, 347 

which is a function of multiple limiting factors including θ. Therefore, the more complex ET scheme employed by 348 

NOAHMP and CLSM would seem to mitigate the overestimation of NMI(θS, fPET) and NMI(θV, fPET), as other 349 

relevant factors besides θ (such as temperature, foliage nitrogen) are also considered in determining maximum 350 

carboxylation rate Vmax and stomatal resistance rs - and consequently more realistic actual ET.  351 

Second, the stress factor β in both LSMs considers the cumulative effects of θ conditions along different layers (Eq. 352 

(1)), while the corresponding factor S in GLEAM only uses the wettest soil layer condition, which is top layer at most 353 

sites. This likely explains the overestimation of the NMI(θS, fPET)/NMI(θV, fPET) ratio by GLEAM.  354 

Nevertheless, we would like to stress that all approaches considered in our paper contain (at their core) a parameterized 355 

relationship between θ and ET. While the implications of mis-parameterizing this relationship are arguably more 356 

severe for a land surface model, we’d argue that the issue remain relevant for any approach (such as GLEAM) that 357 

utilizes a water balance (and/or data assimilation system) approach to estimate θ and, in turn, uses θ to constrain ET. 358 

Regardless of the complexity that a given approaches employs, failing to accurately describe the relationship between 359 

ET and (large number of potential) environmental constraints should eventually degrade the robustness of the model, 360 

no matter the model is employed as a retrospective, diagnostic or predictive manner. To examine this issue directly, 361 

Fig. 6 plots the relationship between GLEAMS bias in NMI(θS, fPET)/NMI(θV, fPET) ratio versus the RMSE of daily 362 

GLEAM ET simulations for a range of AmeriFlux sites. There is a positive correlation between the two quantities - 363 

which suggests that GLEAM overestimation of θ/ET coupling during the summer may undermine the accuracy of its 364 

daily ET retrievals. It should be noted that GLEAM simultaneously overestimates both NMI(θS, fPET) and NMI(θV, 365 

fPET); however, the impact of this mis-parameterization impact on GLEAM ET accuracy is most obvious when 366 

plotted against the ratio NMI(θS, fPET)/NMI(θV, fPET). 367 
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 368 

Fig. 6 Daily ET error in GLEAM as a function of GLEAM bias in NMI(θS, fPET)/NMI(θV, fPET) ratio across 34 AmeriFlux sites. 369 

Although the median values of NMI(θS, fPET) and NMI(θV, fPET) predicted by NOAHMP and CLSM are general in 370 

line with AmeriFlux observations, they are more spatially related to hydro-climatic conditions (as summarized by AI) 371 

than their counter parts acquired from AmeriFlux measurements. Seen from the plot of NMI(θS, fPET)/NMI(θV, fPET) 372 

ratio as a function of AI (Fig. 5), the modelled and observed NMI(θS, fPET)/NMI(θV, fPET) ratio median decreases 373 

with increasing AI, and the decreasing trend is particularly clear when AI is lower than 1.0 [-]. In contrast, there is 374 

relatively lower sensitivity to aridity exhibited in the AmeriFlux measurements.  375 

These results provide several key insights into future land-atmosphere coupling analysis and LSM as well as ET 376 

algorithm development. First, all the datasets – both model-based and ground-observed – indicates that θS contain at 377 

least as much ET information as θv. Hence, remote-sensing land surface soil water content datasets are suitable, and 378 

should be considered, for analyzing the general interaction between land and atmosphere, e.g., soil water content – air 379 

temperature coupling (Dong and Crow, 2019) and the interplay of soil water content and precipitation (Yin et al., 380 

2014). Additionally, future generations of GLEAM may consider more sophisticated evaporation stress functions, 381 

which may improve its accuracy in representing soil’s control on local ET. This may, in turn, improve the accuracy 382 

of GLEAM ET product. Finally, our results demonstrate that modeled θ/ET is more sensitive to hydro-climates than 383 

the observed relationship. Modifying the model structures to reduce such sensitivity might be necessary for accurately 384 

representing the interaction of land surface and atmosphere across different climate zones. This may lead to more 385 

realistic projections of future drought-induced heatwaves, when coupled with general circulation models.  386 
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Data availability 387 

Ground-based soil water content and surface flux data are available from http://ameriflux.ornl.gov/. GLEAM dataset is 388 

available from https://www.gleam.eu/. LSMs simulations of NOAHMP and CLSM used in this study are available by 389 

contacting the authors. 390 

Appendix A 391 

We performed additional sensitivity analysis to explicitly demonstrate the effect of different vegetation land cover types 392 

and consequently different rooting depths (or θv measurement depths) on the NMI(θS, fPET)/NMI(θV, fPET) ratio, and 393 

plotted these results in Fig. A1. The figure confirms that consistent with AmeriFlux, both LSMs and GLEAM predict 394 

that NMI(θS, fPET) is slightly higher than NMI(θV, fPET) over most vegetation types, and GLEAM overestimates 395 

NMI(θS, fPET)/NMI(θV, fPET) for most vegetation types.  396 

 397 

Fig. A1 For a) NOAHMP, (b) CLSM, (c) GLEAM and (d) AmeriFlux estimates, the ratio of NMI(θS, fPET) and NMI(θV, fPET) 398 

as a function of vegetation types across all AmeriFlux sites. 'ENF', 'DBF', 'MF', 'OS' and 'WS' represent evergreen needleleaf forests, 399 

deciduous broadleaf forests, mixed forests, open shrubland, and woody savannas, respectively. 400 
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