

Reply to Dr. Diego G. Miralles interactive comment

We would like to thank Dr. Diego G. Miralles for his constructive comments. We are generally in agreement with his sentiments. Most importantly, we agree that our original manuscript was overly aggressive in lumping various evapotranspiration (ET) estimation approaches into a single conceptual category. As Dr. Diego points out, there are important differences between these approaches that are relevant for the stated purposes of our paper.

Nevertheless, we would like to stress that all approaches considered in our paper contain (at their core) a parameterized relationship between soil water content (θ) and ET. While the implications of mis-parameterization this relationship are arguably more severe for a land surface model, we believe that this issue remains relevant for any approach (such as GLEAM) that utilizes a water balance (and/or data assimilation system) approach to estimate θ and, in turn, uses θ to constrain ET. Regardless of the complexity that a given approach employs, failing to accurately describe the relationship between ET and (large number of potential) environmental constraints should eventually degrade the robustness of the model. We believe that this is true regardless of whether a model is employed as a retrospective, diagnostic or predictive manner. Our paper is an attempt to “open the lid” on these models to measure internal θ /ET coupling and explore the impact of potential mis-coupling on ET estimation.

Given this emphasis, Diego’s suggestion to expand our analysis to include direct flux validation is an excellent one. Indeed, preliminary results suggest that, despite its simplicity, GLEAM does not underperform more complex land surface models with respect to daily ET predictions. Therefore, as Diego points out, any criticism of GLEAM must be tempered by this bottom-line result.

Therefore, we’ve made the following changes to our current manuscript:

1. Change the characterization of GLEAM from a "land surface model" to "retrieval algorithm" throughout the revised manuscript and add a more complete discussion of differences in complexity and envisioned application for various modelling approaches.
2. Directly evaluate the GLEAM ET accuracy and better describe the connection between accurate θ /ET coupling and the absolute accuracy of GLEAM ET predictions. Pertinent revisions are presented in new Fig. 6 and the related discussions.

Reply to Referee #1 interactive comment

We would like to thank Referee #1 for the constructive comments.

I only have one comment for one issue which I think the authors should consider. In the study I did not find any particular discussion related to the type of vegetation characterizing the AmeriFlux sites and its effect on the result. I think that vegetation type can be relatively important as for example grass roots are shallower with respect to tree and shrub roots and thus can exert potential different effects both on the coupling strength between the soil moisture profile (surface vs. root zone) and on the transpiration flux itself also considering that transpiration is the dominant pathway for the total evapotranspiration and is estimated to account for two-thirds of global land ET based on flux tower measurements (Schlesinger and Jasechko, 2014). Based on that the authors should provide at least a discussion on the potential effects of the vegetation type on the presented results.

Thanks for the comments. In order to minimize the effect of different root depths from different vegetation types on $NMI(\theta_s, fPET)$ and $NMI(\theta_v, fPET)$, we used exponential filter to extrapolate θ to a unified 40 cm bottom layer depth and find that the overall fPET information contained in θ_s is slightly higher than that of θ_v . However, the difference between $NMI(\theta_s, fPET)$ and $NMI(\theta_v, fPET)$ diminishes when using different methods for calculating θ_v using AmeriFlux observations.

We've added more extensive discussion regarding the role of vegetation on key results in the revised manuscript. In particular, Fig. 4 has been newly expanded to better isolate the impact of vegetation type and the role of vegetation types is now directly addressed via new text appearing in Section 3.3 of the revised manuscript.

Furthermore, we showed the result of $NMI(\theta_s, fPET)/NMI(\theta_v, fPET)$ ratio as a function of vegetation type in Fig. A1. The conclusion that the overall fPET information contained in θ_s is slightly higher than that of θ_v does not vary with vegetation types, although $NMI(\theta_s, fPET)$ is much higher than $NMI(\theta_v, fPET)$ in open shrubland and woody savannas.

For the rest comments annotated in the manuscript:

1. P6 Line 141. A_c and A_s not defined

We've made the following revision in Section 2.2 to clearly define A_c and A_s :

"Based on V_{max} , photosynthesis rates per unit LAI including carboxylase-limited (Rubisco limited, denoted by A_c) type and export-limited (for C3 plants, denoted by A_s) type are calculated respectively."

2. P9 Line 211-215. Maybe a statement to point to section 3.1 is necessary here.

As suggested, we've added a statement to directly point to results starting from Section 3.1:

"Therefore, relative comparisons between $NMI(\theta_s, fPET)$ and $NMI(\theta_v, fPET)$ are based on examining the size of their mutual ratio $NMI(\theta_s, fPET)/NMI(\theta_v, fPET)$."

3. P9 Line 222. Is it for Case I?

Yes, the "vertically-integrated (0–40 cm) soil moisture" is estimated from Case I. We've also clarified this in Section 3.1:

"...i.e., the relative magnitude of $fPET$ information contained in surface soil water content and vertically-integrated (0–40 cm) soil water content estimated from Case I..."

4. P14 Line 287. Even though the sample size is small it would be nice to have also similar plots and the plots above for different vegetation type.

As suggested, we've revised Fig. 4 so that samples are plotted separately according to their vegetation types. With varying magnitudes, the overall overestimation of GLEAM is observed across different vegetation types.

5. P14 Line 291-294. This trend is not really evident. I see an evident increasing ratio only when AI approaches to zero. Maybe a statistical significance of this trend should be analyzed.

As suggested, we've added analysis of statistical significance of this trend. Indeed, the increasing trend of $NMI(\theta_s, fPET)/NMI(\theta_v, fPET)$ ratio is more evident for CLSM, with a moderate goodness-of-fit (0.28). We've also clarified this in Section 3.4:

"With increasing AI, there is a significant decreasing trend in both $NMI(\theta_s, fPET)$ and $NMI(\theta_v, fPET)$ for all three simulations, with a goodness-of-fit above 0.5 (figure not shown). For all cases, the $NMI(\theta_s, fPET)/NMI(\theta_v, fPET)$ ratios are consistently greater than unity under all climatic conditions. However, the estimated $NMI(\theta_s, fPET)/NMI(\theta_v, fPET)$ ratios from all three simulations (NOAHMP, CLSM and GLEAM) exhibit quite different trends with respect to AI. The $NMI(\theta_s, fPET)/NMI(\theta_v, fPET)$ ratio for CLSM decreases with increasing AI, with a moderate goodness-of-fit value of 0.28,..."

6. P15 Line 315. This can also depend upon the vegetation type as grass and trees are characterized by different root depths. They can exert a different effects on the coupling between soil moisture and evapotranspiration.

Thanks for the comments. This concern of different root depths impact is addressed by applying different methods to retrieve vertically integrated θ as we stated in Section 2.1. The entire analysis is based on the default case I that exponentially filter θ to a unified 40 cm bottom layer depth, and it is found that the overall $fPET$ information contained in θ_s is slightly higher than that of θ_v . However, the difference between $NMI(\theta_s, fPET)$ and $NMI(\theta_v, fPET)$ is less obvious when using different methods for calculating θ_v using AmeriFlux observations.

In addition, we've showed the result of $NMI(\theta_s, fPET)/NMI(\theta_v, fPET)$ ratio as a function of vegetation type in Fig. A1. The conclusion that the overall $fPET$ information

contained in θ_s is slightly higher than that of θ_v does not vary with vegetation types, although $NMI(\theta_s, fPET)$ is obviously higher than $NMI(\theta_v, fPET)$ in open shrubland and woody savannas.

Reply to Referee #2 interactive comment

We would like to thank Referee #2 for the constructive comments.

This is a well written paper with a clear contribution to ecohydrological modeling and I have very few comments. The first relates to the jargon in the title. Please try to simplify the title for the paper to be appealing to a wider audience. Secondly, the aims and objectives of the paper must be clearly formulated and also indicate what is new or novel about this study and who benefits from it? Lastly, what is the take-home message from this study given that no conclusions are given?

Thanks for the comments. We agree that our original title could be improved. Accordingly, the title of revised manuscript has been changed to “Model Representation of the Coupling between Evapotranspiration and Soil Water Content at Different Depths.” We feel that this is more accessible to a broader audience.

In addition, we’ve revised the abstract and introduction to better emphasize the aim and objectives of the paper and provide a concise summary of major conclusion and the target readers with most potential interest are also highlighted in the abstract.

SPECIFIC COMMENTS

- Keywords: - “surface evapotranspiration” is listed as a keyword/phrase. Delete the word “surface”

Thank you for these comments. The keyword of “surface evapotranspiration” has been revised as suggested.

- Line 27 – indicate that some of the incoming energy is absorbed by the surface... given that you are mentioning biochemical cycles in line 30

To avoid this issue, we’ve removed all mentions of biochemical cycles in the manuscript.

- There are inconsistencies throughout the paper regarding the evaporation terms. A typical example is in lines 11 to 12 in the abstract where the authors refer to the sensible heat flux and evapotranspiration (ET) in the same sentence. Rather also use the energy equivalent of ET (i.e. the latent heat flux) and be consistent throughout the paper.

Thank you for this comment – we agree this was an issue in the original manuscript. In the revised version, the energy equivalent of ET (i.e., the latent heat flux) has been used consistently when also referencing sensible heat flux.

- Line 59: What is meant by ET entropy? This is not a standard micrometeorology or ecohydrological phrase. Please define such terms.

Thank you for the comments. The original expression of “corresponding ET entropy” refers to the entropy of a corresponding ET time series. This is clarified in the revised

manuscript.

- Throughout the paper rather use the phrase “soil water content” which is more specific than “soil moisture”

We've replaced the expressions of “soil moisture” with “soil water content” throughout the manuscript.

- Lines 63-64 not necessary

These two unnecessary sentences have been removed as suggested.

- Line 75 sounds rather cyclic, rephrase!

The sentence has been rephrased to “*As described above, θ/ET coupling assessments made using AmeriFlux observations are compared with those using state-of-the-art LSMs including...*”

- How did you account for the accuracy of the different types of soil water content sensors or their depth of installation across the AmeriFlux sites? How does this affect your results?

As the most of the AmeriFlux sites involved in the analysis are using frequency domain reflectometer probe for soil water content measurements, the impact of different sensors on our conclusion is limited.

Secondly, to minimize the effect of different measurement depths on our analysis, we designed three different cases to estimate vertically integrated soil water content (θ_v). Case I was based on the application of an exponential filter (Wagner et al., 1999; Albergel et al., 2008) to extrapolate θ_s to a consistent 40 cm bottom layer depth. Therefore, only θ_s was used to derive θ_v and the bottom-layer (or second layer) AmeriFlux θ measurement was neglected in this case. Nevertheless, since the quality of θ_v estimates is important in our analysis, we also calculated two additional cases where 0–40 cm θ_v was estimated using: 1) the bottom-layer soil water content measurement acquired at each AmeriFlux site (hereinafter, Case II) and 2) linear interpolation of θ_s and the bottom-layer AmeriFlux soil water content measurement (hereinafter, Case III).

The sensitivity of key results show that compared to the baseline Case I of exponential filter extrapolated 40-cm bottom layer θ_v , LSMs and GLEAM agree with AmeriFlux observations in that the overall fPET information contained in θ_s is slightly higher than that of θ_v . However, the sensitivity analysis showed this difference between $NMI(\theta_s, fPET)$ and $NMI(\theta_v, fPET)$ diminishes when using different methods for calculating θ_v using AmeriFlux observations. These experimental designs and the corresponding findings are clearly stated in the revised manuscript.

- The vegetation acts as the link between the atmosphere and soil water content in deep soil profiles. Please give more details on how the vegetation types affected your

analysis/results.

Thanks for the comments. As mentioned in the response to the previous comment, in order to minimize the effect of different root depths from different vegetation types on $NMI(\theta_s, fPET)$ and $NMI(\theta_v, fPET)$, we used an exponential filter to extrapolate θ to a unified 40 cm bottom layer depth and find that the overall fPET information contained in θ_s is slightly higher than that of θ_v . However, the difference between $NMI(\theta_s, fPET)$ and $NMI(\theta_v, fPET)$ diminishes when using different methods for calculating θ_v using AmeriFlux observations.

We've added more extensive discussion regarding the role of vegetation on key results in the revised manuscript. In particular, Fig. 4 has been newly expanded to better isolate the impact of vegetation type and the role of vegetation types is now directly addressed via new text appearing in Section 3.3 of the revised manuscript.

Furthermore, we showed the result of $NMI(\theta_s, fPET)/NMI(\theta_v, fPET)$ ratio as a function of vegetation type in Fig. A1. The conclusion that the overall fPET information contained in θ_s is slightly higher than that of θ_v does not vary with vegetation types, although $NMI(\theta_s, fPET)$ is much higher than $NMI(\theta_v, fPET)$ in open shrubland and woody savannas.

- Line 107: What is the bottom layer soil moisture measurement? Define this, else rephrase.

As soil water content measurements are generally available at two discrete depths at the AmeriFlux sites, the bottom layer measurements refer to the measurements at the deeper depth or the second observation layer from surface. This has been clarified in the revised manuscript.

- 2) options for θ factor for stomatal resistance (the β factor). Not clear what this represents. What is a theta factor? What does it do? - and reference soil moisture (m3 m-3), How is this defined? Confusion over symbols.

The θ factor stands for soil water content, and different expressions of θ lead to different representations of relationship between θ and stress factor β . We've revised the original expression to "...and schemes controlling the effect of θ on the vegetation stress factor β ". As clarified in the revised manuscript, reference soil moisture is set as field capacity in the NOAH users' guide for parameterization.

- Sometimes you mention stomatal resistance, and at other times stomatal conductance; line 142. Choose one and stick to it otherwise this easily gets very confusing.

As suggested, we've revised the only occurrences of the term "stomatal conductance" in Section 2.2 into "stomatal resistance" to avoid any confusion.

- line142 – stomatal conductance is not the sole driver of ET. It's more complex than that.

To avoid such confusion, we've revised expression as "*The minimum of A_C , A_S and*

light-limited photosynthesis rate determines stomatal resistance r_s , and consequently affects ET over vegetated areas”.

- Please elaborate - Eqn 6: what does the symbol H mean here? Thought you said H was the sensible heat flux earlier?

In the original Eq. 6, H represents Shannon-type entropy of the variable ζ . Indeed, it could be easily confused with sensible heat flux symbol mentioned in Section 1. Therefore, we've replaced the symbol H in Eq. 6 with SE.

- Fig 4 these are poor model performances.

Indeed, the consistency of $NMI(\theta, fPET)$ between models and observations varies across different vegetation types, and varies across different models. However, it should be noted that the absolute value of $NMI(\theta, fPET)$ is not a direct index to measure model performance. Furthermore, our analysis conclusion will not be affected as we are using the relative ratio of $NMI(\theta_S, fPET)/NMI(\theta_V, fPET)$.

1 **Land Surface Model Representation of the Mutual Information**
2 **Context-Coupling between Multi-Layer Soil Moisture and**
3 **Evapotranspiration and Soil Water Content at Different Depths**

4 Jianxiu Qiu^{1,2}, Wade T. Crow³, Jianzhi Dong³, Grey S. Nearing⁴

5 ¹Guangdong Provincial Key Laboratory of Urbanization and Geo-simulation, School of Geography and Planning, Sun
6 Yat-sen University, Guangzhou, 510275, China

7 ²Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China

8 ³USDA ARS Hydrology and Remote Sensing Laboratory, Beltsville, MD 20705, USA

9 ⁴Department of Geological Sciences, University of Alabama, AL 35487, USA

10 *Correspondence to:* Jianxiu Qiu (qiu.jianxiu@mail.sysu.edu.cn)

11 **Abstract.** Soil moisturewater content (θ) impactsinfluences the climate system by regulatingcontrolling fraction of
12 incoming solar and longwave energy that is converted into evapotranspiration (ET)into outgoing evapotranspiration
13 (ET)and sensible heat flux components. Therefore, investigating the coupling strength between θ and ET is important
14 for the study of land surface/atmosphere interactions. Physical models are commonly tasked with representing the
15 coupling between θ and ET; however, few studies have evaluated the accuracy of model-based estimates of θ /ET
16 coupling (especially at multiple soil depths). To address this issueHere, we use in-situ AmeriFlux observations to
17 evaluate θ /ET coupling strength estimates acquired from multiple land surface models (LSMs) and an ET retrieval
18 algorithm – the Global Land Evaporation Amsterdam Model (GLEAM). For maximum robustness, coupling strength
19 is represented using the sampled normalized mutual information (NMI) between θ estimates acquired at various
20 vertical depths and surface evaporation flux expressed as represented by fraction of potential evapotranspiration
21 (fPET, the ratio of ET to potential ET). Results indicate that LSMs and GLEAM are generally in agreement with
22 AmeriFlux measurements in that surface soil moisturewater content (θ_s) contains slightly more NMI with fPET than
23 vertically integrated soil moisturewater content (θ_v). Overall, LSMs and GLEAM adequately capture variations in
24 NMI between fPET and θ estimates acquired at various vertical depths. However, one model – the Global Land
25 Evaporation Amsterdam Model (GLEAM) – significantly overestimates the NMI between θ and ET and the relative
26 contribution of θ_s to total ET. This bias appears attributable to differences in GLEAM's ET estimation scheme relative
27 to the other two LSMs considered here (i.e., the Noah model with mMulti-parameterization options and the Catchment
28 Land Surface Model). These results provide insight into improved LSM model structure and parameter optimization
29 for land surface-atmosphere coupling analyses.

30 **Keywords.** Land surface/atmosphere interaction, soil moisturewater content, surface evapotranspiration

31 **1 Introduction**

32 Soil moisturewater content (θ) modulates water and energy feedbacks between the land surface and the lower
33 atmosphere by partitioning incoming energy into evapotranspiration (ET) and sensible heat (H) surface flux
34 componentsdetermining the fraction of incoming solar energy that is converted in evapotranspiration (ET)
35 (Seneviratne et al., 2010, 2013). In water-limited regimes, θ exhibits a dominant control on ET and, and therefore e,
36 commonly exerts significant terrestrial control on the earth's water and, energy and biochemical cycles. Accurately
37 representing θ /ET coupling in land surface models (LSMs) is therefore expected to improve our ability to project the
38 future frequency of extreme climates (Seneviratne et al., 2013).

39 A key question is how the constraint of θ on ET and H varies as θ is vertically integrated over deeper vertical soil
40 depths. Given the tendency for the time scales of θ dynamics to vary strongly with depth, the degree to which the ET
41 is coupled with vertical variations in θ determines the temporal scale at which θ variations are propagated into the
42 lower atmosphere. Therefore, in order to represent θ /ET coupling, and thus land/atmosphere interactions in general,
43 LSMs must accurately capture the relationship between vertically varying θ values and ET. Unfortunately, their ability y
44 ies to do so remains an open question.

45 Recently, land surface/atmosphere coupling strength has been investigated by sampling mutual information proxies
46 (e.g., correlation coefficient or other coupling indices) between time series of θ and ET observations (or air temperature
47 proxies for ET). Results suggest that, even when confined to very limited vertical support (e.g., within the top 5 cm
48 of the soil column), surface θ estimates retain significant information for describing overall examining θ controls on
49 local climate (Ford and Quiring, 2014b; Qiu et al., 2014; Dong and Crow, 2018; Dong and Crow, 2019). These findings
50 are in contrast with the common perceptions that ET is constrained only dominated by θ values within deeper soil
51 layers (Hirschi et al., 2014). Hence, it is necessary to examine whether LSMs can realistically reflect observed
52 variations of θ /ET coupling strength in the within the vertical soil profiles.

53 Previous studies examining the θ /ET relationship have generally been based on Pearson product-moment correlation
54 (Basara and Crawford, 2002; Ford et al., 2014a), which captures only the strength of a linear relationship between two
55 variables. However, the coupling between θ and ET is generally nonlinear. Therefore, non-parametric mutual
56 information measures are generally more appropriate. Nearing et al. (2018) used information theory metrics (transfer
57 entropy, in particular) to measure the strengths of directed couplings between different surface variables, including
58 soil moisture water content, and surface energy fluxes at short timescales in several LSMs. They found that the LSMs
59 are were generally biased as compared with strengths of couplings in observation data, and that these biases differed
60 across different study sites. However, they did not look specifically at the effect of vertical moisture water content
61 profiles or of subsurface soil moisture water content on partitioning surface energy fluxes.

62 Here we apply the information theory-based methodology of Qiu et al. (2016) to examine the relationship between
63 the vertical support of θ estimates and their mutual information (MI) with respect to ET. Our approach is based on
64 analyzing the MI content between ET and θ time series - acquired from both LSMs, ET retrieval algorithm – the
65 Global Land Evaporation Amsterdam Model (GLEAM) and AmeriFlux in-situ observations. MI values are then
66 normalized by entropy in the corresponding ET time series corresponding ET entropy to remove the effect of inter-
67 site variations to and generate estimates of Normalized Mutual Information (NMI) between θ and ET. Examined θ
68 time series have two different vertical supports: Both surface (roughly 0–10 cm) soil moisture water content (θ_s) and
69 vertically integrated (0–40 cm) soil moisture water content (θ_v) are considered to capture the impact of depth on NMI
70 results. AmeriFlux-based NMI results are then compared with analogous NMI results obtained from LSM-based and
71 GLEAM-based θ and ET time series.

72 Further details on our methodology are presented in Sect. 2. Results are presented in Sect. 3 and discussed/summarized
73 in Sect. 4.

74 **2 Data and Methods**

75 The AmeriFlux network provides temporally continuous measurements of θ , surface energy fluxes and related
76 environmental variables for sites located in a variety of North American ecosystem types, e.g., forests, grasslands,
77 croplands, shrublands and savannas (Boden, et al., 2013). To minimize sampling errors, AmeriFlux sites lacking a

78 complete 3-year summer months (June, July and August) daily time series between the years of 2003 and 2015 (i.e.,
 79 $3 \times 92 = 276$ daily observations in total) of θ_s , θ_v and latent heat flux (LE) ~~are~~^{were} excluded here - resulting in the 34
 80 remaining eligible AmeriFlux sites listed in Table 1. These sites cover a variety of climate zones within the contiguous
 81 United States (CONUS). Table 1 gives background information on these 34 sites including local land cover
 82 information. Hydro-climatic conditions in each site ~~are~~^{were} characterized using the aridity index (AI) – calculated
 83 using CRU (Climate Research Unit, v4.02) monthly precipitation and potential evaporation (PET) datasets.

84 As described above, θ /ET coupling assessments made using AmeriFlux observations ~~are~~^{were} compared with
 85 ~~comparable assessments based on output from those using~~ state-of-the-art LSMs including ~~the~~ Noah model with
 86 ~~Mr~~ multi-parameterization options (NOAHMP) ~~and~~⁻ Catchment Land Surface Model (CLSM). ~~In addition, and~~ θ and
 87 ET retrievals provided by the Global Land Evaporation Amsterdam Model (GLEAM) ~~are also considered~~. See below
 88 ~~for more model~~ details on all three approaches. To avoid any spurious correlations between θ and ET due to
 89 seasonality, all NMI analyses ~~are~~^{were} performed on θ and ET time series anomalies acquired during the period 2003–
 90 2015. The θ and ET anomalies ~~are~~^{were} calculated by removing the seasonal cycle – defined as 31-day window
 91 averages centered on each day-of-year sampled across all years of the 2003–2015 historical data record – from the
 92 raw θ and ET time series data. The analysis ~~was~~^{is} limited to the CONUS during summer months (June, July and
 93 August) when θ /ET coupling ~~is~~^{was} expected to be maximized.

94 Table 1 Attributes of selected AmeriFlux sites

AmeriFlux sites	Land cover	Elevation [m]	Top- layer depth [cm]	Bottom- layer depth [cm]
ARM SGP Main	Cropland	314	10 ^a	20 ^b
ARM USDA UNL OSU Woodward Switchgrass 1	Grassland	611	10	30
Audubon Research Ranch	Grassland	1469	10	20
Bondville	Cropland	219	10 ^c	20
Brookings	Grassland	510	10	20
Chimney Park	Evergreen needleleaf forest	2750	0-15	15-45
Duke Forest Hardwoods	Deciduous broadleaf forest	168	10	25
Duke Forest Open Field	Grassland	168	10	25
Fermi Agricultural	Cropland	225	2.5	10
Fermi Prairie	Grassland	226	2.5	10
Flagstaff Managed Forest	Evergreen needleleaf forest	2160	2	10
Flagstaff Unmanaged Forest	Woody savannas	2180	2	10
Flagstaff Wildfire	Grassland	2270	2	10
Fort Peck	Grassland	634	5 ^d	20
Freeman Ranch Woodland	Woody savannas	232	10	20
Glacier Lakes Ecosystem Experiments Site	Evergreen needleleaf forest	3190	5	10
Howland Forest Main	Mixed forest	60	NA	NA

Lucky Hills Shrubland	Open shrubland	1372	5	15
Marys River Fir Site	Evergreen needleleaf forest	263	10	20
Metolius Intermediate Pine	Evergreen needleleaf forest	1253	0-30	NA
Missouri Ozark	Deciduous broadleaf forest	219	10	100
Nebraska SandHills Dry Valley	Grassland	1081	10	25
Quebec Boreal Cutover Site	Evergreen needleleaf forest	400	5	20
Quebec Mature Boreal Forest Site	Evergreen needleleaf forest	400	5	10
Santa Rita Creosote	Open shrubland	991	2.5	12.5
Santa Rita Mesquite	Woody savannas	1116	2.5-5	5-10
Sherman Island	Grassland	-5	10	20
Sylvania Wilderness	Mixed forest	540	5	10
Tonzi Ranch	Woody savannas	169	0	20
University of Michigan Biological Station	Deciduous broadleaf forest	234	0-30	NA
Vaira Ranch	Grassland	129	0	10
Walker Branch	Deciduous broadleaf forest	343	5	10
Willow Creek	Deciduous broadleaf forest	515	5	10
Wind River Field Station	Evergreen needleleaf forest	371	30 ^e	50 ^f

^a Was 5 cm prior to 4/13/2005

^b Was 25 cm prior to 4/13/2005

^c Was 5 cm prior to 1/1/2006

^d Was 10 cm (2003-2008)

^e Was 0-30 cm prior to 2007

^f [Was NaNUnavailable](#) prior to 2007

2.1 Ground-based AmeriFlux measurements

The Level 2 (L2) AmeriFlux LE and sensible heat (H) flux observations are based on high-frequency (typically > 10 Hz) eddy covariance measurements processed into half-hourly averages by individual AmeriFlux investigators. LE and θ observations at a half-hour time step and without gap-filling procedures [are were](#) collected from the AmeriFlux Site and Data Exploration System (see <http://ameriflux.ornl.gov/>). The LE and θ observations [are were](#) further aggregated into daily (0 to 24 UTC) values, and daily LE [i was](#) converted into daily ET using the latent heat of vaporization. Daily ET values based on less than 30% half-hourly coverage (i.e., < 15 half-hourly observations per day) [are were](#) considered not representative at a daily time scale and therefore excluded.

Soil [moisturewater content](#) measurements are generally available at two discrete depths that vary between the AmeriFlux sites (Table 1). Here, the top (i.e., closest to the surface) soil [moisturewater content](#) observation [i was](#) always used to represent surface soil [moisturewater content](#) (θ_s). Since the depth of this top-layer measurement varies between 0 and 15 cm (see Table 1), we consider the surface-layer measurement θ_s to be roughly representative of 0–10 cm (vertically integrated) θ .

Given variations in the depth of the lower AmeriFlux θ observations (see Table 1), we applied a variety of approaches for estimating vertically integrated soil [moisturewater content](#) (θ_v). Our first approach, hereinafter referred to as Case

117 I, ~~was~~ based on the application of an exponential filter (Wagner et al., 1999; Albergel et al., 2008) to extrapolate θ_s
 118 to a consistent 40-cm bottom layer depth. Therefore, only θ_s ~~was~~ used to derive θ_v and the bottom-layer (or second
 119 layer) AmeriFlux θ measurement ~~was~~ neglected in this case. The application of the exponential filter requires a single
 120 time-scale parameter T . Since θ measurements from United States Department of Agriculture's Soil Climate Analysis
 121 Network (SCAN) are taken at fixed soil depth, we utilized this dataset to determine the most appropriate parameter T
 122 at AmeriFlux sites. Following Qiu et al. (2014), first, we estimated the optimal parameter T (T_{opt}) for the extrapolation
 123 of θ measurements from 10 cm to 40 cm depth and established a global relationship between T_{opt} and site-based
 124 NDVI (MOD13Q1 v006, 250m, 16-day) ($T_{opt} = 2.098 \times \exp(-1.895 \times (\text{NDVI} + 0.6271)) + 2.766$). Then, this global
 125 relationship (Goodness of Fit R^2 : 0.85) ~~was is~~ applied to AmeriFlux sites to extrapolate 0–10 cm θ_s times series into
 126 0–40 cm θ_v .

127 Previous research has suggested that such a filtering approach does not significantly squander ET information present
 128 in actual measurements of θ_v (Qiu et al., 2014; Qiu et al., 2016). Nevertheless, since the quality of θ_v estimates is
 129 important in our analysis, we also calculated two additional cases where 0–40 cm θ_v ~~was~~ estimated using: 1) the
 130 bottom-layer soil ~~moisturewater content~~ measurement acquired at each AmeriFlux site (hereinafter, Case II) and 2)
 131 linear interpolation of θ_s and the bottom-layer AmeriFlux soil ~~moisturewater content~~ measurement (hereinafter, Case
 132 III). The sensitivity of key results to these various cases is discussed below.

133 **2.2 LSM-based and GLEAM-based simulations**

134 ~~LSM output~~ ~~Simulations~~ ~~was~~ acquired from NOAHMP (Niu et al., 2011) and CLSM (Koster et al., 2000) ~~LSMs~~
 135 ~~simulations~~ embedded within the NASA Land Information System (LIS, Kumar et al., 2006) and ~~the GLEAM-a ET~~
 136 ~~retrieval algorithms~~ ~~satellite observation-based model GLEAM~~ (Miralles et al., 2011). Both NOAHMP and CLSM
 137 ~~are~~ ~~were~~ set-up to simulate 0.125 ° θ profiles at a 15-minute time step using North America Land Data Assimilation
 138 System, Phase 2 (NLDAS-2) forcing data. A 10-year model spin-up period (1992 to 2002) ~~was~~ applied for NOAHMP
 139 and CLSM.

140 NOAHMP numerically solves the one-dimensional Richards equation within four soil layers of thicknesses of 10, 30,
 141 60, and 100 cm. Major parameterization options relevant to θ simulation include ~~1) options for canopy stomatal~~
 142 ~~resistance parameterization; 2) options for and schemes controlling the effect of θ on the vegetation stress factor $\beta\theta$~~
 143 ~~factor for stomatal resistance (the β factor)~~. Here we employed the Ball-Berry-type stomatal resistance scheme and
 144 Noah-type soil ~~moisturewater content~~ factor controlling the β factor. The specific expressions are as follows:

$$145 \beta = \sum_{i=1}^{N_{\text{root}}} \frac{\Delta Z_i}{Z_{\text{root}}} \min \left(1.0, \frac{\theta_i - \theta_{\text{wilt}}}{\theta_{\text{ref}} - \theta_{\text{wilt}}} \right) \quad (1)$$

146 where θ_{wilt} and θ_{ref} are respectively soil ~~moisturewater content~~ at wilting point ($\text{m}^3 \text{ m}^{-3}$) and reference soil
 147 ~~moisturewater content~~ ($\text{m}^3 \text{ m}^{-3}$), which is ~~else to set as~~ field capacity ~~during parameterization~~. θ_i and ΔZ_i are soil

148 moisturewater content ($\text{m}^3 \text{ m}^{-3}$) and soil depth (cm) at i th layer, N_{root} and z_{root} are total number of soil layers with roots
149 and total depth (cm) of root zone, respectively.

150 Following the Ball-Berry stomatal resistance scheme, the θ -controlled β factor and other multiplicative factors
151 including temperature, foliage nitrogen simultaneously determine the maximum carboxylation rate V_{max} as follows:

$$152 \quad V_{\text{max}} = V_{\text{max}25} \alpha_{\text{vmax}}^{\frac{T_v-25}{10}} f(N) f(T_v) \beta \quad (2)$$

153 where $V_{\text{max}25}$ is maximum carboxylation rate at 25 °C ($\mu\text{mol CO}_2 \text{ m}^{-2} \text{ s}^{-1}$); α_{vmax} is a parameter sensitive to vegetation
154 canopy surface temperature T_v ; $f(N)$ is a factor representing foliage nitrogen and $f(T_v)$ is a function that mimics thermal
155 breakdown of metabolic processes. Based on V_{max} , ~~carboxylase limited (Rubisco limited) and export limited (for C3~~
156 ~~plants)~~ photosynthesis rates per unit LAI ~~including carboxylase-limited (Rubisco limited, denoted by A_C) type and~~
157 ~~export-limited (for C3 plants, denoted by A_S) type (A_C and A_S respectively)~~ are calculated ~~respectively, and the The~~
158 minimum of A_C , A_S and light-limited photosynthesis rates determine~~s~~ stomatal ~~resistanceconductance~~ r_s , and,
159 consequently ~~affects~~ the ET over vegetated areas. For the complete NOAHMP configuration, please see Table S1 in
160 the supplementary material.

161 CLSM simulates the 0–2 and 0–100 cm soil moisturewater content and evaporative stress as a function of simulated
162 θ and environmental variables. ET is then estimated based on the estimated evaporative stress and land-atmosphere
163 humidity gradients. Energy and water flux estimates are iterated with soil state estimates (e.g., θ and soil temperature)
164 to ensure closure of surface energy and water balances. For ~~the~~ detailed explanation of CLSM physics, please refer
165 to Koster et al. (2000).

166 GLEAM is a set of algorithms dedicated to the estimation of terrestrial ET and root-zone θ from satellite data. In this
167 study, the latest version of this model (v3.2a) is employed. In GLEAM, the configuration of soil layers varies as a
168 function of the land-cover type. Soil stratification is based on three soil layers for tall vegetation (0–10, 10–100, and
169 100–250 cm), two layers for low vegetation (0–10, 10–100 cm) and only one layer for bare soil (0–10 cm) (Martens
170 et al., 2017).

171 The cover-dependent PET (mm day⁻¹) of GLEAM is calculated using the Priestley and Taylor (1972) equation based
172 on observed air temperature and net radiation. Following this, estimates of PET ~~are~~ were converted into actual
173 transpiration or bare soil evaporation (depending on the land-cover type, ET (mm day⁻¹)), using a cover-dependent,
174 multiplicative stress factor S (–), which is calculated as a function of microwave vegetation optical depth (VOD) and
175 root-zone θ (Miralles et al., 2011). The related expressions are as follows:

$$176 \quad \text{ET} = \text{PET} \times S + E_i \quad (3)$$

$$177 \quad S = \sqrt{\frac{\text{VOD}}{\text{VOD}_{\text{max}}}} \left(1 - \left(\frac{\theta_c - \theta_w}{\theta_c - \theta_{\text{wilt}}} \right)^2 \right) \quad (4)$$

178 where E_i is rainfall interception (mm); S essentially represents the fPET (see Sect. 2.3) estimated by GLEAM; θ_c (m^3
 179 m^{-3}) is the critical soil ~~moisturewater content~~ and θ_w ($\text{m}^3 \text{ m}^{-3}$) is the soil ~~moisturewater~~ content of the wettest layer,
 180 assuming that plants withdraw water from the layer that is most accessible. Based on (4), GLEAM S (or fPET) tend
 181 to become more sensitive to θ in areas of low VOD seasonality (i.e., low differences between VOD and VOD_{\max}). As
 182 for bare soil conditions, S is linearly related to surface soil ~~moisturewater content~~ (θ_1):

$$183 \quad S = 1 - \frac{\theta_c - \theta_1}{\theta_c - \theta_{\text{wilt}}}. \quad (5)$$

184 To resolve variations in the vertical discretization of θ applied by each model, we linearly interpolated NOAHMP,
 185 CLSM and GLEAM outputs into daily 0–10 and 0–40 cm soil ~~moisturewater content~~ values using depth-weighted
 186 averaging.

187 2.3 Variable indicating soil ~~moisturewater content~~ and surface flux coupling

188 Soil ~~moisturewater content~~ – ET coupling can be diagnosed using a variety of different variables derived from ET,
 189 e.g. the fraction of PET (fPET, the ratio of ET and PET) or the evaporative fraction (EF, the ratio of LE and the sum
 190 of LE and sensible heat). Since ET is strongly tied to net radiation (Rn) (Koster et al., 2009), both fPET and EF are
 191 advantageous in that they normalize ET ~~by and~~ removing the impact of non-soil ~~moisturewater content~~ influences on
 192 ET (e.g., net radiation, wind speed and soil heat flux (G)). However, since sensible heat flux is not provided in the
 193 GLEAM dataset, we are restricted here to using fPET.

194 It should be noted that the applied meteorological forcing data for NOAHMP and CLSM ~~are were~~ somewhat different
 195 from those used for GLEAM. Therefore, to minimize the impact of this difference, NOAHMP and CLSM fPET ~~were~~
 196 ~~are~~ computed from North American Regional Reanalysis (NARR) using the modified Penman scheme of Mahrt and
 197 Ek (1984) while GLEAM fPET ~~is was~~ calculated using its own internal PET estimates. To examine the impact of PET
 198 source ~~on results~~, AmeriFlux fPET calculations ~~are were ealculated-duplicated~~ using both GLEAM- and NARR-based
 199 PET values.

200 2.4 Information measures

201 Mutual information (MI) (Cover and Thomas, 1991) is a nonparametric measure of correlation between two random
 202 variables. MI and the related Shannon-type entropy (~~SE~~, Shannon, 1948) are calculated as follows. Entropy about a
 203 random variable ζ is a measure of uncertainty according to its distribution p_ζ and is estimated as the expected amount
 204 of information from p_ζ sample:

$$205 \quad \text{SEH}(p_\zeta) = E_\zeta[-\ln(p_\zeta(\zeta))]. \quad (6)$$

206 Likewise, MI between ζ and another variable ψ can be thought of as the expected amount of information about variable
 207 ζ contained in a realization of ψ and is measured by the expected Kullback-Leibler (KL) divergence (Kullback and
 208 Leibler, 1951) between the conditional and marginal distributions over ζ :

209 $\text{MI}(\zeta; \psi) = \text{E}\psi[D(p_{\zeta|\psi} \parallel p_{\zeta})]. \quad (7)$

210 In this context, the generic random variables ζ and ψ represent fPET and θ (soil ~~moisturewater content~~) respectively.
 211 The observation space of the target random variable fPET ~~was~~ was discretized using a fixed bin width. As bin width
 212 decreases, entropy increases but mutual information asymptotes to a constant value. On the other hand, increased bin
 213 width requires more sample size, which cannot always be satisfied. The trick is choosing a bin width where the NMI
 214 values stabilize with sample size. After ~~a~~ careful sensitivity analysis, we choose a fixed bin width of 0.25 [-] for fPET
 215 and make sure that each AmeriFlux site have enough samples to accurately estimate the NMI, and change of this
 216 constant bin width from 0.1–0.5 [-] will not significantly alter our conclusions. Following Nearing et al. (2016), a bin
 217 width of $0.01 \text{ m}^3 \text{ m}^{-3}$ (1% volumetric water content) for θ ~~was~~ was applied. Integrations required for MI calculation in Eq.
 218 (7) are then approximated as summations over the empirical probability distribution function bins (Paninski, 2003).

219 By definition, the MI between two variables represents the amount of entropy (uncertainty) in either of the two
 220 variables that can be reduced by knowing the other. Therefore, the MI normalized by the entropy of the AmeriFlux-
 221 based fPET measurements represents the fraction of uncertainty in fPET that is resolvable given knowledge of the soil
 222 ~~moisturewater content~~ state (Nearing et al., 2013). Unlike Pearson's correlation coefficient, MI is insensitive to the
 223 impact of nonlinear variable transformations. Therefore, it is well suited to describe the strength of the (potentially
 224 non-linear) relationship between θ and fPET.

225 Here, we applied this approach to calculate the MI content between soil ~~moisturewater content~~ representing different
 226 vertical depths (as reflected by θ_s and θ_v) and fPET at each AmeriFlux site. All estimated site-specific MI ~~were are~~
 227 normalized by the entropy of the corresponding AmeriFlux-based fPET measurements to remove the effect of inter-
 228 site entropy variations on the magnitude of NMI differences. The resulting normalized MI calculations between both
 229 θ_s and θ_v and fPET are denoted as $\text{NMI}(\theta_s, \text{fPET})$ and $\text{NMI}(\theta_v, \text{fPET})$ respectively.

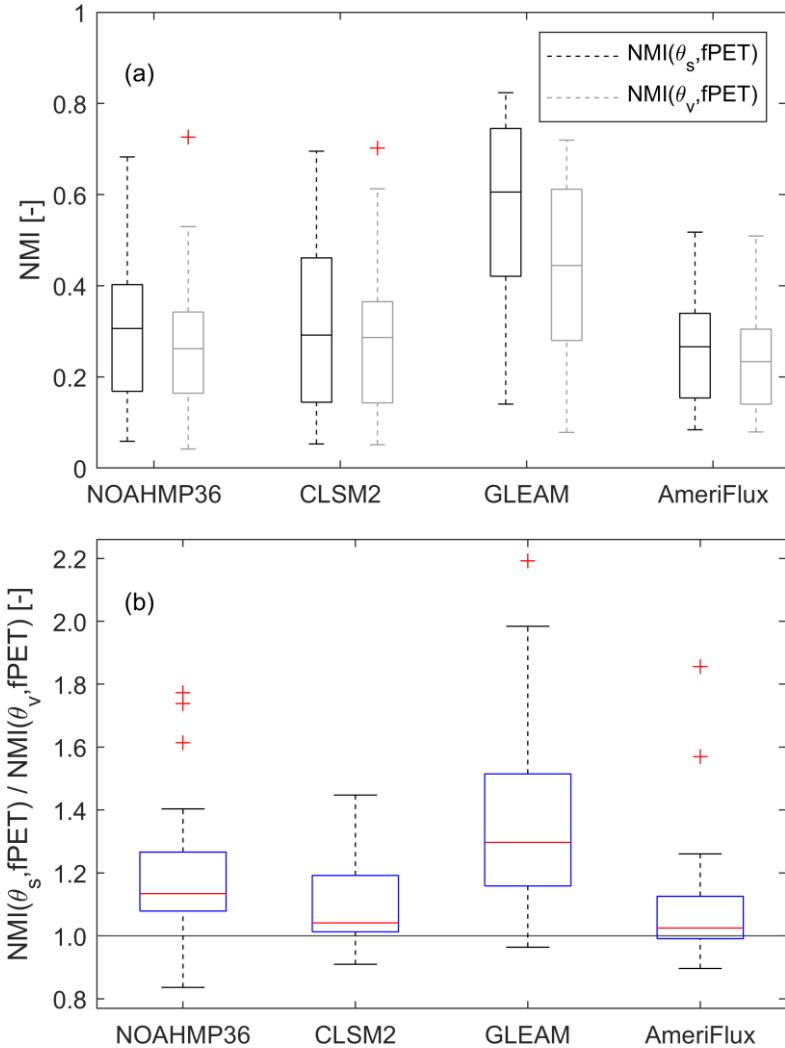
230 The underestimation of observed θ/ET coupling via the impact of mutually-independent θ and ET errors in AmeriFlux
 231 observations (Crow et al. 2015) ~~was~~ was minimized by focusing on the ratio between $\text{NMI}(\theta_s, \text{fPET})$ and $\text{NMI}(\theta_v, \text{fPET})$.
 232 Therefore, relative comparisons between $\text{NMI}(\theta_s, \text{fPET})$ and $\text{NMI}(\theta_v, \text{fPET})$ are based on examining the size of their
 233 mutual ratio $\text{NMI}(\theta_s, \text{fPET})/\text{NMI}(\theta_v, \text{fPET})$. To quantify the standard error of NMI differences between various soil
 234 ~~moisturewater content~~ products, we applied a nonparametric, 500-member bootstrapping approach, and calculated
 235 pooled average of sampling errors across all sites assuming spatially independent sampling error.

236 Finally, we also examined the impact of potential nonlinearity in the θ/ET relationship by comparing non-parametric
 237 NMI results with comparable inferences based on a conventional Pearson's correlation calculation. The correlation-
 238 based coupling strength between θ_s and fPET ~~was is~~ denoted as $R(\theta_s, \text{fPET})$ and between θ_v and fPET as $R(\theta_v, \text{fPET})$.

239 **3 Results**240 **3.1 Comparison of $NMI(\theta_s, fPET)$ and $NMI(\theta_v, fPET)$**

241 Figure 1 contains boxplots of modelled and observed $NMI(\theta_s, fPET)$ and $NMI(\theta_v, fPET)$, i.e., the relative magnitude
242 of fPET information contained in surface soil ~~moisturewater content~~ and vertically-integrated (0–40 cm) soil
243 ~~moisturewater content estimated from case I~~, sampled across all the AmeriFlux locations listed in Table 1. According
244 to the AmeriFlux ground measurements, median values of $NMI(\theta_s, fPET)$ and $NMI(\theta_v, fPET)$ (across all sites) are
245 near 0.3 [-]. This suggests that approximately 30% of the uncertainty (i.e., entropy at this particular bin width of 0.25
246 [-]) in fPET can be eliminated given knowledge of either surface or vertically integrated soil ~~moisturewater content~~
247 state. This is consistent with earlier results in Qiu et al., (2016) who used similar ~~variables-metrics~~ to evaluate θ/EF
248 (evaporative fraction) coupling strength. The sampled medians of $NMI(\theta_s, fPET)$ and $NMI(\theta_v, fPET)$ estimated by
249 the NOAHMP and CLSM models are similar to these (observation-based) AmeriFlux values. With the single
250 exception that [the](#) CLSM predicts much larger site-to-site variation in $NMI(\theta_s, fPET)$.

251 In contrast, $NMI(\theta_s, fPET)$ and $NMI(\theta_v, fPET)$ values sampled from GLEAM θ and fPET estimates are biased high
252 (with median $NMI(\theta_s, fPET)$ and $NMI(\theta_v, fPET)$ values of about 0.5 and 0.4 [-], respectively) with respect to all other
253 estimates.



254

255 Fig.1 The θ /ET coupling strengths for summertime anomaly time series acquired from various LSMs, [GLEAM](#) and AmeriFlux
 256 measurements: (a) NMI(θ_s , fPET) and NMI(θ_v , fPET) individually and (b) NMI(θ_s , fPET) normalized by NMI(θ_v , fPET).

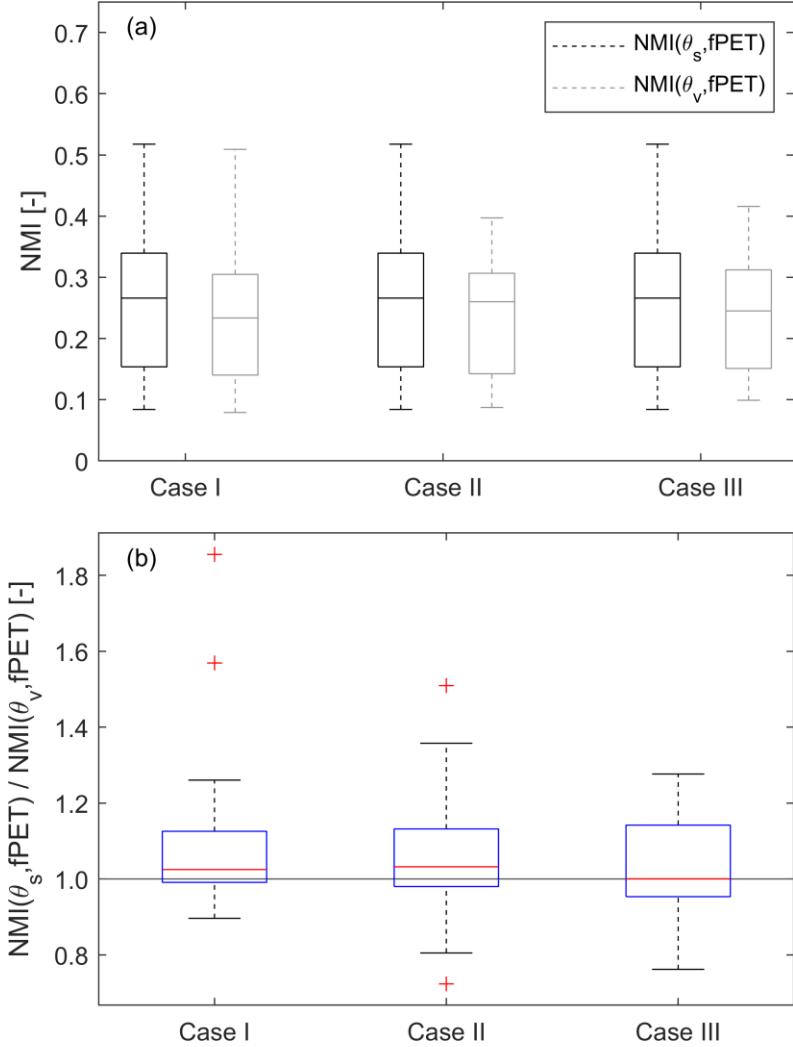
257 [All three](#)[Both](#) LSMs and [GLEAM](#) overall exhibit significantly (at $p = 0.05$ [-] confidence, using the 34 AmeriFlux
 258 site-collocated samples pixels for pair t -test) higher NMI(θ_s , fPET) compared to NMI(θ_v , fPET) – implying the surface
 259 soil [moisture](#)[water content](#) observations contain more fPET information than vertically-integrated soil [moisture](#)[water](#)
 260 [content observations](#). However, the [observed](#) difference between NMI(θ_s , fPET) and NMI(θ_v , fPET) is less discernible
 261 in AmeriFlux measurements (Fig. 1(a)).

262 Here, AmeriFlux observations are used as a baseline for LSM and [GLEAM](#) evaluation. However, it should be stressed
 263 that random observation errors in θ and fPET will introduce a low bias into AmeriFlux-based estimates of both NMI(θ_s ,
 264 fPET) and NMI(θ_v , fPET) (Crow et al., 2015) and thus their difference as well. To address this concern, Fig. 1(b)
 265 plots the ratio of NMI(θ_s , fPET) and NMI(θ_v , fPET), which [effectively](#) normalizes (and [therefore](#) minimizes) the
 266 [impact of random observation errors](#)[such observation error impacts](#). [As discussed above, these r](#)atio results illustrate
 267 the general tendency for NMI(θ_s , fPET) > NMI(θ_v , fPET)[-discussed above](#). They also highlight the tendency for

268 GLEAM to overvalue θ_s (relative to θ_v) when estimating fPET. A second approach for reducing the random error of
269 θ and fPET measurement errors is the Triple Collocation (TC)-based correction applied in Crow et al. (2015). However,
270 this approach is currently restricted to linear correlation and cannot be applied to [estimate](#) NMI. Future work will
271 examine extending the information-based TC approach of Nearing et al. (2017) to the examination of NMI.

272 **3.2 Sensitivity of AmeriFlux-based NMI(θ_s , fPET)/NMI(θ_v , fPET)**

273 As mentioned in Sect. 2.1, an important concern is the impact of interpolation errors used to estimate 0–40 cm θ_v from
274 AmeriFlux θ_s observations acquired at non-uniform depths. To ensure that different methods for calculating
275 AmeriFlux θ_v values do not affect the main conclusion of this study, we configured three cases for θ_v calculation, and
276 compared their NMI(θ_s , fPET)/NMI(θ_v , fPET) results in Fig. 2. Case I reflects the baseline use of the exponential
277 filter described in Sect. 2.1. However, slight changes to AmeriFlux results are noted if alternative approaches are used.
278 Specifically, AmeriFlux-based NMI(θ_v , fPET) increases and closes the gap with NMI(θ_s , fPET) if the bottom-layer
279 soil [moisturewater content](#) measurements are instead directly used as θ_v (Case II) or if 0–40 cm θ_v is based on the
280 linear interpolation of the two AmeriFlux θ observations (Case III), the impact of this modest sensitivity on key results
281 is discussed below.



282

283 Fig.2 The θ /ET coupling strengths for summertime anomaly time series from AmeriFlux measurements using three different θ_v
 284 calculation methods: (a) $NMI(\theta_s, fPET)$ and $NMI(\theta_v, fPET)$ individually and (b) $NMI(\theta_s, fPET)$ divided by $NMI(\theta_v, fPET)$ for
 285 multiple θ_v cases. Case I is based on the application of an exponential filter to extrapolate 0–10 cm θ_s to a consistent 0–40 cm
 286 bottom layer depth, while Cases II and III refer to the direct use of only the bottom layer measurement and a linear interpolation of
 287 both the top and bottom layer, respectively, to calculate θ_v (see Sect. 2.1 for details on each case).

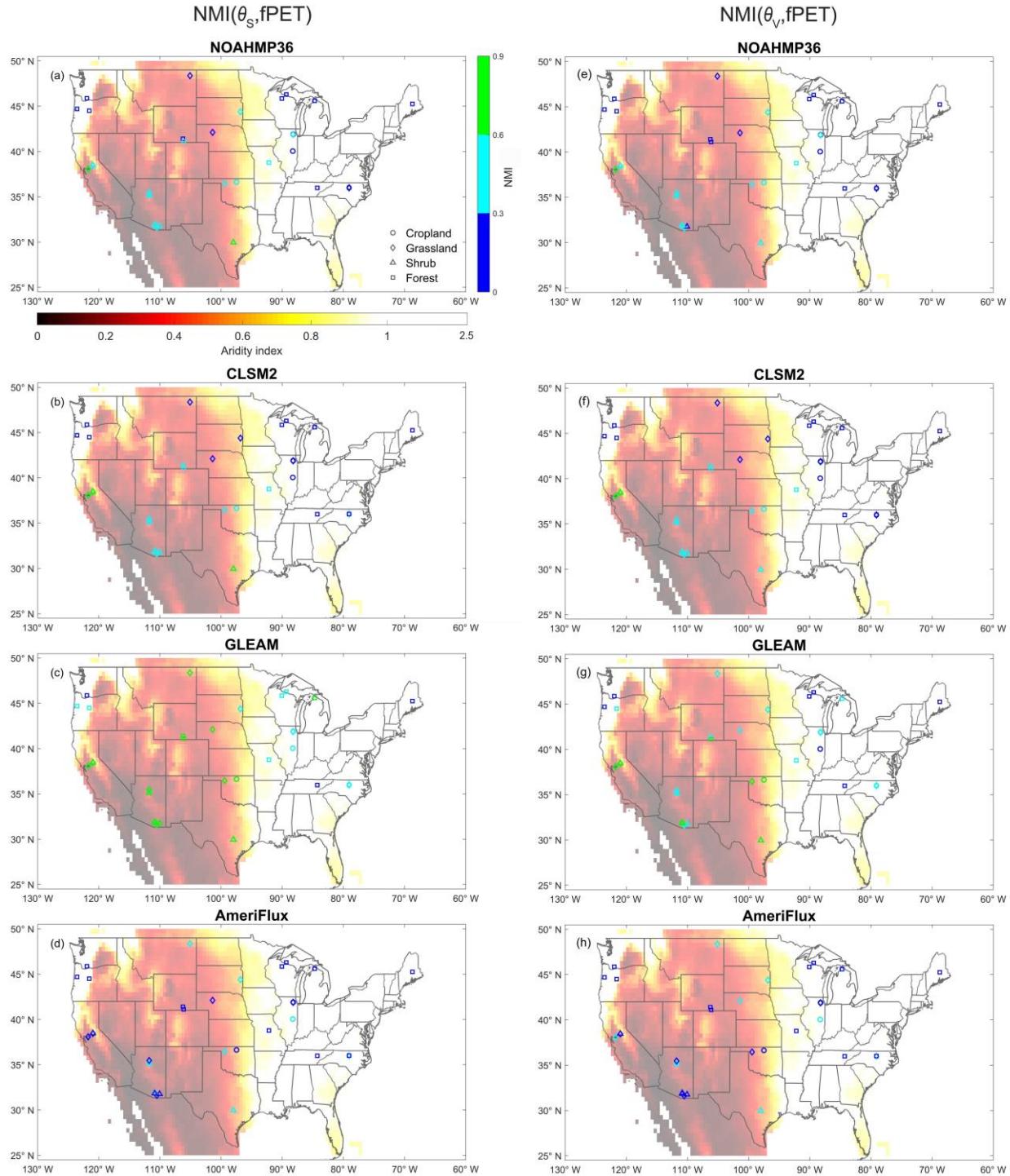
288 In addition, switching from GLEAM- to NARR-based PET when calculating fPET for AmeriFlux-based $NMI(\theta_s,$
 289 $fPET)$ and $NMI(\theta_v, fPET)$ does not qualitatively change results and produces only a very slight (~6%) increase in the
 290 median $NMI(\theta_s, fPET)/NMI(\theta_v, fPET)$ ratio.

291 **3.3 Spatial distribution of $NMI(\theta_s, fPET)$ and $NMI(\theta_v, fPET)$**

292 Figure 3 plots the spatial distribution of $NMI(\theta_s, fPET)$ and $NMI(\theta_v, fPET)$ results for each of the individual 34
 293 AmeriFlux sites listed in Table 1. The climatic regime is represented by AI (aridity index) [values](#) plotted as the
 294 background color in Fig. 3. It can be seen in Fig. 3 that $NMI(\theta_s, fPET)$ estimates from LSMs [and GLEAM](#) are spatially
 295 related to hydro-climatic conditions, as NOAHMP and CLSM predict that θ_s is moderately coupled with fPET (*i.e.*,
 296 $NMI(\theta_s, fPET)$ of 0.3–0.5 [-]) in the arid [Southwestern US](#) ($AI < 0.2$) and only loosely coupled with fPET in the

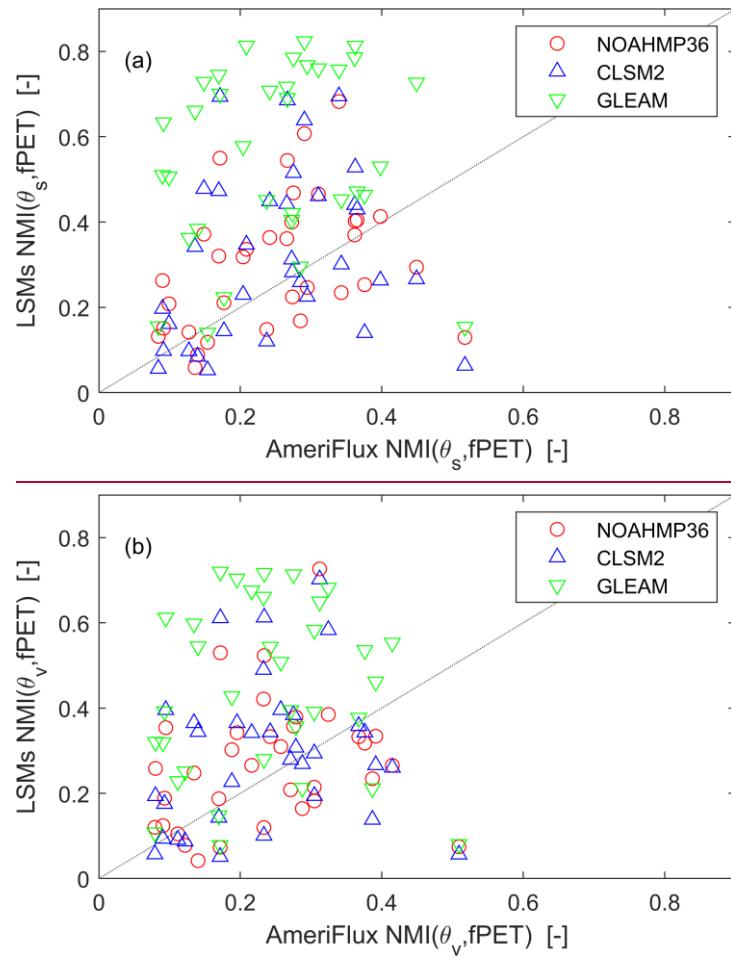
297 relatively humid ~~e~~Eastern US. A similar decreasing trend of $NMI(\theta_s, fPET)$ from the ~~s~~outhwestern to ~~e~~Eastern US
298 is also captured by GLEAM. However, as noted above, GLEAM generally overestimates $NMI(\theta_s, fPET)$ and $NMI(\theta_v,$
299 $fPET)$ compared to NOAHMP, CLSM and AmeriFlux. In contrast, a relatively weaker spatial pattern emerges in
300 AmeriFlux-based $NMI(\theta_s, fPET)$ results. In addition, spatial patterns for $NMI(\theta_s, fPET)$ are less defined than for
301 $NMI(\theta_v, fPET)$ in all four datasets.

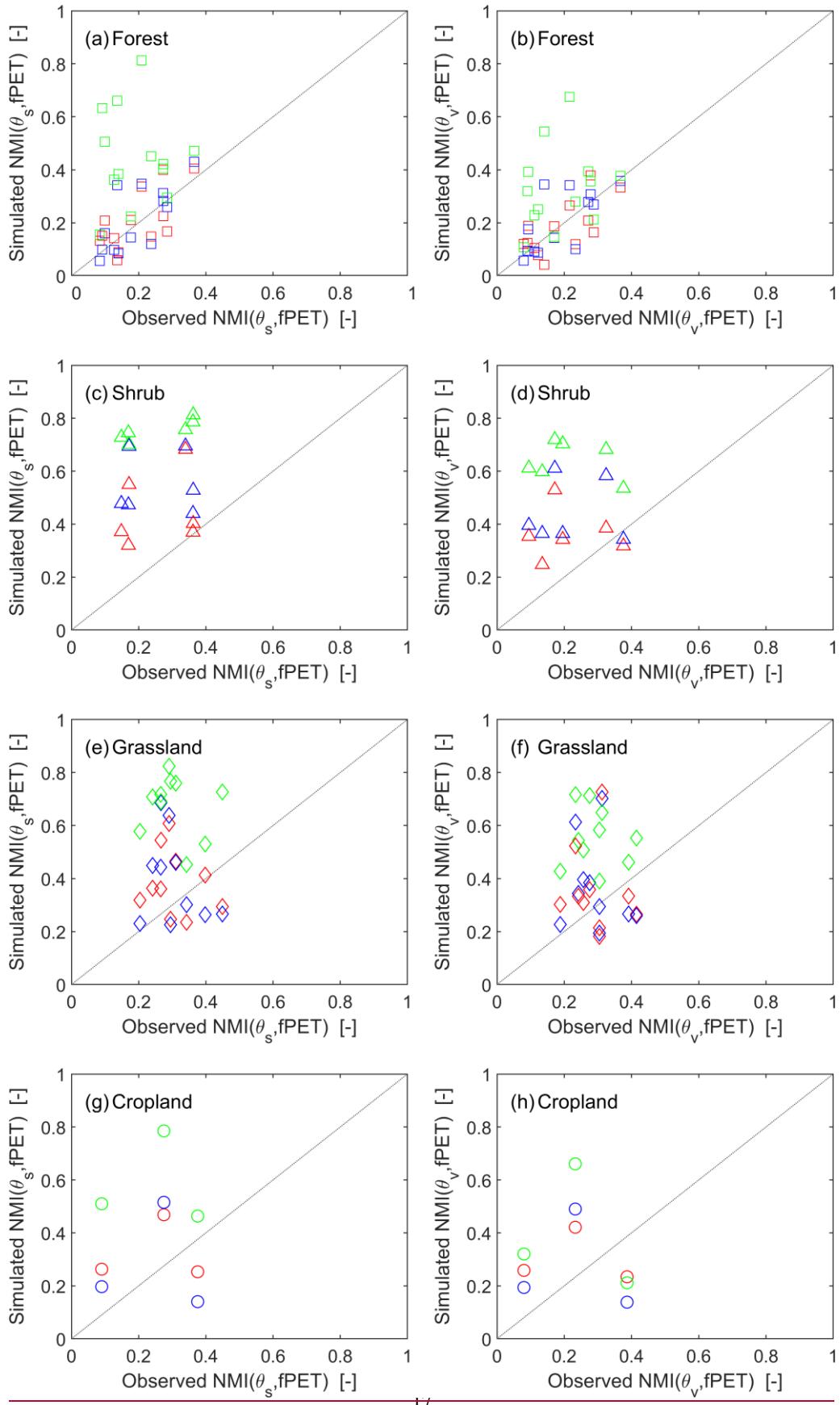
302 Scatterplots in Fig. 4 summarize the spatial relationship between LSM- and GLEAM-based $NMI(\theta_s, fPET)$ and
303 $NMI(\theta_v, fPET)$ results versus AmeriFlux observations across different land use types. While observed levels of
304 correlation in Fig. 4 are relatively modest, there appears to be a is a significant level ($p < 0.05$) of spatial correspondence
305 between LSMs modelled and observed NMI results only over forest sites – motivating the need to better understand
306 processes responsible for spatial variations in NMI results. In addition, stratifying $NMI(\theta_s, fPET)/NMI(\theta_v, fPET)$ ratio
307 results according to vegetation type (Fig. A1) confirms that $NMI(\theta_s, fPET)$ slightly exceeds $NMI(\theta_v, fPET)$ across all
308 vegetation types (and thus all rooting depths characterizing each vegetation type). This suggests that our analysis is
309 not severely affected by variations in the depth of θ measurements. For further discussion on the impact of land cover
310 on NMI results, please see Appendix A.



311

312 Fig. 3 NMI(θ_s , fPET) (left column) and NMI(θ_v , fPET) (right column) estimates at AmeriFlux sites for: (a) NOAHMP, (b) CLSM,
 313 (c) GLEAM and (d) AmeriFlux. Marker color reflects NMI magnitudes and symbol type reflects local land cover type at each site.
 314 Background color shading reflects aridity index (AI) values.



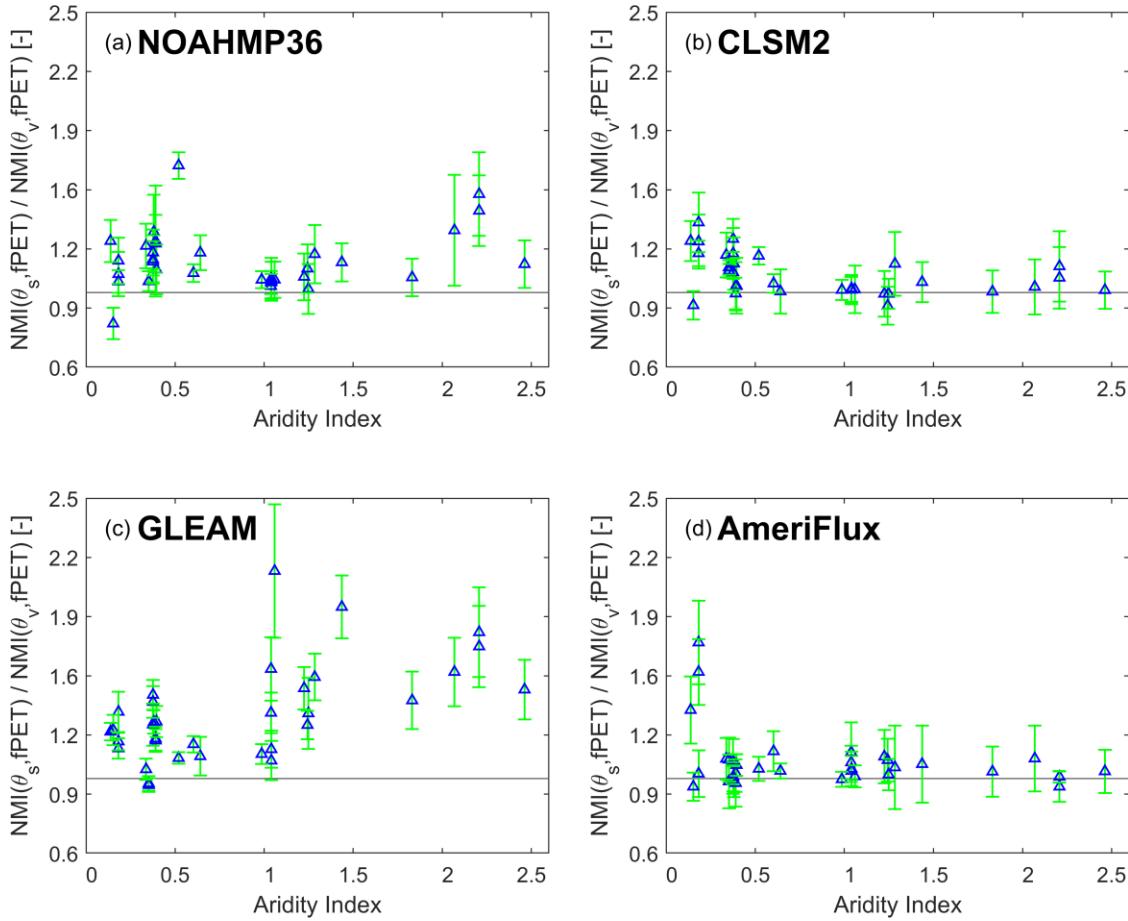


317 Fig. 4 Scatterplot of LSM-based and GLEAM-based (a) $NMI(\theta_s, fPET)$ and (b) $NMI(\theta_v, fPET)$ results versus AmeriFlux
318 observations. Red symbols represent simulations from NOAHMP36; blue symbols represent CLSM2 and green
319 symbols represent GLEAM retrievals.

320 3.4 Sensitivity of $NMI(\theta_s, fPET)/NMI(\theta_v, fPET)$ ratio to climatic conditions

321 Figure 5 further summarizes the ratio of $NMI(\theta_s, fPET)$ and / $NMI(\theta_v, fPET)$ ratio as a function of AI for all four
322 products (NOAHMP, CLSM, GLEAM and AmeriFlux). Error bars represent the standard deviation of sampling errors
323 calculated from a 500-member bootstrapping analysis. With increasing AI, there is a significant decreasing trend in
324 surface and vertically integrated θ/ET coupling within both $NMI(\theta_s, fPET)$ and $NMI(\theta_v, fPET)$ for all three
325 simulations, with a goodness-of-fit above 0.5 (figure not shown). For all cases, the $NMI(\theta_s, fPET)/NMI(\theta_v, fPET)$
326 ratios are consistently greater than unity under all climatic conditions. However, the estimated $NMI(\theta_s, fPET)/NMI(\theta_v,$
327 $fPET)$ ratios from all three simulations (NOAHMP, CLSM and GLEAM) exhibit quite different trends with respect
328 to AI. The $NMI(\theta_s, fPET)/NMI(\theta_v, fPET)$ ratio for CLSM decreases with increasing AI, with a moderate goodness-
329 of-fit value of 0.28, while GLEAM estimates of $NMI(\theta_s, fPET)/NMI(\theta_v, fPET)$ shows an opposite increasing trend
330 with increasing AI, both NOAHMP and CLSM. This decreasing trend is particularly clear when AI is below 1.0 []
331 NOAHMP, CLSM and GLEAM estimates of $NMI(\theta_s, fPET)$ are generally higher than $NMI(\theta_v, fPET)$ in all climatic
332 conditions. Conversely, there There is relatively lower sensitivity of the $NMI(\theta_s, fPET)/NMI(\theta_v, fPET)$ ratio to aridity
333 AI captured in the AmeriFlux measurements, as the $NMI(\theta_s, fPET)/NMI(\theta_v, fPET)$ ratio still approximates one under
334 semiarid conditions (i.e., AI < 0.5 []).

335 Connecting these findings to spatial distribution of $NMI(\theta_s, fPET)$ and $NMI(\theta_v, fPET)$ (Fig. 3), it is confirmed that
336 the relative magnitudes of $NMI(\theta_s, fPET)$ and $NMI(\theta_v, fPET)$ for both all three LSMs and GLEAM are spatially related
337 to hydro-climatic regimes although in fundamentally different ways. In contrast, this link is weaker in the AmeriFlux
338 measurements which, except for a small fraction of very low AI sites, do not appear to vary as a function of AI. These
339 conclusions are not qualitatively impacted by looking at $NMI(\theta_s, fPET)$ and $NMI(\theta_v, fPET)$ differences, as opposed
340 to their ratio as in Fig. 5, or by looking at $R(\theta_s, fPET)$ and $R(\theta_v, fPET)$ instead of NMI.



341

342
343

Fig. 5 For a) NOAHMP, (b) CLSM, (c) GLEAM and (d) AmeriFlux estimates, the ratio of $NMI(\theta_s, fPET)$ and $NMI(\theta_v, fPET)$ as a function of AI across all AmeriFlux sites.

344

4 Discussion and conclusion

345
346
347
348
349
350

Since transpiration dominates the global ET (Jasechko et al., 2013), deep-layer soil ~~moisture~~^{water} content (θ_v) is generally considered to contain more ET information than that of surface soil ~~moisture~~^{water} content (θ_s) – given plant transpiration is balanced by root water uptake from deeper soils (Seneviratne et al., 2010). However, this assumption is rarely tested using models and/or observations. Here, we apply normalized mutual information (NMI) to examine how the vertical support of a soil ~~moisture~~^{water} content product ~~impacts~~^{affects} its relationship with concurrent surface ET.

351
352
353
354
355

Specifically, using AmeriFlux ground observations, we examine whether (NMI-based) estimates of LSMs and GLEAM θ_s versus ET and θ_v versus ET coupling strength accurately reflect observations acquired at a range of AmeriFlux sites. In general, compared to the baseline case of exponential filter extrapolated 40-cm bottom layer θ_v , LSMs and GLEAM agree with AmeriFlux observations in that the overall fPET information contained in θ_s is slightly higher than that of θ_v (Fig. 1). However, the sensitivity analysis showed this difference between $NMI(\theta_s, fPET)$ and

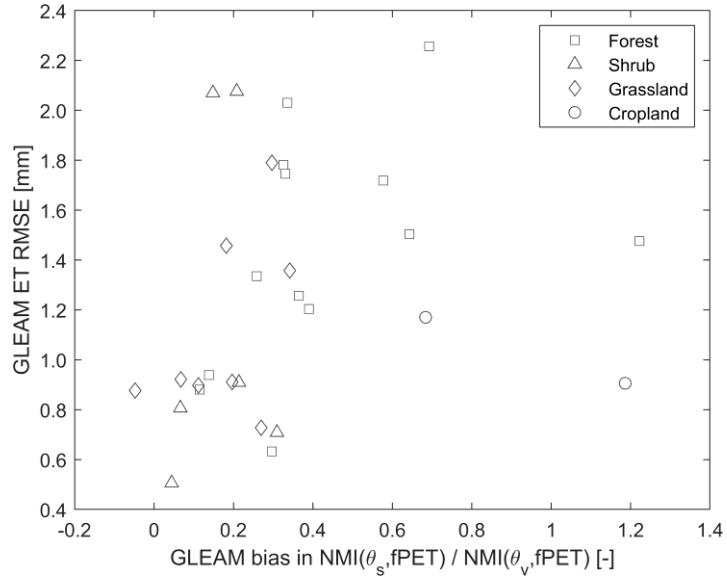
356 NMI(θ_v , fPET) diminishes when using different methods for calculating θ_v using AmeriFlux observations (Fig. 2).
357 As a result, this result should be viewed with caution.

358 While NOAHMP and CLSM derived NMI(θ_s , fPET) and NMI(θ_v , fPET) results are generally consistent with the
359 AmeriFlux observations, GLEAM overestimates NMI(θ_s , fPET), NMI(θ_v , fPET), and the ratio NMI(θ_s ,
360 fPET)/NMI(θ_v , fPET) relative to observations. Although both LSMs and GLEAM are based on the same classical
361 two-section (soil moisturewater content-limited and energy-limited) ET regimes framework (Sect. 2.2), they differ in
362 two fundamental aspects. First, the evaporative stress factor S is represented as a more direct and strong function of
363 soil moisturewater content in GLEAM - see Eqs. (4) and (5) - which leads to the overestimation of θ /ET coupling
364 strength. This is consistent with our results that GLEAM generally overestimates NMI(θ_s , fPET) and NMI(θ_v , fPET)
365 consistently across all land covers, compared to AmeriFlux-based estimates. On the other hand, NOAHMP and CLSM
366 approximate ET in the manner of biophysical models, and expresses biophysical control on ET through the stomatal
367 resistance r_s , which is a function of multiple limiting factors including θ . Therefore, the more complex ET scheme
368 employed by NOAHMP and CLSM would seem to mitigate the overestimation of NMI(θ_s , fPET) and NMI(θ_v , fPET),
369 as other relevant factors besides θ (such as temperature, foliage nitrogen) are also considered in determining maximum
370 carboxylation rate V_{max} and stomatal resistance r_s - and consequently more realistic actual ET.

371 Secondly, the stress factor β in both LSMs considers the cumulative effects of θ conditions along different layers (Eq.
372 (1)), while the corresponding S -factor S in GLEAM only uses the wettest soil layer condition, which is top layer at
373 most sites. This likely explains the overestimation of the NMI(θ_s , fPET)/NMI(θ_v , fPET) ratio by GLEAM.

374 Nevertheless, we would like to stress that all approaches considered in our paper contain (at their core) a parameterized
375 relationship between θ and ET. While the implications of mis-parameterizing this relationship are arguably more
376 severe for a land surface model, we'd argue that the issue remain relevant for any approach (such as GLEAM) that
377 utilizes a water balance (and/or data assimilation system) approach to estimate θ and, in turn, uses θ to constrain ET.
378 Regardless of the complexity that a given approaches employs, failing to accurately describe the relationship between
379 ET and (large number of potential) environmental constraints should eventually degrade the robustness of the model,
380 no matter the model is employed as a retrospective, diagnostic or predictive manner. To examine this issue directly,
381 Fig. 6 plots the relationship between GLEAMS bias in NMI(θ_s , fPET)/NMI(θ_v , fPET) ratio versus the RMSE of daily
382 GLEAM ET simulations for a range of AmeriFlux sites. There is a positive correlation between the two quantities -
383 which suggests that GLEAM overestimation of θ /ET coupling during the summer may undermine the accuracy of its
384 daily ET retrievals. It should be noted that GLEAM simultaneously overestimates both NMI(θ_s , fPET) and NMI(θ_v ,
385 fPET); however, the impact of this mis-parameterization impact on GLEAM ET accuracy is most obvious when
386 plotted against the ratio NMI(θ_s , fPET)/NMI(θ_v , fPET).

387



388

389 Fig. 6 Daily ET error in GLEAM as a function of GLEAM bias in $NMI(\theta_s, fPET) / NMI(\theta_v, fPET)$ ratio across 34 AmeriFlux sites.

390 Although the median values of $NMI(\theta_s, fPET)$ and $NMI(\theta_v, fPET)$ predicted by NOAHMP and CLSM are general in
 391 line with AmeriFlux observations, they are more spatially related to hydro-climatic conditions (as summarized by AI)
 392 than their counter parts acquired from AmeriFlux measurements. Seen from the plot of $NMI(\theta_s, fPET) / NMI(\theta_v, fPET)$
 393 ratio as a function of AI (Fig. 5), the modelled and observed $NMI(\theta_s, fPET) / NMI(\theta_v, fPET)$ ratio median decreases
 394 with increasing AI, and the decreasing trend is particularly clear when AI is lower than 1.0 [-]. In contrast, there is
 395 relatively lower sensitivity to aridity exhibited in the AmeriFlux measurements.

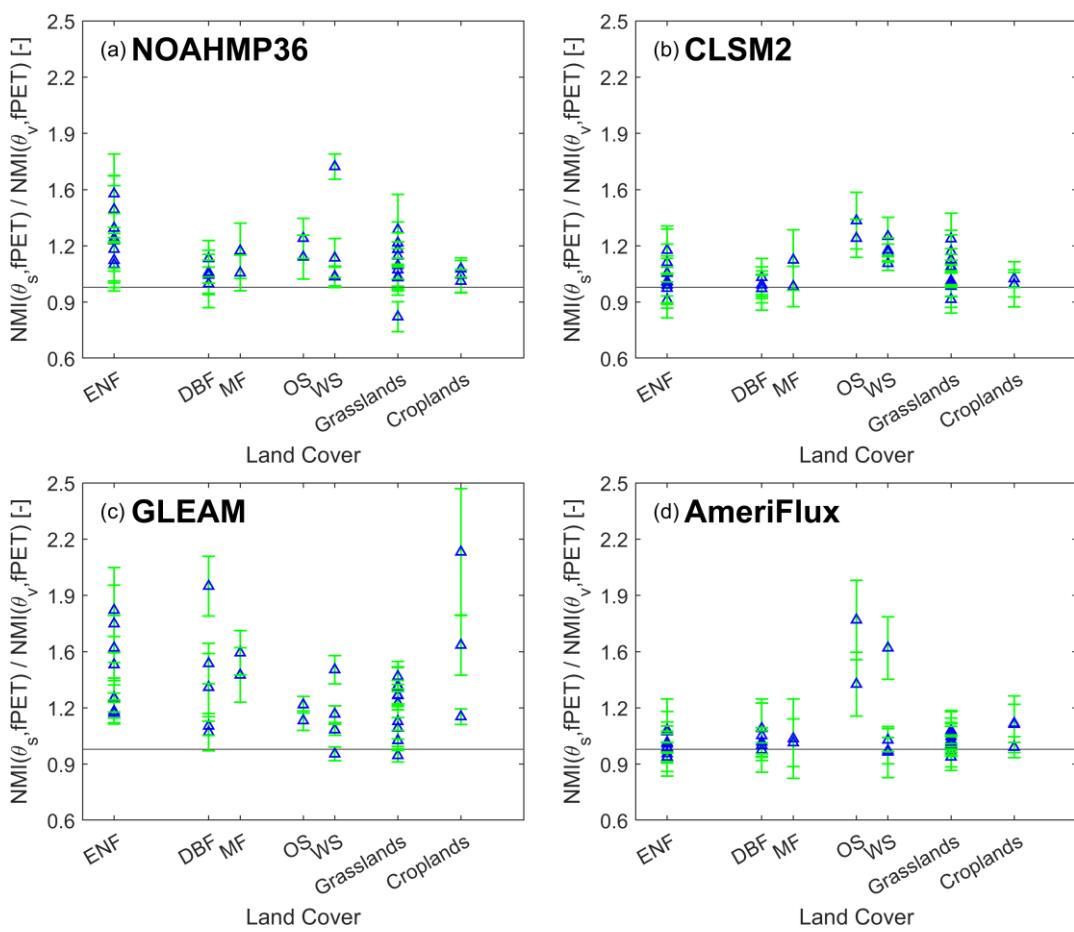
396 These results provide several key insights into future land-atmosphere coupling analysis and LSM as well as ET
 397 algorithm development. First, all the datasets – both model-based and ground-observed – indicates that θ_s contain at
 398 least as much ET information as θ_v . Hence, remote-sensing land surface soil moisturewater content datasets are
 399 suitable, and should be considered, for analyzing the general interaction between land and atmosphere, e.g., soil
 400 moisturewater content – air temperature coupling (Dong and Crow, 2019) and the interplay of soil moisturewater
 401 content and precipitation (Yin et al., 2014). Additionally, future generations of GLEAM may consider more
 402 sophisticated evaporation stress functions, which may improve its accuracy in representing soil's control on local ET.
 403 This may, in turn, improve the accuracy of GLEAM ET product. Finally, our results demonstrate that modeled θ_s /ET
 404 is highly more sensitive to hydro-climates, compared to than the observed relationships. Modifying the model
 405 structures to reduce such sensitivity might be necessary for accurately representing the interaction of land surface and
 406 atmosphere across different climate zoness. This may lead to more realistic projections of future drought-induced
 407 heatwaves, when coupled with general circulation models.

408 **Data availability**

409 Ground-based soil moisturewater content and surface flux data are available from <http://ameriflux.ornl.gov/>. GLEAM
 410 dataset is available from <https://www.gleam.eu/>. LSMs simulations of NOAHMP and CLSM used in this study are
 411 available by contacting the authors.

412 **Appendix A**

413 We performed additional sensitivity analysis to explicitly demonstrate the effect of different vegetation land cover types
 414 and consequently different rooting depths (or θ_v measurement depths) on the $NMI(\theta_s, fPET) / NMI(\theta_v, fPET)$ ratio, and
 415 plotted these results in Fig. A1. The figure confirms that consistent with AmeriFlux, both LSMs and GLEAM predict
 416 that $NMI(\theta_s, fPET)$ is slightly higher than $NMI(\theta_v, fPET)$ over most vegetation types, and GLEAM overestimates
 417 $NMI(\theta_s, fPET) / NMI(\theta_v, fPET)$ for most vegetation types.



418

419 Fig. A1 For a) NOAHMP, (b) CLSM, (c) GLEAM and (d) AmeriFlux estimates, the ratio of $NMI(\theta_s, fPET)$ and $NMI(\theta_v, fPET)$
 420 as a function of vegetation types across all AmeriFlux sites. 'ENF', 'DBF', 'MF', 'OS' and 'WS' represent evergreen needleleaf forests,
 421 deciduous broadleaf forests, mixed forests, open shrubland, and woody savannas, respectively.

422 **Author contributions**

423 Jianxiu Qiu and Wade T. Crow conceptualized the study. Jianzhi Dong helped preparing the LSMs simulation. Grey S.
424 Nearing assisted in the mutual information analysis. Jianxiu Qiu carried out the analysis and wrote the first draft
425 manuscript, and Wade T. Crow refined the work. All authors contributed to the analysis, interpretation and writing.

426 **Competing interests**

427 The authors declare that they have no conflict of interest.

428 **Acknowledgments**

429 This work was supported by National Natural Science Foundation of China (Grant Nos. [41971031](#), 41501450,
430 51779278) and Natural Science Foundation of Guangdong Province, China (Grant No. 2016A030310154).

431 **References**

432 Albergel, C., Rüdiger, C., Pellarin, T., Fritz, N., and Froissard, F.: From near-surface to root-zone soil moisture using
433 an exponential filter: an assessment of the method based on in-situ observations and model simulations, *Hydrol. Earth
434 Syst. Sci.*, 12, 1323–1337, doi: 10.5194/hess-12-1323-2008, 2008.

435 Basara, J. B. and Crawford, K. C.: Linear relationships between root - zone soil moisture and atmospheric processes
436 in the planetary boundary layer, *J. Geophys. Res.*, 107, 4274, doi:10.1029/2001JD000633, 2002.

437 Boden, T. A., Krassovski, M., and Yang, B.: The AmeriFlux data activity and data system: an evolving collection of
438 data management techniques, tools, products and services, *Geosci. Instrum. Meth. Data Syst.*, 2, 165–176, doi:
439 10.5194/gi-2-165-2013, 2013.

440 Cover, T. M. and Thomas, J. A.: *Elements of information theory*, John Wiley & Sons, New York, 1991.

441 Crow, W.T., Lei, F., Hain, C., Anderson, M.C., Scott, R.L., Billesbach, D., and Arkebauer, T.: Robust estimates of
442 soil moisture and latent heat flux coupling strength obtained from triple collocation, *Geophys. Res. Lett.*, 42, 8415–
443 8423, doi: 10.1002/2015GL065929, 2015.

444 Dirmeyer, P. A., Chen, L., Wu, J., Shin, C. - S., Huang, B., and Cash, B. A.: Verification of land - atmosphere
445 coupling in forecast models, reanalyses, and land surface models using flux site observations, *J. Hydrometeorol.*,
446 19, 375–392, doi: 10.1175/JHM-D-17-0152.1, 2018.

447 Dong, J. and Crow, W.T.: Use of satellite soil moisture to diagnose climate model representations of European soil
448 moisture - air temperature coupling strength, *Geophys. Res. Lett.*, 45, 12884–12891, doi: 10.1029/2018GL080547,
449 2018.

450 Dong, J. and Crow, W.T.: L-band remote-sensing increases sampled levels of global soil moisture - air temperature
451 coupling strength, *Remote Sens. Environ.*, 22, 51–58, doi: 10.1016/j.rse.2018.10.024, 2019.

452 Dong, J., Crow, W.T., Reichle, R., Liu, Q., Lei, F., and Cosh, M.: A global assessment of added value in the SMAP
453 Level-4 soil moisture product relative to its baseline land surface model, *in press*, *Geophys. Res. Lett.*, 2019.

454 Entekhabi, D., Njoku, E.G., O'Neill, P.E., Kellogg, K.H., Crow, W.T., Edelstein, W.N., Entin, J.K., Goodman, S.D.,
455 Jackson, T.J., and Johnson, J.: The Soil Moisture Active Passive (SMAP) mission, *Proc. IEEE.*, 98, 704–716, doi:
456 10.1109/jproc.2010.2043918, 2010.

457 Ford, T. W., Wulff, C. O., and Quiring, S. M.: Assessment of observed and model - derived soil moisture -
458 evaporative fraction relationships over the United States Southern Great Plains, *J. Geophys. Res.*, 119, 6279–6291,
459 doi: 10.1002/2014JD021490, 2014a.

460 Ford, T. W. and Quiring, S. M.: In situ soil moisture coupled with extreme temperatures: A study based on the
461 Oklahoma Mesonet, *Geophys. Res. Lett.*, 41, 4727–4734, doi: 10.1002/2014gl060949, 2014b.

462 Hirschi M., Mueller, B., Dorigo, W., and Seneviratne, S. I.: Using remotely sensed soil moisture for land–atmosphere
463 coupling diagnostics: The role of surface vs. root-zone soil moisture variability, *Remote Sens. Environ.*, 154, 246–
464 252, doi: 10.1016/j.rse.2014.08.030, 2014.

465 Jasechko, S., Sharp, Z. D., and Gibson, J. J.: Terrestrial water fluxes dominated by transpiration, *Nature*, 2013, 496,
466 347–350, doi: 10.1038/nature11983, 2013.

467 Kerr, Y.H., Waldteufel, P., Wigneron, J.P., Martinuzzi, J., Font, J., and Berger, M.: Soil moisture retrieval from space:
468 the Soil Moisture and Ocean Salinity (SMOS) mission, *IEEE Trans. Geosci. Remote Sens.*, 39, 1729–1735, doi:
469 10.1109/36.942551, 2001.

470 Koster, R. D., Suarez, M. J., Ducharne, A., Stieglitz, M., and Kumar, P.: A catchment-based approach to modeling
471 land surface processes in a general circulation model: 1. Model structure, *J. Geophys. Res.*, 105, 24809–24822, doi:
472 10.1029/2000JD900327, 2000.

473 Koster, R. D., Schubert, S. D., and Suarez, M. J.: Analyzing the concurrence of meteorological droughts and warm
474 periods, with implications for the determination of evaporative regime, *J. Climate.*, 22, 3331–3341,
475 doi:10.1175/2008JCLI2718.1, 2009.

476 Kullback, S. and Leibler, R. A.: On information and sufficiency, *Ann. of Math. Stat.*, 22, 79–86, doi:
477 10.1214/aoms/1177729694, 1951.

478 Kumar, S. V., Peters-Lidard, C. D., Tian, Y., Houser, P. R., Geiger, J., Olden, S., Lighty, L., Eastman, J. L., Doty, B.,
479 Dirmeyer, P., dams, J.A., Mitchell, K., Wood, E. F., and Sheffield, J.: Land information system: An interoperable
480 framework for high resolution land surface modeling, *Environ. Modell. Softw.*, 21, 1402–1415, doi:
481 10.1016/j.envsoft.2005.07.004, 2006.

482 Lei, F., Crow, W.T., Holmes, T., Hain, C., and Anderson, M.: Global investigation of soil moisture and latent heat
483 flux coupling strength, *Water Resources Research.*, 54, 8196–8215, doi:10.1029/2018WR023469, 2018.

484 Mahrt, L. and Ek, M.: The influence of atmospheric stability on potential evaporation, *J. Clim. Appl. Meteorol.*, 23, 222–234, doi:10.1175/1520-0450(1984)023<0222:TIOASO>2.0.CO;2, 1984.

486 Martens, B., Miralles, D. G., Hans, L., Robin, V. D. S., and de Jeu, J. R. A. M.: Gleam v3: satellite-based land
487 evaporation and root-zone soil moisture, *Geosci. Model Dev.*, 10, 1903–1925, doi: 10.5194/gmd-10-1903-2017, 2017.

488 Miralles, D. G., Holmes, T. R. H., De Jeu, R. A. M., Gash, J. H., Meesters, A. G. C. A., and Dolman, A. J.: Global
489 land-surface evaporation estimated from satellite-based observations, *Hydrol. Earth Syst. Sci.*, 15, 453–469,
490 doi:10.5194/hess-15-453-2011, 2011.

491 Nearing, G. S., Yatheendradas. S., and Crow, W. T.: Nonparametric triple collocation, *Water Resour. Res.*, 53, 5516–
492 5530, doi: 10.1002/2017WR020359, 2017.

493 Nearing, G. S., Ruddell, B. L., Clark, M. P., Nijssen, B., and Peters-Lidard, C. D.: Benchmarking and Process
494 Diagnostics of Land Models, *J. Hydrometeorol.*, 19, 1835–1852, doi: 10.1175/JHM-D-17-0209.1, 2018.

495 Nearing, G. S., Mocko, D. M., Peters-Lidard, C. D., Kumar, S. V., and Xia, Y.: Benchmarking NLDAS-2 Soil
496 Moisture and Evapotranspiration to Separate Uncertainty Contributions, *J. Hydrometeorol.*, 17, 745–759, doi:
497 10.1175/JHM-D-15-0063.1, 2016.

498 Nearing, G. S. and Gupta, H. V.: The quantity and quality of information in hydrologic models, *Water Resour. Res.*,
499 51, 524–538, doi: 10.1002/2014WR015895, 2015.

500 Nearing, G. S., Gupta, H. V. Crow, W. T., and Gong, W.: An approach to quantifying the efficiency of a Bayesian
501 filter, *Water Resour. Res.*, 49, 2164–2173, doi: 10.1002/wrcr.20177. 2013.

502 Niu, G. Y., Yang, Z. L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M., Kumar, A., Manning, K., Niyogi, D., Rosero,
503 E., Tewari, M., and Xia, Y. L.: The community Noah land surface model with multiparameterization options (Noah-
504 MP): 1. Model description and evaluation with local-scale measurements, *J. Geophys. Res.*, 116, 1248–1256,
505 doi:10.1029/2010jd015139, 2011.

506 Paninski, L.: Neural Computation, Estimation of Entropy and Mutual Information., 15, 1191–1253, doi:
507 10.1162/089976603321780272, 2003.

508 Priestley, J. H. C. and Taylor, J.: On the assessment of surface heat flux and evaporation using large-scale parameters,
509 *Mon. Weather Rev.*, 100, 81–92, doi: 10.1175/1520-0493(1972)1002.3.CO;2, 1972.

510 Qiu, J., Crow, W. T., and Nearing, G. S.: The impact of vertical measurement depth on the information content of soil
511 moisture for latent heat flux estimation, *J. Hydrometeorol.*, 17, 2419–2430, doi: 10.1175/JHM-D-16-0044.1, 2016.

512 Qiu, J., Crow, W. T., Nearing, G. S., Mo, X., and Liu, S.: The impact of vertical measurement depth on the information
513 content of soil moisture time series data, *Geophys. Res. Lett.*, 41, 4997–5004, doi: 10.1002/2014GL06001, 2014.

514 Scott, D. W.: Multivariate density estimation and visualization, in *Handbook of Computational Statistics: Concepts*
515 and *Methods*, Springer, New York, 2014.

516 Seneviratne, S. I., Wilhelm, M., Stanelle, T., Hurk, B., Hagemann, S., and Berg, A.: Impact of soil moisture - climate
517 feedbacks on CMIP5 projections: First results from the GLACE - CMIP5 experiment, *Geophys. Res. Lett.*, 40, 5212–
518 5217, doi: 10.1002/grl.50956, 2013.

519 Seneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M., Jaeger, E. B., and Lehner, I.: Investigating soil moisture–climate
520 interactions in a changing climate: A review, *Earth-Sci. Rev.*, 99, 125–161, doi:10.1016/j.earscirev.2010.02.004, 2010.

521 Shannon, C. E.: A mathematical theory of communication, *Bell Labs Tech. J.*, 27, 379–423, doi: 10.1002/j.1538–
522 7305.1948.tb00917.x, 1948.

523 Wagner, W., Lemoine, G., and Rott, H.: A method for estimating soil moisture from ERS scatterometer and soil data,
524 *Remote Sens. Environ.*, 70, 191–207, doi: 10.1016/S0034-4257(99)00036-X, 1999.

525 Yin, J., Porporato, A., and Albertson, J., Interplay of climate seasonality and soil moisture-rainfall feedback, *Water*
526 *Resour. Res.*, 50, 6053–6066, doi: 10.1002/2013WR014772, 2014.