
Reply to Dr. Diego G. Miralles interactive comment 

 

We would like to thank Dr. Diego G. Miralles for his constructive comments. We are 

generally in agreement with his sentiments. Most importantly, we agree that our original 

manuscript was overly aggressive in lumping various evapotranspiration (ET) 

estimation approaches into a single conceptual category. As Dr. Diego points out, there 

are important differences between these approaches that are relevant for the stated 

purposes of our paper.  

 

Nevertheless, we would like to stress that all approaches considered in our paper 

contain (at their core) a parameterized relationship between soil water content (θ) and 

ET. While the implications of mis-parameterization this relationship are arguably more 

severe for a land surface model, we believe that this issue remains relevant for any 

approach (such as GLEAM) that utilizes a water balance (and/or data assimilation 

system) approach to estimate θ and, in turn, uses θ to constrain ET. Regardless of the 

complexity that a given approach employs, failing to accurately describe the 

relationship between ET and (large number of potential) environmental constraints 

should eventually degrade the robustness of the model. We believe that this is true 

regardless of whether a model is employed as a retrospective, diagnostic or predictive 

manner. Our paper is an attempt to “open the lid” on these models to measure internal 

θ/ET coupling and explore the impact of potential mis-coupling on ET estimation.  

 

Given this emphasis, Diego’s suggestion to expand our analysis to include direct flux 

validation is an excellent one. Indeed, preliminary results suggest that, despite its 

simplicity, GLEAM does not underperform more complex land surface models with 

respect to daily ET predictions. Therefore, as Diego points out, any criticism of 

GLEAM must be tempered by this bottom-line result. 

 

Therefore, we’ve made the following changes to our current manuscript: 

 

1. Change the characterization of GLEAM from a "land surface model" to "retrieval 

algorithm" throughout the revised manuscript and add a more complete discussion of 

differences in complexity and envisioned application for various modelling approaches.  

 

2. Directly evaluate the GLEAM ET accuracy and better describe the connection 

between accurate θ/ET coupling and the absolute accuracy of GLEAM ET predictions. 

Pertinent revisions are presented in new Fig. 6 and the related discussions.  

 



Reply to Referee #1 interactive comment 

 

We would like to thank Referee #1 for the constructive comments.  

 

I only have one comment for one issue which I think the authors should consider. In the 

study I did not find any particular discussion related to the type of vegetation 

characterizing the AmeriFlux sites and its effect on the result. I think that vegetation 

type can be relatively important as for example grass roots are shallower with respect 

to tree and shrub roots and thus can exert potential different effects both on the coupling 

strength between the soil moisture profile (surface vs. root zone) and on the 

transpiration flux itself also considering that transpiration is the dominant pathway for 

the total evapotranspiration and is estimated to account for two-thirds of global land ET 

based on flux tower measurements (Schlesinger and Jasechko,2014). Based on that the 

authors should provide at least a discussion on the potential effects of the vegetation 

type on the presented results. 

 

Thanks for the comments. In order to minimize the effect of different root depths from 

different vegetation types on NMI(θS, fPET) and NMI(θV, fPET), we used exponential 

filter to extrapolate θ to a unified 40 cm bottom layer depth and find that the overall 

fPET information contained in θS is slightly higher than that of θV. However, the 

difference between NMI(θS, fPET) and NMI(θV, fPET) diminishes when using different 

methods for calculating θV using AmeriFlux observations. 

 

We’ve added more extensive discussion regarding the role of vegetation on key results 

in the revised manuscript. In particular, Fig. 4 has been newly expanded to better isolate 

the impact of vegetation type and the role of vegetation types is now directly addressed 

via new text appearing in Section 3.3 of the revised manuscript. 

 

Furthermore, we showed the result of NMI(θS, fPET)/NMI(θV, fPET) ratio as a function 

of vegetation type in Fig. A1. The conclusion that the overall fPET information 

contained in θS is slightly higher than that of θV does not vary with vegetation types, 

although NMI(θS, fPET) is much higher than NMI(θV, fPET) in open shrubland and 

woody savannas. 

 

 

For the rest comments annotated in the manuscript: 

1. P6 Line 141. Ac and As not defined 

We’ve made the following revision in Section 2.2 to clearly defined Ac and As: 

“Based on Vmax, photosynthesis rates per unit LAI including carboxylase-limited 

(Rubisco limited, denoted by AC) type and export-limited (for C3 plants, denoted by AS) 

type are calculated respectively.” 

 

2. P9 Line 211-215. Maybe a statement to point to section 3.1 is necessary here. 



As suggested, we’ve added a statement to directly point to results starting from Section 

3.1: 

“Therefore, relative comparisons between NMI(θS, fPET) and NMI(θV, fPET) are based 

on examining the size of their mutual ratio NMI(θS, fPET)/NMI (θV, fPET).” 

 

3. P9 Line 222. Is it for Case I? 

Yes, the “vertically-integrated (0–40 cm) soil moisture” is estimated from Case I. We’ve 

also clarified this in Section 3.1: 

“…i.e., the relative magnitude of fPET information contained in surface soil water 

content and vertically-integrated (0–40 cm) soil water content estimated from Case I…”  

 

4. P14 Line 287. Even though the sample size is small it would be nice to have also 

similar plots and the plots above for different vegetation type. 

As suggested, we’ve revised Fig. 4 so that samples are plotted separately according to 

their vegetation types. With varying magnitudes, the overall overestimation of GLEAM 

is observed across different vegetation types. 

 

5. P14 Line 291-294. This trend is not really evident. I see an evident increasing ratio 

only when AI approaches to zero. Maybe a statistical significance of this trend should 

analyzed. 

As suggested, we’ve added analysis of statistical significance of this trend. Indeed, the 

increasing trend of NMI(θS, fPET)/NMI(θV, fPET) ratio is more evident for CLSM, 

with a moderate goodness-of-fit (0.28). We’ve also clarified this in Section 3.4: 

“With increasing AI, there is a significant decreasing trend in both NMI(θS, fPET) and 

NMI(θV, fPET) for all three simulations, with a goodness-of-fit above 0.5 (figure not 

shown). For all cases, the NMI(θS, fPET)/NMI(θV, fPET) ratios are consistently greater 

than unity under all climatic conditions. However, the estimated NMI(θS, fPET)/NMI(θV, 

fPET) ratios from all three simulations (NOAHMP, CLSM and GLEAM) exhibit quite 

different trends with respect to AI. The NMI(θS, fPET)/NMI(θV, fPET) ratio for CLSM 

decreases with increasing AI, with a moderate goodness-of-fit value of 0.28,…” 

 

6. P15 Line 315. This can also depend upon the vegetation type as grass and trees are 

characterized by different root depths. They can exert a different effects on the coupling 

between soil moisture and evapotranspiration. 

Thanks for the comments. This concern of different root depths impact is addressed by 

applying different methods to retrieve vertically integrated θ as we stated in Section 2.1. 

The entire analysis is based on the default case I that exponentially filter θ to a unified 

40 cm bottom layer depth, and it is found that the overall fPET information contained 

in θS is slightly higher than that of θV. However, the difference between NMI(θS, fPET) 

and NMI(θV, fPET) is less obvious when using different methods for calculating θV 

using AmeriFlux observations. 

 

In addition, we’ve showed the result of NMI(θS, fPET)/NMI(θV, fPET) ratio as a 

function of vegetation type in Fig. A1. The conclusion that the overall fPET information 



contained in θS is slightly higher than that of θV does not vary with vegetation types, 

although NMI(θS, fPET) is obviously higher than NMI(θV, fPET) in open shrubland 

and woody savannas. 

 



Reply to Referee #2 interactive comment 

 

We would like to thank Referee #2 for the constructive comments.  

 

This is a well written paper with a clear contribution to ecohydrological modeling and 

I have very few comments. The first relates to the jargon in the title. Please try to 

simplify the title for the paper to be appealing to a wider audience. Secondly, the aims 

and objectives of the paper must be clearly formulated and also indicate what is new or 

novel about this study and who benefits from it? Lastly, what is the take-home message 

from this study given that no conclusions are given? 

Thanks for the comments. We agree that our original title could be improved. 

Accordingly, the title of revised manuscript has been changed to “Model Representation 

of the Coupling between Evapotranspiration and Soil Water Content at Different 

Depths.” We feel that this is more accessible to a broader audience. 

 

In addition, we’ve revised the abstract and introduction to better emphasize the aim and 

objectives of the paper and provide a concise summary of major conclusion and the 

target readers with most potential interest are also highlighted in the abstract. 

 

 

SPECIFIC COMMENTS 

- Keywords: - “surface evapotranspiration” is listed as a keyword/phrase. Delete the 

word “surface”  

Thank you for these comments. The keyword of “surface evapotranspiration” has been 

revised as suggested.  

 

- Line 27 – indicate that some if the incoming energy is absorbed by the surface… given 

that you are mentioning biochemical cycles in line 30  

To avoid this issue, we’ve removed all mentions of biochemical cycles in the 

manuscript.  

 

- There are inconsistencies throughout the paper regarding the evaporation terms. A 

typical example is in lines 11 to 12 in the abstract where the authors refer to the sensible 

heat flux and evapotranspiration (ET) in the same sentence. Rather also use the energy 

equivalent of ET (i.e. the latent heat flux) and be consistent throughout the paper.  

Thank you for this comment – we agree this was an issue in the original manuscript. In 

the revised version, the energy equivalent of ET (i.e., the latent heat flux) has been used 

consistently when also referencing sensible heat flux.  

 

- Line 59: What is meant by ET entropy? This is not a standard micrometeorology or 

ecohydrological phrase. Please define such terms.  

Thank you for the comments. The original expression of “corresponding ET entropy” 

refers to the entropy of a corresponding ET time series. This is clarified in the revised 



manuscript. 

 

- Throughout the paper rather use the phrase “soil water content” which is more specific 

than “soil moisture”  

We’ve replaced the expressions of “soil moisture” with “soil water content” throughout 

the manuscript. 

 

- Lines 63-64 not necessary  

These two unnecessary sentences have been removed as suggested. 

 

- Line 75 sounds rather cyclic, rephrase! 

The sentence has been rephrased to “As described above, θ/ET coupling assessments 

made using AmeriFlux observations are compared with those using state-of-the-art 

LSMs including…” 

 

- How did you account for the accuracy of the different types of soil water content 

sensors or their depth of installation across the AmeriFlux sites? How does this affect 

your results?  

As the most of the AmeriFlux sites involved in the analysis are using frequency domain 

reflectometer probe for soil water content measurements, the impact of different sensors 

on our conclusion is limited.  

 

Secondly, to minimize the effect of different measurement depths on our analysis, we 

designed three different cases to estimate vertically integrated soil water content (θV). 

Case I was based on the application of an exponential filter (Wagner et al., 1999; 

Albergel et al., 2008) to extrapolate θS to a consistent 40 cm bottom layer depth. 

Therefore, only θS was used to derive θV and the bottom-layer (or second layer) 

AmeriFlux θ measurement was neglected in this case. Nevertheless, since the quality 

of θV estimates is important in our analysis, we also calculated two additional cases 

where 0–40 cm θV was estimated using: 1) the bottom-layer soil water content 

measurement acquired at each AmeriFlux site (hereinafter, Case II) and 2) linear 

interpolation of θS and the bottom-layer AmeriFlux soil water content measurement 

(hereinafter, Case III).  

 

The sensitivity of key results show that compared to the baseline Case I of exponential 

filter extrapolated 40-cm bottom layer θV, LSMs and GLEAM agree with AmeriFlux 

observations in that the overall fPET information contained in θS is slightly higher than 

that of θV. However, the sensitivity analysis showed this difference between NMI(θS, 

fPET) and NMI(θV, fPET) diminishes when using different methods for calculating θV 

using AmeriFlux observations. These experimental designs and the corresponding 

findings are clearly stated in the revised manuscript.  

 

- The vegetation acts as the link between the atmosphere and soil water content in deep 

soil profiles. Please give more details on how the vegetation types affected your 



analysis/results.  

Thanks for the comments. As mentioned in the response to the previous comment, in 

order to minimize the effect of different root depths from different vegetation types on 

NMI(θS, fPET) and NMI(θV, fPET), we used an exponential filter to extrapolate θ to a 

unified 40 cm bottom layer depth and find that the overall fPET information contained 

in θS is slightly higher than that of θV. However, the difference between NMI(θS, fPET) 

and NMI(θV, fPET) diminishes when using different methods for calculating θV using 

AmeriFlux observations. 

 

We’ve added more extensive discussion regarding the role of vegetation on key results 

in the revised manuscript. In particular, Fig. 4 has been newly expanded to better isolate 

the impact of vegetation type and the role of vegetation types is now directly addressed 

via new text appearing in Section 3.3 of the revised manuscript. 

 

Furthermore, we showed the result of NMI(θS, fPET)/NMI(θV, fPET) ratio as a function 

of vegetation type in Fig. A1. The conclusion that the overall fPET information 

contained in θS is slightly higher than that of θV does not vary with vegetation types, 

although NMI(θS, fPET) is much higher than NMI(θV, fPET) in open shrubland and 

woody savannas. 

 

- Line 107: What is the bottom layer soil moisture measurement? Define this, else 

rephrase.  

As soil water content measurements are generally available at two discrete depths at the 

AmeriFlux sites, the bottom layer measurements refer to the measurements at the 

deeper depth or the second observation layer from surface. This has been clarified in 

the revised manuscript. 

 

- 2) options for θ factor for stomatal resistance (the β factor). Not clear what this 

represents. What is a theta factor? What does it do? - and reference soil moisture (m3 

m-3), How is this defined? Confusion over symbols. 

The θ factor stands for soil water content, and different expressions of θ lead to different 

representations of relationship between θ and stress factor β. We’ve revised the original 

expression to “…and schemes controlling the effect of θ on the vegetation stress factor 

β”. As clarified in the revised manuscript, reference soil moisture is set as field capacity 

in the NOAH users’ guide for parameterization.  

 

- Sometimes you mention stomatal resistance, and at other times stomatal conductance; 

line 142. Choose one and stick to it otherwise this easily gets very confusing.  

As suggested, we’ve revised the only occurrences of the term “stomatal conductance” 

in Section 2.2 into “stomatal resistance” to avoid any confusion.  

 

- line142 – stomatal conductance is not the sole driver of ET. It’s more complex than 

that. 

To avoid such confusion, we’ve revised expression as “The minimum of AC, AS and 



light-limited photosynthesis rate determines stomatal resistance rs, and consequently 

affects ET over vegetated areas”. 

 

- Please elaborate - Eqn 6: what does the symbol H mean here? Thought you said H 

was the sensible heat flux earlier?  

In the original Eq. 6, H represents Shannon-type entropy of the variable ζ. Indeed, it 

could be easily confused with sensible heat flux symbol mentioned in Section 1. 

Therefore, we’ve replaced the symbol H in Eq. 6 with SE.  

 

- Fig 4 these are poor model performances. 

Indeed, the consistency of NMI(θ, fPET) between models and observations varies 

across different vegetation types, and varies across different models. However, it should 

be noted that the absolute value of NMI(θ, fPET) is not a direct index to measure model 

performance. Furthermore, our analysis conclusion will not be affected as we are using 

the relative ratio of NMI(θS, fPET)/NMI(θV, fPET). 
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Abstract. Soil moisturewater content (θ) impactsinfluences the climate system by regulating controlling fraction of 11 

incoming solar and longwave energy that is converted into evapotranspiration (ET)into outgoing evapotranspiration 12 

(ET) and sensible heat flux components. Therefore, investigating the coupling strength between θ and ET is important 13 

for the study of land surface/atmosphere interactions. Physical models are commonly tasked with representing the 14 

coupling between θ and ET; however, few studies have evaluated the accuracy of model-based estimates of θ/ET 15 

coupling (especially at multiple soil depths). To address this issueHere, we use in-situ AmeriFlux observations to 16 

evaluate θ/ET coupling strength estimates acquired from multiple land surface models (LSMs) and an ET retrieval 17 

algorithm – the Global Land Evaporation Amsterdam Model (GLEAM). For maximum robustness, coupling strength 18 

is represented using the sampled normalized mutual information (NMI) between θ estimates acquired at various 19 

vertical depths and surface evaporation flux expressed as arepresented by fraction of potential evapotranspiration 20 

(fPET, the ratio of ET to potential ET). Results indicate that LSMs and GLEAM are generally in agreement with 21 

AmeriFlux measurements in that surface soil moisturewater content (θS) contains slightly more NMI with fPET than 22 

vertically integrated soil moisturewater content (θV). Overall, LSMs and GLEAM adequately capture variations in 23 

NMI between fPET and θ estimates acquired at various vertical depths. However, one model – the Global Land 24 

Evaporation Amsterdam Model (GLEAM) – significantly overestimates the NMI between θ and ET and the relative 25 

contribution of θS to total ET. This bias appears attributable to differences in GLEAM’s ET estimation scheme relative 26 

to the other two LSMs considered here (i.e., the Noah model with mMulti–parameterization options and the Catchment 27 

Land Surface Model). These results provide insight into improved LSM model structure and parameter optimization 28 

for land surface-atmosphere coupling analyses. 29 

Keywords. Land surface/atmosphere interaction, soil moisturewater content, surface evapotranspiration 30 

1 Introduction 31 

Soil moisturewater content (θ) modulates water and energy feedbacks between the land surface and the lower 32 

atmosphere by partitioning incoming energy into evapotranspiration (ET) and sensible heat (H) surface flux 33 

componentsdetermining the fraction of incoming solar energy that is converted in evapotranspiration (ET) 34 

(Seneviratne et al., 2010, 2013). In water-limited regimes, θ exhibits a dominant control on ET and, and therefore e, 35 

commonly exerts significant terrestrial control on the earth’s water and, energy and biochemical cycles. Accurately 36 

representing θ/ET coupling in land surface models (LSMs) is therefore expected to improve our ability to project the 37 

future frequency of extreme climates (Seneviratne et al., 2013).  38 

A key question is how the constraint of θ on ET and H varies as θ is vertically integrated over deeper vertical soil 39 

depths. Given the tendency for the time scales of θ dynamics to vary strongly with depth, the degree to which the ET 40 

is coupled with vertical variations in θ determines the temporal scale at which θ variations are propagated into the 41 

lower atmosphere. Therefore, in order to represent θ/ET coupling, and thus land/atmosphere interactions in general, 42 

LSMs must accurately capture the relationship between vertically varying θ values and ET. Unfortunately, their ability 43 

ies to do so remains an open question.  44 
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Recently, land surface/atmosphere coupling strength has been investigated by sampling mutual information proxies 45 

(e.g., correlation coefficient or other coupling indices) between time series of θ and ET observations (or air temperature 46 

proxies for ET). Results suggest that, even when confined to very limited vertical support (e.g., within the top 5 cm 47 

of the soil column), surface θ estimates retain significant information for describing overallexamining θ controls on 48 

local climate (Ford and Quiring, 2014b; Qiu et al., 2014; Dong and Crow, 2018; Dong and Crow, 2019). These findings 49 

are in contrast with the common perceptions that ET is constrained onlydominated by θ values withinat deeper soil 50 

layers (Hirschi et al., 2014). Hence, it is necessary to examine whether LSMs can realistically reflect observed 51 

variations of θ/ET coupling strength in thewithin the vertical soil profiles. 52 

Previous studies examining the θ/ET relationship have generally been based on Pearson product-moment correlation 53 

(Basara and Crawford, 2002; Ford et al., 2014a), which captures only the strength of a linear relationship between two 54 

variables. However, the coupling between θ and ET is generally nonlinear. Therefore, non-parametric mutual 55 

information measures are generally more appropriate. Nearing et al. (2018) used information theory metrics (transfer 56 

entropy, in  particular) to measure the strengths of directed couplings between different surface variables, including 57 

soil moisturewater content, and surface energy fluxes at short timescales in several LSMs. They found that the LSMs 58 

arewere generally biased as compared with strengths of couplings in observation data, and that these biases differed 59 

across different study sites. However, they did not look specifically at the effect of vertical moisturewater content 60 

profiles or of subsurface soil moisturewater content on partitioning surface energy fluxes. 61 

Here we apply the information theory-based methodology of Qiu et al. (2016) to examine the relationship between 62 

the vertical support of θ estimates and their mutual information (MI) with respect to ET. Our approach is based on 63 

analyzing the MI content between ET and θ time series - acquired from both LSMs, ET retrieval algorithm – the 64 

Global Land Evaporation Amsterdam Model (GLEAM) and AmeriFlux in-situ observations. MI values are then 65 

normalized by entropy in the corresponding ET time series corresponding ET entropy to remove the effect of inter-66 

site variations toand generate estimates of Normalized Mutual Information (NMI) between θ and ET. Examined θ 67 

time series have two different vertical supports: Both surface (roughly 0–10 cm) soil moisturewater content (θS) and 68 

vertically integrated (0–40 cm) soil moisturewater content (θV) are considered to capture the impact of depth on NMI 69 

results. AmeriFlux-based  NMI results are then compared with analogous NMI results obtained from LSM-based and 70 

GLEAM-based θ and ET time series.  71 

Further details on our methodology are presented in Sect. 2. Results are presented in Sect. 3 and discussed/summarized 72 

in Sect. 4.  73 

2 Data and Methods 74 

The AmeriFlux network provides temporally continuous measurements of θ, surface energy fluxes and related 75 

environmental variables for sites located in a variety of North American ecosystem types, e.g., forests, grasslands, 76 

croplands, shrublands and savannas (Boden, et al., 2013). To minimize sampling errors, AmeriFlux sites lacking a 77 
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complete 3-year summer months (June, July and August) daily time series between the years of 2003 and 2015 (i.e., 78 

3×92=276 daily observations in total) of θS,  θV and latent heat flux (LE) arewere excluded here - resulting in the 34 79 

remaining eligible AmeriFlux sites listed in Table 1. These sites cover a variety of climate zones within the contiguous 80 

United States (CONUS). Table 1 gives background information on these 34 sites including local land cover 81 

information. Hydro-climatic conditions in each site arewere characterized using the aridity index (AI) – calculated 82 

using CRU (Climate Research Unit, v4.02) monthly precipitation and potential evaporation (PET) datasets. 83 

As described above, θ/ET coupling assessments made using AmeriFlux observations arewere compared with 84 

comparable assessments based on output fromthose using state-of-the-art LSMs including the Noah model with 85 

Mmulti–parameterization options (NOAHMP) and , Catchment Land Surface Model (CLSM). In addition,  and θ and 86 

ET retrievals provided by the Global Land Evaporation Amsterdam Model (GLEAM) are also considered. See below 87 

forr more model details on all three approaches. To avoid any spurious correlations between θ and ET due to 88 

seasonality, all NMI analyses arewere performed on θ and ET time series anomalies acquired during the period 2003–89 

2015. The θ and ET anomalies arewere calculated by removing the seasonal cycle – defined as 31-day window 90 

averages centered on each day-of-year sampled across all years of the 2003–2015 historical data record – from the 91 

raw θ and ET time series data. The analysis was is limited to the CONUS during summer months (June, July and 92 

August) when θ/ET coupling iwas expected to be maximized.  93 

Table 1 Attributes of selected AmeriFlux sites 94 

AmeriFlux sites Land cover 
Elevation 

[m] 

Top-

layer 

depth 

[cm] 

Bottom-

layer 

depth 

[cm] 

ARM SGP Main Cropland 314 10a 20b 

ARM USDA UNL OSU 
Woodward Switchgrass 1 

Grassland 611 10 30 

Audubon Research Ranch Grassland 1469 10 20 

Bondville Cropland 219 10c 20 

Brookings Grassland 510 10 20 

Chimney Park Evergreen needleleaf forest 2750 0-15 15-45 

Duke Forest Hardwoods Deciduous broadleaf forest 168 10 25 

Duke Forest Open Field Grassland 168 10 25 

Fermi Agricultural Cropland 225 2.5 10 

Fermi Prairie Grassland 226 2.5 10 

Flagstaff Managed Forest Evergreen needleleaf forest 2160 2 10 

Flagstaff Unmanaged Forest Woody savannas 2180 2 10 

Flagstaff Wildfire Grassland 2270 2 10 

Fort Peck Grassland 634 5d 20 

Freeman Ranch Woodland Woody savannas 232 10 20 

Glacier Lakes Ecosystem 
Experiments Site 

Evergreen needleleaf forest 3190 5 10 

Howland Forest Main Mixed forest 60 NA NA 
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Lucky Hills Shrubland Open shrubland 1372 5 15 

Marys River Fir Site Evergreen needleleaf forest 263 10 20 

Metolius Intermediate Pine Evergreen needleleaf forest 1253 0-30 NA 

Missouri Ozark Deciduous broadleaf forest 219 10 100 

Nebraska SandHills Dry Valley Grassland 1081 10 25 

Quebec Boreal Cutover Site Evergreen needleleaf forest 400 5 20 

Quebec Mature Boreal Forest Site Evergreen needleleaf forest 400 5 10 

Santa Rita Creosote Open shrubland 991 2.5 12.5 

Santa Rita Mesquite  Woody savannas 1116 2.5-5 5-10 

Sherman Island Grassland -5 10 20 

Sylvania Wilderness Mixed forest 540 5 10 

Tonzi Ranch Woody savannas 169 0 20 

University of Michigan Biological 
Station 

Deciduous broadleaf forest 234 0-30 NA 

Vaira Ranch Grassland 129 0 10 

Walker Branch Deciduous broadleaf forest 343 5 10 

Willow Creek Deciduous broadleaf forest 515 5 10 

Wind River Field Station Evergreen needleleaf forest 371 30e 50f 
 95 
a Was 5 cm prior to 4/13/2005 96 
b Was 25 cm prior to 4/13/2005 97 
c Was 5 cm prior to 1/1/2006 98 
d Was 10 cm (2003-2008) 99 
e Was 0-30 cm prior to 2007 100 
f  Was NaNUnavailable  prior to 2007 101 

2.1 Ground-based AmeriFlux measurements 102 

The Level 2 (L2) AmeriFlux LE and sensible heat (H) flux observations are based on high-frequency (typically > 10 103 

Hz) eddy covariance measurements processed into half-hourly averages by individual AmeriFlux investigators. LE 104 

and θ observations at a half-hour time step and without gap-filling procedures arewere collected from the AmeriFlux 105 

Site and Data Exploration System (see http://ameriflux.ornl.gov/). The LE and θ observations arewere further 106 

aggregated into daily (0 to 24 UTC) values, and daily LE iwas converted into daily ET using the latent heat of 107 

vaporization. Daily ET values based on less than 30% half-hourly coverage (i.e., < 15 half-hourly observations per 108 

day) arewere considered not representative at a daily time scale and therefore excluded.  109 

Soil moisturewater content measurements are generally available at two discrete depths that vary between the 110 

AmeriFlux sites (Table 1). Here, the top (i.e., closest to the surface) soil moisturewater content observation iwas 111 

always used to represent surface soil moisturewater content (θS). Since the depth of this top -layer measurement varies 112 

between 0 and 15 cm (see Table 1), we consider the surface-layer measurement θS to be roughly representative of 0–113 

10 cm (vertically integrated) θ. 114 

Given variations in the depth of the lower AmeriFlux θ observations (see Table 1), we applied a variety of approaches 115 

for estimating vertically integrated soil moisturewater content (θV). Our first approach, hereinafter referred to as Case 116 
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I, iwas based on the application of an exponential filter (Wagner et al., 1999; Albergel et al., 2008) to extrapolate θS 117 

to a consistent 40- cm bottom layer depth. Therefore, only θS iwas used to derive θV and the bottom-layer (or second 118 

layer) AmeriFlux θ measurement iwas neglected in this case. The application of the exponential filter requires a single 119 

time-scale parameter T. Since θ measurements from United States Department of Agriculture’s Soil Climate Analysis 120 

Network (SCAN) are taken at fixed soil depth, we utilized this dataset to determine the most appropriate parameter T 121 

at AmeriFlux sites. Following Qiu et al. (2014), first, we estimated the optimal parameter T (Topt) for the extrapolation 122 

of θ measurements from 10 cm to 40 cm depth and established a global relationship between Topt and site-based 123 

NDVI (MOD13Q1 v006, 250m, 16-day) (Topt = 2.098 × exp(–1.895 × (NDVI + 0.6271)) + 2.766). Then, this global 124 

relationship (Goodness of Fit R2: 0.85) was is applied to AmeriFlux sites to extrapolate 0–10 cm θS times series into 125 

0–40 cm θV.  126 

Previous research has suggested that such a filtering approach does not significantly squander ET information present 127 

in actual measurements of θV (Qiu et al., 2014; Qiu et al., 2016). Nevertheless, since the quality of θV estimates is 128 

important in our analysis, we also calculated two additional cases where 0–40 cm θV iwas estimated using: 1) the 129 

bottom-layer soil moisturewater content measurement acquired at each AmeriFlux site (hereinafter, Case II) and 2) 130 

linear interpolation of θS and the bottom-layer AmeriFlux soil moisturewater content measurement (hereinafter, Case 131 

III). The sensitivity of key results to these various cases is discussed below.  132 

2.2 LSM-based and GLEAM-based simulations 133 

LSM outputSimulations iwas acquired from NOAHMP (Niu et al., 2011) and CLSM (Koster et al., 2000) LSMs 134 

simulations embedded within the NASA Land Information System (LIS, Kumar et al., 2006) and the GLEAM a ET 135 

retrieval algorithmsatellite-observation-based model GLEAM (Miralles et al., 2011). Both NOAHMP and CLSM 136 

arewere set-up to simulate 0.125° θ profiles at a 15-minute time step using North America Land Data Assimilation 137 

System, Phase 2 (NLDAS-2) forcing data. A 10-year model spin-up period (1992 to 2002) iwas applied for NOAHMP 138 

and CLSM.    139 

NOAHMP numerically solves the one-dimensional Richards equation within four soil layers of thicknesses of 10, 30, 140 

60, and 100 cm. Major parameterization options relevant to θ simulation include : 1) options for canopy stomatal 141 

resistance parameterization; 2) options for and schemes controlling the effect of θ on the vegetation stress factor βθ 142 

factor for stomatal resistance (the β factor). Here we employed the Ball‐Berry‐type stomatal resistance scheme and 143 

Noah-type soil moisturewater content factor controlling the β factor. The specific expressions are as follows: 144 

 𝛽 = ∑
∆Zi

Zroot

Nroot

i=1

min (1.0, 
θi−θwilt

θref−θwilt
) (1) 145 

where θwilt and θref are respectively soil moisturewater content at witling point (m3 m−3) and reference soil 146 

moisturewater content (m3 m−3), which is close to set as field capacity during parameterization. θi and Δzi are soil 147 
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moisturewater content (m3 m−3) and soil depth (cm) at ith layer, Nroot and zroot are total number of soil layers with roots 148 

and total depth (cm) of root zone, respectively.  149 

Following the Ball-Berry stomatal resistance scheme, the θ-controlled β factor and other multiplicative factors 150 

including temperature, foliage nitrogen simultaneously determine the maximum carboxylation rate Vmax as follows:  151 

 Vmax = Vmax25 αvmax

Tv-25

10   f(N) f(Tv) β (2) 152 

where Vmax25 is maximum carboxylation rate at 25°C (μmol CO2 m−2 s−1); αvmax is a parameter sensitive to vegetation 153 

canopy surface temperature Tv; f(N) is a factor representing foliage nitrogen and f(Tv) is a function that mimics thermal 154 

breakdown of metabolic processes. Based on Vmax, carboxylase-limited (Rubisco limited) and export-limited (for C3 155 

plants) photosynthesis rates per unit LAI including carboxylase-limited (Rubisco limited, denoted by AC) type and 156 

export-limited (for C3 plants, denoted by AS) type(AC and AS respectively) are calculated respectively., and the The 157 

minimum of AC, AS and light-limited photosynthesis rates determines stomatal resistanceconductance rs, and, 158 

consequently affectsthe ET over vegetated areas. For the complete NOAHMP configuration, please see Table S1 in 159 

the supplementary material. 160 

CLSM simulates the 0–2 and 0–100 cm soil moisturewater content and evaporative stress as a function of simulated 161 

θ and environmental variables. ET is then estimated based on the estimated evaporative stress and land-atmosphere 162 

humidity gradients. Energy and water flux estimates are iterated with soil state estimates (e.g., θ and soil temperature) 163 

to ensure closure of surface energy and water balances. For athe detailed explanation of CLSM physics, please refer 164 

to Koster et al. (2000). 165 

GLEAM is a set of algorithms dedicated to the estimation of terrestrial ET and root-zone θ from satellite data. In this 166 

study, the latest version of this model (v3.2a) is employed. In GLEAM, the configuration of soil layers varies as a 167 

function of the land-cover type. Soil stratification is based on three soil layers for tall vegetation (0–10, 10–100, and 168 

100–250 cm), two layers for low vegetation (0–10, 10–100 cm) and only one layer for bare soil (0–10 cm) (Martens 169 

et al., 2017).   170 

The cover-dependent PET (mm day-1) of GLEAM is calculated using the Priestley and Taylor (1972) equation based 171 

on observed air temperature and net radiation. Following this, estimates of PET arewere converted into actual 172 

transpiration or bare soil evaporation (depending on the land-cover type, ET (mm day-1)), using a cover-dependent, 173 

multiplicative stress factor S (–), which is calculated as a function of microwave vegetation optical depth (VOD) and 174 

root-zone θ (Miralles et al., 2011). The related expressions are as follows:  175 

 ET  =  PET × S + Ei (3) 176 

 𝑆 = √
VOD

VODmax
(1 − (

𝜃c−𝜃𝜔

𝜃c−𝜃wilt
)

2

) (4) 177 
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where Ei is rainfall interception (mm); S essentially represents the fPET (see Sect. 2.3) estimated by GLEAM; 𝜃c (m3 178 

m−3) is the critical soil moisturewater content and 𝜃ω (m3 m−3) is the soil moisturewater content of the wettest layer, 179 

assuming that plants withdraw water from the layer that is most accessible. Based on (4), GLEAM S (or fPET) tend 180 

to become more sensitive to θ in areas of low VOD seasonality (i.e., low differences between VOD and VODmax). As 181 

for bare soil conditions, S is linearly related to surface soil moisturewater content (θ1): 182 

 S  = 1 −
𝜃c−𝜃1  

𝜃c−𝜃wilt
. (5) 183 

To resolve variations in the vertical discretization of θ applied by each model, we linearly interpolated NOAHMP, 184 

CLSM and GLEAM outputs into daily 0–10 and 0–40 cm soil moisturewater content values using depth-weighted 185 

averaging. 186 

2.3 Variable indicating soil moisturewater content and surface flux coupling 187 

Soil moisturewater content – ET coupling can be diagnosed using a variety of different variables derived from ET, 188 

e.g. the fraction of PET (fPET, the ratio of ET and PET) or the evaporative fraction (EF, the ratio of LE and the sum 189 

of LE and sensible heat). Since ET is strongly tied to net radiation (Rn) (Koster et al., 2009), both fPET and EF are 190 

advantageous in that they normalize ET byand removing the impact of non-soil moisturewater content influences on 191 

ET (e.g., net radiation, wind speed and soil heat flux (G)). However, since sensible heat flux is not provided in the 192 

GLEAM dataset, we are restricted here to using fPET.  193 

It should be noted that the applied meteorological forcing data for NOAHMP and CLSM arewere somewhat different 194 

from those used for GLEAM. Therefore, to minimize the impact of this difference, NOAHMP and CLSM fPET were 195 

are computed from North American Regional Reanalysis (NARR) using the modified Penman scheme of Mahrt and 196 

Ek (1984) while GLEAM fPET iwas calculated using its own internal PET estimates. To examine the impact of PET 197 

source on results, AmeriFlux fPET calculations arewere calculated duplicated using both GLEAM- and NARR-based 198 

PET values.  199 

2.4 Information measures 200 

Mutual information (MI) (Cover and Thomas, 1991) is a nonparametric measure of correlation between two random 201 

variables. MI and the related Shannon-type entropy (SE, Shannon, 1948) are calculated as follows. Entropy about a 202 

random variable ζ is a measure of uncertainty according to its distribution pζ and is estimated as the expected amount 203 

of information from pζ sample: 204 

 SEH(pζ) = Eζ [-ln(pζ ( ζ ))]. (6) 205 

Likewise, MI between ζ and another variable ψ can be thought of as the expected amount of information about variable 206 

ζ contained in a realization of ψ and is measured by the expected Kullback-Leibler (KL) divergence (Kullback and 207 

Leibler, 1951) between the conditional and marginal distributions over ζ:  208 
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 MI(ζ;ψ) = Eψ[D(pζ∣ψ‖pζ)]. (7)  209 

In this context, the generic random variables ζ and ψ represent fPET and θ (soil moisturewater content) respectively. 210 

The observation space of the target random variable fPET iwas discretized using a fixed bin width. As bin width 211 

decreases, entropy increases but mutual information asymptotes to a constant value. On the other hand, increased bin 212 

width requires more sample size, which cannot always be satisfied. The trick is choosing a bin width where the NMI 213 

values stabilize with sample size. After a careful sensitivity analysis, we choose a fixed bin width of 0.25 [-] for fPET 214 

and make sure that each AmeriFlux site have enough samples to accurately estimate the NMI, and change of this 215 

constant bin width from 0.1–0.5 [-] will not significantly alter our conclusions. Following Nearing et al. (2016), a bin 216 

width of 0.01 m3 m−3 (1% volumetric water content) for θ iwas applied. Integrations required for MI calculation in Eq. 217 

(7) are then approximated as summations over the empirical probability distribution function bins (Paninski, 2003).  218 

By definition, the MI between two variables represents the amount of entropy (uncertainty) in either of the two 219 

variables that can be reduced by knowing the other. Therefore, the MI normalized by the entropy of the AmeriFlux-220 

based fPET measurements represents the fraction of uncertainty in fPET that is resolvable given knowledge of the soil 221 

moisturewater content state (Nearing et al., 2013). Unlike Pearson’s correlation coefficient, MI is insensitive to the 222 

impact of nonlinear variable transformations. Therefore, it is well suited to describe the strength of the (potentially 223 

non-linear) relationship between θ and fPET.  224 

Here, we applied this approach to calculate the MI content between soil moisturewater content representing different 225 

vertical depths (as reflected by θS and θV) and fPET at each AmeriFlux site. All estimated site-specific MI were are 226 

normalized by the entropy of the corresponding AmeriFlux-based fPET measurements to remove the effect of inter-227 

site entropy variations on the magnitude of NMI differences. The resulting normalized MI calculations between both 228 

θS and θV and fPET are denoted as NMI(θS, fPET) and NMI(θV, fPET) respectively.  229 

The underestimation of observed θ/ET coupling via the impact of mutually-independent θ and ET errors in AmeriFlux 230 

observations (Crow et al. 2015) iwas minimized by focusing on the ratio between NMI(θS, fPET) and NMI (θV, fPET). 231 

Therefore, relative comparisons between NMI(θS, fPET) and NMI(θV, fPET) are based on examining the size of their 232 

mutual ratio NMI(θS, fPET)/NMI (θV, fPET). To quantify the standard error of NMI differences between various soil 233 

moisturewater content products, we applied a nonparametric, 500-member bootstrapping approach, and calculated 234 

pooled average of sampling errors across all sites assuming spatially independent sampling error.  235 

Finally, we also examined the impact of potential nonlinearity in the θ/ET relationship by comparing non-parametric 236 

NMI results with comparable inferences based on a conventional Pearson’s correlation calculation. The correlation-237 

based coupling strength between θS and fPET was is denoted as R(θS, fPET) and between θV and fPET as R(θV, fPET). 238 
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3 Results 239 

3.1 Comparison of NMI(θS, fPET) and NMI(θV, fPET) 240 

Figure 1 contains boxplots of modelled and observed NMI(θS, fPET) and NMI(θV, fPET),  i.e., the relative magnitude 241 

of fPET information contained in surface soil moisturewater content and vertically-integrated (0–40 cm) soil 242 

moisturewater content estimated from case I, sampled across all the AmeriFlux locations listed in Table 1. According 243 

to the AmeriFlux ground measurements, median values of NMI(θS, fPET) and NMI(θV, fPET) (across all sites) are 244 

near 0.3 [-]. This suggests that approximately 30% of the uncertainty (i.e., entropy at this particular bin width of 0.25 245 

[-]) in fPET can be eliminated given knowledge of either surface or vertically integrated soil moisturewater content  246 

state. This is consistent with earlier results in Qiu et al., (2016) who used similar variables metrics to evaluate θ/EF 247 

(evaporative fraction) coupling strength. The sampled medians of NMI(θS, fPET) and NMI(θV, fPET) estimated by 248 

the NOAHMP and CLSM models are similar to these (observation-based) AmeriFlux values. With the single 249 

exception that the CLSM predicts much larger site-to-site variation in NMI(θS, fPET).  250 

In contrast, NMI(θS, fPET) and NMI(θV, fPET) values sampled from GLEAM θ and fPET estimates are biased high 251 

(with median NMI(θS, fPET) and NMI(θV, fPET) values of about 0.5 and 0.4 [-], respectively) with respect to all other 252 

estimates.  253 
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 254 

Fig.1 The θ/ET coupling strengths for summertime anomaly time series acquired from various LSMs, GLEAM and AmeriFlux 255 
measurements: (a) NMI(θS, fPET) and NMI(θV, fPET) individually and (b) NMI(θS, fPET) normalized by NMI(θV, fPET). 256 

All threeBoth LSMs and GLEAM overall exhibit significantly (at p = 0.05 [-] confidence, using the 34 AmeriFlux 257 

site-collocated samples pixels for pair t-test) higher NMI(θS, fPET) compared to NMI(θV, fPET) – implying the surface 258 

soil moisturewater content observations contain more fPET information than vertically-integrated soil moisturewater 259 

content observations. However, the observed difference between NMI(θS, fPET) and NMI(θV, fPET) is less discernible 260 

in AmeriFlux measurements (Fig. 1(a)).  261 

Here, AmeriFlux observations are used as a baseline for LSM and GLEAM evaluation. However, it should be stressed 262 

that random observation errors in θ and fPET will introduce a low bias into AmeriFlux-based estimates of both NMI(θS, 263 

fPET) and NMI(θV, fPET) (Crow et al., 2015) and thus their difference as well. To address this concern, Fig. 1(b) 264 

plots the ratio of NMI(θS, fPET) and NMI(θV, fPET), which effectively normalizes (and therefore minimizes) the 265 

impact of random observation errorssuch observation error impacts. As discussed above, these rRatio results illustrate 266 

the general tendency for NMI(θS, fPET) > NMI(θV, fPET) discussed above. They also highlight the tendency for 267 
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GLEAM to overvalue θS (relative to θV) when estimating fPET. A second approach for reducing the random error of 268 

θ and fPET measurement errors is the Triple Collocation (TC)-based correction applied in Crow et al. (2015). However, 269 

this approach is currently restricted to linear correlation and cannot be applied to estimate NMI. Future work will 270 

examine extending the information-based TC approach of Nearing et al. (2017), to the examination of NMI.  271 

3.2 Sensitivity of AmeriFlux-based NMI(θS, fPET)/NMI(θV, fPET)  272 

As mentioned in Sect. 2.1, an important concern is the impact of interpolation errors used to estimate 0–40 cm θV from 273 

AmeriFlux θS observations acquired at non-uniform depths. To ensure that different methods for calculating 274 

AmeriFlux θV values do not affect the main conclusion of this study, we configured three cases for θV calculation, and 275 

compared their NMI(θS, fPET)/NMI(θV, fPET) results in Fig. 2. Case I reflects the baseline use of the exponential 276 

filter described in Sect. 2.1. However, slight changes to AmeriFlux results are noted if alternative approaches are used. 277 

Specifically, AmeriFlux-based NMI(θV, fPET) increases and closes the gap with NMI(θS, fPET) if the bottom-layer 278 

soil moisturewater content measurements are instead directly used as θV (Case II) or if 0–40 cm θV is based on the 279 

linear interpolation of the two AmeriFlux θ observations (Case III), the impact of this modest sensitivity on key results 280 

is discussed below. 281 
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 282 

Fig.2 The θ/ET coupling strengths for summertime anomaly time series from AmeriFlux measurements using three different θV 283 
calculation methods: (a) NMI(θS, fPET) and NMI(θV, fPET) individually and (b) NMI(θS, fPET) divided by NMI(θV, fPET) for 284 
multiple θV cases. Case I is based on the application of an exponential filter to extrapolate 0–10 cm θS to a consistent 0–40 cm 285 
bottom layer depth, while Cases II and III refer to the direct use of only the bottom layer measurement and a linear interpolation of 286 
both the top and bottom layer, respectively, to calculate θV (see Sect. 2.1 for details on each case). 287 

In addition, switching from GLEAM- to NARR-based PET when calculating fPET for AmeriFlux-based NMI(θS, 288 

fPET) and NMI(θV, fPET) does not qualitatively change results and produces only a very slight (~6%) increase in the 289 

median NMI(θS, fPET)/NMI(θV, fPET) ratio.  290 

3.3 Spatial distribution of NMI(θS, fPET) and NMI(θV, fPET)  291 

Figure 3 plots the spatial distribution of NMI(θS, fPET) and NMI(θV, fPET) results for each of the individual 34 292 

AmeriFlux sites listed in Table 1. The climatic regime is represented by AI (aridity index) values plotted as the 293 

background color in Fig. 3. It can be seen in Fig. 3 that NMI(θS, fPET) estimates from LSMs and GLEAM are spatially 294 

related to hydro-climatic conditions, as NOAHMP and CLSM predict that θS is moderately coupled with fPET (i.e., 295 

NMI(θS, fPET) of 0.3–0.5 [-]) in the arid sSouthwestern US (AI<0.2) and only loosely coupled with fPET in the 296 
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relatively humid eEastern US. A similar decreasing trend of NMI(θS, fPET) from the sSouthwestern to eEastern US 297 

is also captured by GLEAM. However, as noted above, GLEAM generally overestimates NMI(θS, fPET) and NMI(θV, 298 

fPET) compared to NOAHMP, CLSM and AmeriFlux. In contrast, a relatively weaker spatial pattern emerges in 299 

AmeriFlux-based NMI(θS, fPET) results. In addition, spatial patterns for NMI(θS, fPET) are less defined than for 300 

NMI(θV, fPET) in all four datasets.  301 

Scatterplots in Fig. 4 summarize the spatial relationship between LSM- and GLEAM-based NMI(θS, fPET) and 302 

NMI(θV, fPET) results versus AmeriFlux observations across different land use types. While observed levels of 303 

correlation in Fig. 4 are relatively modest, there appears to be ais a significant level (p<0.05) of spatial correspondence 304 

between LSMs modelled and observed NMI results only over forest sites – motivating the need to better understand 305 

processes responsible for spatial variations in NMI results. In addition, stratifying NMI(θS, fPET)/NMI(θV, fPET) ratio 306 

results according to vegetation type (Fig. A1) confirms that NMI(θS, fPET) slightly exceeds NMI(θV, fPET) across all 307 

vegetation types (and thus all rooting depths characterizing each vegetation type). This suggests that our analysis is 308 

not severely affected by variations in the depth of θ measurements. For further discussion on the impact of land cover 309 

on NMI results, please see Appendix A.  310 
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 311 

Fig. 3 NMI(θS, fPET) (left column) and NMI(θV, fPET) (right column) estimates at AmeriFlux sites for: (a) NOAHMP, (b) CLSM, 312 
(c) GLEAM and (d) AmeriFlux. Marker color reflects NMI magnitudes and symbol type reflects local land cover type at each site. 313 
Background color shading reflects aridity index (AI) values.  314 
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Fig. 4 Scatterplot of LSM-based and GLEAM-based (a) NMI(θS, fPET) and (b) NMI(θV, fPET) results versus AmeriFlux 317 
observations. Red symbols represent simulations from NOAHMP36; blue symbols represent simulations from CLSM2 and green 318 
symbols represent GLEAM retrievals. 319 

3.4 Sensitivity of NMI(θS, fPET)/NMI(θV, fPET) ratio to climatic conditions 320 

Figure 5 further summarizes the ratio of NMI(θS, fPET) and /NMI(θV, fPET) ratio as a function of AI for all four 321 

products (NOAHMP, CLSM, GLEAM and AmeriFlux). Error bars represent the standard deviation of sampling errors 322 

calculated from a 500-member bootstrapping analysis. With increasing AI, there is a significant decreasing trend in 323 

surface and vertically integrated θ/ET coupling within both NMI(θS, fPET) and NMI(θV, fPET) for all three 324 

simulations, with a goodness-of-fit above 0.5 (figure not shown). For all cases, the NMI(θS, fPET)/NMI(θV, fPET) 325 

ratios are consistently greater than unity under all climatic conditions. However, the estimated NMI(θS, fPET)/NMI(θV, 326 

fPET) ratios from all three simulations (NOAHMP, CLSM and GLEAM) exhibit quite different trends with respect 327 

to AI. The NMI(θS, fPET)/NMI(θV, fPET) ratio for CLSM decreases with increasing AI, with a moderate goodness-328 

of-fit value of 0.28, while GLEAM estimates of NMI(θS, fPET)/NMI(θV, fPET) shows an opposite increasing trend 329 

with increasing AI. both NOAHMP and CLSM. This decreasing trend is particularly clear when AI is below 1.0 [-]. 330 

NOAHMP, CLSM and GLEAM estimates of NMI(θS, fPET) are generally higher than NMI(θV, fPET) in all climatic 331 

conditions. Conversely, thereThere is relatively lower sensitivity of the NMI(θS, fPET)/NMI(θV, fPET) ratio to aridity 332 

AI captured in the AmeriFlux measurements, as the NMI(θS, fPET)/NMI(θV, fPET) ratio still approximates one under 333 

semiarid conditions (i.e., AI < 0.5 [-]).  334 

Connecting these findings to spatial distribution of NMI(θS, fPET) and NMI(θV, fPET) (Fig. 3) , it is confirmsed that 335 

the relative magnitudes of NMI(θS, fPET) and NMI(θV, fPET) for bothall three LSMs and GLEAM are spatially related 336 

to hydro-climatic regimes (although in fundamentally different ways). In contrast, this link is weaker in the AmeriFlux 337 

measurements which, except for a small fraction of very low AI sites, do not appear to vary as a function of AI. These 338 

conclusions are not qualitatively impacted by looking at NMI(θS, fPET) and NMI(θV, fPET) differences, as opposed 339 

to their ratio as in Fig. 5, or by looking at R(θS, fPET) and R(θV, fPET) instead of NMI.  340 
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 341 

Fig. 5 For a) NOAHMP, (b) CLSM, (c) GLEAM and (d) AmeriFlux estimates, the ratio of NMI(θS, fPET) and NMI(θV, fPET) as 342 
a function of AI across all AmeriFlux sites.  343 

4 Discussion and conclusion 344 

Since transpiration dominates the global ET (Jasechko et al., 2013), deep-layer soil moisturewater content (θV) is 345 

generally considered to contain more ET information than that of surface soil moisturewater content (θS) – given plant 346 

transpiration is balanced by root water uptake from deeper soils (Seneviratne et al., 2010). However, this assumption 347 

is rarely tested using models and/or observations. Here, we apply normalized mutual information (NMI) to examine 348 

how the vertical support of a soil moisturewater content product impactsaffects its relationship with concurrent surface 349 

ET.  350 

Specifically, using AmeriFlux ground observations, we examine whether (NMI-based) estimates of LSMs and 351 

GLEAM θS versus ET and θV versus ET coupling strength accurately reflect observations acquired at a range of 352 

AmeriFlux sites. In general, compared to the baseline case of exponential filter extrapolated 40-cm bottom layer θV, 353 

LSMs and GLEAM agree with AmeriFlux observations in that the overall fPET information contained in θS is slightly 354 

higher than that of θV (Fig. 1). However, the sensitivity analysis showed this difference between NMI(θS, fPET) and 355 
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NMI(θV, fPET) diminishes when using different methods for calculating θV using AmeriFlux observations (Fig. 2). 356 

As a result, this result should be viewed with caution.  357 

While NOAHMP and CLSM derived NMI(θS, fPET) and NMI(θV, fPET) results are generally consistent with the 358 

AmeriFlux observations, GLEAM overestimates NMI(θS, fPET), NMI(θV, fPET), and the ratio NMI(θS, 359 

fPET)/NMI(θV, fPET) relative to observations. Although both LSMs and GLEAM are based on the same classical 360 

two-section (soil moisturewater content-limited and energy-limited) ET regimes framework (Sect. 2.2), they differ in 361 

two fundamental aspects. First, the evaporative stress factor S is represented as a more direct and strong function of 362 

soil moisturewater content in GLEAM - see Eqs. (4) and (5) - which leads to the overestimation of θ/ET coupling 363 

strength. This is consistent with our results that GLEAM generally overestimates NMI(θS, fPET) and NMI(θV, fPET) 364 

consistently across all land covers, compared to AmeriFlux-based estimates. On the other hand, NOAHMP and CLSM 365 

approximate ET in the manner of biophysical models, and expresses biophysical control on ET through the stomatal 366 

resistance rs, which is a function of multiple limiting factors including θ. Therefore, the more complex ET scheme 367 

employed by NOAHMP and CLSM would seem to mitigate the overestimation of NMI(θS, fPET) and NMI(θV, fPET), 368 

as other relevant factors besides θ (such as temperature, foliage nitrogen) are also considered in determining maximum 369 

carboxylation rate Vmax and stomatal resistance rs - and consequently more realistic actual ET.  370 

Secondly, the stress factor β in both LSMs considers the cumulative effects of θ conditions along different layers (Eq. 371 

(1)), while the corresponding S factor S in GLEAM only uses the wettest soil layer condition, which is top layer at 372 

most sites. This likely explains the overestimation of the NMI(θS, fPET)/NMI(θV, fPET) ratio by GLEAM.  373 

Nevertheless, we would like to stress that all approaches considered in our paper contain (at their core) a parameterized 374 

relationship between θ and ET. While the implications of mis-parameterizing this relationship are arguably more 375 

severe for a land surface model, we’d argue that the issue remain relevant for any approach (such as GLEAM) that 376 

utilizes a water balance (and/or data assimilation system) approach to estimate θ and, in turn, uses θ to constrain ET. 377 

Regardless of the complexity that a given approaches employs, failing to accurately describe the relationship between 378 

ET and (large number of potential) environmental constraints should eventually degrade the robustness of the model, 379 

no matter the model is employed as a retrospective, diagnostic or predictive manner. To examine this issue directly, 380 

Fig. 6 plots the relationship between GLEAMS bias in NMI(θS, fPET)/NMI(θV, fPET) ratio versus the RMSE of daily 381 

GLEAM ET simulations for a range of AmeriFlux sites. There is a positive correlation between the two quantities - 382 

which suggests that GLEAM overestimation of θ/ET coupling during the summer may undermine the accuracy of its 383 

daily ET retrievals. It should be noted that GLEAM simultaneously overestimates both NMI(θS, fPET) and NMI(θV, 384 

fPET); however, the impact of this mis-parameterization impact on GLEAM ET accuracy is most obvious when 385 

plotted against the ratio NMI(θS, fPET)/NMI(θV, fPET). 386 

 387 
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 388 

Fig. 6 Daily ET error in GLEAM as a function of GLEAM bias in NMI(θS, fPET)/NMI(θV, fPET) ratio across 34 AmeriFlux sites. 389 

Although the median values of NMI(θS, fPET) and NMI(θV, fPET) predicted by NOAHMP and CLSM are general in 390 

line with AmeriFlux observations, they are more spatially related to hydro-climatic conditions (as summarized by AI) 391 

than their counter parts acquired from AmeriFlux measurements. Seen from the plot of NMI(θS, fPET)/NMI(θV, fPET) 392 

ratio as a function of AI (Fig. 5), the modelled and observed NMI(θS, fPET)/NMI(θV, fPET) ratio median decreases 393 

with increasing AI, and the decreasing trend is particularly clear when AI is lower than 1.0 [-]. In contrast, there is 394 

relatively lower sensitivity to aridity exhibited in the AmeriFlux measurements.  395 

These results provide several key insights into future land-atmosphere coupling analysis and LSM as well as ET 396 

algorithm development. First, all the datasets – both model-based and ground-observed – indicates that θS contain at 397 

least as much ET information as θv. Hence, remote-sensing land surface soil moisturewater content datasets are 398 

suitable, and should be considered, for analyzing the general interaction between land and atmosphere, e.g., soil 399 

moisturewater content – air temperature coupling (Dong and Crow, 2019) and the interplay of soil moisturewater 400 

content and precipitation (Yin et al., 2014). Additionally, future generations of GLEAM may consider more 401 

sophisticated evaporation stress functions, which may improve its accuracy in representing soil’s control on local ET. 402 

This may, in turn, improve the accuracy of GLEAM ET product. Finally, our results demonstrate that modeled θ/ET 403 

is highly more sensitive to hydro-climates, compared to than the observed relationships. Modifying the model 404 

structures to reduce such sensitivity might be necessary for accurately representing the interaction of land surface and 405 

atmosphere across different climate zones. This may lead to more realistic projections of future drought-induced 406 

heatwaves, when coupled with general circulation models.  407 
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Data availability 408 

Ground-based soil moisturewater content and surface flux data are available from http://ameriflux.ornl.gov/. GLEAM 409 

dataset is available from https://www.gleam.eu/. LSMs simulations of NOAHMP and CLSM used in this study are 410 

available by contacting the authors. 411 

Appendix A 412 

We performed additional sensitivity analysis to explicitly demonstrate the effect of different vegetation land cover types 413 

and consequently different rooting depths (or θv measurement depths) on the NMI(θS, fPET)/NMI(θV, fPET) ratio, and 414 

plotted these results in Fig. A1. The figure confirms that consistent with AmeriFlux, both LSMs and GLEAM predict 415 

that NMI(θS, fPET) is slightly higher than NMI(θV, fPET) over most vegetation types, and GLEAM overestimates 416 

NMI(θS, fPET)/NMI(θV, fPET) for most vegetation types.  417 

 418 

Fig. A1 For a) NOAHMP, (b) CLSM, (c) GLEAM and (d) AmeriFlux estimates, the ratio of NMI(θS, fPET) and NMI(θV, fPET) 419 

as a function of vegetation types across all AmeriFlux sites. 'ENF', 'DBF', 'MF', 'OS' and 'WS' represent evergreen needleleaf forests, 420 

deciduous broadleaf forests, mixed forests, open shrubland, and woody savannas, respectively. 421 
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