Reply to Dr. Diego G. Miralles interactive comment

We would like to thank Dr. Diego G. Miralles for his constructive comments. We are
generally in agreement with his sentiments. Most importantly, we agree that our original
manuscript was overly aggressive in lumping various evapotranspiration (ET)
estimation approaches into a single conceptual category. As Dr. Diego points out, there
are important differences between these approaches that are relevant for the stated
purposes of our paper.

Nevertheless, we would like to stress that all approaches considered in our paper
contain (at their core) a parameterized relationship between soil water content (¢) and
ET. While the implications of mis-parameterization this relationship are arguably more
severe for a land surface model, we believe that this issue remains relevant for any
approach (such as GLEAM) that utilizes a water balance (and/or data assimilation
system) approach to estimate # and, in turn, uses @ to constrain ET. Regardless of the
complexity that a given approach employs, failing to accurately describe the
relationship between ET and (large number of potential) environmental constraints
should eventually degrade the robustness of the model. We believe that this is true
regardless of whether a model is employed as a retrospective, diagnostic or predictive
manner. Our paper is an attempt to “open the lid” on these models to measure internal
6/ET coupling and explore the impact of potential mis-coupling on ET estimation.

Given this emphasis, Diego’s suggestion to expand our analysis to include direct flux
validation is an excellent one. Indeed, preliminary results suggest that, despite its
simplicity, GLEAM does not underperform more complex land surface models with
respect to daily ET predictions. Therefore, as Diego points out, any criticism of
GLEAM must be tempered by this bottom-line result.

Therefore, we’ve made the following changes to our current manuscript:

1. Change the characterization of GLEAM from a "land surface model" to "retrieval
algorithm" throughout the revised manuscript and add a more complete discussion of
differences in complexity and envisioned application for various modelling approaches.

2. Directly evaluate the GLEAM ET accuracy and better describe the connection
between accurate 6/ET coupling and the absolute accuracy of GLEAM ET predictions.
Pertinent revisions are presented in new Fig. 6 and the related discussions.



Reply to Referee #1 interactive comment

We would like to thank Referee #1 for the constructive comments.

I only have one comment for one issue which I think the authors should consider. In the
study I did not find any particular discussion related to the type of vegetation
characterizing the AmeriFlux sites and its effect on the result. I think that vegetation
type can be relatively important as for example grass roots are shallower with respect
to tree and shrub roots and thus can exert potential different effects both on the coupling
strength between the soil moisture profile (surface vs. root zone) and on the
transpiration flux itself also considering that transpiration is the dominant pathway for
the total evapotranspiration and is estimated to account for two-thirds of global land ET
based on flux tower measurements (Schlesinger and Jasechko,2014). Based on that the
authors should provide at least a discussion on the potential effects of the vegetation
type on the presented results.

Thanks for the comments. In order to minimize the effect of different root depths from
different vegetation types on NMI(6s, fPET) and NMI(6v, fPET), we used exponential
filter to extrapolate € to a unified 40 cm bottom layer depth and find that the overall
fPET information contained in 6s is slightly higher than that of 6v. However, the
difference between NMI(6s, fPET) and NMI(8v, fPET) diminishes when using different
methods for calculating fv using AmeriFlux observations.

We’ve added more extensive discussion regarding the role of vegetation on key results
in the revised manuscript. In particular, Fig. 4 has been newly expanded to better isolate
the impact of vegetation type and the role of vegetation types is now directly addressed
via new text appearing in Section 3.3 of the revised manuscript.

Furthermore, we showed the result of NMI(6s, fPET)/NMI(6v, fPET) ratio as a function
of vegetation type in Fig. Al. The conclusion that the overall fPET information
contained in Os is slightly higher than that of fv does not vary with vegetation types,
although NMI(8s, fPET) is much higher than NMI(éfy, fPET) in open shrubland and
woody savannas.

For the rest comments annotated in the manuscript:

1. P6 Line 141. Ac and 4s not defined

We’ve made the following revision in Section 2.2 to clearly defined Ac and A4s:
“Based on Vpax, photosynthesis rates per unit LAl including carboxylase-limited
(Rubisco limited, denoted by Ac) type and export-limited (for C3 plants, denoted by As)
type are calculated respectively.”

2. P9 Line 211-215. Maybe a statement to point to section 3.1 is necessary here.



As suggested, we’ve added a statement to directly point to results starting from Section
3.1

“Therefore, relative comparisons between NMI(0s, fPET) and NMI1(6y, fPET) are based
on examining the size of their mutual ratio NMI (s, fPET)/NMI (v, fPET).”

3. P9 Line 222. Is it for Case I?

Yes, the “vertically-integrated (0—40 cm) soil moisture” is estimated from Case I. We’ve
also clarified this in Section 3.1:

“...i.e., the relative magnitude of fPET information contained in surface soil water
content and vertically-integrated (0—40 cm) soil water content estimated from Case I...”

4. P14 Line 287. Even though the sample size is small it would be nice to have also
similar plots and the plots above for different vegetation type.

As suggested, we’ve revised Fig. 4 so that samples are plotted separately according to
their vegetation types. With varying magnitudes, the overall overestimation of GLEAM
is observed across different vegetation types.

5. P14 Line 291-294. This trend is not really evident. I see an evident increasing ratio
only when Al approaches to zero. Maybe a statistical significance of this trend should
analyzed.

As suggested, we’ve added analysis of statistical significance of this trend. Indeed, the
increasing trend of NMI(8s, fPET)/NMI(fv, fPET) ratio is more evident for CLSM,
with a moderate goodness-of-fit (0.28). We’ve also clarified this in Section 3.4:

“With increasing Al there is a significant decreasing trend in both NM1(0s, fPET) and
NMI(By, fPET) for all three simulations, with a goodness-of-fit above 0.5 (figure not
shown). For all cases, the NMI(0s, fPET)/NMI(0y, fPET) ratios are consistently greater
than unity under all climatic conditions. However, the estimated NMI(0s, fPET)/NMI(0y,
fPET) ratios from all three simulations (NOAHMP, CLSM and GLEAM) exhibit quite
different trends with respect to AI. The NM1(0s, fPET)/NMI(0y, fPET) ratio for CLSM
decreases with increasing AI, with a moderate goodness-of-fit value of 0.28,...”

6. P15 Line 315. This can also depend upon the vegetation type as grass and trees are
characterized by different root depths. They can exert a different effects on the coupling
between soil moisture and evapotranspiration.

Thanks for the comments. This concern of different root depths impact is addressed by
applying different methods to retrieve vertically integrated 6 as we stated in Section 2.1.
The entire analysis is based on the default case I that exponentially filter 6 to a unified
40 cm bottom layer depth, and it is found that the overall fPET information contained
in s is slightly higher than that of 8v. However, the difference between NMI(8s, fPET)
and NMI(fy, fPET) is less obvious when using different methods for calculating Oy
using AmeriFlux observations.

In addition, we’ve showed the result of NMI(6s, fPET)/NMI(fy, fPET) ratio as a
function of vegetation type in Fig. A1. The conclusion that the overall fPET information



contained in 6s is slightly higher than that of fv does not vary with vegetation types,
although NMI(6s, fPET) is obviously higher than NMI(6v, fPET) in open shrubland
and woody savannas.



Reply to Referee #2 interactive comment

We would like to thank Referee #2 for the constructive comments.

This is a well written paper with a clear contribution to ecohydrological modeling and
I have very few comments. The first relates to the jargon in the title. Please try to
simplify the title for the paper to be appealing to a wider audience. Secondly, the aims
and objectives of the paper must be clearly formulated and also indicate what is new or
novel about this study and who benefits from it? Lastly, what is the take-home message
from this study given that no conclusions are given?

Thanks for the comments. We agree that our original title could be improved.
Accordingly, the title of revised manuscript has been changed to “Model Representation
of the Coupling between Evapotranspiration and Soil Water Content at Different
Depths.” We feel that this is more accessible to a broader audience.

In addition, we’ve revised the abstract and introduction to better emphasize the aim and
objectives of the paper and provide a concise summary of major conclusion and the
target readers with most potential interest are also highlighted in the abstract.

SPECIFIC COMMENTS

- Keywords: - “surface evapotranspiration” is listed as a keyword/phrase. Delete the
word “surface”

Thank you for these comments. The keyword of “surface evapotranspiration” has been
revised as suggested.

- Line 27 — indicate that some if the incoming energy is absorbed by the surface... given
that you are mentioning biochemical cycles in line 30

To avoid this issue, we’ve removed all mentions of biochemical cycles in the
manuscript.

- There are inconsistencies throughout the paper regarding the evaporation terms. A
typical example is in lines 11 to 12 in the abstract where the authors refer to the sensible
heat flux and evapotranspiration (ET) in the same sentence. Rather also use the energy
equivalent of ET (i.e. the latent heat flux) and be consistent throughout the paper.
Thank you for this comment — we agree this was an issue in the original manuscript. In
the revised version, the energy equivalent of ET (i.e., the latent heat flux) has been used
consistently when also referencing sensible heat flux.

- Line 59: What is meant by ET entropy? This is not a standard micrometeorology or
ecohydrological phrase. Please define such terms.

Thank you for the comments. The original expression of “corresponding ET entropy”
refers to the entropy of a corresponding ET time series. This is clarified in the revised



manuscript.

- Throughout the paper rather use the phrase “soil water content” which is more specific
than “soil moisture”

We’ve replaced the expressions of “soil moisture” with “soil water content” throughout
the manuscript.

- Lines 63-64 not necessary
These two unnecessary sentences have been removed as suggested.

- Line 75 sounds rather cyclic, rephrase!

The sentence has been rephrased to “As described above, O/ET coupling assessments
made using AmeriFlux observations are compared with those using state-of-the-art
LSMs including...”

- How did you account for the accuracy of the different types of soil water content
sensors or their depth of installation across the AmeriFlux sites? How does this affect
your results?

As the most of the AmeriFlux sites involved in the analysis are using frequency domain
reflectometer probe for soil water content measurements, the impact of different sensors
on our conclusion is limited.

Secondly, to minimize the effect of different measurement depths on our analysis, we
designed three different cases to estimate vertically integrated soil water content (6v).
Case I was based on the application of an exponential filter (Wagner et al., 1999;
Albergel et al., 2008) to extrapolate fs to a consistent 40 cm bottom layer depth.
Therefore, only 6s was used to derive fv and the bottom-layer (or second layer)
AmeriFlux 6 measurement was neglected in this case. Nevertheless, since the quality
of Ov estimates is important in our analysis, we also calculated two additional cases
where 040 cm 6v was estimated using: 1) the bottom-layer soil water content
measurement acquired at each AmeriFlux site (hereinafter, Case II) and 2) linear
interpolation of fs and the bottom-layer AmeriFlux soil water content measurement
(hereinafter, Case III).

The sensitivity of key results show that compared to the baseline Case I of exponential
filter extrapolated 40-cm bottom layer Ov, LSMs and GLEAM agree with AmeriFlux
observations in that the overall fPET information contained in s is slightly higher than
that of 6v. However, the sensitivity analysis showed this difference between NMI(6s,
fPET) and NMI(6y, fPET) diminishes when using different methods for calculating 8y
using AmeriFlux observations. These experimental designs and the corresponding
findings are clearly stated in the revised manuscript.

- The vegetation acts as the link between the atmosphere and soil water content in deep
soil profiles. Please give more details on how the vegetation types affected your



analysis/results.

Thanks for the comments. As mentioned in the response to the previous comment, in
order to minimize the effect of different root depths from different vegetation types on
NMI(6s, fPET) and NMI(bv, fPET), we used an exponential filter to extrapolate 6 to a
unified 40 cm bottom layer depth and find that the overall fPET information contained
in Os is slightly higher than that of 8v. However, the difference between NMI(8s, fPET)
and NMI(6v, fPET) diminishes when using different methods for calculating v using
AmeriFlux observations.

We’ve added more extensive discussion regarding the role of vegetation on key results
in the revised manuscript. In particular, Fig. 4 has been newly expanded to better isolate
the impact of vegetation type and the role of vegetation types is now directly addressed
via new text appearing in Section 3.3 of the revised manuscript.

Furthermore, we showed the result of NMI(6s, fPET)/NMI(6v, fPET) ratio as a function
of vegetation type in Fig. Al. The conclusion that the overall fPET information
contained in Os is slightly higher than that of Ov does not vary with vegetation types,
although NMI(8s, fPET) is much higher than NMI(fy, fPET) in open shrubland and
woody savannas.

- Line 107: What is the bottom layer soil moisture measurement? Define this, else
rephrase.

As soil water content measurements are generally available at two discrete depths at the
AmeriFlux sites, the bottom layer measurements refer to the measurements at the
deeper depth or the second observation layer from surface. This has been clarified in
the revised manuscript.

- 2) options for @ factor for stomatal resistance (the g factor). Not clear what this
represents. What is a theta factor? What does it do? - and reference soil moisture (m3
m-3), How is this defined? Confusion over symbols.

The 6 factor stands for soil water content, and different expressions of  lead to different
representations of relationship between 6 and stress factor 5. We’ve revised the original
expression to “...and schemes controlling the effect of 0 on the vegetation stress factor
7. As clarified in the revised manuscript, reference soil moisture is set as field capacity
in the NOAH users’ guide for parameterization.

- Sometimes you mention stomatal resistance, and at other times stomatal conductance;
line 142. Choose one and stick to it otherwise this easily gets very confusing.

As suggested, we’ve revised the only occurrences of the term ““stomatal conductance”
in Section 2.2 into “stomatal resistance” to avoid any confusion.

- line142 — stomatal conductance is not the sole driver of ET. It’s more complex than
that.
To avoid such confusion, we’ve revised expression as “The minimum of Ac, As and



light-limited photosynthesis rate determines stomatal resistance rs, and consequently
affects ET over vegetated areas”.

- Please elaborate - Eqn 6: what does the symbol H mean here? Thought you said H
was the sensible heat flux earlier?

In the original Eq. 6, H represents Shannon-type entropy of the variable {. Indeed, it
could be easily confused with sensible heat flux symbol mentioned in Section 1.
Therefore, we’ve replaced the symbol H in Eq. 6 with SE.

- Fig 4 these are poor model performances.

Indeed, the consistency of NMI(6, fPET) between models and observations varies
across different vegetation types, and varies across different models. However, it should
be noted that the absolute value of NMI(6, fPET) is not a direct index to measure model
performance. Furthermore, our analysis conclusion will not be affected as we are using
the relative ratio of NMI(6s, fPET)/NMI(6v, fPET).
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Abstract. Soil meisturewater content (6) #mpaetsinfluences the climate system by regulating-controlling fraction of
incoming solar and longwave energy that is converted into evapotranspiration (ET)inte-outgeing-evapetranspiration
{ET)-and-sensible-heat flux-compenents. Therefore, investigating the coupling strength between & and ET is important

for the study of land surface/atmosphere interactions. Physical models are commonly tasked with representing the

coupling between 6 and ET; however, few studies have evaluated the accuracy of model-based estimates of O/ET

coupling (especially at multiple soil depths). To address this issueHere, we use in-situ AmeriFlux observations to

evaluate 6/ET coupling strength estimates acquired from multiple land surface models (LSMs)_and an ET retrieval

algorithm — the Global Land Evaporation Amsterdam Model (GLEAM). For maximum robustness, coupling strength
is represented using the sampled normalized mutual information (NMI) between @ estimates acquired at various
vertical depths and surface evaporation flux expressed as arepresented-by fraction of potential evapotranspiration
(fPET, the ratio of ET to potential ET). Results indicate that LSMs and GLEAM are generally in agreement with

AmeriFlux measurements in that surface soil meisturewater content (6s) contains slightly more NMI with fPET than
vertically integrated soil meisturewater content (6v). Overall, LSMs and GLEAM adequately capture variations in
NMI between fPET and & estimates acquired at various vertical depths. However, ene-model—the-Global-Land
Evaperation-Amsterdam-Model{GLEAM)— significantly overestimates the NMI between ¢ and ET and the relative
contribution of s to total ET. This bias appears attributable to differences in GLEAM’s ET estimation scheme relative
to the other two LSMs considered here (i.e., the Noah model with mMulti—-parameterization options and the Catchment
Land Surface Model). These results provide insight into improved LSM model structure and parameter optimization

for land surface-atmosphere coupling analyses.

Keywords. Land surface/atmosphere interaction, soil meisturewater content, surface-evapotranspiration

1 Introduction

Soil meisturewater content (#) modulates water and energy feedbacks between the land surface and the lower

atmosphere by

compeonentsdetermining the fraction of incoming solar energy that is converted in evapotranspiration (ET)

(Seneviratne et al., 2010, 2013). In water-limited regimes, 9 exhibits a dominant control on ET-and, and therefore e;
commenby-exerts significant terrestrial control on the earth’s water and; energy and-biochemical-cycles. Accurately
representing 6/ET coupling in land surface models (LSMs) is therefore expected to improve our ability to project the

future frequency of extreme climates (Seneviratne et al., 2013).

A key question is how the constraint of @ on ET and H varies as 6 is vertically integrated over deeper vertical soil
depths. Given the tendency for the time scales of 8 dynamics to vary strongly with depth, the degree to which the ET
is coupled with vertical variations in 6 determines the temporal scale at which 0 variations are propagated into the
lower atmosphere. Therefore, in order to represent G/ET coupling, and thus land/atmosphere interactions in general,
LSMs must accurately capture the relationship between vertically varying 6 values and ET. Unfortunately, their ability

ies-to do so remains an open question.
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Recently, land surface/atmosphere coupling strength has been investigated by sampling mutual information proxies
(e.g., correlation coefficient or other coupling indices) between time series of §# and ET observations (or air temperature
proxies for ET). Results suggest that, even when confined to very limited vertical support (e.g., within the top 5 cm
of the soil column), surface 0 estimates retain significant information for describing overallexamining 8 controls on
local climate (Ford and Quiring, 2014b; Qiu et al., 2014; Dong and Crow, 2018; Dong and Crow, 2019). These findings
are in contrast with the common perceptions that ET is constrained onlydeminated by 0 values withinat deeper soil

layers (Hirschi et al., 2014). Hence, it is necessary to examine whether LSMs can realistically reflect observed

variations of /ET coupling strength in-thewithin the vertical soil profiles.

Previous studies examining the O/ET relationship have generally been based on Pearson product-moment correlation
(Basara and Crawford, 2002; Ford et al., 2014a), which captures only the strength of a linear relationship between two
variables. However, the coupling between & and ET is generally nonlinear. Therefore, non-parametric mutual
information measures are generally more appropriate. Nearing et al. (2018) used information theory metrics (transfer
entropy, in -particular) to measure the strengths of directed couplings between different surface variables, including
soil meisturewater content, and surface energy fluxes at short timescales in several LSMs. They found that the LSMs
arewere generally biased as compared with strengths of couplings in observation data, and that these biases differed
across different study sites. However, they did not look specifically at the effect of vertical meisturewater content

profiles or of subsurface soil meisturewater content on partitioning surface energy fluxes.

Here we apply the information theory-based methodology of Qiu et al. (2016) to examine the relationship between
the vertical support of 6 estimates and their mutual information (MI) with respect to ET. Our approach is based on

analyzing the MI content between ET and & time series - acquired from both LSMs, ET retrieval algorithm — the

Global Land Evaporation Amsterdam Model (GLEAM) and AmeriFlux in-situ observations. MI values are then
normalized by entropy in the corresponding ET time series eorresponding-EF-entropy-to remove the effect of inter-
site variations toand generate estimates of Normalized Mutual Information (NMI) between ¢ and ET. Examined-¢

thme-series-have-two-different-vertical-supperts-Both surface (roughly 0-10 cm) soil meisturewater content (ds) and
vertically integrated (0—40 cm) soil meisturewater content (6yv) are considered to capture the impact of depth on NMI

results. AmeriFlux-based -NMI results are then compared with analogous NMI results obtained from LSM-based and

GLEAM-based 6 and ET time series.

2 Data and Methods

The AmeriFlux network provides temporally continuous measurements of @, surface energy fluxes and related
environmental variables for sites located in a variety of North American ecosystem types, e.g., forests, grasslands,

croplands, shrublands and savannas (Boden, et al., 2013). To minimize sampling errors, AmeriFlux sites lacking a

3
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complete 3-year summer months (June, July and August) daily time series between the years of 2003 and 2015 (i.e.,
3>92=276 daily observations in total) of 0s, 6y and latent heat flux (LE) arewere excluded here - resulting in the 34
remaining eligible AmeriFlux sites listed in Table 1. These sites cover a variety of climate zones within the contiguous
United States (CONUS). Table 1 gives background information on these 34 sites including local land cover
information. Hydro-climatic conditions in each site arewere characterized using the aridity index (Al) — calculated
using CRU (Climate Research Unit, v4.02) monthly precipitation and potential evaporation (PET) datasets.

As described above, O/ET coupling assessments made using AmeriFlux observations arewere compared with

comparable—assessments—based-on—output-fromthose using state-of-the-art LSMs including the Noah model with
Mmulti—parameterization options (NOAHMP) and -Catchment Land Surface Model (CLSM). In addition, -are-0 and
ET retrievals provided by the Global Land Evaporation Amsterdam Model (GLEAM) are also considered. See below

for—more—model details_on all three approaches. To avoid any spurious correlations between 6 and ET due to

seasonality, all NMI analyses arewere performed on 8 and ET time series anomalies acquired during the period 2003—
2015. The @ and ET anomalies arewere calculated by removing the seasonal cycle — defined as 31-day window
averages centered on each day-of-year sampled across all years of the 2003-2015 historical data record — from the
raw 6 and ET time series data. The analysis was-is limited to the CONUS during summer months (June, July and

August) when 6/ET coupling iwas expected to be maximized.

Table 1 Attributes of selected AmeriFlux sites

Top- Bottom-

AmeriFlux sites Land cover Ele[\ﬁ;'on é":ﬁ; (;?S;
[cm] [cm]
ARM SGP Main Cropland 314 102 20°
ARM USDA UNL OSU Grassland 611 10 30
Woodward Switchgrass 1
Audubon Research Ranch Grassland 1469 10 20
Bondville Cropland 219 10¢ 20
Brookings Grassland 510 10 20
Chimney Park Evergreen needleleaf forest 2750 0-15 15-45
Duke Forest Hardwoods Deciduous broadleaf forest 168 10 25
Duke Forest Open Field Grassland 168 10 25
Fermi Agricultural Cropland 225 25 10
Fermi Prairie Grassland 226 25 10
Flagstaff Managed Forest Evergreen needleleaf forest 2160 2 10
Flagstaff Unmanaged Forest Woody savannas 2180 2 10
Flagstaff Wildfire Grassland 2270 2 10
Fort Peck Grassland 634 5d 20
Freeman Ranch Woodland Woody savannas 232 10 20
Glacier Lakes Ecosystem Evergreen needleleaf forest 3190 5 10
Experiments Site
Howland Forest Main Mixed forest 60 NA NA

4
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Lucky Hills Shrubland Open shrubland 1372 5 15

Marys River Fir Site Evergreen needleleaf forest 263 10 20

Metolius Intermediate Pine Evergreen needleleaf forest 1253 0-30 NA
Missouri Ozark Deciduous broadleaf forest 219 10 100
Nebraska SandHills Dry Valley Grassland 1081 10 25

Quebec Boreal Cutover Site Evergreen needleleaf forest 400 5 20

Quebec Mature Boreal Forest Site  Evergreen needleleaf forest 400 5 10

Santa Rita Creosote Open shrubland 991 25 125
Santa Rita Mesquite Woody savannas 1116 2.5-5 5-10
Sherman Island Grassland -5 10 20

Sylvania Wilderness Mixed forest 540 5 10

Tonzi Ranch Woody savannas 169 0 20

University of Michigan Biological ~ Deciduous broadleaf forest 234 0-30 NA
Station

Vaira Ranch Grassland 129 0 10

Walker Branch Deciduous broadleaf forest 343 5 10

Willow Creek Deciduous broadleaf forest 515 5 10

Wind River Field Station Evergreen needleleaf forest 371 30¢ 50f

@Was 5 cm prior to 4/13/2005

b Was 25 cm prior to 4/13/2005
¢Was 5 cm prior to 1/1/2006

4Was 10 cm (2003-2008)

¢ Was 0-30 cm prior to 2007

f Was NaNUnavailable -prior to 2007

2.1 Ground-based AmeriFlux measurements

The Level 2 (L2) AmeriFlux LE and sensible heat (H) flux observations are based on high-frequency (typically > 10
Hz) eddy covariance measurements processed into half-hourly averages by individual AmeriFlux investigators. LE
and 6 observations at a half-hour time step and without gap-filling procedures arewere collected from the AmeriFlux
Site and Data Exploration System (see http://ameriflux.ornl.gov/). The LE and & observations arewere further
aggregated into daily (0 to 24 UTC) values, and daily LE iwas converted into daily ET using the latent heat of
vaporization. Daily ET values based on less than 30% half-hourly coverage (i.e., < 15 half-hourly observations per

day) arewere considered not representative at a daily time scale and therefore excluded.

Soil meisturewater content measurements are generally available at two discrete depths that vary between the
AmeriFlux sites (Table 1). Here, the top (i.e., closest to the surface) soil meisturewater content observation iwas
always used to represent surface soil meisturewater content (6s). Since the depth of this top--layer measurement varies
between 0 and 15 cm (see Table 1), we consider the surface-layer measurement ds to be roughly representative of 0—

10 cm (vertically integrated) 6.

Given variations in the depth of the lower AmeriFlux 6 observations (see Table 1), we applied a variety of approaches

for estimating vertically integrated soil meisturewater content (6v). Our first approach, hereinafter referred to as Case
5
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I, iwas based on the application of an exponential filter (Wagner et al., 1999; Albergel et al., 2008) to extrapolate s
to a consistent 40--cm bottom layer depth. Therefore, only 0s iwas used to derive 6y and the bottom-layer (or second
layer) AmeriFlux @ measurement iwas neglected in this case. The application of the exponential filter requires a single
time-scale parameter T. Since 8 measurements from United States Department of Agriculture’s Soil Climate Analysis
Network (SCAN) are taken at fixed soil depth, we utilized this dataset to determine the most appropriate parameter T
at AmeriFlux sites. Following Qiu et al. (2014), first, we estimated the optimal parameter T (Topt) for the extrapolation
of 8 measurements from 10 cm to 40 cm depth and established a global relationship between Topt and site-based
NDVI (MOD13Q1 v006, 250m, 16-day) (Topt = 2.098 x<exp(—1.895 < (NDVI + 0.6271)) + 2.766). Then, this global
relationship (Goodness of Fit R?: 0.85) was-is applied to AmeriFlux sites to extrapolate 0-10 cm s times series into
0-40 cm bv.

Previous research has suggested that such a filtering approach does not significantly squander ET information present
in actual measurements of @y (Qiu et al., 2014; Qiu et al., 2016). Nevertheless, since the quality of &y estimates is
important in our analysis, we also calculated two additional cases where 0-40 cm 6y iwas estimated using: 1) the
bottom-layer soil meisturewater content measurement acquired at each AmeriFlux site (hereinafter, Case Il) and 2)
linear interpolation of #s and the bottom-layer AmeriFlux soil meisturewater content measurement (hereinafter, Case

I11). The sensitivity of key results to these various cases is discussed below.

2.2 LSM-based and GLEAM-based simulations

ESM-oeutputSimulations iwas acquired from NOAHMP (Niu et al., 2011) and CLSM (Koster et al., 2000) LSMs
simulations-embedded within the NASA Land Information System (LIS, Kumar et al., 2006) and the GLEAM-a ET
retrieval algorithmsateHite-observation-based-modeGLEAM (Miralles et al., 2011). Both NOAHMP and CLSM
arewere set-up to simulate 0.125<6 profiles at a 15-minute time step using North America Land Data Assimilation
System, Phase 2 (NLDAS-2) forcing data. A 10-year model spin-up period (1992 to 2002) iwas applied for NOAHMP
and CLSM.

NOAHMP numerically solves the one-dimensional Richards equation within four soil layers of thicknesses of 10, 30,
60, and 100 cm. Major parameterization options relevant to 6 simulation include :—}-options for canopy stomatal
resistance_parameterization:-2)-eptions-fer and schemes controlling the effect of @ on the vegetation stress factor &
factor-for-stomatal-resistance(the f-facter). Here we employed the Ball-Berry-type stomatal resistance scheme and

Noah-type soil meisturewater content factor controlling the /5 factor. The specific expressions are as follows:

Nroot 57, 00y,
= Lmin ( 1.0, = 1
ﬁ Zi—l Zroot ( ) ( )

ref™ gwilt

where Owir and Orr are respectively soil meisturewater content at witling point (m® m=) and reference soil

moisturewater content (m® m™3), which is elese-to-set as field capacity during parameterization. 6 and Az; are soil
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meisturewater content (m* m=3) and soil depth (cm) at ith layer, Nioot and zioot are total number of soil layers with roots

and total depth (cm) of root zone, respectively.

Following the Ball-Berry stomatal resistance scheme, the #-controlled g factor and other multiplicative factors

including temperature, foliage nitrogen simultaneously determine the maximum carboxylation rate Vmax as follows:

Ty-25

Vmax = Vmax25 avéfax f(N)f(TV)IB (2)

where Vimaxzs is maximum carboxylation rate at 25C (umol CO2 m™2 s7%); awvmax iS @ parameter sensitive to vegetation
canopy surface temperature Ty; f(N) is a factor representing foliage nitrogen and f(Ty) is a function that mimics thermal
breakdown of metabolic processes. Based on Vma, €arboxylase-limited(Rubisco-Hmited)-and-export-limited{for C3
plants)-photosynthesis rates per unit LAI including carboxylase-limited (Rubisco limited, denoted by Ac) type and
export-limited (for C3 plants, denoted by As) typefAc-and-As respectively) are calculated respectively..and-the The
minimum of Ac, As and light-limited photosynthesis rates determines stomatal resistancecenduetance rs, and;

consequently affectsthe ET over vegetated areas. For the complete NOAHMP configuration, please see Table S1 in

the supplementary material.

CLSM simulates the 0-2 and 0-100 cm soil meisturewater content and evaporative stress as a function of simulated
6 and environmental variables. ET is then estimated based on the estimated evaporative stress and land-atmosphere
humidity gradients. Energy and water flux estimates are iterated with soil state estimates (e.g., 8 and soil temperature)
to ensure closure of surface energy and water balances. For athe detailed explanation of CLSM physics, please refer
to Koster et al. (2000).

GLEAM is a set of algorithms dedicated to the estimation of terrestrial ET and root-zone 6 from satellite data. In this
study, the latest version of this model (v3.2a) is employed. In GLEAM, the configuration of soil layers varies as a
function of the land-cover type. Soil stratification is based on three soil layers for tall vegetation (0-10, 10-100, and
100-250 cm), two layers for low vegetation (0-10, 10-100 cm) and only one layer for bare soil (0-10 cm) (Martens
etal., 2017).

The cover-dependent PET (mm day™?) of GLEAM is calculated using the Priestley and Taylor (1972) equation based
on observed air temperature and net radiation. Following this, estimates of PET arewere converted into actual
transpiration or bare soil evaporation (depending on the land-cover type, ET (mm day™)), using a cover-dependent,
multiplicative stress factor S (—), which is calculated as a function of microwave vegetation optical depth (VOD) and

root-zone 6 (Miralles et al., 2011). The related expressions are as follows:

ET = PET x S+E, @)

’ VoD bc—bw \?
S o VODmax (1 B (ec_ewilt) ) (4)
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where E; is rainfall interception (mm); S essentially represents the fPET (see Sect. 2.3) estimated by GLEAM; 6, (m®

m~3) is the critical soil meisturewater content and 8,, (m® m™3) is the soil meisturewater content of the wettest layer,

assuming that plants withdraw water from the layer that is most accessible. Based on (4), GLEAM S (or fPET) tend
to become more sensitive to @ in areas of low VOD seasonality (i.e., low differences between VOD and VODpax). As

for bare soil conditions, S is linearly related to surface soil meisturewater content (61):

_ 6.—0,

S=1—-—-
0.— 0Oyt

(%)
To resolve variations in the vertical discretization of 4 applied by each model, we linearly interpolated NOAHMP,
CLSM and GLEAM outputs into daily 0-10 and 0—40 cm soil meisturewater content values using depth-weighted

averaging.

2.3 Variable indicating soil meistarewater content and surface flux coupling

Soil meisturewater content — ET coupling can be diagnosed using a variety of different variables derived from ET,
e.g. the fraction of PET (fPET, the ratio of ET and PET) or the evaporative fraction (EF, the ratio of LE and the sum
of LE and sensible heat). Since ET is strongly tied to net radiation (Rn) (Koster et al., 2009), both fPET and EF are
advantageous in that they normalize ET byand removing the impact of non-soil meisturewater content influences on
ET (e.g., net radiation, wind speed and soil heat flux (G)). However, since sensible heat flux is not provided in the
GLEAM dataset, we are restricted here to using fPET.

It should be noted that the applied meteorological forcing data for NOAHMP and CLSM arewere somewhat different
from those used for GLEAM. Therefore, to minimize the impact of this difference, NOAHMP and CLSM fPET were
are computed from North American Regional Reanalysis (NARR) using the modified Penman scheme of Mahrt and
Ek (1984) while GLEAM fPET iwas calculated using its own internal PET estimates. To examine the impact of PET
source on results, AmeriFlux fPET calculations arewere ealeulated-duplicated using both GLEAM- and NARR-based
PET values.

2.4 Information measures

Mutual information (MI) (Cover and Thomas, 1991) is a nonparametric measure of correlation between two random
variables. MI and the related Shannon-type entropy (SE, Shannon, 1948) are calculated as follows. Entropy about a
random variable ¢ is a measure of uncertainty according to its distribution p-and is estimated as the expected amount

of information from p, sample:

SEH(po) = E¢[-In(p: ()] (6)

Likewise, MI between {"and another variable y can be thought of as the expected amount of information about variable
¢ contained in a realization of y and is measured by the expected Kullback-Leibler (KL) divergence (Kullback and

Leibler, 1951) between the conditional and marginal distributions over {:
8
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In this context, the generic random variables ' and  represent fPET and 6 (soil meisturewater content) respectively.
The observation space of the target random variable fPET iwas discretized using a fixed bin width. As bin width
decreases, entropy increases but mutual information asymptotes to a constant value. On the other hand, increased bin
width requires more sample size, which cannot always be satisfied. The trick is choosing a bin width where the NMI
values stabilize with sample size. After a careful sensitivity analysis, we choose a fixed bin width of 0.25 [-] for fPET
and make sure that each AmeriFlux site have enough samples to accurately estimate the NMI, and change of this
constant bin width from 0.1-0.5 [-] will not significantly alter our conclusions. Following Nearing et al. (2016), a bin
width of 0.01 m® m™2 (1% volumetric water content) for @ iwas applied. Integrations required for MI calculation in Eq.
(7) are then approximated as summations over the empirical probability distribution function bins (Paninski, 2003).

By definition, the MI between two variables represents the amount of entropy (uncertainty) in either of the two
variables that can be reduced by knowing the other. Therefore, the MI normalized by the entropy of the AmeriFlux-
based fPET measurements represents the fraction of uncertainty in fPET that is resolvable given knowledge of the soil
meoisturewater content state (Nearing et al., 2013). Unlike Pearson’s correlation coefficient, Ml is insensitive to the
impact of nonlinear variable transformations. Therefore, it is well suited to describe the strength of the (potentially

non-linear) relationship between 6 and fPET.

Here, we applied this approach to calculate the MI content between soil meisturewater content representing different
vertical depths (as reflected by s and 6v) and fPET at each AmeriFlux site. All estimated site-specific MI were-are
normalized by the entropy of the corresponding AmeriFlux-based fPET measurements to remove the effect of inter-
site entropy variations on the magnitude of NMI differences. The resulting normalized MI calculations between both
6s and 6y and fPET are denoted as NMI(8s, fPET) and NMI(8y, fPET) respectively.

The underestimation of observed 6/ET coupling via the impact of mutually-independent 6 and ET errors in AmeriFlux
observations (Crow et al. 2015) iwas minimized by focusing on the ratio between NMI(6s, fPET) and NMI (6v, fPET).
Therefore, relative comparisons between NMI(6s, fPET) and NMI(8y, fPET) are based on examining the size of their
mutual ratio NMI(6s, fPET)/NMI (0, fPET). To quantify the standard error of NMI differences between various soil

meisturewater content products, we applied a nonparametric, 500-member bootstrapping approach; and calculated

pooled average of sampling errors across all sites assuming spatially independent sampling error.

Finally, we also examined the impact of potential nonlinearity in the 6/ET relationship by comparing non-parametric
NMI results with comparable inferences based on a conventional Pearson’s correlation calculation. The correlation-

based coupling strength between 6s and fPET was-is denoted as R(6s, fPET) and between 6y and fPET as R(6y, fPET).
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3 Results
3.1 Comparison of NMI(@s, fPET) and NMI(év, fPET)

Figure 1 contains boxplots of modelled and observed NMI(6s, fPET) and NMI(6v, fPET), i.e., the relative magnitude
of fPET information contained in surface soil meisturewater content and vertically-integrated (0-40 cm) soil

meisturewater content estimated from case |, sampled across all the AmeriFlux locations listed in Table 1. According

to the AmeriFlux ground measurements, median values of NMI(6s, fPET) and NMI(6v, fPET) (across all sites) are
near 0.3 [-]. This suggests that approximately 30% of the uncertainty (i.e., entropy at this particular bin width of 0.25
[-]) in fPET can be eliminated given knowledge of either surface or vertically integrated soil meisturewater content
state. This is consistent with earlier results in Qiu et al., (2016) who used similar variables-metrics to evaluate 6/EF
(evaporative fraction) coupling strength. The sampled medians of NMI(6s, fPET) and NMI(6y, fPET) estimated by
the NOAHMP and CLSM models are similar to these (observation-based) AmeriFlux values. With the single
exception that the CLSM predicts much larger site-to-site variation in NMI(&s, fPET).

In contrast, NMI(6&s, fPET) and NMI(6y, fPET) values sampled from GLEAM 6 and fPET estimates are biased high
(with median NMI(6s, fPET) and NMI(6y, fPET) values of about 0.5 and 0.4 [-], respectively) with respect to all other
estimates.

10
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Fig.1 The G/ET coupling strengths for summertime anomaly time series acquired from various LSMs, GLEAM and AmeriFlux
measurements: (a) NMI(6s, fPET) and NMI(6v, fPET) individually and (b) NMI(6s, fPET) normalized by NMI(6v, fPET).

Al-threeBoth LSMs and GLEAM overall exhibit significantly (at p = 0.05 [-] confidence, using the 34 AmeriFlux
site-collocated samples pixels for pair t-test) higher NMI(6s, fPET) compared to NMI(8y, fPET) — implying the surface

soil meisturewater content observations contain more fPET information than vertically-integrated soil meisturewater
content observations. However, the observed difference between NMI(0s, fPET) and NMI(6y, fPET) is less discernible

in AmeriFlux measurements (Fig. 1(a)).

Here, AmeriFlux observations are used as a baseline for LSM and GLEAM evaluation. However, it should be stressed
that random observation errors in 8 and fPET will introduce a low bias into AmeriFlux-based estimates of both NMI(6s,
fPET) and NMI(6v, fPET) (Crow et al., 2015) and thus their difference as well. To address this concern, Fig. 1(b)
plots the ratio of NMI(0s, fPET) and NMI(6y, fPET), which effectively normalizes (and therefore minimizes) the
impact of random observation errorssuch-observation-errorimpacts. As discussed above, these rRatio results illustrate
the general tendency for NMI(6s, fPET) > NMI(6v, fPET)-discussed-abeve. They also highlight the tendency for
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GLEAM to overvalue 6s (relative to 6v) when estimating fPET. A second approach for reducing the random error of
6 and fPET measurement errors is the Triple Collocation (TC)-based correction applied in Crow et al. (2015). However,
this approach is currently restricted to linear correlation and cannot be applied to estimate NMI. Future work will

examine extending the information-based TC approach of Nearing et al. (2017); to the examination of NMI.

3.2 Sensitivity of AmeriFlux-based NMI1(8s, fPET)/NMI(6v, fPET)

As mentioned in Sect. 2.1, an important concern is the impact of interpolation errors used to estimate 0—-40 cm 6y from
AmeriFlux 0s observations acquired at non-uniform depths. To ensure that different methods for calculating
AmeriFlux 8y values do not affect the main conclusion of this study, we configured three cases for 8y calculation, and
compared their NMI(8s, fPET)/NMI(6y, fPET) results in Fig. 2. Case | reflects the baseline use of the exponential
filter described in Sect. 2.1. However, slight changes to AmeriFlux results are noted if alternative approaches are used.
Specifically, AmeriFlux-based NMI(8y, fPET) increases and closes the gap with NMI(8s, fPET) if the bottom-layer
soil meisturewater content measurements are instead directly used as 6y (Case Il) or if 0—40 cm 6y is based on the
linear interpolation of the two AmeriFlux & observations (Case I11), the impact of this modest sensitivity on key results

is discussed below.
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Fig.2 The O/ET coupling strengths for summertime anomaly time series from AmeriFlux measurements using three different 6v
calculation methods: (a) NMI(8s, fPET) and NMI(8v, fPET) individually and (b) NMI(6s, fPET) divided by NMI(6v, fPET) for
multiple 6v cases. Case | is based on the application of an exponential filter to extrapolate 0-10 cm 6s to a consistent 0-40 cm
bottom layer depth, while Cases Il and 111 refer to the direct use of only the bottom layer measurement and a linear interpolation of
both the top and bottom layer, respectively, to calculate 8v (see Sect. 2.1 for details on each case).

In addition, switching from GLEAM- to NARR-based PET when calculating fPET for AmeriFlux-based NMI(0s,
fPET) and NMI(6y, fPET) does not qualitatively change results and produces only a very slight (~6%) increase in the
median NMI(6s, fPET)/NMI(Gy, fPET) ratio.

3.3 Spatial distribution of NMI1(6s, fPET) and NMI(6v, fPET)

Figure 3 plots the spatial distribution of NMI(0s, fPET) and NMI(6y, fPET) results for each of the individual 34
AmeriFlux sites listed in Table 1. The climatic regime is represented by Al (aridity index) values plotted as the
background color in Fig. 3. It can be seen in Fig. 3 that NMI(6s, fPET) estimates from LSMs and GLEAM are spatially
related to hydro-climatic conditions, as NOAHMP and CLSM predict that s is moderately coupled with fPET (i.e.,
NMI (s, fPET) of 0.3-0.5 [-]) in the arid sSouthwestern US (AI<0.2) and only loosely coupled with fPET in the
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relatively humid eEastern US. A similar decreasing trend of NMI(6s, fPET) from the sSouthwestern to eEastern US
is also captured by GLEAM. However, as noted above, GLEAM generally overestimates NMI(6s, fPET) and NMI (6,
fPET) compared to NOAHMP, CLSM and AmeriFlux. In contrast, a relatively weaker spatial pattern emerges in
AmeriFlux-based NMI(6s, fPET) results. In addition, spatial patterns for NMI(6s, fPET) are less defined than for
NMI(6y, fPET) in all four datasets.

Scatterplots in Fig. 4 summarize the spatial relationship between LSM-_and GLEAM-based NMI(8s, fPET) and
NMI(6y, fPET) results versus AmeriFlux observations_across different land use types. While observed levels of
correlation in Fig. 4 are relatively modest, there appears-te-be-ais a significant level (p<0.05) of spatial correspondence
between LSMs modelled and observed NMI results_only over forest sites — motivating the need to better understand

processes responsible for spatial variations in NMI results._In addition, stratifying NMI(6s, fPET)/NMI(8y, fPET) ratio

results according to vegetation type (Fig. Al) confirms that NMI(&s, fPET) slightly exceeds NMI(8y, fPET) across all

vegetation types (and thus all rooting depths characterizing each vegetation type). This suggests that our analysis is

not severely affected by variations in the depth of & measurements. For further discussion on the impact of land cover

on NMI results, please see Appendix A.
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Fig. 4 Scatterplot of LSM-based and GLEAM-based (a) NMI(#s, fPET) and (b) NMI(6v, fPET) results versus AmeriFlux
observations. Red symbols represent simulations from NOAHMP36; blue symbols represent simulations from CLSM2 and green
symbols represent GLEAM retrievals.

3.4 Sensitivity of NMI1(8s, fPET)/NMI(év, fPET) ratio to climatic conditions

Figure 5 further summarizes the ratio-ef£-NMI(6s, fPET) and-/NMI(6y, fPET) ratio as a function of Al for all four
products (NOAHMP, CLSM, GLEAM and AmeriFlux). Error bars represent the standard deviation of sampling errors
calculated from a 500-member bootstrapping analysis. With increasing Al, there is a significant decreasing trend in

surface—and—vertically—integrated—9/ET coupling—within—both NMI(0s, fPET) and NMI(@y, fPET) for all three
simulations, with a goodness-of-fit above 0.5 (figure not shown). For all cases, the NMI(0s, fPET)/NMI(Ov, fPET)

ratios are consistently greater than unity under all climatic conditions. However, the estimated NMI(8s, fPET)/NMI(6y,
fPET) ratios from all three simulations (NOAHMP, CLSM and GLEAM) exhibit quite different trends with respect
to Al. The NMI(8s, fPET)/NMI(8y, fPET) ratio for CLSM decreases with increasing Al, with a moderate goodness-
of-fit value of 0.28, while GLEAM estimates of NMI(6s, fPET)/NMI(6y, fPET) shows an opposite increasing trend
with increasing Al. i i i i i
NOAHMP; CLSM-and-GLEAM-estimates-of NMI(ds-fPET)-are-generally-higher than-NMKA\fPET)-in-all-climatic
conditiens—Conversely, thereFhere is relatively lower sensitivity of the NMI(0s, fPET)/NMI(Gy, fPET) ratio to arieity
Al captured in the AmeriFlux measurements;-as-the- NMKOsFPET/NMKAFPET)ratio-still-approximates-one-under

Connecting these findings to spatial distribution of NMI(8s, fPET) and NMI(8y, fPET) (Fig. 3) it-is-confirmsed that
the relative magnitudes of NMI(8s, fPET) and NMI(8y, fPET) for bothat-three LSMs and GLEAM are spatially related
to hydro-climatic regimes-{although-infundamentathydifferentways). In contrast, this link is weaker in the AmeriFlux
measurements which, except for a small fraction of very low Al sites, do not appear to vary as a function of Al. These
conclusions are not qualitatively impacted by looking at NMI(8s, fPET) and NMI(6y, fPET) differences, as opposed
to their ratio as in Fig. 5, or by looking at R(&s, fPET) and R(6y, fPET) instead of NMI.
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Fig. 5 For a) NOAHMP, (b) CLSM, (c) GLEAM and (d) AmeriFlux estimates, the ratio of NMI(6s, fPET) and NMI(8v, fPET) as
a function of Al across all AmeriFlux sites.

4 Discussion and conclusion

Since transpiration dominates the global ET (Jasechko et al., 2013), deep-layer soil meisturewater content (6v) is
generally considered to contain more ET information than that of surface soil meisturewater content (6s) — given plant
transpiration is balanced by root water uptake from deeper soils (Seneviratne et al., 2010). However, this assumption
is rarely tested using models and/or observations. Here, we apply normalized mutual information (NMI) to examine
how the vertical support of a soil meisturewater content product impaetsaffects its relationship with concurrent surface

ET.

Specifically, using AmeriFlux ground observations, we examine whether (NMI-based) estimates of LSMs and
GLEAM 0s versus ET and 6y versus ET coupling strength accurately reflect observations acquired at a range of
AmeriFlux sites. In general, compared to the baseline case of exponential filter extrapolated 40-cm bottom layer 6y,
LSMs and GLEAM agree with AmeriFlux observations in that the overall fPET information contained in 6s is slightly
higher than that of 6v (Fig. 1). However, the sensitivity analysis showed this difference between NMI(8s, fPET) and
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NMI(6y, fPET) diminishes when using different methods for calculating 6v using AmeriFlux observations (Fig. 2).

As a result, this result should be viewed with caution.

While NOAHMP and CLSM derived NMI(6s, fPET) and NMI(&y, fPET) results are generally consistent with the
AmeriFlux observations, GLEAM overestimates NMI(6s, fPET), NMI(6y, fPET), and the ratio NMI(Os,
fPET)/NMI(0y, fPET) relative to observations. Although both LSMs and GLEAM are based on the same classical
two-section (soil meisturewater content-limited and energy-limited) ET regimes framework (Sect. 2.2), they differ in
two fundamental aspects. First, the evaporative stress factor S is represented as a more direct and strong function of
soil meisturewater content in GLEAM - see Egs. (4) and (5) - which leads to the overestimation of 6/ET coupling
strength. This is consistent with our results that GLEAM generally overestimates NMI(8s, fPET) and NMI(6v, fPET)

consistently across all land covers, compared to AmeriFlux-based estimates. On the other hand, NOAHMP and CLSM

approximate ET in the manner of biophysical models, and expresses biophysical control on ET through the stomatal
resistance I's, which is a function of multiple limiting factors including 6. Therefore, the more complex ET scheme

employed by NOAHMP and CLSM would seem to mitigate the overestimation of NMI(8s, fPET) and NMI(6v, fPET),

as other relevant factors besides 6 (such as temperature, foliage nitrogen) are also considered in determining maximum

carboxylation rate Vmax and stomatal resistance I's - and consequently more realistic actual ET.

Secondly, the stress factor 4 in both LSMs considers the cumulative effects of  conditions along different layers (Eq.
(1)), while the corresponding S-factor S in GLEAM only uses the wettest soil layer condition, which is top layer at
most sites. This likely explains the overestimation of the NMI(6s, fPET)/NMI(8y, fPET) ratio by GLEAM.

Nevertheless, we would like to stress that all approaches considered in our paper contain (at their core) a parameterized

relationship between 8 and ET. While the implications of mis-parameterizing this relationship are arguably more

severe for a land surface model, we’d argue that the issue remain relevant for any approach (such as GLEAM) that

utilizes a water balance (and/or data assimilation system) approach to estimate @ and, in turn, uses 6 to constrain ET.

Regardless of the complexity that a given approaches employs, failing to accurately describe the relationship between

ET and (large number of potential) environmental constraints should eventually degrade the robustness of the model,

no matter the model is employed as a retrospective, diagnostic or predictive manner. To examine this issue directly,
Fig. 6 plots the relationship between GLEAMS bias in NMI(6s, fPET)/NMI(6y, fPET) ratio versus the RMSE of daily

GLEAM ET simulations for a range of AmeriFlux sites. There is a positive correlation between the two quantities -

which suggests that GLEAM overestimation of O/ET coupling during the summer may undermine the accuracy of its
daily ET retrievals. It should be noted that GLEAM simultaneously overestimates both NMI(6s, fPET) and NMI(6v,
fPET); however, the impact of this mis-parameterization impact on GLEAM ET accuracy is most obvious when
plotted against the ratio NMI(6s, fPET)/NMI(by, fPET).
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Fig. 6 Daily ET error in GLEAM as a function of GLEAM bias in NMI(6s, fPET)/NMI(6v, fPET) ratio across 34 AmeriFlux sites.

Although the median values of NMI(8s, fPET) and NMI(8y, fPET) predicted by NOAHMP and CLSM are general in
line with AmeriFlux observations, they are more spatially related to hydro-climatic conditions (as summarized by Al)
than their counter parts acquired from AmeriFlux measurements. Seen from the plot of NMI(6s, fPET)/NMI(6y, fPET)
ratio as a function of Al (Fig. 5), the modelled and observed NMI(8s, fPET)/NMI(6y, fPET) ratio median decreases
with increasing Al, and the decreasing trend is particularly clear when Al is lower than 1.0 [-]. In contrast, there is
relatively lower sensitivity to aridity exhibited in the AmeriFlux measurements.

These results provide several key insights into future land-atmosphere coupling analysis and LSM as well as ET
algorithm development. First, all the datasets — both model-based and ground-observed — indicates that 8s contain at
least as much ET information as 6,. Hence, remote-sensing land surface soil meisturewater content datasets are
suitable, and should be considered, for analyzing the general interaction between land and atmosphere, e.g., soil
meoisturewater content — air temperature coupling (Dong and Crow, 2019) and the interplay of soil meisturewater
content and precipitation (Yin et al., 2014). Additionally, future generations of GLEAM may consider more
sophisticated evaporation stress functions, which may improve its accuracy in representing soil’s control on local ET.
This may, in turn, improve the accuracy of GLEAM ET product. Finally, our results demonstrate that modeled 6/ET
is highly-more sensitive to hydro-climates;,—cempared-te_than the observed relationships. Modifying the model
structures to reduce such sensitivity might be necessary for accurately representing the interaction of land surface and
atmosphere across different climate zones. This may lead to more realistic projections of future drought-induced

heatwaves, when coupled with general circulation models.

21



408  Data availability

409  Ground-based soil meisturewater content and surface flux data are available from http://ameriflux.ornl.gov/. GLEAM
410  dataset is available from https://www.gleam.eu/. LSMs simulations of NOAHMP and CLSM used in this study are

411  available by contacting the authors.
412 Appendix A
413 We performed additional sensitivity analysis to explicitly demonstrate the effect of different vegetation land cover types
414 and consequently different rooting depths (or 8, measurement depths) on the NMI(8s, fPET)/NMI(6y, fPET) ratio, and
415 plotted these results in Fig. Al. The figure confirms that consistent with AmeriFlux, both LSMs and GLEAM predict
416 that NMI(@s, fPET) is slightly higher than NMI(6y, fPET) over most vegetation types, and GLEAM overestimates
417 NMI(0s, fPET)/NMI(6Oy, fPET) for most vegetation types.
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419 Fig. A1 For a) NOAHMP, (b) CLSM, (c) GLEAM and (d) AmeriFlux estimates, the ratio of NMI(&s, fPET) and NMI(6v, fPET)
420 as a function of vegetation types across all AmeriFlux sites. 'ENF', 'DBF','MF', 'OS"' and 'WS' represent evergreen needleleaf forests,
421 deciduous broadleaf forests, mixed forests, open shrubland, and woody savannas, respectively.
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