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Abstract 7 

The application of higher-order wavelet analysis to India rainfall and the El Niño/Southern Oscillation (ENSO) is 8 
presented. An auto-bicoherence analysis is used to extract the frequency modes contributing to the skewness of India 9 
rainfall and ENSO. A nonlinear wavelet coherence method is proposed for diagnosing why the time-domain 10 
correlation between two time series temporally changes when at least one time series has changing nonlinear 11 
characteristics.  12 

 The results indicate the India rainfall and ENSO are highly nonlinear phenomenon. It is also demonstrated 13 
that the sea surface temperature (SST) patterns associated with different nonlinear ENSO modes depend on the 14 
frequency components participating in the nonlinear phase coupling. The SST pattern associated with coupling 15 
between ENSO modes with periods of 31 and 15.5 months is reminiscent of a central Pacific El Niño and intensifies 16 
around 1995, contrasting with the coupling between the 62- and 31- month modes that became active around the 1970s 17 
ENSO regime shift. A nonlinear coherence analysis showed that the skewness of India rainfall is weakly correlated 18 
with that of 4 ENSO time series after the 1970s, indicating that increases in ENSO skewness after 1970’s at least 19 
partially contributed to the weakening India rainfall-ENSO relationship in recent decades. The implication of this 20 
result is that the intensity of skewed El Niño events is likely to overestimate India drought severity, which was the 21 
case in the 1997 monsoon season, a time point when the nonlinear wavelet coherence between All-India rainfall and 22 
ENSO reached its lowest value in the 1871-2016 period.   23 

1. Introduction  24 

Precipitation variability across India is largely related to the seasonal Southwest and Northeast monsoon 25 
systems involving changes in the prevailing low-level wind direction. Understanding the precipitation variability 26 
across India is complex because India rainfall is a non-stationary, non-linear phenomenon that is influenced by 27 
numerous large-scale climate patterns such as the El Niño/Southern Oscillation (ENSO; Walker and Bliss, 1932) and 28 
the Indian Ocean Dipole (IOD; Ashok et al., 2001; Ashok et al., 2004) pattern. Predicting India rainfall has important 29 
implications for the agriculture, human health, and economy of India, making the Indian monsoon an active area of 30 
research despite early work on monsoon prediction extending back to the 1800s (Blanford, 1884).   31 

An important source of predictability for the Indian monsoon is ENSO. During EL Niño years, droughts are 32 
favored, while rainfall surpluses are favored during La Niña years. However, there is no one-to-one relationship 33 
between ENSO and Indian rainfall.  As a result, summer rainfall predictions based on ENSO have proven challenging. 34 
For example, the 1997/1998 EL Niño event was extremely strong yet climatological Indian monsoon conditions were 35 
observed (Shen and Kimoto, 1999; Slingo and Annamalai, 2000). It is therefore important to understand why certain 36 
El Niño events are not accompanied by monsoon failures.  37 

There are a few reasons for the challenges faced when predicting Indian rainfall using ENSO. The first reason 38 
is that the relationship between ENSO and India rainfall is non-stationary. As shown by Torrence and Webster (1999), 39 
the relationship between ENSO and India rainfall cycles between periods of high and low coherence. Kumar et al. 40 
(1999) found that the relationship between India rainfall and ENSO weakened in the 1970s and hypothesized that a 41 
southward shift in Walker circulation anomalies associated with ENSO events and increased Eurasian spring and 42 
winter surface temperatures was responsible for the weakening relationship. Other work suggests that the changing 43 
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ENSO-India rainfall relationship was the result of tropical Atlantic sea surface temperatures (SSTs) and the Atlantic 44 
Multi-decadal Oscillation modulating the relationship (Lu et al., 2006; Kucharski et al. 2007; Kucharksi et al., 2009; 45 
Chen et al., 2010). In contrast, Kumar et al (2006) and Fan et al. (2017) argued that the occurrence of different ENSO 46 
flavors (Johnson, 2013) such as the Eastern Pacific and Central Pacific types could explain the changes in the ENSO-47 
India rainfall relationship. Other investigators adopted another perspective to explain changes in the ENSO-India 48 
rainfall relationship and concluded that temporal undulations in the ENSO-India rainfall relationship are related to 49 
statistical under sampling and stochastic fluctuations (Gershunov et al. 2001; van Oldenborgh and Burgers, 2005; 50 
Delsole and Shukla, 2006; Cash et al., 2017).  In a recent analysis, Yun and Timmermann (2018) showed that changes 51 
in the ENSO-Indian rainfall relationship are consistent with a stochastically perturbed ENSO signal and argued that 52 
changes in the ENSO-India monsoon relationship may not be related to external climate forcing mechanisms.  53 

The second reason for the ENSO-related prediction challenges is that ENSO itself is a non-stationary 54 
phenomenon. Using wavelet analysis, Kestin et al. (1998) found that the interannual variability of ENSO from 1930 55 
to 1960 was dominated by a 4- to 7- year periodicity, whereas for the time period from 1960 to 1990, the interannual 56 
variability was also dominated by a 2- to 5- year periodicity. A wavelet power spectral analysis conducted by Torrence 57 
and Webster (1999) and Schulte (2016a) showed that ENSO signal energy in the 2- to 7-year period band undulates, 58 
with the signal energy of the Niño 3.4 time series particularly pronounced after the 1960s (Schulte 2016a).  59 

The nonlinear characteristics (e.g. skewness) of ENSO are also non-stationary and undergo interdecadal 60 
changes (Wu and Hsieh, 2003). Numerous studies have reported an ENSO regime shift in the 1970s in which ENSO 61 
began to evolve more nonlinearly than in previous decades (An, 2004; An and Jin 2004; An, 2009). It is a curious fact 62 
that the ENSO regime shift of the 1970s coincided with the weakening ENSO-India rainfall relationship as 63 
documented by Kumar et al. (1999). This observation begs the question as to whether nonlinear ENSO regime changes 64 
are related to changes in the ENSO-India rainfall relationship.  65 

Various mechanisms have been proposed for explaining ENSO skewness. Kang and Kug (2002) suggested 66 
that the asymmetry between the magnitude of El Niño and La Niña events is related to the relative westward 67 
displacement of zonal wind stress anomalies during La Niña events compared to El Niño events. Jin et al., (2003) and 68 
An and Jin (2004) found that ENSO asymmetry is related to nonlinear dynamical heating (NDH), where the magnitude 69 
of NDH is related to the propagation characteristics of ENSO. During strong El Niño events like the 1982/1982 and 70 
1997/1998 events, SST anomalies were found to propagate eastward, with the eastward propagation tending to produce 71 
more NDH compared to weak EL Niño events when NDH is minimal (An and Jin, 2004). Since the late 1970s there 72 
has been a propensity for eastward propagation characteristics of ENSO (Santoso et al., 2013), contrasting with the 73 
time period before the 1970s that consisted of the relatively weak El Niño events of 1957/1958 and 1972/1973 (An 74 
and Jin, 2004; An, 2009). More recently, Su et al. (2010) showed that vertical temperature advection may have an 75 
opposing effect on ENSO asymmetry and that the asymmetry in the extreme eastern equatorial Pacific is related to 76 
meridional ocean temperature advection. 77 

Previous investigators have used different metrics to quantify ENSO asymmetry. To measure the nonlinear 78 
character of ENSO, An and Jin (2004) used time-domain metrics such as skewness and maximum potential intensity 79 
(MPI) to quantify the skewness of SST anomalies and the skewness of individual ENSO events, respectively. An 80 
(2004) applied a principal component analysis (PCA) to a 21- year moving window of tropical Pacific SST skewness 81 
and found that the first PCA mode is characterized by positive skewness across the eastern equatorial Pacific and 82 
negative skewness across the central equatorial Pacific. This pattern means that interdecadal changes in the 83 
nonlinearity of ENSO is associated with positively skewed SST anomalies across the eastern equatorial Pacific, 84 
implying that El Niño events are stronger than La Niña events. While the methods implemented in the aforementioned 85 
studies provided important insights, they cannot reveal the frequency modes of ENSO that are contributing to the 86 
skewness. Furthermore, the sliding-window approach is not local in the sense that it cannot quantify the strength of 87 
nonlinearity at a point in time because skewness is calculated using a set of observations over some time interval. 88 
While the MPI index does address the problem of quantifying the skewness of individual events, it also does not 89 
provide any information regarding the frequency components contributing to ENSO skewness.  90 

Recognizing the limitations of time-domain approaches, Timmermann (2003) conducted a bi-spectral 91 
analysis of the Niño 3 anomaly time series, where a peak (𝑓1,𝑓2) in the bi-spectrum means there is statistical phase 92 
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dependence  among oscillators with frequencies 𝑓1 , 𝑓2 , and 𝑓1 + 𝑓2 . That bi-spectral analysis revealed statistically 93 
significant bi-spectral power at several frequency pairs, including (0.038, 0.038), (0.028, 0.028), (0.0225, 0.0225), 94 
(0.0045, 0.032), and (0.0045, 0.045) [month-1]. The peaks (0.0045, 0.032), and (0.0045, 0.045) [months-1] were 95 
identified with the nonlinear interactions among 18-year and 2-year variability. Although the analysis provided new 96 
insights, the Fourier-based analysis could not reveal how the nonlinear nature of ENSO changed with time, an 97 
important property to capture given how the nonlinear characteristics of ENSO are non-stationary (Santoso et al., 98 
2013). Much like the cross-wavelet power (Maraun and Kurths, 2004) and time-domain covariance, bi-spectral power 99 
is not a bounded quantity and so high bi-spectral power does not always mean strong phase dependence.   100 

In this study, the deficiencies associated with the above-mentioned techniques are addressed using higher-101 
order wavelet analysis, which allows for the quantification of frequency-dependent and non-stationary nonlinearities 102 
in time series (Van Millagan, 2004, Elsayad, 2006; Schulte, 2016b). More specifically, the objectives of the paper are 103 
the following: 1) quantify the nonlinearity of ENSO and Indian rainfall using higher-order wavelet analysis together 104 
with recently developed statistical tests; (2) Determine if different nonlinear modes of ENSO are associated with 105 
distinct SST patterns; and (3) develop nonlinear wavelet coherence methods to test the hypothesis that the breakdown 106 
of the ENSO-India rainfall relationship in recent decades is related to the shift of ENSO from a linear regime to a 107 
nonlinear one. The paper is organized as follows: In Section 2, data used are described. Section 3 includes the 108 
description of the implemented methodologies. Results are presented in Section 4 and concluding remarks are 109 
provided in Section 5.  110 

2. Data 111 

Monthly rainfall data for 5 homogenous regions (Parthasarathy et al. 1995a) were obtained from the Indian 112 
Institute of Tropical Meteorology website (http://www.tropmet.res.in). The five homogenous regions called the 113 
Peninsula, Northwest, Northeast, Central Northeast and West Central regions were constructed based on attributes 114 
such as contribution to annual rainfall amount and regional/global circulation parameters (Parthasarathy et al. 1995a; 115 
Azad et al., 2010). The variability of India rainfall was also analyzed using the all-India (Parthasarathy et al. 1995b) 116 
rainfall time series, which is created by averaging representative rain gauges at various locations across India (Mooley 117 
and Parthasarathy, 1984). The full monsoon season (June-September) and the late monsoon (August-September) 118 
season were used to identify possible within-season variations in the relationships. All 6 rainfall time series considered 119 
are continuous and span the time period from 1871 to 2016. To remove the influence of the annual cycle, the time 120 
series was converted into anomaly time series by subtracting the 1871-2016 long-term mean for each month from the 121 
individual monthly values. The anomaly time series were subsequently standardized by dividing them by their 122 
respective 1871-2016 standard deviations. Because wavelet analysis focuses on specific frequency components that 123 
are not impacted by long-term time-domain trends, no detrending of the data was performed.  124 

The monthly data for the Niño 1+2, Niño 3, Niño 3.4, and Niño 4 indices (available at: 125 
https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/Data/nino34.long.data) from 1871 to 2016 were used to 126 
understand how the nonlinear characteristics of SSTs vary from one ENSO region to another. The  Niño 1+2 index is 127 
the average SST in the region  with latitudinal boundaries 0° and 10°S and longitudinal boundaries 90°W and 80°W 128 
and the Niño 3 index is the average SSTs in the region with latitudinal boundaries 5°N and 5°S and longitudinal 129 
boundaries 150°W and 90°W. Variations in SSTs further west were described using the Niño 3.4 and Niño 4 indices, 130 
where the Niño 3.4 index is defined as the average SST in the region bounded by 5°N and 5°S and 170°W and 120°W  131 
and  the Niño 4 index is defined as average SSTs in the region bounded by 5°N and 5°S and 160°E and 150°W. The 132 
seasonal cycle was removed from these time series in the same way as it was removed from the rainfall time series. 133 
Like the rainfall data, these data were not detrended.  134 

The monthly SST data from 1871-2016 were based on the Hadley Centre Global Sea Ice and Sea 135 

Surface Temperature (HadISST1; Rayner et al., 2003) The data at each grid point were converted to 136 

monthly anomalies in the same way as they were computed for the ENSO and All-India time series. 137 

3. Methods 138 
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3.1 Event Decomposition  139 

To quantify the time-domain skewness of individual ENSO and India rainfall events, the ENSO and rainfall 140 
time series were first decomposed into individual events using the event decomposition procedure outlined by Schulte 141 
and Lee (2019). That is, a time series 𝑥1,𝑥2,...,𝑥𝑁 with data points located at the time points 𝑡1, 𝑡2,...,𝑡𝑁 was partitioned 142 
into subsequences comprising adjacent data points whose values are negative in the case of negative events and whose 143 
values are positive in the case of positive events. A positive event was considered to begin at 𝑡𝑖 if 𝑥𝑖 > 0 and 𝑥𝑖−1< 0. 144 
The decay phase of a positive event beginning at 𝑥𝑖 was then defined as the time point 𝑡𝑗  such that 𝑡𝑗≥ 𝑡𝑖, 𝑥𝑗  > 0, 𝑥𝑗+1< 145 
0, and 𝑥𝑘> 0 for all k such that i ≤ k ≤ j. Negative events were identified by switching the inequalities in the statements 146 
above. After the event decompositions, the peak intensity of events was calculated, where the peak intensity of a 147 
negative (positive) event was the minimum (maximum) value obtained by a data point within the event period [𝑡𝑖 𝑡𝑗]. 148 
The persistence of an event was defined as the number of points composing the event and the event intensity was 149 
defined as 150 

𝐼 = ∑ 𝑦𝑖
𝑀
𝑖=1                                                                                         (1) 151 

where the 𝑦𝑖 are the M data points composing the event. The duration and intensity of events were depicted using 152 
event spectra (Schulte and Lee, 2019).  153 

3.2 Wavelet Analysis 154 

To better diagnose changes in time series statistics associated with India rainfall and ENSO, we adopted a 155 
wavelet analysis. The continuous wavelet transform of a time series 𝑋 =  {𝑥𝑛: 𝑛 = 1,2, . . 𝑁} is given by  156 

𝑊𝑛(𝑠) =  √
𝛿𝑡

𝑠
∑ 𝑥𝑛′

𝑁
𝑛′=1 𝜓0 [(𝑛′ − 𝑛)

𝛿𝑡

𝑠
]                                                     (2) 157 

where s is wavelet scale, 𝜓0  is an analyzing wavelet, 𝛿𝑡 is a time step (1 month in this study), and n is time. The 158 
sample wavelet power spectrum |𝑊𝑛(𝑠)|2 measures the energy content of a signal at time n and scale s. The commonly 159 
used Morlet wavelet with angular frequency 𝜔 = 6 was used throughout this paper because it balances time and 160 
frequency localization. The reader is referred to Torrence and Compo (1998) and Grinsted et al. (2004) for details 161 
about wavelet analysis.  162 

 Wavelet coherence was used to quantify the linear relationship between two time series as a function of 163 
frequency and time. Wavelet coherence between two time series X and Y is given by 164 

𝑅𝑛
2(𝑠) =  

|𝑆𝑠−1𝑊𝑛
𝑋𝑌(𝑠)|

2

𝑆(𝑠−1|𝑊𝑛
𝑋(𝑠)|

2
)𝑆(𝑠−1|𝑊𝑛

𝑌(𝑠)|
2

)
,                                                       (3) 165 

where S is a smoothing operator (Grinsted et al., 2004) and 𝑊𝑛
𝑋𝑌(𝑠) is the cross-wavelet power spectrum. A coherence 166 

value of 1 indicates the strongest possible association between two variables at the scale s and time n. Large values of 167 
wavelet coherence correspond to time points and scales for which the relative phase difference between two time 168 
series varies little over a time interval. That is, two time series are perfectly coherent at the scale s if for some constant 169 
c  𝜙𝑛

𝑋(𝑠) − 𝜙𝑛
𝑌(𝑠) = c, where 𝜙𝑛

𝑋(𝑠) is the phase associated with X and 𝜙𝑛
𝑌(𝑠) is the phase associated with Y. If the 170 

relative phase relationship is sufficiently stable, then the wavelet coherence will emerge as statistically significant 171 
(Section 3.4).  172 

In the context of the Indian monsoon, strong coherence between rainfall and a climate pattern (e.g. ENSO) 173 
at a scale s indicates shared temporal characteristics between a climate pattern and rainfall. Because theory supports a 174 
causal link between ENSO and monsoon variability, strong coherence means that ENSO modulates rainfall. That is, 175 
when ENSO is in a warm phase at the scale s, negative rainfall anomalies are preferred; when ENSO is in a cool phase, 176 
the preference is reversed. As a result, the rainfall time series will inherit the temporal characteristics of the climate 177 
forcing time series at a scale s. If the climate forcing time series is strongly periodic, then the otherwise noisy rainfall 178 
time series could become periodic as well.  179 

https://doi.org/10.5194/hess-2019-280
Preprint. Discussion started: 23 July 2019
c© Author(s) 2019. CC BY 4.0 License.



5 
 

3.3 Higher-order Wavelet Analysis 180 

Although the wavelet power spectrum is useful for quantifying the signal energy at a scale s and time n, it 181 
cannot determine if there is a nonlinear relationship among different frequency components. In fact, the power 182 
spectrum can only fully describe time series in frequency space in the case of linear systems in which the output is 183 
proportional to the input (King, 1998). For nonlinear systems, higher-order moments exist, and the frequency 184 
decomposition of higher-order moments such as skewness is necessary for a more complete description of the time 185 
series. Thus, higher-order wavelet methods were adopted to determine the frequency components contributing 186 
skewness without assuming stationarity like Fourier-based bicoherence analysis.  187 

The type of nonlinearities that produce skewness are quadratic nonlinearities in which the scales 𝑠1, 𝑠2, and 188 
𝑠3 satisfy the sum rule  189 

1

𝑠3
=

1

𝑠1
+

1

𝑠2
                                                                             (4)                                    190 

and the wavelet phases satisfy  191 

𝜙𝑛(𝑠3) = 𝜙𝑛(𝑠1) + 𝜙𝑛(𝑠2).                                                               (5) 192 

These types of nonlinearities arise, for example, when a sinusoid is squared, in which case a harmonic is produced.  193 

In this paper, the frequency components contributing to the skewness of a times series were quantified using 194 
local and global wavelet-based auto-bicoherence methods (Schulte, 2016b). Global auto-bicoherence was computed 195 
using the equation  196 

𝑏𝑖𝑔𝑙𝑜𝑏𝑎𝑙
𝑋 (𝑠1, 𝑠2) =  

|𝐵𝑔𝑙𝑜𝑏𝑎𝑙
𝑋 (𝑠1𝑠2)|

2

(∑ |𝑊𝑛
𝑋(𝑠1)𝑊𝑛

𝑋(𝑠2)|
2𝑁

𝑛=1 )(∑ |𝑊𝑛
𝑋(𝑠3)|

2𝑁
𝑛=1 )

,                                             (6) 197 

where 198 

𝐵𝑔𝑙𝑜𝑏𝑎𝑙
𝑋 (𝑠1, 𝑠2) = ∑ �̂�𝑛

𝑋(𝑠3)𝑊𝑛
𝑋(𝑠1)𝑊𝑛

𝑋(𝑠2)𝑁
𝑛=1                                             (7) 199 

is the global bi-spectrum and the hat denotes the complex conjugate. Identical to wavelet coherence, auto-bicoherence 200 
is bounded by 0 and 1, a value of 1 indicating the strongest possible phase coupling among the phases 𝜙𝑛(𝑠3), 𝜙𝑛(𝑠2), 201 
and 𝜙𝑛(𝑠1) such that sum rule Eq. (5) is satisfied. A peak in the auto-coherence spectrum at (𝑠1, 𝑠2) means there is 202 
phase coupling between oscillatory modes with scales 𝑠1, 𝑠2, and 𝑠3. High auto-bicoherence at (𝑠1, 𝑠2) can also mean 203 
that the same oscillatory modes are contributing to the skewness of the time series.  204 

 While the global auto-bicoherence spectrum is useful for identifying nonlinear triads, it cannot determine 205 
how the strength of phase coupling changes with time. To determine if the strength of the phase coupling changes 206 
temporally, the local auto-bicoherence spectrum (Schulte, 2016b) given by  207 

𝑏𝑖𝑛
𝑋(𝑠1, 𝑠2) =  

|𝑆𝑠1
−1𝐵𝑛

𝑋(𝑠1,𝑠2)|
2

𝑆(𝑠1
−1|𝑊𝑛

𝑋(𝑠1)𝑊𝑛
𝑋(𝑠2)|

2
)𝑆(𝑠1

−1|𝑊𝑛
𝑋(𝑠3)|

2
)
,                                              (8) 208 

was computed, where 𝐵𝑛
𝑋(𝑠1, 𝑠2) is the local bi-spectrum given as 209 

𝐵𝑛
𝑋(𝑠1, 𝑠2) =  �̂�𝑛

𝑋(𝑠3)𝑊𝑛
𝑋(𝑠1)𝑊𝑛

𝑋(𝑠2).                                                 (9) 210 

In this study, we focused on the local diagonal slices of the auto-bicoherence spectrum, which consists of all points 211 
such that  𝑠1 =  𝑠2 so that Eq. (4) implies that  𝑠3 =  𝑠1 2⁄ .  In this special case, the local auto-bicoherence spectrum 212 
was calculated using the equation  213 

𝑏𝑖𝑛
𝑋(𝑠1, 𝑠1) =  

|𝑆𝑠1
−1𝐵𝑙𝑜𝑐𝑎𝑙(𝑠1,𝑠1)|

2

𝑆(𝑠1
−1|𝑊𝑛

𝑋(𝑠1)𝑊𝑛
𝑋(𝑠1)|

2
)𝑆(𝑠1

−1|𝑊𝑛
𝑋(

𝑠1
2

)|
2

)
                                                (10) 214 
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to reveal the time-evolution of auto-bicoherence estimates located along the diagonal slice in the global spectra. Bi-215 
phase corresponding to each point in the local auto-bicoherence spectrum was used to quantify the local cycle 216 
geometry of the time series. Local bi-phase is given by 217 

𝜓𝑛(𝑠1, 𝑠2) = 𝜙𝑛(𝑠1) + 𝜙𝑛(𝑠2) − 𝜙𝑛(𝑠3)                                                   (11) 218 

and measures the skewness and asymmetries of waveforms. A bi-phase of 0◦ means that the relationship among the 219 
scale components produces positive skewness with respect to a horizonal axis so that positive deviations from the 220 
mean are larger than negative deviations from the mean. On the other hand, a bi-phase of 180◦ indicates negative 221 
skewness with respect to the mean. Bi-phases near -90◦ or 90◦ indicate the presence of asymmetric cycle geometry 222 
(King, 1998; Maccarone, 2014; Schulte, 2016b), indicating that a time series rises (falls) more quickly than it falls 223 
(arises).  224 

 To be consistent with the wavelet power and coherence analyses, results for the higher-order wavelet analysis 225 
were casted in terms of Fourier period rather than wavelet scale. The Fourier period corresponding to 𝑠𝑖 was denoted 226 
by 𝑝𝑖, where the Fourier period is obtained by multiplying 𝑠𝑖 by 1.03 for the Morlet wavelet (Torrence and Compo, 227 
1998). Thus, the local diagonal slice of the auto-bicoherence spectra were plotted using the Fourier period 𝑝1 228 
corresponding to 𝑠1 as the vertical axis and time as the horizonal axis. High (or statistically significant) local auto-229 
bicoherence at 𝑝1 and time n means that there is phase dependence between modes with periods 𝑝1 and 𝑝1/2 at time 230 
n because 2𝑝3 = 𝑝1 according to Eq. (4) when 𝑝1 = 𝑝2. In other words, the local diagonal slice determines if there is 231 
phase coupling between an oscillatory mode and its harmonic at various time points.  232 

3.4 Statistical Hypothesis Testing  233 

The statistical significance of all wavelet spectra was evaluated using the cumulative area-wise test (Schulte, 234 
2016a; Schulte, 2018) to account for the simultaneous testing of multiple hypotheses (Maraun and Kurths, 2004; 235 
Maraun et al., 2014). To perform the cumulative area-wise test, the point-wise test p-values associated with all points 236 
in the wavelet domain had to be estimated using theoretical red-noise backgrounds for wavelet power and Monte Carlo 237 
methods for wavelet coherence and auto-bicoherence (Torrence and Compo, 1998, Grinsted et al., 2004, Schulte 238 
2016b). After the point-wise test implementations, the cumulative area-wise test was used to assess the statistical 239 
significance of points in the wavelet domain by tracking how the normalized area of contiguous regions of point-wise 240 
significance changed as the point-wise significance level was varied. The test was applied at the 5% cumulative area-241 
wise significance level using point-wise significance levels ranging from 0.02 to 0.98 because this choice of point-242 
wise significance levels was shown to result in the cumulative area-wise test outperforming the point-wise test in 243 
terms of true positive detection for high signal-to-noise ratios despite how the cumulative area-wise test is more 244 
stringent. Technical details of the testing procedure can be found in Schulte (2018) and in Appendix A.  245 

To assess the statistical significance of the global auto-bicoherence estimates, a modified version of the 246 
cumulative area-wise test was applied. In the modified version of the cumulative area-wise test, the normalized area 247 
of patches was computed by dividing patch area by the product 𝑠1̂𝑠2̂, where 𝑠1̂ is the mean first-coordinate of the patch 248 
and 𝑠2̂ is the mean second coordinate. The means were calculated by assuming that the point-wise significance regions 249 
are polygons with a set of vertices (Schulte et al., 2015). The reason for this modified normalized area is that dividing 250 

area by say, 𝑠1̂
2
, retained the correlation between normalized area and 𝑠2. The test was applied using the same point-251 

wise significance levels that were used to assess the statistical significance of wavelet power and coherence. 252 

To further assess statistical significance of wavelet quantities, a topological significance test (Schulte et al. 253 
2015; Schulte 2018) and a cumulative arc-wise test was also applied to the wavelet spectra. The implementation of 254 
the topological significance test involved the computation of the number of holes and contiguous point-wise 255 
significance regions at a discrete set of point-wise significance levels, resulting in persistent homology profiles. The 256 
topological significance and cumulative arc-wise tests were applied at the 5% significance level, and the point-wise 257 
significance levels used ranged from 0.02 to 0.98. The critical levels of the test were estimated using Monte Carlo 258 
methods by generating 1000 realizations of a red-noise process with lag-1 auto-correlation coefficients equal to that 259 
of the input time series.  260 
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3.5 Higher-order Coherence  261 

Although wavelet coherence spectra can provide information regarding how the relationship between two 262 
climate variables changes at a scale s, it cannot completely explain why the time-domain correlation between the 263 
climate variables temporally fluctuates. The reason is that linear wavelet coherence only examines how well the 264 
variance of one time series corresponds to the variance of another at a scale s because linear coherence is determined 265 
by the wavelet power spectra of the time series. That is, linear coherence between two climate variables means that 266 
larger fluctuations in one time series produce larger fluctuations of another climate variable at the scale s. However, 267 
for two time series to be perfectly correlated in the time domain, higher skewness of one climate variable must also 268 
correspond to higher skewness of the other climate variable.  269 

Recognizing that skewness is important for better understanding time-domain correlation changes, the 270 
quantity  271 

𝐵𝑖𝑛
2(𝑠) =  

|𝑆𝑠𝑠𝑚𝑜𝑜𝑡ℎ
−1 𝐵𝑛

𝑋𝑌(𝑠1,𝑠2)|
2

𝑆(𝑠𝑠𝑚𝑜𝑜𝑡ℎ
−1 |𝐵𝑛

𝑋(𝑠1,𝑠2)|
2

)𝑆(𝑠𝑠𝑚𝑜𝑡ℎ
−1 |𝐵𝑛

𝑌(𝑠1,𝑠2)|
2

)
,                                                    (12) 272 

called third-order coherence (nonlinear coherence, hereafter) was used to determine if changes in the skewness of X 273 
are associated with changes in the skewness of Y (see Appendix B for a more general definition). In Eq, (12), 𝑠𝑚𝑜𝑜𝑡ℎ 274 
is one of the three scales, and 𝐵𝑛

𝑋𝑌(𝑠1, 𝑠2) is the third-order cross-wavelet power spectrum, which is the product of the 275 
bi-spectrum of X and the conjugate of the bi-spectrum of Y, the higher-order analog of the cross-wavelet power 276 
spectrum. The word cross-bispectrum was not used to avoid confusion with cross-bicoherence analysis (Van 277 
Milligen,1995). Like wavelet coherence, the nonlinear coherence is bounded by 0 and 1, a value of 1 indicating that 278 
the bi-spectra of X and Y at (𝑠1, 𝑠2) are perfectly and linearly correlated. The statistical significance of nonlinear 279 
coherence was assessed using Monte Carlo methods and the cumulative area-wise test in the same way as it was used 280 
to assess the statistical significance of wavelet coherence.  281 

Another way to interpret higher-order wavelet coherence is using linear and nonlinear modes. A linear mode 282 
𝛾𝑠𝑖

𝑋 is the signal component of X at the scale 𝑠𝑖 obtained by setting all wavelet coefficients to zero except those at 𝑠𝑖 283 

and taking the inverse wavelet transform of the result. Because linear modes are only composed of a single frequency 284 
component, the local cross-correlation (coherence) between 𝛾𝑠𝑖

𝑋 and  𝛾𝑠𝑖
𝑌 is only impacted by the variances of X and Y 285 

at 𝑠𝑖. On the other hand, nonlinear coherence measures the local cross-correlation between the skewness of 𝛾𝑠1
𝑋 + 𝛾𝑠2

𝑋 +286 

𝛾𝑠3
𝑋  and 𝛾𝑠1

𝑌 + 𝛾𝑠2
𝑌 + 𝛾𝑠3

𝑌  or between 𝛾𝑠1
𝑋 + 𝛾𝑠1/2

𝑋  and 𝛾𝑠1
𝑌 + 𝛾𝑠1/2

𝑌  in the case that 𝑠1 = 𝑠2.  287 

 To better understand nonlinear coherence, we supposed that  288 

𝜙𝑛
𝑋(𝑠1) − 𝜙𝑛

𝑌(𝑠1) = 𝑐1                                                                      (13) 289 

𝜙𝑛
𝑋(𝑠2) − 𝜙𝑛

𝑌(𝑠2) = 𝑐2                                                                      (14) 290 

𝜙𝑛
𝑋(𝑠3) − 𝜙𝑛

𝑌(𝑠3) = 𝑐3                                                                     (15) 291 

for constants 𝑐1, 𝑐2, and 𝑐3. Adding Eqs. (13) and (14) and subtracting Eq. (15) from the result produced the equality  292 

𝜙𝑛
𝑋(𝑠1) + 𝜙𝑛

𝑋(𝑠2) − 𝜙𝑛
𝑋(𝑠3) − (𝜙𝑛

𝑌(𝑠1) + 𝜙𝑛
𝑌(𝑠2) − 𝜙𝑛

𝑌(𝑠3)) = 293 

𝜓𝑛
𝑋(𝑠1, 𝑠2) − 𝜓𝑛

𝑌(𝑠1, 𝑠2) = 𝜓𝑛
𝑏𝑖(𝑠1, 𝑠2) = 𝐾 ,                                                 (16) 294 

for some constant K = 𝑐1 + 𝑐2 − 𝑐3. Thus, if X is perfectly nonlinear coherent with Y, then X and Y must be perfectly 295 
coherent at the three scales participating in the phase coupling. Even if the coherence is perfect at two scales, the 296 
relative bi-phase 𝜓𝑛

𝑏𝑖(𝑠1, 𝑠2) will fluctuate randomly if the relative phase difference at the remaining scale fluctuates 297 
randomly so that the nonlinear coherence will be low. Thus, if nonlinear coherence is high, then there must be some 298 
non-random relationship between X and Y at all three scales even if high linear coherence was not identified at one or 299 
more scales. This theoretical idea suggests that nonlinear coherence can uncover relationships that linear coherence 300 
cannot (see Figure S1 in supplementary material).  301 
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The relative bi-phase difference 𝜓𝑛
𝑏𝑖(𝑠1, 𝑠2) is the higher-order analog of the relative phase difference 302 

between two time series. It measures how much the cycle geometry of one time series lags that of another. A lagged 303 
bi-phase of 180◦ means that the skewness or asymmetry of the forcing time series is opposite to that of the response. 304 
For example, if the forcing has positive skewness, then the response will have negative skewness. If the relative bi-305 
phase is 0◦, then negative (positive) skewness of the forcing produces negative (positive) skewness of the response, 306 
contributing to the positive time-domain correlation between the time series. Scales and time points for which 307 
nonlinear coherence is high are where the relative bi-phase is stable.   308 

Throughout this paper, we will focus on nonlinear coherence computed along the diagonal slices (𝑝1 = 𝑝2) 309 
of the time series bi-spectra. The nonlinear coherence spectra are then plotted using 𝑝1 as the vertical axis and time as 310 
the horizonal axis. High nonlinear coherence at 𝑝1 and n means that the skewness or asymmetry between 𝛾𝑝1

𝑋 + 𝛾𝑝1/2
𝑋  311 

and 𝛾𝑝1
𝑌 + 𝛾𝑝1/2

𝑌  are locally cross-correlated. 312 

To demonstrate the concept of nonlinear coherence, we considered a simple example in which the nonlinear 313 
climate forcing time series was given by  314 

F(t) = cos(
2𝜋

𝑝1
 t + φ) + γ (t) cos(

2𝜋

𝑝3
 t + 2φ) + 𝑊𝐹(𝑡)                                                    (17) 315 

and the response to the forcing was given as  316 

R(t) = cos(
2𝜋

𝑝1
t + φ) + 𝑤𝑅(t),                                                                (18) 317 

In Eq. (17), γ (t) is a time-varying nonlinear coefficient, 𝑤𝐹(𝑡) is Gaussian white noise associated with the forcing, 318 
𝑤𝑅 (𝑡) is Gaussian white noise associated with the response, φ = 0 is phase, and  𝑝1= 2𝑝3 = 32. The nonlinear 319 
coefficient was assumed to be a linear function of time, i.e.,  320 

𝛾(𝑡) = 𝑡/500.                                                                           (19) 321 

The effect of the coefficient is to linearly increase the variance of F(t) at 𝑝3 = 16 and increase the strength of the 322 
quadratic phase coupling between the modes with periods 𝑝3 = 𝑝1/2  = 16 and 𝑝1 = 32.  323 

 As shown in Figure 1a, F(t) (black curve) and R(t) (thick green curve) evolve coherently from t = 0 to t = 324 
200. After t = 200, F(t) begins to noticeably exceed R(t) at certain time points (e.g. t = 430) while the relationship 325 
between them at other points is reversed (e.g. t = 450) in the sense that a positive forcing produces a negative response. 326 
As a result, the correlation between F(t) and R(t) weakens (Figure 1b). An inspection of the wavelet coherence 327 
spectrum (Figure 2a) reveals that the coherence at 𝑝1 = 32 is strong and stable so that changes in the relationship 328 
strength at that time scale is not the cause of the weakening time-domain correlation. The coherence at all other periods 329 
is also stationary by construction so that it is not the changing relationship strength at any scale that is causing the 330 
time-domain correlation weakening. However, the variance of F(t) at  𝑝3 = 16 increases with time (not shown) and 331 
the coherence between F(t) and R(t) is also weak at that time scale, implying that larger fluctuations in F(t) at 𝑝3 = 16 332 
are not accompanied by larger fluctuations in R(t). Thus, variance increase of F(t) is one reason for the weakening 333 
time-domain correlation. However, both linear coherence and wavelet power cannot explain why the skewness of F(t) 334 
increases, while the skewness of R(t) is relatively stable (Figure 1c). 335 

To further diagnose a cause of the weakening time-domain correlation, it is necessary to look at the auto-336 
bicoherence spectrum of F(t) and the nonlinear wavelet coherence spectrum. An inspection of the local auto-337 
bicoherence spectrum of F(t) (Figure 2b) reveals that the auto-bicoherence at 𝑝1 = 32 is increasing with time, indicating 338 
that the phase coupling between modes with periods 𝑝3 = 16 and  𝑝1= 32 is strengthening with time. The bi-phase of 339 
0◦, as indicated by arrows pointing to the right, confirms that the phase coupling is contributing to the positive 340 
skewness seen in Figure 1a to an increasing degree. Furthermore, the nonlinear coherence between R(t) and F(t) is 341 
weak and mostly statistically insignificant at  𝑝3= 32 (Figure 2c), implying that the skewness of F(t) produced from 342 
the phase coupling between the modes 𝑝3 = 16 and 𝑝1 = 32 does not influence the skewness of R(t). In other words, 343 
the skewness of 𝛾16

𝐹 + 𝛾32
𝐹  is uncorrelated with the skewness of 𝛾16

𝑅 + 𝛾32
𝑅 , where 𝛾16

𝐹 + 𝛾32
𝐹  is the sum of the cosines 344 

in Eq. (17) and the components of 𝑊𝐹(𝑡) at 𝑝3 = 16 and 𝑝1 = 32. The nonlinear mode  𝛾16
𝑅 + 𝛾32

𝑅  is the sum of the 345 
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cosine in Eq. (18) and the components of 𝑤𝑅(t) at 𝑝3 = 16 and  𝑝1= 32. The weak nonlinear coherence also means that 346 
𝜓𝑛

𝐹(32, 32) − 𝜓𝑛
𝑅(32, 32) fluctuates randomly (not shown). Thus, the skewness of R(t) in the time-domain is 347 

practically uncorrelated with the skewness of F(t) because the skewness of F(t) is solely related to the phase coupling 348 
between the modes with periods 𝑝3 = 16 and 𝑝1 = 32 Thus, the increase in  skewness of F(t) also contributes to the 349 
weakening time-domain correlation.  350 

The lack of nonlinear coherence at time scales for which F(t) is nonlinear has implications for empirical 351 
prediction. At time points when F(t) is positively skewed R(t) is overestimated because R(t) is not inheriting the 352 
skewness of F(t). In other words, a large forcing produces an unexpectedly small response. That is, if one created a 353 
linear regression model based on the relationship between F(t) and R(t) from t = 0 to t =200 one would find that a 354 
forcing value of, say, 1 would produce a response close to 1. If the same model was used to predict R(t) at, say, t = 355 
430 one would predict that the forcing with value around 2 should result in a response near 2. However, because the 356 
relatively large value F(430) results from skewness and R(t) is uncorrelated with its skewness, the response is only as 357 
strong as the part of F(t) not resulting from the quadratic phase coupling. The more nonlinear F(t) becomes, the more 358 
F(t) will overestimate R(t) when F(t) is positively skewed. Similarly, the positive forcing produces a negative response 359 
at t = 450 because of skewness and not simply a change in variance. Nonlinear coherence allows for the quantification 360 
and identification of these time-domain aberrations.  361 

The weakening relationship shown in Figure 1b could lead a researcher to believe that another direct forcing 362 
must be directly influencing R(t). This belief could lead to the applications of partial coherence (Ng, and Chan, 2012) 363 
and partial correlation analyses to identify another influential forcing mechanism. However, in this case, there are no 364 
other direct forcing mechanisms; the weakening time-domain relationship is solely related to how F(t) transitioned 365 
from a linear process to a nonlinear process. That is, the change is related entirely to how the skewness of F(t) changed. 366 
However, the phenomena influencing the linearity of F(t) would be at least indirectly related to R(t).   367 

4. Results  368 

4.1 Event Decomposition of ENSO and Indian Monsoon time series 369 

The time series of the Niño 1+2 and Niño 4 indices together with the corresponding event spectra are shown 370 
in Figures 3 and Figures 4, where we have chosen to show the results for the Niño 4 and Niño 1+2 indices because 371 
they provide contrasting results. For the Niño 1+2 time series, a few recent notably intense (Figure 3b) warm events 372 
are located around 1982/1983, 1997/1998, and 2015/2016 coinciding with the strongest El Niño events in recent 373 
decades (McPhaden, 1999, Hu and Fedorov, 2017; Santoso et al, 2017). The event spectra for the Niño 3 and Niño 374 
3.4 indices identified notably intense warm events that occurred after the 1970s (not shown). A few notably intense 375 
events were also found in the late 1800s and early 1900s, indicating that intense ENSO events are not unique to recent 376 
decades.   377 

To visualize how skewness changes temporally, a 20-year sliding skewness analysis was conducted. As 378 
shown in Figure 5a, the skewness of the Niño 1+2 index is enhanced during the early 1880s, near zero around the 379 
1930’s and early 1940’s, and especially enhanced after the 1970s. It also appears that there is an upward trend in 380 
skewness beginning around the 1940s, where the skewness peaks around 2000. In contrast to the Niño 1+2 index, the 381 
skewness of the Niño 4 index becomes more negative after the 1970s, and the magnitude of the skewness is generally 382 
smaller than that of the Niño 1+2 time series. This finding suggests that the transition of the Niño 1+2 time series to a 383 
nonlinear regime was more pronounced than the transition associated with the Niño 4 time series. Interestingly, a 20-384 
year sliding skewness analysis of All-India rainfall reveals that the skewness of June-September All-India rainfall 385 
remains close to zero until the 1990s despite the upward trend in Niño 1+2 skewness beginning in the 1940s (Figure 386 
5a). However, the skewness of June-September All-India rainfall becomes more negative in the 1990s and 2000s, but 387 
it is unclear if that negative skewness is related to ENSO because the skewness of the Niño 1+2 and Niño 4 indices 388 
do not change as abruptly. Negative June-September All-India rainfall skewness is accompanied by enhanced positive 389 
skewness of the Niño 1+2 indices prior to the 1940s, which is consistent with how All-India rainfall is negatively 390 
correlated with the Niño 1+2 index time series during that time period (Figures 5b and 5c). Our results suggest that 391 
All-India rainfall skewness is more correlated with ENSO skewness prior to the 1930s than it is in recent decades.  392 
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4.2 The time-domain Indian Rainfall-ENSO Relationship.  393 

Given the non-stationaries in skewness can influence the time-domain correlation between two time series 394 
(Figure 1b), it is reasonable to hypothesize that the All-India rainfall relationship with the Niño 1+2 and Niño 4 indices 395 
could be non-stationary given that changes in Indian rainfall skewness do not always correspond with changes in 396 
ENSO skewness. To test the hypothesis, a 20-year sliding correlation analysis was conducted between these ENSO 397 
indices and All-India rainfall for the full (June-September) and late monsoon (August-September) seasons. The 398 
correlation between the time series of the Niño 1+2 and Niño 4 indices and All-India rainfall was computed directly 399 
without seasonal averaging.  400 

As shown in Figure 5b, the relationship between full season India rainfall and the Niño 1+2 index generally 401 
weakens from the 1800’s to the 2000s. In contrast, the Niño 4 index relationship with All-India rainfall for the full 402 
season appears to have no long-term trend, resulting in the Niño 4 index becoming more strongly correlated with All-403 
India rainfall than the Niño 1+2 index after the 1970’s. The relationship between Indian rainfall and time series for 404 
the Niño 3 and Niño 3.4 indices was also found to be relatively weak after the 1970s (not shown).   405 

 The stronger relationship between All-India rainfall and the Niño 4 index compared to the Niño 1+2 406 
relationship with All-India rainfall after the 1970s is more evident in the late-season analysis (Figure 5c). An abrupt 407 
weakening of the Niño 1+2-rainfall relationship occurs around the 1970’s, with the relationship reversing around the 408 
1990s. A comparison of Figures 5a and Figures 5c reveals that the weakening and reversal of the relationship occurs 409 
during the time period when the Niño 1+2 index is especially skewed, suggesting that ENSO skewness changes could 410 
be contributing to changes in the time-domain correlation between ENSO and All-India rainfall. However, we have 411 
not shown that ENSO skewness exceeds a red-noise background (Sections 4.2 and 4.3) so that ENSO skewness 412 
changes and time-domain correlation impacts could still be noise and unpredictable. Nevertheless, this reversal is 413 
consistent with how Fan et al. (2017) found that the SST composite difference between drought and drought-free El 414 
Niño years during the 1979-2012 period features warming across the central equatorial Pacific and cooling across the 415 
eastern equatorial Pacific, whereas the SST composite for the 1978-1987 period features warming across the eastern 416 
to central equatorial Pacific. It also noted that Niño 1+2 index-rainfall relationship is also relatively weak during the 417 
late 1800’s when Niño 1+2 skewness is relatively high (Figure 5a).  418 

A rapid weakening is also seen in the Niño 4-rainfall relationship, but it appears to begin in the 1980’s, which 419 
is later than the Niño 1+2-rainfall relationship breakdown. Nevertheless, the weakening Niño 4-India rainfall 420 
relationship coincides with the enhanced negative skewness of the Niño 4 index (Figures 5a). The fact that Niño 1+2 421 
skewness is greater than Niño 4 skewness after 1970s and that the Niño 1+2 index relationship with All-India rainfall 422 
weakens more abruptly than the Niño 4 index relationship with All-India rainfall suggests that skewness could at least 423 
partially explain the temporal fluctuations in the relationships seen in Figure 5. Thus, a further investigation is needed 424 
to better understand the temporal changes in ENSO statistics and their impact on the ENSO-India rainfall relationship.  425 

4.3. Wavelet Power Analysis and Coherence  426 

To better understand the non-stationarity of ENSO statistics, the wavelet power spectra associated with the 427 
ENSO time series were computed (Figure 6). Enhanced variance in the 16- to 64-month band is seen after 1965 for 428 
all the time series. For the Niño 3 and Niño 4 time series, there is also enhanced variance in the 16- to 64-month period 429 
band from 1875 to 1895, whereas the enhanced variance persists to around 1905 for the Niño 3.4 time series. Another 430 
important aspect of the wavelet power spectra is that the cumulative area-wise significance regions extend across 431 
many periods. For example, in the wavelet power spectrum of the Niño 1+2 index, there is a period-elongated region 432 
around 1997/1998 extending from a period close to 4 months to a period around 64 months. A similar feature is also 433 
evident in the wavelet power spectrum of  the Niño 3 and Niño 3.4 indices but appears to be less pronounced in the 434 
wavelet power spectrum of the Niño 4 index. The appearance of holes in contoured regions suggests that there are 435 
oscillatory modes with nearby frequencies (Schulte, et al., 2015), though the wavelet power spectra cannot determine 436 
if there is phase coupling between the oscillatory modes.  437 

The wavelet coherence spectrum shown in Figure 7, indicates that the All-India rainfall relationship with the 438 
Niño 1+2 and Niño 4 indices in the 16- to 64-month period band breaks down after 1995, which is consistent with the 439 
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findings from the sliding correlation analysis shown in Figure 5. The relationship between rainfall and these ENSO 440 
indices also weakens around 1925, but this weakening does not appear in the sliding correlation analysis. Note that 441 
the lack of coherence after 1995 coincides with the enhanced ENSO variance, implying that higher ENSO variance 442 
need not be associated with higher All-India rainfall variance at those time scales. This result implies that intense 443 
ENSO events arising from variance in the 16- to 64-month period band need not correspond with unusual monsoon 444 
seasons. Indeed, the 1997/1998 ENSO event, which coincides with high power in the 16- to 64-month period band, 445 
was associated with a near-normal 1997 monsoon season. More generally, these results imply that the difference Niño 446 
1+2   – AIR is periodic in the 16- to 64-month period band, where AIR is All-India rainfall. The periodic property was 447 
confirmed by computing the wavelet power spectrum of Niño 1+2 – AIR (supplementary Figure S2), with the 448 
periodicity implying that time periods when ENSO overpredicts and underpredicts rainfall occur in regular intervals. 449 
Thus, the result contradicts previous findings suggesting that the relationship between ENSO and Indian rainfall 450 
fluctuates randomly (Yun and Timmermann, 2018). In other words, changes in ENSO variance could be contributing 451 
to the weakening time-domain correlation. However, ENSO skewness is also enhanced during this time period (Figure 452 
5a) so that weakening relationships may not be simply related to ENSO variance.  453 

Averaging wavelet coherence in the 16 to 64-month period band further illustrates how the wavelet coherence 454 
varies temporally (Figure 8). For example, wavelet coherence with both the ENSO indices reaches approximately 0.8 455 
around 1975 before falling below 0.1 in the mid 1990s.  Because the coherence plots shown in Figure 7 are similar, it 456 
is difficult to diagnose why the sliding correlation curves shown in Figure 5 have different temporal structures. For 457 
example, the period-averaged coherence shown in Figure 8 between rainfall and both the ENSO indices are identical 458 
around 1998 yet the relationship between the Niño 1+2 and All-India rainfall is weaker than the relationship between 459 
the Niño 4 index and All-India rainfall around that time (Figures 5b and 5c). Thus, a further analysis is needed to 460 
extract information unrevealed by the linear wavelet power and coherence methods.  461 

4.2. Global Auto-bicoherence  462 

4.2.1 ENSO       463 

As a first step for better understanding the All-India rainfall-ENSO correlation curves shown in Figure 5, the 464 
global auto-bicoherence spectra associated with the ENSO time series were computed (Figure 9). For all four ENSO 465 
metrics, statistically significant auto-bicoherence was identified, with the global auto-bicoherence spectrum of the 466 
Niño 1+2 index containing the greatest number of statistically significant auto-bicoherence estimates. A few notable 467 
peaks in the Niño 1+2 index auto-bicoherence spectrum are located at (148, 105), (148, 52), (62, 44), and (88, 88) 468 
[months]. The auto-bicoherence peak at (88, 88) suggests that there is phase coupling between an 88-month mode (~ 469 
7 years) and a 44-month mode (~ 3.5 years). The auto-bicoherence spectrum of the Niño 3, Niño 3.4, and Niño 4 470 
indices all contain statistically significant auto-bicoherence peaks at (31, 31), implying phase coupling between a 31-471 
month mode and a harmonic with a period of 15.5 months. For the Niño 3.4 index, there is also an on-diagonal peak 472 
at (55.6, 55.6), whereas for the Niño 3 index the peak is slightly shifted and located at (62, 44). A third peak in the 473 
Niño 3.4 spectrum was found at (105, 47), which could be associated with decadal-scale amplitude modulations of 474 
ENSO, though the peak does not correspond to the linkage between the 18-year and 2-year variance identified by 475 
Timmermann (2003). The differences among the auto-bicoherence spectra suggests that the nonlinear character of 476 
SSTs varies spatially, which is consistent with prior work showing how skewness is generally highest in the eastern 477 
equatorial Pacific and lowest in the central equatorial Pacific (An and Jin, 2004).  478 

To confirm the spatial heterogeneity in the nonlinear characteristics of SSTs, the auto-bicoherence associated 479 
with SSTs at a few select peaks (𝑝1, 𝑝2) were computed at each grid point in the domain bounded by 20°N and 20°S 480 
and by 146°E and 80°W. The peaks were selected based on the auto-bicoherence spectra of the Niño 3.4 and Niño 481 
1+2 indices. To select the peaks, local maxima in auto-bicoherence within the statistically significance regions shown 482 
in Figure 9 were identified.  483 

The spatial structure of auto-bicoherence corresponding to the peaks in the Niño 3.4 auto-bicoherence 484 
spectrum are shown in Figure 10. The auto-bicoherence associated with the pair (31, 31) is greatest across the central 485 
equatorial Pacific, with the overall spatial pattern being reminiscent of a central Pacific El Niño (Lee and McPhaden, 486 
2010). This result suggests that the phase coupling between the 31-month mode and the 15.5-month mode could be 487 
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related to the occurrence of central Pacific El Niño events (Section 5). In contrast, the auto-bicoherence pattern 488 
associated with the pair (56, 56) is more uniform, with auto-bicoherence slightly greater across the extreme eastern 489 
equatorial Pacific than the central equatorial Pacific. This pattern is reminiscent of an eastern Pacific El Niño. Like 490 
the pattern corresponding to the pair (31, 31), the auto-bicoherence for the pair (105, 57) tends to be greater across the 491 
central equatorial Pacific. Our findings suggest that different nonlinear modes contribute to different ENSO flavors. 492 
Although An and Jin (2004) and Burgers and Stephenson (1999) showed that skewness is greatest across the eastern 493 
equatorial Pacific, we determined that such a time-domain approach is unable to capture frequency-dependent patterns 494 
in nonlinearity.     495 

 The spatial auto-bicoherence plots associated with the peaks in the Niño 1+2 auto-bicoherence spectrum are 496 
shown in Figure 11. The auto-bicoherence associated with the pairs (148, 53) and (148, 105) is strong across the 497 
eastern equatorial Pacific but weak across the central equatorial Pacific, suggesting that the phase coupling between 498 
the 148- and 105-month modes and between the 148- and 53-month modes are associated with the skewness of eastern 499 
equatorial Pacific SSTs. The pattern associated with the pair (62, 44) is reminiscent of an eastern Pacific El Niño and 500 
the auto-bicoherence associated with the pair (88, 88) is relatively weak across the entire equatorial Pacific. A 501 
comparison of Figures 10 and 11 shows that there is a tendency for auto-bicoherence to be greater across the eastern 502 
equatorial Pacific than the central equatorial Pacific, which is consistent with the results of An and Jin (2004) and 503 
Burgers and Stephenson (1999) who found that SSTs across eastern equatorial Pacific are most skewed. The results 504 
are also in agreement with Figure 5a, which shows how the magnitude of Niño 1+2  skewness is greater than that of 505 
the Niño 4 skewness after the 1970s. 506 

4.2.2 India Rainfall  507 

The global auto-bicoherence spectra for the rainfall time series are shown in Figure 12. For all the rainfall 508 
time series except for the central Northeast time series, statistically significant auto-bicoherence was identified. The 509 
auto-bicoherence spectrum of the All-India time series contains four on-diagonal peaks, one located around (4,4), 510 
another located at (18, 18), and two more located around (40, 40) and (90, 90) [months]. Each of these peaks indicate 511 
time series components with periods 4, 18, 40, 90 months are phase coupled to the corresponding harmonics with 512 
periods of 2, 9, 20, and 45 months. Such phase coupling is inconsistent with the null hypothesis of red noise, which 513 
agrees with the findings of Schulte (2019) who found robust evidence that there are features embedded in the India 514 
rainfall time series that exceed a red-noise background. Thus, it is natural to ask if these peaks are inherited from a 515 
nonlinear climate forcing. For example, the peak (90, 90) in the All-India rainfall auto-bicoherence spectrum 516 
corresponds well with the peak found in the auto-bicoherence spectra of the Niño 1+2 time series (Figure 9).  517 

Figure 12 also reveals how the nonlinear characteristics corresponding to each region differ. The statistically 518 
significant auto-bicoherence for the Peninsula, Northwest, West Central, and Northeast time series is mainly located 519 
in regions for which 𝑝1 and 𝑝2 are less than 16 months. However, a peak at (256, 32) was found in the auto-bicoherence 520 
spectrum of the Northeast time series, suggesting that the time series components with periods 28, 32, and 256 are 521 
phase dependent. Many other differences are also seen through an inspection of Figure 12. Our findings suggest that 522 
the processes governing precipitation variability in each of the regions differ (Roy and Tedeschi, 2016).  523 

4.3 Local auto-bicoherence  524 

4.3.1 ENSO 525 

To determine if the strength of the identified nonlinearities changes with time, the local diagonal slices 526 
corresponding to the global auto-bicoherence spectra shown in Figure 9 were computed. The results shown in Figure 527 
13 reveal that the auto-bicoherence spectra of all ENSO time series contain statistically significant local auto-528 
bicoherence, but the spectrum of the Niño 4 index is only associated with a few statistically significant regions such 529 
as the one around 2015 at a period of 32 months.  530 

For the Niño 3 and Niño 3.4 time series, two features of interest are seen in the time period extending from 531 
1973 to 2017 in the 16- to 64-month period band. The first feature is the time-elongated region of statistical 532 
significance extending from 1973 to 2016 around a period of 61 months. This result implies that after 1973 the 533 
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nonlinear phase coupling between modes with periods of approximately 30.5 and 61 intensifies. This intensification 534 
is consistent with studies showing that ENSO underwent a regime shift in the 1970s in which ENSO began to evolve 535 
more nonlinearly than in previous decades (Santoso et al., 2013). This intensification is also evident in the Niño 1+2 536 
auto-bicoherence spectrum, though the exact periods associated with the phase-coupled oscillatory modes are more 537 
difficult to discern. Nevertheless, a comparison of Figures 5a and 13 reveals that enhanced skewness coincides with 538 
stronger auto-bicoherence in the 32- to 64-month period, suggesting that the skewness partially arose from the stronger 539 
phase coupling among modes with periods ranging from 32 to 64 months. The correspondence between auto-540 
bicoherence and time-domain skewness also holds for the Niño 3 and Niño 3.4 time series (not shown). Our findings 541 
suggest that phase coupling among modes embedded in the 32- to 64-month period band plays an important role in 542 
generating the skewness of ENSO warm events.  543 

The second feature of interest in Niño 3 and Niño 3.4 auto-bicoherence spectra is the one that emerges around 544 
1995 at a period of 31 months. Despite how recent studies indicate that the ENSO regime shift occurred around 1973, 545 
this result suggests that the onset of this phase coupling occurred well after the 1970s regime shift just before the 546 
1997/1998 El Niño event. Thus, the nonlinear character of, say, the 1982/1983 El Niño is different from that of both 547 
the 1997/1998 and 2015/2016 El Niño events because of the additional phase coupling between the 15.5- and 31-548 
month modes. It is also noted that Figure 13 also shows that there are other time periods when ENSO behaved 549 
nonlinearly, and so the recent nonlinear events may not be unique to recent decades. For example, the auto-bicoherence 550 
spectrum of the Niño 3.4 time series is associated with enhanced auto-bicoherence around 1875 in the 32- to 128-551 
month period band. Nevertheless, our findings reveal that the stationarity of the phase coupling in recent decades is 552 
unprecedented with respect to any other time period.  553 

To confirm that the nonlinear phase coupling identified in Figure 13 is associated with skewed waveforms, 554 
we inspected the corresponding local bi-phase spectra (not shown). It was found that the bi-phase in the 42- to 64-555 
month period band is generally  0° so that the nonlinear phase coupling in that period band contributes to the positive 556 
skewness of the 1982/1983, 1997/1998, and 2015/2016 events.  557 

The temporal change in the auto-bicoherence associated with the Niño 1+2 and Niño 4 indices was further 558 
illustrated by averaging the local auto-bicoherence in the 32- to 64-month period band. As shown in Figure 8, the 559 
auto-bicoherence associated with both ENSO indices increases after the 1970s. This increase in auto-bicoherence 560 
coincides with the increase in skewness shown in Figure 5. Thus, the skewness of the Niño 1+2 and Niño 4 indices 561 
appears to be related to the auto-bicoherence in the 32- to 64-month period band. It also noted that the auto-bicoherence 562 
associated with the Niño 1+2 index peaks around 1998, which is consistent with how the 1997/1998 Niño 1+2 warm 563 
event arose from nonlinear processes (An, and Jin, 2004). The auto-bicoherence was also high around the nonlinear 564 
event 1982/1983 event (An and Jin, 2004), further supporting the idea that the skewness of individual Niño 1+2 warm 565 
events is connected to the nonlinear phase coupling in the 32- to 64-month period band.  566 

4.3.2 Local Bicoherence of India Rainfall and Non-linear Coherence 567 

The local auto-bicoherence spectra of the India rainfall time series are shown in Figure 14. The statistically 568 
significant auto-bicoherence was identified for all six time series, mainly for periods less than 64 months. The results 569 
suggest that the phase coupling is many among higher frequency modes. However, for the All-India rainfall time 570 
series, the auto-bicoherence spectrum reveals two time periods of statistically significant auto-bicoherence in the 64- 571 
to 128-month period band. The first region extends from 1885 to 1925 and the second region extends from 1945 to 572 
around 1985. The nonlinearities found in the India rainfall auto-bicoherence spectra were also found to be cumulative 573 
arc-wise significant, though some differences in the results were found (Figure S3 in supplementary material). The 574 
statistical significance of the results was further checked using the topological significance test (Schulte, 2019), which 575 
also provided evidence that the time series are nonlinear (Figure S4 supplementary material).  576 

  To determine if the nonlinearities identified for All-India rainfall is related to ENSO, nonlinear coherence 577 
was computed along the local diagonal slices of the auto-bicoherence spectra for both All-India rainfall and the four 578 
ENSO metrics considered in this study. Furthermore, All-India rainfall is generally more strongly coherent with ENSO 579 
than rainfall associated with the individual rainfall regions (Schulte, 2019) so only the results for All-India rainfall are 580 
shown for brevity.  581 
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 The results shown in Figure 15 indicate that the nonlinear wavelet coherence between All-India rainfall and 582 
the time series for the all four ENSO indices is statistically significant in the 32- to 64-month period band. The 583 
nonlinear coherence in this period band appears to peak around the 1972/1973 El Niño event, indicating that an 584 
increase in positive skewness of ENSO should tend to coincide with enhanced negative skewness of All-India rainfall 585 
around this time. As shown in Figure 8, the nonlinear coherence averaged in the 32- to 64-month period band fluctuates 586 
less than linear coherence and reaches a clear global maximum around 1972/1973 before rapidly declining to a global 587 
minimum around the 1997/1998 El Niño event when the Niño 1+2 index is very nonlinear (Figures 8 and 13). 588 
Therefore, according to the discussion in Section 3.5, changes in ENSO skewness contributed to the weakening 589 
relationships between ENSO and All-India rainfall shown in Figures 5a and 5b. 590 

5. Discussion/Conclusion   591 

The nonlinear nature of both ENSO and Indian rainfall were examined using higher-order wavelet methods.  592 
The auto-bicoherence spectra of the four ENSO time series revelated that ENSO skewness arose from the phase 593 
coupling of modes with various periods. The Niño 3.4 time series was found to contain coupling between modes with 594 
period 31 and 15.5 in addition to coupling between modes with period of 61 months and 30.5 months. The phase-595 
coupling between the 31 and 15.5 modes was found to be especially strong after 1995, whereas the phase coupling 596 
between the 61- and 30.5-month modes was found to intensify after the 1970s. The stronger phase coupling after the 597 
1970s is consistent with how ENSO underwent a regime shift in the 1970s (Santoso et al., 2013), which was marked 598 
by an increase in ENSO skewness.  599 

The evolution of SSTs across the Niño 4, Niño 3.4, Niño 3, and Niño 1+2 regions was found to be nonlinear, 600 
but the degree to which the time series are nonlinear are different. Overall, the Niño 1+2 time series was found to be 601 
the most nonlinear, while the Niño 4 index was found to be the most linear. The spatial patterns associated with the 602 
nonlinearities depend on the frequency components contributing to the nonlinearities. For example, phase coupling 603 
between the modes with periods of 31 and 15.5 months was found to be strongest in the central equatorial Pacific and 604 
weakest across the eastern equatorial Pacific. This finding suggest that the occurrence of central Pacific El Niño events 605 
could be linked to this phase coupling, which is relevant to understanding the Indian monsoon because central Pacific 606 
El Nino events have been shown to be more effective at creating drought-inducing subsidence over India (Kumar et 607 
al., 2006).  608 

The results from the present and previous studies (Fan et al. 2017) supports the idea that changes in the 609 
ENSO-India rainfall relationship are related to ENSO flavors because ENSO nonlinearity appears to be related to 610 
ENSO flavors (Figures 10 and 11), opposing the findings of other work showing that the changes are related to 611 
sampling variability or to noise. According to Yun and Timmermann (2018), the changes in the time-domain 612 
correlation between All-India summer rainfall (ISMR) and ENSO is consistent with the assumption that ISMR is the 613 
sum of the ENSO signal and Gaussian white noise (i.e., ISMR = ENSO + white noise). However, for this hypothesis 614 
to hold, the difference ISMR – ENSO must be Gaussian white noise. As shown in this study, the nonlinear wavelet 615 
coherence between ENSO metrics and All-India rainfall is weak, which means that the difference ISMR – ENSO will 616 
have non-Gaussian noise features so that ISMR is not consistent with a stochastically perturbed ENSO signal. The 617 
retention of non-Gaussian noise features is certainly the case for R(t) – F(t) in the example in Section 3.5 because the 618 
difference would retain the cosine function with a period of 16. In the case of ISMR, the lack of nonlinear coherence 619 
results in periodic behavior of ENSO – ISMR, which means that Indian rainfall is not simply a stochastically perturbed 620 
ENSO signal, as noise does not contain periodicities. In contrast, if ISMR and ENSO were highly nonlinear wavelet 621 
coherent, then they would have the same frequency components contributing to skewness and the difference of the 622 
two would remove the skewness. Although our results cannot preclude noise as a contributor to fluctuations in the 623 
time-domain correlation, the periodic nature of ENSO – ISMR does suggest that monsoon forecast error for a forecast 624 
based on ENSO may be predictable to some extent.  625 

 The fact that nonlinear coherence between rainfall and ENSO is determined by linear coherence between 626 
ENSO and rainfall at two or three frequencies means that the changing time-domain correlation could be more fully 627 
understood by determining why linear coherence changes at the frequencies that contribute to ENSO skewness. Such 628 
an analysis could provide a more mechanistic perspective than the theoretical perspective adopted in this study. A 629 
preliminary analysis showed that enhanced linear coherence between the North Atlantic Oscillation index and All-630 
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India rainfall after 1995 in the 16- to 64-month period band associated with ENSO nonlinearity. This result suggests 631 
that conditions across the North Atlantic (Kakade, 2000, Bhatla, 2016) could influence the nonlinear coherence 632 
between ENSO and All-India rainfall and thus the corresponding time-domain correlation.  633 

The higher-order wavelet analysis conducted in this study also revealed that the nonlinear nature of the 634 
rainfall time series for the regions considered varied. Our results are consistent with the findings from previous work 635 
showing how the physical mechanisms governing precipitation variability are different (Roy and Tedisch, 2016). 636 
However, the higher-order wavelet analysis conducted in this study allowed us to determine the time scales on which 637 
the rainfall times series features differ. Further research is needed to fully understand why the nonlinear characteristics 638 
differ from one region to another. Future work could include conducting nonlinear coherence analyses between indices 639 
of various climate modes and the rainfall times series for each region individually.  640 

A few other possible physical mechanisms behind the nonlinearity of the rainfall time series were examined. 641 
For example, we computed the auto-bicoherence spectrum of the IOD and sunspot time series because they have been 642 
postulated as climate drivers of Indian Rainfall (Ashok et al., 2001; Ashok et al., 2004; van Loon and Meehl, 2012). 643 
Although these time series were found to be highly nonlinear, the auto-bicoherence spectra of them did not correspond 644 
well with the rainfall time series. We found that the IOD contains strong coupling between the modes with periods of 645 
256 and 128 months and between modes with periods of 128 months and 64 months (Figures S5 and S6 in 646 
supplementary material), but no such coupling was found for any of the rainfall time series. Similarly, the sunspot 647 
cycle time series was associated with strong coupling between 128 -and 256-month modes (Figures S7 and S8 in 648 
supplementary material) but again no such coupling was identified in the rainfall time series. Future work could thus 649 
include better understanding the physical mechanisms underlying the nonlinearities identified in this study. 650 

The tools used and developed in this study may have important applications in understanding how forecasting 651 
systems replicate Indian rainfall and its associated teleconnections.  These methods, for example, could determine if 652 
forecasting systems can reproduce nonlinear characteristics of climate time series. These identifications could provide 653 
new directions for improving current forecasting systems and ultimately predictions of Indian rainfall.  654 

 655 

  656 
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 657 

Appendix A 658 

The first step (STEP 1) in assessing the cumulative-area significance of a point was the calculation of the N 659 
= 12 sets 660 

𝑃𝑝𝑤
𝑖 =  {(𝑏, 𝑎): 𝜌𝑝𝑤(𝑏, 𝑎) < 𝛼𝑖},                                                            (A1) 661 

where each set is the subset of the wavelet domain consisting of points whose wavelet quantities are point-wise 662 
statistically significant at the 𝛼𝑖 significance level. In this paper, 𝛼1= 0.02, 𝛼12= 0.18, and 𝛼𝑖+1 − 𝛼𝑖 = 0.02. In the 663 
second step (STEP 2), a geometric pathway about x was computed, where a geometric pathway is a nested sequence  664 

𝑃1
𝑥 ⊆ 𝑃2

𝑥 ⊆ ⋯ ⊆ 𝑃𝑁
𝑥                                                                       (A2) 665 

such that the  666 

𝑃𝑖
𝑥 =  {(𝑏, 𝑎): (𝑏, 𝑎) ∈ 𝑃𝑝𝑤

𝑖 , (𝑏, 𝑎)~𝑥}                                                       (A3) 667 

are path-components of 𝑃𝑝𝑤
𝑖  containing x. The equivalence relation ~ on 𝑃𝑝𝑤

𝑖  makes two points in 𝑃𝑝𝑤
𝑖  equivalent if 668 

they can be connected by a continuous path in 𝑃𝑝𝑤
𝑖 . The third step (STEP 3) involved the calculation of the normalized 669 

area corresponding to 𝑃𝑖
𝑥. The normalized area is defined as patch area divided by the square of mean scale coordinate 670 

of the patch, where 𝐴𝑖
𝑥 was assumed to be 0 if 𝑃𝑝𝑤

𝑖 = 𝜙 or 𝑃𝑝𝑤
𝑖 = {𝑥}. The critical area 𝐴𝑖

𝑐𝑟𝑖𝑡  was obtained by computing 671 
the (1 − 𝛼𝑐)th percentile of the null distribution of normalized areas corresponding to the significance level 𝛼𝑖, where  672 
𝛼𝑐 is the significance level of the cumulative area-wise test. The null distributions were constructed by generating 673 
1000 patches at the 𝛼𝑖 significance level under the null hypothesis of red noise. More specifically, realizations of a 674 
red-noise process with lag-1 autocorrelation coefficients equal to that of input time series were used to create the 675 
wavelet spectra from which the 1000 patches were obtained. The length of the realizations was set to 200, though the 676 
length is irrelevant because patch area is not related to time series length but to the reproducing kernel of the analyzing 677 
wavelet (Schulte 2019). The final step (Step 4) was to compute 678 

𝑟𝑥 =  
1

𝑁
∑ 𝜆𝑗

𝑥𝑁
𝑗=1 ,                                                                           (A4) 679 

 where 𝜆𝑗
𝑥= 2 if 𝑃𝑗

𝑥 𝐴𝑗
𝑐𝑟𝑖𝑡⁄ >1, 𝜆𝑗

𝑥= 0 if 𝑃𝑗
𝑥 𝐴𝑗

𝑐𝑟𝑖𝑡⁄ <=1, and 𝐴𝑗
𝑐𝑟𝑖𝑡  is the critical area associated with 𝛼𝑗 . The wavelet 680 

quantity at the point x was deemed statistically significant at the 𝛼𝑐 cumulative area-wise level if 𝑟𝑥 > 1.  681 

  682 
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Appendix B 683 

For p > 1, the (p+1)-th order poly spectrum of a time series X is given by  684 

𝐵𝑛
𝑋(𝑠1, 𝑠2, … , 𝑠𝑝) = �̂�𝑛

𝑋(𝑠𝑝+1) (∏ 𝑊𝑛
𝑋𝑝

𝑘=1
(𝑠𝑘))                                     (B1)        685 

where  686 

1

𝑠𝑝+1
=  ∑

1

𝑠𝑘

𝑝
𝑘=1                                                                    (B2) 687 

The third-order poly spectrum is the bi-spectrum, and the fourth-order poly spectrum is the tri-spectrum (Collis et al., 688 
1998), which identifies the frequency components contributing to kurtosis. The (p+1)-th order coherence between two 689 
time series is given as  690 

𝑅𝑛
2(𝑠) =  

|𝑆𝑠𝑠𝑚𝑜𝑡ℎ
−1 𝐵𝑛

𝑋𝑌(𝑠1,𝑠2,…,𝑠𝑝)|
2

𝑆(𝑠𝑠𝑚𝑜𝑜𝑡ℎ
−1 |𝐵𝑛

𝑋(𝑠1,𝑠2,…,𝑠𝑝)|
2

)𝑆(𝑠𝑠𝑚𝑜𝑜𝑡ℎ
−1 |𝐵𝑛

𝑌(𝑠1,𝑠2,…,𝑠𝑝)|
2

)
,                                           (B3) 691 

where 𝐵𝑛
𝑋𝑌(𝑠1, 𝑠2, … , 𝑠𝑝) is the (p+1)-th-order cross-spectrum given by 692 

𝐵𝑛
𝑋𝑌(𝑠1, 𝑠2, … , 𝑠𝑝) =  𝐵𝑛

𝑋(𝑠1, 𝑠2, … , 𝑠𝑝)�̂�𝑛
𝑌(𝑠1, 𝑠2, … , 𝑠𝑝).                                     (B4) 693 

When p = 2, Eq. (B3), measures the local cross-correlation between skewness, and when p = 3 the equation 694 
measures the local cross-correlation between kurtosis.  695 

 696 

 697 

  698 

         699 
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 819 

 820 

Figure 1. (a) An idealized nonlinear forcing time series together with an idealized response R(t). The 120-821 

point sliding correlation between F(t) and R(t). (c) The 120-point sliding skewness of F(t) and R(t).   822 
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 823 

Figure 2. (a) Wavelet coherence between the time series of F(t) and R(t) shown in Figure 1. Arrows indicate 824 

the relative phase difference, where arrows pointing to the right mean that the time series are in phase. 825 

(b) The local diagonal slice of the auto-bicoherence spectrum of F(t). Arrows represent the bi-phase, 826 

where arrows pointing to the right mean that the phase coupling between the mode with period indicated 827 

on the vertical axis and its harmonic contributes to positive skewness. (c) Nonlinear coherence between 828 

F(t) and  R(t). Contours in all panels enclose regions of 5% cumulative area-wise significance. Light-shaded 829 

region represents the cone of influence where edge effects may be important.   830 
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 831 

Figure 3. The (a) time series and (b) event spectrum of the Niño 1+2 index. The left and right end points 832 

of the line segments in (b) represent, respectively, the beginning and termination of events so that the 833 

length of the line segments corresponds to event persistence. The corresponding event intensity is 834 

indicated on the vertical axis.   835 

https://doi.org/10.5194/hess-2019-280
Preprint. Discussion started: 23 July 2019
c© Author(s) 2019. CC BY 4.0 License.



24 
 

 836 

Figure 4. Same as Figure 3 but for the Niño 4 index.  837 
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 839 

Figure 5. 20-year sliding skewness of June-September All-India rainfall and time series for the Niño 1+2 840 

and Niño 4 indices. (b) 20-year sliding correlation between anomalies for June-September All-India 841 

rainfall and the time series for the Niño 1+2 and Niño 4 indices. (c) Same as (b) but for August-842 

September All-India rainfall.   843 
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      844 

                    845 

Figure 6. Wavelet Power spectrum of the (a) Niño 1+2, (b) Niño 3, (c) Niño 3.4, and (d) Niño 4 indices. 846 

Contours enclose regions of 5% cumulative area-wise significance. Light-shaded region represents the 847 

cone of influence, which is the region where edge effects are non-negligible.    848 
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 849 
Figure 7. Wavelet coherence spectrum between All-India rainfall anomalies and time series for the (a) 850 
Niño 1+2 and (b) Niño 4 indices. Contours enclose regions of 5% cumulative area-wise significance. Light-851 
shaded region represents the cone of influence, which is the region where edge effects are non-negligible.   852 
  853 

https://doi.org/10.5194/hess-2019-280
Preprint. Discussion started: 23 July 2019
c© Author(s) 2019. CC BY 4.0 License.



28 
 

 854 
Figure 8. (a) The wavelet coherence between All-India rainfall and the Niño  1+ 2 index, the auto-855 

bicoherence of the Niño 1+2 index, and the nonlinear coherence between the Niño 1+2 index and All-856 

India rainfall  anomalies averaged in the period band of 16 to 64 months. (b) The same as (a) but with the 857 

Niño 4 index.  858 
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                                  860 
                                861 

Figure 9. Global auto-bicoherence spectra of the (a) Niño 1+2, (b) Niño 3, (c) Niño 3.4, and (d) Niño 4 862 

indices. Contours enclose regions of 5% cumulative area-wise significance.  863 

 864 

  865 
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                866 

Figure 10. Global auto-bicoherence corresponding to the pairs (a) (31, 31), (b) (56, 56), and (c) (105, 47) 867 

[months].   868 
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                        869 

Figure 11. Global auto-bicoherence corresponding to the pairs (a) (158, 43), (b) (148, 105), (c) (62, 44), 870 

and (d) (88,88) [months].  871 

872 
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 873 

Figure 12. Global auto-bicoherence spectra of the (a) All-India, (b) Peninsula, (c) Northwest, (d) Northeast, 874 

(e) West Central, and (f) Central Northeast time series. Contours enclose regions of 5% cumulative area-875 

wise significance.  876 
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              877 

Figure 13. Local auto-bicoherence spectra of the (a) Niño 1+2, (b) Niño 3, (c) Niño 3.4, and (d) Niño 4 878 

indices. Contours enclose regions of 5% cumulative area-wise significance and the light shading represents 879 

the cone of influence.   880 
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 881 

 882 

 883 

 884 

Figure 14. Local auto-bicoherence spectra of the (a) All-India, (b) Peninsula, (c) Northwest, (d) Northeast, 885 

(e) West Central, and (f) Central Northeast time series. Contours enclose regions of the 5% cumulative 886 

area-wise significance and the light shading represents the cone of influence.  887 
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 889 

Figure 15. Nonlinear wavelet coherence between the All-India time series and times series for the (a) Niño 890 

1+2, (b) Niño 3, (c) Niño 3.4, and (d) Niño 4 indices. Contours enclose regions of 5% cumulative area-wise 891 

significance and light shading represents the cone of influence.  892 
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