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Summary 1 

The authors appreciate the many detailed suggestions, which were incorporated into the revised manuscript. The 2 
revised manuscript includes refined figures, less redundant information, and references to hydrological studies that 3 
highlight the importance of the study to the hydrology and earth system science community. Some sections of the 4 
original manuscript have been entirely deleted. The deleted sections are those examining the auto-bicoherence of 5 
Indian rainfall and the event decomposition of time series. The abstract and the first two paragraphs of the introduction 6 
section have been rewritten to better reflect the readership of the journal. The revised manuscript also includes an 7 
URL at the end of the discussion section to direct the reader to the computer software associated with the adopted 8 
methodology. More detailed responses to comments are provided below. The reviewer comments are in bold text and 9 
our responses to the comments are in plain text. 10 

Reviewer 1 11 

The purpose of this paper is to apply novel methods for bivariate, nonlinear wavelet analysis to 12 

understand whether apparent changes in the relationship between indices for ENSO and the Indian 13 

Monsoon represent fundamental changes in their relationship. The methods are based on those 14 

published in previous peer-reviewed papers by the authors, and so this paper can be viewed as an 15 

application of these methods to a relevant and interesting scientific problem. These tools for higher-16 

order wavelet analysis allow the authors to quantify the nonlinearity of ENSO and indices for the Indian 17 

monsoon. The authors conclude from this analysis that ENSO nonlinearity is related to ENSO flavors, 18 

and that the apparent changes in the relationship between ENSO and Indian rainfall are also related to 19 

ENSO flavors. Finally, the authors use these findings to re-interpret findings by Yun and Timmerman 20 

(2018) which suggest that the breakdown of the ENSO-India rainfall relationship is related to shifts in 21 

the linearity of the ENSO regime. Specifically, the authors argue that the nonlinear relationship 22 

identified by their higher-order wavelet model will have non-Gaussian noise components, potentially 23 

confounding the alternative analysis. While this paper is unlikely to be the final word on this debate, it 24 

is a clear, well-written, and important contribution to the study of the ENSO-Indian rainfall relationship, 25 

and to time series analysis more broadly, and should be published pending minor stylistic edits. I also 26 

note a lack of a data availability policy [https://www.natural-hazards-and-earthsystem-27 

sciences.net/about/data_policy.html]. Making the code and data used to others would help other 28 

researchers apply these methods to other time series. 29 

A URL to the first author’s website where the computer software for the adopted methodology can be 30 

obtained is provided Page 12 of the revised manuscript.   31 

 L9: It took me a while to understand the similarities and differences between the terms auto-32 

bicoherence, bicoherence, coherence, etc. The auto-bicoherence is defined later, but perhaps a simple 33 

table or sentence near the introduction explaining the difference between these different terms would 34 

be helpful. (I am flagging this in the abstract but the clarification could happen elsewhere) 35 

To better distinguish coherence traditionally used from the new methods, traditional coherence is now 36 

referred to as “linear coherence” in the revised abstract. Furthermore, a sentence mentioning how auto-37 

bicoherence detects quadratic nonlinearities in time series has been added to the main text on Page 4 38 

Line 174. The type of nonlinearities (e.g. cubic nonlinearities) that cannot be detected by the methods is 39 

mentioned on Page 5 Line 185. A table (Table 1 in revised manuscript) was added to clarify the 40 

nomenclature used in the paper.  41 

L48: consider rephrasing “investigators”  42 
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“investigators” was changed to “researchers” in the revised manuscript.   43 

 L58-59: there are also concerns about data quality – would be worth at least referencing or discussing 44 

them https://www.natural-hazards-and-earth-system-sciences.net/about/data_policy.html 45 

A careful literature search did not reveal any studies citing data quality issues regarding the All-India 46 

rainfall (AIR) data set. Nevertheless, as a gauge-based product, AIR has both the advantages and 47 

disadvantages of any product based on in situ weather stations—that is, the data that go into it are 48 

collected in a well-understood way, without use of proxies, but there is the potential for non-49 

representative station distribution or faulty gauges. That said, AIR is widely used product that has been 50 

applied successfully to many studies of weather and climate in India. 51 

L95 and beyond: please consider converting from month−1 to year−1  52 

After careful consideration, we decided that we will still use months in the revised manuscript because of 53 

months seems to work better with how the wavelet scales and periods are calculated using powers of 2.  54 

L117: are there possible data quality issues with the rainfall data?  55 

To the authors knowledge, there are no serious data quality issues. The All-India rainfall data is frequently 56 

used in Indian Monsoon studies. Because of the importance of the Indian monsoon, careful data collection 57 

has been conducted since the 1800’s.  58 

 L135: the formatting here has changed. 59 

Thank you for identifying the formatting change. It was corrected in the revised manuscript.  60 

 L146: are there cases where very small events (say a single month) emerge? If so how are these 61 

handled?  62 

To make the manuscript more concise, the event decomposition approach will be removed from the 63 

manuscript. Nevertheless, the single-month events were considered to be short events whose intensities 64 

were the values of the data points composing the events.  65 

 L156: Consider re-wording to continuous wavelet transform of a time series X = ... as a function of 66 

wavelet scale s is given by 67 

The authors appreciate the suggestion for rewording the sentence. The sentence was recorded in the 68 

revised manuscript (Page 3, Line 136 of revised manuscript).  69 

 L160: if this transform is commonly used please cite. Are results sensitive to choice of wavelet form or 70 

to choice of ω? 71 

The Morlet wavelet is the most commonly used analyzing wavelet in climate and hydrological studies 72 

because it balances time and frequency localization. A citation was added to indicate the common use of 73 

the Morlet wavelet on Page 4 Line 142. The choice of ω would impact the results given that it alters the 74 

time and frequency localization behavior of the Morlet wavelet. However, given that ω= 6 is such a 75 

common choice in wavelet applications, the authors feel that it is beyond the scope of the paper to 76 

understand its effect on the interpretability of wavelet analysis results.   77 

https://www.natural-hazards-and-earth-system-sciences.net/about/data_policy.html
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 L188: it would help to be clearer here about what sorts of nonlinearities this analysis can pick up, which 78 

sorts of nonlinearities it cannot pick up, and what sorts of nonlinearities have been hypothesized or 79 

observed in ENSO time series. 80 

We agree that a clarification is needed. In the revised manuscript, we now mention that the bicoherence 81 

method detects quadratic type nonlinearities on on Page 4 Line 174.  82 

  L200: see above comment regarding distinction between coherence, auto-coherence, etc. 83 

A table (Table 1) was added to the revised manuscript to clarify the nomenclature used in the paper.  84 

  L464: if there are spatial shifts happening that are related to ENSO, this could potentially complicate 85 

some of this analysis correct?  86 

While we agree that spatial patterns could be shifting, the purpose of the analysis was to quantify the 87 

auto-bicoherence of SSTs at various grid points. An additional study would be needed to see if there are 88 

spatial shifts in the patterns, which is beyond the scope of the paper.  89 

 L545: Consider re-wording “despite how” 90 

“Despite how” was changed to “Although” in the revised manuscript on Page 10, Line 413 of revised 91 

manuscript.  92 

 L595: what is your interpretation of the finding that the modes found are not harmonics of 12 months? 93 

Given that the seasonal (12 month) cycle is important here and many of the other modes may be 94 

coupled to it, it would be useful to explain to the reader why other modes emerge as important.  95 

Although understanding the specific dynamics underlying the nonlinear modes is beyond the scope of 96 

paper, the revised manuscript includes references to studies that focused on understanding nonlinear 97 

ENSO dynamics (Page 2, Line 76).  98 

 L610: this is an important point which the authors should consider emphasizing in the abstract  99 

The authors agree that it is important point. As such, the finding will be discussed in the revised abstract.  100 

Figure 5: consider adding color  101 

We agree that this figure could be clearer. We thickened lines and changed the line color to red and blue 102 

shades designed to be distinguishable by the colorblind.  103 

 Figure 6: consider plotting the global (average) wavelet spectrum adjacent 104 

Although the authors agree that the global wavelet power spectra would help highlight the dominant 105 

peaks in the wavelet power spectra, we could not find any reason to discuss them in the text because we 106 

are concerned with changes in wavelet power. For the sake of brevity, we decided to omit them.   107 

 Figure 7: please fix titles  108 

Thank you for referring us to the errors in the titles. The problem was corrected in the revised manuscript.  109 

 Figure 8: the figure has gotten clipped at the left margin. 110 

Thank you for referring us to the clipping problem. The problem was corrected in the revised manuscript.  111 
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 Figure 9: this is the wrong place to bring this up but it would be helpful to add some discussion in the 112 

methods section, specifically around hypothesis testing, about what the 5% cumulative area-wise 113 

significance means and how to interpret it. 114 

The authors agree that some discussion is warranted given the novelty of the statistical tests. A short 115 

discussion was added on Page 4, Line 207 of the revised manuscript, but the reader is referred to Schulte 116 

(2019) for more details.  117 

 Figure 11: please clarify why these pairs were chosen 118 

As stated on Line 481, the pairs were chosen because they are local maxima in auto-bicoherence that are 119 

statistically significant. Choosing local maxima allows the spatial patterns shown in Figure 11 to emerge 120 

more clearly. A sentence clarifying our choice of pairs was inserted into the revised manuscript on Page 121 

11, Line 466.  122 

References  123 

Schulte, J. A.: Statistical hypothesis testing in wavelet analysis: theoretical developments and applications to Indian 124 
rainfall, Nonlin. Processes Geophys., 26, 91-108, https://doi.org/10.5194/npg-26-91-2019, 2019. 125 

 Yun, Kyung-Sook and Axel Timmermann (2018). “Decadal Monsoon-ENSO Relationships Reexamined”. 126 
Geophysical Research Letters 45.4. doi: 10.1002/2017GL076912. 127 

  128 
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GENERAL COMMENTS The manuscript investigates the relationship between rainfall and ENSO index using 129 
wavelet analysis and a wavelet coherence method is proposed to explain the changes of temporal correlation 130 
between two time series. The topic of the study is interesting may be outside the scope of the journal. This 131 
appears more so as almost all references are from climate journals where this paper sits more naturally. I think 132 
this paper should be withdrawn and submitted to an appropriate climate journal, or else reformatted to 133 
represent better arguments as to why it is of interest to hydrology directly. I have, however, read through the 134 
paper and have some comments that may help the authors publish this successfully.  135 

Our manuscript addresses precipitation variability in the South Asian monsoon region. As precipitation in this region 136 
is critical to mountain glaciers, transboundary rivers, groundwater recharge, and functioning of many ecosystems and 137 
human systems, we believe that the topic is of considerable importance to hydrologists and Earth system scientists. 138 
However, we appreciate the reviewer’s concern, and we recognize that we did not sufficiently emphasize the 139 
hydrological relevance of this work in the original manuscript. The first two paragraphs of the introduction section 140 
have been rewritten in the revised manuscript to better empathize the hydrological relevance. Many new references 141 
have been added as well.  142 

COMMENT1: Section 2, the way authors computed the monthly anomaly by subtracting the data from the 143 
whole period is not the recommended and standard way. It is recommended by WMO that a fixed reference 144 
period is defined as the 30-year period 1 January 1961 to 31 December 1990. Authors should consider use this 145 
as baseline period, especially when compared SST and Nino indices over different regions.  146 

Although the authors agree that a 30-year base period is commonly used in climate studies, it is unclear how using the 147 
standard base period would benefit the present analysis. Using a different base period would only translate the time 148 
series up or down uniformly and would not alter the actual behavior of the time series. Therefore, the results of the 149 
wavelet analysis, which are the focus of the present study, would be unchanged. Furthermore, skewness would be 150 
made relative to that base period, which would make the more recent skewed events appear less prominent. As such, 151 
we feel that subtracting the long-term means to calculate anomalies is the best approach for the present study. By 152 
using long-term means, it is easier to see how skewness how evolved throughout the study period, which is consistent 153 
with what the wavelet analysis is quantifying.  154 

COMMENT2: Section 3.1, there is no such Reference Schulte and Lee (2019). More importantly, the reason of 155 
adapting Event Decomposition is not well explained and how it helps quantifying the nonlinearity (i.e. 156 
skewness) of rainfall and ENSO index is not demonstrated. In the end of Method section, authors considered a 157 
synthetic example to illustrate the concept of nonlinear coherence using original time series but following your 158 
methodology it should be transformed to event spectra before calculating the coherence. The impact of Event 159 
Decomposition on the wavelet analysis and coherency is unknown.  160 

The authors agree that it is unclear how the event spectra benefit the paper. As such, the event decomposition method 161 
results have been removed from the revised manuscript. This removal allowed us to focus more on wavelet analysis, 162 
which is the main topic of the paper. The authors note that the coherence spectra are based on the actual time series 163 
and not on the event transformed time series.  164 

COMMENT3: Section 4.2, the relation between skewness and correlation is not explicitly demonstrated. There 165 
is a sharp decrease of skewness of June-September rainfall around 1991. Is there any particular reason? And 166 
what is the implication of this change? "A comparison of Figures 5a and Figures 5c reveals that the weakening 167 
and reversal of the relationship occurs during the time period when the Niño 1+2 index is especially skewed, 168 
suggesting that ENSO skewness changes could be contributing to changes in the time-domain correlation 169 
between ENSO and All-India rainfall. " This conclusion is in doubt, Figure 5a doesn’t include the skewness of 170 
August-September rainfall.  171 

The main reason for showing skewness is because two time series can only be perfectly correlated if all the statistical 172 
moments are correlated. More specifically, if the skewness of one time series is increasing but another remains nearly 173 
constant, then the lack of correlation between the skewness of the two time series must be contributing to changes in 174 
the correlation between the time series. This idea was made more explicit in the revised manuscript (Page 6, Line 175 
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229). The sharp decrease in skewness around 1991 could be noise. A full understanding of all sources of Indian rainfall 176 
skewness would require additional analyses, which would digress from the focus of the paper, which is to relate ENSO 177 
skewness to Indian rainfall skewness. Nevertheless, an implication of the result is that noise also influences the 178 
correlation between Indian rainfall and ENSO. This possibility was mentioned in the revised manuscript on Page 9 179 
Line 351.  180 

COMMENT4: Section 4.2 and 4.3, through the global and local auto-bicoherence analysis, they show the 181 
nonlinearity of ENSO indices and India rainfall in the frequency and spatial space individually. But how these 182 
two related to each other, authors do not explain explicitly.  183 

The main reasons for showing the local and global bicoherence analyses is to highlight their differences. Because the 184 
nonlinear coherence between them is weak, we expected that the differences to be large. On page 12, Line 496 of the 185 
revised manuscript, we mentioned how changing ENSO nonlinearity could explain the more frequency occurrence of 186 
Central Pacific El Nino in recent decades, connecting the spatial pattern of auto-bicoherence to local auto-bicoherence.  187 

Using the nonlinear wavelet coherence method to test your hypothesis should be the major contribution of your 188 
work, however it is only briefly discussed in the very end of Section 4.3.2. There are lots of redundant 189 
information in the manuscript, which makes the paper long and difficult to read.  190 

In the revised manuscript, we expanded the nonlinear wavelet coherence method section. In addition, some text was 191 
moved or deleted (e. g Section 4.2.2) of original manuscript) so that the nonlinear coherence section appears earlier 192 
in the revised manuscript. The authors agree that there is a lot of redundant information, which was reduced in the 193 
revised manuscript by deleting text (e. g Section 4.2.2 of original manuscript) and moving some information to the 194 
supplementary material.  For example., Section 4.2.1 of the original manuscript is now the final section of the revised 195 
manuscript. We also now only focus on the All-India time series because looking at different regions of India is not 196 
necessary to get our key message across.  197 

SPECIFIC POINTS:  198 

1. EL Nino or El Nino, please keep it consistent throughout the paper. 199 

The authors appreciate the identification of this inconsistency, which was corrected throughout the paper. The format 200 
was changed to “El Nino” throughout.  201 

 2. Line 104, keep the numbering format consistent.  202 

The numbering inconsistency was corrected in the revised manuscript.  203 

3. Please have a careful look of the format of your references.  204 

The authors appreciate the comment about the reference formatting. The reference formatting was corrected in the 205 
revised manuscript.  206 

4. Line 274, keep the equation numbering format consistent.  207 

The equation formatting inconsistency was corrected in the revised manuscript.  208 

5: Line 175, Because theory supports a casual link...Authors do not explain this point well. Does strong 209 
coherence or association mean causality in nonlinear system? More details are needed.  210 

Authors agree that more details are needed regarding the causal linkage statement. There are many studies that have 211 
linked ENSO to the Indian monsoon. The Ropelewski and Halpert (1987) study was referenced in the revised 212 
manuscript on Page 4, Line 155 and linkage between ENSO and Indian rainfall through the Walker Circulation is now 213 
mentioned on Page 4, Line 155.   214 

6. Figure 7, what monsoon rainfall is used, full monsoon or late monsoon?  215 
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The authors note that Figure 7 is the wavelet power spectrum of the All-India time series without any seasonal 216 
averaging.  217 

7. Line 447, what is the abbreviation of AIR standing for?  218 

The acronym stands for All-India Rainfall. The acronym is now presented when we discuss the All-India rainfall time 219 
series in the data section.  220 

8. Line 135-137, keep the font format consistent. 221 

The authors appreciate the identification of the formatting issue, which was corrected in the revised manuscript.  222 

 I recommend authors to do a search on [hydrology and wavelets and precipitation and "el Nino"] or maybe 223 
"low frequency variability" and see how they have established the link of their paper to the hydrology audience 224 
they are presenting to. It may give authors a good idea of how they could improve their pitch. 225 

The authors appreciate the suggestion regarding a literature search.  We conducted a literature search on wavelet 226 
analysis and hydrology and included  the following references on Page 4 Line 142 because they focus on hydrological 227 
applications of wavelet coherence.  228 

Carey, S. K., Tetzlaff, D., Buttle, J., Laudon, H., McDonnell, J,. McGuire, K., Seibert, J., Soulsby, C., Shanley, J. : 229 
Use of color maps and wavelet coherence to discern seasonal and inter annual climate influences on streamflow 230 
variability in northern catchments. Water Resources Research, 49, 6194–6207, 2013. 231 

Holman, I. P., Rivas-Casado, M., Bloomfield, J.P., Gurdak, J. J.: Identifying nonstationary groundwater level response 232 
to North Atlantic ocean–atmosphere teleconnection patterns using wavelet coherence. Hydrogeol. J. http:// 233 
dx.doi.org/10.1007/s10040-011-0755-9, 2011.  234 

Schaefli, B., Maraun, D., and Holschneider, M.: What drives high flow events in the Swiss Alps? Recent developments 235 
in wavelet spectral analysis and their application to hydrology, Adv. Water Resour., 30, 2511–2525, 2007. 236 

Zhang, Q., Xu, C., Jiang, T., Wu, Y.: Possible influence of ENSO on annual maximum streamflow of the Yangtze 237 
River, China,  Journal of Hydrol, 333, 265–274. doi:10.1016/ j.jhydrol.2006.08.010, 2007.  238 

 239 

 240 

 241 

 242 

  243 
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A Skewed perspective of the Indian rainfall-ENSO Relationship 244 

Justin Schulte1*, Fredrick Policielli2, and Benjamin Zaitchik3 245 

1. Science Systems and Applications, Inc. 246 

2. NASA Goddard Space Flight Center 247 

3. John Hopkins University 248 

*corresponding Author: Justin Schulte (justin.a.schulte@nasa.gov) 249 

Abstract 250 

The application of higher-order wavelet analysis to India rainfall and the El Niño/Southern Oscillation (ENSO) is 251 
presented. An auto-bicoherence analysis is used to extract the frequency modes contributing to the skewness of India 252 
rainfall and ENSO. A nonlinear wavelet coherence method is proposed for diagnosing why the time-domain 253 
correlation between two time series temporally changes when at least one time series has changing nonlinear 254 
characteristics.  255 

 The results indicate the India rainfall and ENSO are highly nonlinear phenomenon. It is also demonstrated 256 
that the sea surface temperature (SST) patterns associated with different nonlinear ENSO modes depend on the 257 
frequency components participating in the nonlinear phase coupling. The SST pattern associated with coupling 258 
between ENSO modes with periods of 31 and 15.5 months is reminiscent of a central Pacific El Niño and intensifies 259 
around 1995, contrasting with the coupling between the 62- and 31- month modes that became active around the 1970s 260 
ENSO regime shift. A nonlinear coherence analysis showed that the skewness of India rainfall is weakly correlated 261 
with that of 4 ENSO time series after the 1970s, indicating that increases in ENSO skewness after 1970’s at least 262 
partially contributed to the weakening India rainfall-ENSO relationship in recent decades. The implication of this 263 
result is that the intensity of skewed El Niño events is likely to overestimate India drought severity, which was the 264 
case in the 1997 monsoon season, a time point when the nonlinear wavelet coherence between All-India rainfall and 265 
ENSO reached its lowest value in the 1871-2016 period.   266 

Wavelet coherence is a commonly used method in hydrology to extract scale-dependent, non-stationary relationships 267 
between time series. However, we show that the method cannot always determine why the time-domain correlation 268 
between two time series temporally changes. We show that even for stationary coherence, the time-domain correlation 269 
between two time series weakens if at least one of the time series has changing nonlinear characteristics. To overcome 270 
this drawback, a nonlinear coherence method is proposed for quantifying the cross-correlation between nonlinear 271 
modes embedded in time series. It is shown that using nonlinear coherence spectra together with auto-bicoherence 272 
spectra can provide additional insight into changing time domain correlations. The new method is applied to El Niño 273 
/Southern Oscillation (ENSO) and All-India rainfall, which is closely linked to hydrological processes across the 274 
Indian sub-continent.  The nonlinear coherence analysis showed that the skewness of All-India rainfall is weakly 275 
correlated with that of 4 ENSO time series after the 1970s, indicating that increases in ENSO skewness after the 1970s 276 
at least partially contributed to the weakening All-India rainfall-ENSO relationship in recent decades. The implication 277 
of this result is that the intensity of skewed El Niño events is likely to overestimate India drought severity, which was 278 
the case in the 1997 monsoon season, a time point when the nonlinear wavelet coherence between All-India rainfall 279 
and ENSO reached its lowest value in the 1871-2016 period. We determined that the association between the 280 
weakening ENSO-All India rainfall relationship and ENSO nonlinearity could reflect the contribution of different 281 
nonlinear ENSO modes to ENSO diversity. 282 

Wavelet coherence is a commonly used method in hydrology to extract scale-dependent, non-stationary relationships 283 
between time series. However, we show that the method cannot always determine why the time-domain correlation 284 
between two time series temporally changes. We show that even for stationary coherence, the time-domain correlation 285 
between two time series weakens if at least one of the time series has changing nonlinear characteristics. To overcome 286 
this drawback, a nonlinear coherence method is proposed for quantifying the cross-correlation between nonlinear 287 
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modes embedded in time series. It is shown that using nonlinear coherence spectra together with auto-bicoherence 288 
spectra can provide additional insight into changing time domain correlations. The new method is applied to El Niño 289 
/Southern Oscillation (ENSO) and All-India rainfall, which is closely linked to hydrological processes across the 290 
Indian sub-continent.  The nonlinear coherence analysis showed that the skewness of All-India rainfall is weakly 291 
correlated with that of 4 ENSO time series after the 1970s, indicating that increases in ENSO skewness after the 1970s 292 
at least partially contributed to the weakening All-India rainfall-ENSO relationship in recent decades. The implication 293 
of this result is that the intensity of skewed El Niño events is likely to overestimate India drought severity, which was 294 
the case in the 1997 monsoon season, a time point when the nonlinear wavelet coherence between All-India rainfall 295 
and ENSO reached its lowest value in the 1871-2016 period. We determined that the association between the 296 
weakening ENSO-All India rainfall relationship and ENSO nonlinearity could reflect the contribution of different 297 
nonlinear ENSO modes to ENSO diversity. 298 

1. Introduction  299 

Precipitation variability across India is largely related to the seasonal Southwest and Northeast monsoon 300 
systems involving changes in the prevailing low-level wind direction. Understanding the precipitation variability 301 
across India is complex because India rainfall is a non-stationary, non-linear phenomenon that is influenced by 302 
numerous large-scale climate patterns such as the El Niño/Southern Oscillation (ENSO; Walker and Bliss, 1932) and 303 
the Indian Ocean Dipole (IOD; Ashok et al., 2001; Ashok et al., 2004) pattern. Predicting India rainfall has important 304 
implications for the agriculture, human health, and economy of India, making the Indian monsoon an active area of 305 
research despite early work on monsoon prediction extending back to the 1800s (Blanford, 1884).   306 

An important source of predictability for the Indian monsoon is ENSO. During EL Niño years, droughts are 307 
favored, while rainfall surpluses are favored during La Niña years. However, there is no one-to-one relationship 308 
between ENSO and Indian rainfall.  As a result, summer rainfall predictions based on ENSO have proven challenging. 309 
For example, the 1997/1998 EL Niño event was extremely strong yet climatological Indian monsoon conditions were 310 
observed (Shen and Kimoto, 1999; Slingo and Annamalai, 2000). It is therefore important to understand why certain 311 
El Niño events are not accompanied by monsoon failures.  312 

South Asian Monsoon, the dominant source of precipitation for the Indian subcontinent, has been a target for 313 
seasonal prediction for well over a century (Blanford, 1884). Despite this long heritage of research, skillful prediction 314 
remains a challenge, driving extensive and ongoing research on statistically and dynamically-based prediction 315 
methods (e.g., REFS). It is difficult to overstate the importance of the South Asian Monsoon to well-being in India. 316 
Strong monsoon years are associated with catastrophic flooding (Kale, 2012; Sanyal and Lu, 2005) and large 317 
landslides (Dortch et al., 2009), while weak monsoons have led to water shortages (Mishra et al., 2016) and crop losses 318 
(Prasanna, 2014; Parthasarathy et al., 1988) that, in historical times, were known to result in significant food shortages 319 
(Fagan, 2009). Thus, while the majority of monsoon forecast studies target prediction of rainfall totals, the 320 
hydrological and agricultural impacts of monsoon variability provide the most pressing motivation for the work. 321 

Much of the research on South Asian Monsoon prediction has focused on the relationship between the El 322 
Niño/Southern Oscillation (ENSO; Walker and Bliss, 1932) and monsoon strength.  During El Niño years, droughts 323 
are favored, while rainfall surpluses are favored during La Niña years (Shukla and Paolino, 1983; Kripalani and 324 
Kulkarni, 1997). However, there is no one-to-one relationship between ENSO and Indian rainfall.  As a result, summer 325 
rainfall predictions based on ENSO have proven challenging. For example, the 1997/1998 El Niño event was 326 
extremely strong yet climatological Indian monsoon conditions were observed (Shen and Kimoto, 1999; Slingo and 327 
Annamalai, 2000). It is therefore important to understand why certain El Niño events are not accompanied by monsoon 328 
failures.  329 

There are a few reasons for the challenges faced when predicting Indian rainfall using ENSO. The first reason 330 
is that the relationship between ENSO and India rainfall is non-stationary. As shown by Torrence and Webster (1999), 331 
the relationship between ENSO and India rainfall cycles between periods of high and low coherence. Kumar et al. 332 
(1999) found that the relationship between India rainfall and ENSO weakened in the 1970s and hypothesized that a 333 
southward shift in Walker circulation anomalies associated with ENSO events and increased Eurasian spring and 334 
winter surface temperatures was responsible for the weakening relationship. Other work suggests that the changing 335 



10 
 

ENSO-India rainfall relationship was the result of tropical Atlantic sea surface temperatures (SSTs) and the Atlantic 336 
Multi-decadal Oscillation modulating the relationship (Lu et al., 2006; Kucharski et al. 2007; Kucharksi et al., 2009; 337 
Chen et al., 2010). In contrast, Kumar et al (2006) and Fan et al. (2017) argued that the occurrence of different ENSO 338 
flavors (Johnson, 2013) such as the Eastern Pacific and Central Pacific types could explain the changes in the ENSO-339 
India rainfall relationship. Other investigators adopted another perspective to explain changes in the ENSO-India 340 
rainfall relationship and concluded that temporal undulations in the ENSO-India rainfall relationship are related to 341 
statistical under sampling and stochastic fluctuations (Gershunov et al. 2001; van Oldenborgh and Burgers, 2005; 342 
Delsole and Shukla, 2006; Cash et al., 2017).  In a recent analysis, Yun and Timmermann (2018) showed that changes 343 
in the ENSO-Indian rainfall relationship are consistent with a stochastically perturbed ENSO signal and argued that 344 
changes in the ENSO-India monsoon relationship may not be related to external climate forcing mechanisms.  345 

The second reason for the ENSO-related prediction challenges is that ENSO itself is a non-stationary 346 
phenomenon. Using wavelet analysis, Kestin et al. (1998) found that the interannual variability of ENSO from 1930 347 
to 1960 was dominated by a 4- to 7- year periodicity, whereas for the time period from 1960 to 1990, the interannual 348 
variability was also dominated by a 2- to 5- year periodicity. A wavelet power spectral analysis conducted by Torrence 349 
and Webster (1999) and Schulte (2016a) showed that ENSO signal energy in the 2- to 7-year period band undulates, 350 
with the signal energy of the Niño 3.4 time series particularly pronounced after the 1960s (Schulte 2016a).  351 

The nonlinear characteristics (e.g. skewness) of ENSO are also non-stationary and undergo interdecadal 352 
changes (Wu and Hsieh, 2003). Numerous studies have reported an ENSO regime shift in the 1970s in which ENSO 353 
began to evolve more nonlinearly than in previous decades (An, 2004; An and Jin 2004; An, 2009). It is a curious fact 354 
that the ENSO regime shift of the 1970s coincided with the weakening ENSO-India rainfall relationship as 355 
documented by Kumar et al. (1999). This observation begs the question as to whether nonlinear ENSO regime changes 356 
are related to changes in the ENSO-India rainfall relationship.  357 

Various mechanisms have been proposed for explaining ENSO skewness. Kang and Kug (2002) suggested 358 
that the asymmetry between the magnitude of El Niño and La Niña events is related to the relative westward 359 
displacement of zonal wind stress anomalies during La Niña events compared to El Niño events. Jin et al., (2003) and 360 
An and Jin (2004) found that ENSO asymmetry is related to nonlinear dynamical heating (NDH), where the magnitude 361 
of NDH is related to the propagation characteristics of ENSO. During strong El Niño events like the 1982/1982 and 362 
1997/1998 events, SST anomalies were found to propagate eastward, with the eastward propagation tending to produce 363 
more NDH compared to weak EL Niño events when NDH is minimal (An and Jin, 2004). Since the late 1970s there 364 
has been a propensity for eastward propagation characteristics of ENSO (Santoso et al., 2013), contrasting with the 365 
time period before the 1970s that consisted of the relatively weak El Niño events of 1957/1958 and 1972/1973 (An 366 
and Jin, 2004; An, 2009). More recently, Su et al. (2010) showed that vertical temperature advection may have an 367 
opposing effect on ENSO asymmetry and that the asymmetry in the extreme eastern equatorial Pacific is related to 368 
meridional ocean temperature advection. 369 

Previous investigators have used different metrics to quantify ENSO asymmetry. To measure the nonlinear 370 
character of ENSO, An and Jin (2004) used time-domain metrics such as skewness and maximum potential intensity 371 
(MPI) to quantify the skewness of SST anomalies and the skewness of individual ENSO events, respectively. An 372 
(2004) applied a principal component analysis (PCA) to a 21- year moving window of tropical Pacific SST skewness 373 
and found that the first PCA mode is characterized by positive skewness across the eastern equatorial Pacific and 374 
negative skewness across the central equatorial Pacific. This pattern means that interdecadal changes in the 375 
nonlinearity of ENSO is associated with positively skewed SST anomalies across the eastern equatorial Pacific, 376 
implying that El Niño events are stronger than La Niña events. While the methods implemented in the aforementioned 377 
studies provided important insights, they cannot reveal the frequency modes of ENSO that are contributing to the 378 
skewness. Furthermore, the sliding-window approach is not local in the sense that it cannot quantify the strength of 379 
nonlinearity at a point in time because skewness is calculated using a set of observations over some time interval. 380 
While the MPI index does address the problem of quantifying the skewness of individual events, it also does not 381 
provide any information regarding the frequency components contributing to ENSO skewness.  382 

Recognizing the limitations of time-domain approaches, Timmermann (2003) conducted a bi-spectral 383 
analysis of the Niño 3 anomaly time series, where a peak (𝑓1,𝑓2) in the bi-spectrum means there is statistical phase 384 
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dependence  among oscillators with frequencies 𝑓1, 𝑓2, and 𝑓1 + 𝑓2. That bi-spectral analysis revealed statistically 385 
significant bi-spectral power at several frequency pairs, including (0.038, 0.038), (0.028, 0.028), (0.0225, 0.0225), 386 
(0.0045, 0.032), and (0.0045, 0.045) [month-1]. The peaks (0.0045, 0.032), and (0.0045, 0.045) [months-1] were 387 
identified with the nonlinear interactions among 18-year and 2-year variability. Although the analysis provided new 388 
insights, the Fourier-based analysis could not reveal how the nonlinear nature of ENSO changed with time, an 389 
important property to capture given how the nonlinear characteristics of ENSO are non-stationary (Santoso et al., 390 
2013). Much like the cross-wavelet power (Maraun and Kurths, 2004) and time-domain covariance, bi-spectral power 391 
is not a bounded quantity and so high bi-spectral power does not always mean strong phase dependence.   392 

In this study, the deficiencies associated with the above-mentioned techniques are addressed using higher-393 
order wavelet analysis, which allows for the quantification of frequency-dependent and non-stationary nonlinearities 394 
in time series (Van Millagan, 2004, Elsayad, 2006; Schulte, 2016b). More specifically, the objectives of the paper are 395 
the following: 1) quantify the nonlinearity of ENSO and Indian rainfall using higher-order wavelet analysis together 396 
with recently developed statistical tests; (2) Determine if different nonlinear modes of ENSO are associated with 397 
distinct SST patterns; and (3) develop nonlinear wavelet coherence methods to test the hypothesis that the breakdown 398 
of the ENSO-India rainfall relationship in recent decades is related to the shift of ENSO from a linear regime to a 399 
nonlinear one. The paper is organized as follows: In Section 2, data used are described. Section 3 includes the 400 
description of the implemented methodologies. Results are presented in Section 4 and concluding remarks are 401 
provided in Section 5.  402 

2. Data 403 

Monthly rainfall data for 5 homogenous regions (Parthasarathy et al. 1995a) were obtained from the Indian 404 
Institute of Tropical Meteorology website (http://www.tropmet.res.in). The five homogenous regions called the 405 
Peninsula, Northwest, Northeast, Central Northeast and West Central regions were constructed based on attributes 406 
such as contribution to annual rainfall amount and regional/global circulation parameters (Parthasarathy et al. 1995a; 407 
Azad et al., 2010). The variability of India rainfall was also analyzed using the all-India (Parthasarathy et al. 1995b) 408 
rainfall time series, which is created by averaging representative rain gauges at various locations across India (Mooley 409 
and Parthasarathy, 1984). The full monsoon season (June-September) and the late monsoon (August-September) 410 
season were used to identify possible within-season variations in the relationships. All 6 rainfall time series considered 411 
are continuous and span the time period from 1871 to 2016. To remove the influence of the annual cycle, the time 412 
series was converted into anomaly time series by subtracting the 1871-2016 long-term mean for each month from the 413 
individual monthly values. The anomaly time series were subsequently standardized by dividing them by their 414 
respective 1871-2016 standard deviations. Because wavelet analysis focuses on specific frequency components that 415 
are not impacted by long-term time-domain trends, no detrending of the data was performed.  416 

The variability of India rainfall from 1871-2016 was analyzed using the All-India (Parthasarathy et al. 1994) 417 
rainfall time series, which was created by averaging representative rain gauges at various locations across India. The 418 
full monsoon season (June-September) and the late monsoon (August-September) season were used to identify 419 
possible within-season variations in the ENSO-All-India relationships. To remove the influence of the annual cycle, 420 
the time series was converted into anomaly time series by subtracting the 1871-2016 long-term mean for each month 421 
from the individual monthly values. The anomaly time series were subsequently standardized by dividing it by its 422 
1871-2016 standard deviations. Because wavelet analysis focuses on specific frequency components that are not 423 
impacted by long-term time-domain trends, no detrending of the data was performed. 424 

The monthly data for the Niño 1+2, Niño 3, Niño 3.4, and Niño 4 indices (available at: 425 
https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/Data/nino34.long.data) from 1871 to 2016 were used to 426 
understand how the nonlinear characteristics of SSTs vary from one ENSO region to another. The  Niño 1+2 index is 427 
the average SST in the region  with latitudinal boundaries 0° and 10°S and longitudinal boundaries 90°W and 80°W 428 
and the Niño 3 index is the average SSTs in the region with latitudinal boundaries 5°N and 5°S and longitudinal 429 
boundaries 150°W and 90°W. Variations in SSTs further west were described using the Niño 3.4 and Niño 4 indices, 430 
where the Niño 3.4 index is defined as the average SST in the region bounded by 5°N and 5°S and 170°W and 120°W  431 
and  the Niño 4 index is defined as average SSTs in the region bounded by 5°N and 5°S and 160°E and 150°W. The 432 

https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/Data/nino34.long.data
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seasonal cycle was removed from these time series in the same way as it was removed from the rainfall time series. 433 
Like the rainfall data, these data were not detrended.  434 

The monthly SST data from 1871-2016 were based on the Hadley Centre Global Sea Ice and Sea Surface 435 
Temperature (HadISST1; Rayner et al., 2003) The data at each grid point were converted to monthly anomalies in the 436 
same way as they were computed for the ENSO and All-India time series. 437 

3. Methods 438 

3.1 Event Decomposition  439 

To quantify the time-domain skewness of individual ENSO and India rainfall events, the ENSO and rainfall 440 
time series were first decomposed into individual events using the event decomposition procedure outlined by Schulte 441 
and Lee (2019). That is, a time series 𝑥1,𝑥2,...,𝑥𝑁 with data points located at the time points 𝑡1, 𝑡2,...,𝑡𝑁 was partitioned 442 
into subsequences comprising adjacent data points whose values are negative in the case of negative events and whose 443 
values are positive in the case of positive events. A positive event was considered to begin at 𝑡𝑖 if 𝑥𝑖 > 0 and 𝑥𝑖−1< 0. 444 
The decay phase of a positive event beginning at 𝑥𝑖 was then defined as the time point 𝑡𝑗 such that 𝑡𝑗≥ 𝑡𝑖, 𝑥𝑗 > 0, 𝑥𝑗+1< 445 

0, and 𝑥𝑘> 0 for all k such that i ≤ k ≤ j. Negative events were identified by switching the inequalities in the statements 446 
above. After the event decompositions, the peak intensity of events was calculated, where the peak intensity of a 447 
negative (positive) event was the minimum (maximum) value obtained by a data point within the event period [𝑡𝑖 𝑡𝑗]. 448 
The persistence of an event was defined as the number of points composing the event and the event intensity was 449 
defined as 450 

𝐼 = ∑ 𝑦𝑖
𝑀
𝑖=1                                                                                         (1) 451 

where the 𝑦𝑖  are the M data points composing the event. The duration and intensity of events were depicted using 452 
event spectra (Schulte and Lee, 2019).  453 

3.2 Wavelet Analysis 454 

To better diagnose changes in time series statistics associated with India rainfall and ENSO, we adopted a 455 
wavelet analysis. For a time series, X, comprising data points 𝑥1, 𝑥2, … , 𝑥𝑁, the continuous wavelet transform is given 456 
by  457 

The continuous wavelet transform of a time series 𝑋 =  {𝑥𝑛: 𝑛 = 1,2, . . 𝑁} is given by  458 

𝑊𝑛(𝑠) =  √
𝛿𝑡

𝑠
∑ 𝑥𝑛′

𝑁
𝑛′=1 𝜓0 [(𝑛′ − 𝑛)

𝛿𝑡

𝑠
]                                                     (2) 459 

where s is wavelet scale, 𝜓0 is an analyzing wavelet, 𝛿𝑡 is a time step (1 month in this study), and n is time. The 460 
sample wavelet power spectrum |𝑊𝑛(𝑠)|2 measures the energy content of a signal at time n and scale s. The commonly 461 
used Morlet wavelet with angular frequency 𝜔 = 6 was used throughout this paper because it balances time and 462 
frequency localization and because it is commonly used in hydrological and climate studies (Schaefli et al., 2007; 463 
Zhang et al., 2007;Holman et al., 2001; Carey et al., 2013). The reader is referred to Torrence and Compo (1998) and 464 
Grinsted et al. (2004) for details about wavelet analysis.  465 

Wavelet coherence was used to quantify the linear relationship between two time series as a function of 466 
frequency and time. Wavelet coherence between two time series X and Y is given by 467 

𝑅𝑛
2(𝑠) =  

|𝑆𝑠−1𝑊𝑛
𝑋𝑌(𝑠)|

2

𝑆(𝑠−1|𝑊𝑛
𝑋(𝑠)|

2
)𝑆(𝑠−1|𝑊𝑛

𝑌(𝑠)|
2

)
,                                                       (3) 468 

where S is a smoothing operator (Grinsted et al., 2004) and 𝑊𝑛
𝑋𝑌(𝑠) is the cross-wavelet power spectrum. A coherence 469 

value of 1 indicates the strongest possible association between two variables at the scale s and time n. Large values of 470 
wavelet coherence correspond to time points and scales for which the relative phase difference between two time 471 
series varies little over a time interval. That is, two time series are perfectly coherent at the scale s if for some constant 472 
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c  𝜙𝑛
𝑋(𝑠) − 𝜙𝑛

𝑌(𝑠) = c, where 𝜙𝑛
𝑋(𝑠) is the phase associated with X and 𝜙𝑛

𝑌(𝑠) is the phase associated with Y. If the 473 
relative phase relationship is sufficiently stable, then the wavelet coherence will emerge as statistically significant 474 
(Section 3.4). Two time series are perfectly coherent (𝑅𝑛

2(𝑠) = 1) at s if 𝜙𝑛
𝑋(𝑠) − 𝜙𝑛

𝑌(𝑠) = c over a sufficiently long 475 
time interval, where c is a constant, 𝜙𝑛

𝑋(𝑠) is the phase associated with X, and 𝜙𝑛
𝑌(𝑠) is the phase associated with Y. 476 

In the context of the Indian monsoon, strong coherence between rainfall and a climate pattern (e.g. ENSO) at a scale 477 
s indicates shared temporal characteristics between a climate pattern and rainfall. Because theory supports a causal 478 
link between ENSO and monsoon variability through changes in the Walker Circulation (Ropelewski and Halpert, 479 
1987), strong coherence means that ENSO modulates rainfall. That is, when ENSO is in a warm phase at the scale s, 480 
negative rainfall anomalies are preferred; when ENSO is in a cool phase, the preference is reversed. As a result, the 481 
rainfall time series will inherit the temporal characteristics of the climate forcing time series at a scale s. If the climate 482 
forcing time series is strongly periodic, then the otherwise noisy rainfall time series could become periodic as well.  483 

3.3 Higher-order Wavelet Analysis 484 

Although the wavelet power spectrum is useful for quantifying the signal energy at a scale s and time n, it 485 
cannot determine if there is a nonlinear relationship among different frequency components. In fact, the power 486 
spectrum can only fully describe time series in frequency space in the case of linear systems in which the output is 487 
proportional to the input (King, 1998). For nonlinear systems, higher-order moments exist, and the frequency 488 
decomposition of higher-order moments such as skewness is necessary for a more complete description of the time 489 
series. Thus, higher-order wavelet methods were adopted to determine the frequency components contributing 490 
skewness without assuming stationarity like Fourier-based bicoherence analysis.  491 

The type of nonlinearities that produce skewness are quadratic nonlinearities The type of nonlinearities 492 
considered in this study were quadratic nonlinearities in which the scales 𝑠1, 𝑠2, and 𝑠3 satisfy the sum rule  493 

1

𝑠3
=

1

𝑠1
+

1

𝑠2
                                                                             (4)                                    494 

and the wavelet phases satisfy  495 

𝜙𝑛(𝑠3) = 𝜙𝑛(𝑠1) + 𝜙𝑛(𝑠2).                                                               (5) 496 

These types of nonlinearities arise, for example, when a sinusoid is squared, in which case a harmonic is produced.  497 

In this paper, quadratic nonlinearities giving rise to time series skewness were quantified using local and 498 
global wavelet-based auto-bicoherence methods (Schulte, 2016b) In this paper, the frequency components 499 
contributing to the skewness and quadratic nonlinearities giving rise to time series skewness of a times series were 500 
quantified using local and global wavelet-based auto-bicoherence methods (Schulte, 2016b). Global auto-bicoherence 501 
was computed using the equation  502 

𝑏𝑖𝑔𝑙𝑜𝑏𝑎𝑙
𝑋 (𝑠1, 𝑠2) =  

|𝐵𝑔𝑙𝑜𝑏𝑎𝑙
𝑋 (𝑠1𝑠2)|

2

(∑ |𝑊𝑛
𝑋(𝑠1)𝑊𝑛

𝑋(𝑠2)|
2𝑁

𝑛=1 )(∑ |𝑊𝑛
𝑋(𝑠3)|

2𝑁
𝑛=1 )

,                                             (6) 503 

where 504 

𝐵𝑔𝑙𝑜𝑏𝑎𝑙
𝑋 (𝑠1, 𝑠2) = ∑ 𝑊̂𝑛

𝑋(𝑠3)𝑊𝑛
𝑋(𝑠1)𝑊𝑛

𝑋(𝑠2)𝑁
𝑛=1                                             (7) 505 

is the global bi-spectrum and the hat denotes the complex conjugate. Identical to wavelet coherence, auto-bicoherence 506 
is bounded by 0 and 1, a value of 1 indicating the strongest possible phase coupling among the phases 𝜙𝑛(𝑠3), 𝜙𝑛(𝑠2), 507 
and 𝜙𝑛(𝑠1) such that sum rule Eq. (5) is satisfied. A peak in the auto-coherence spectrum at (𝑠1, 𝑠2) means there is 508 
phase coupling between oscillatory modes with scales 𝑠1, 𝑠2, and 𝑠3. High auto-bicoherence at (𝑠1, 𝑠2) can also mean 509 
that the same oscillatory modes are contributing to the skewness of the time series. It is important to note that the auto-510 
bicoherence cannot detect other types of nonlinearities such as cubic nonlinearities whose detection would require 511 
trisepctra (Collis et al., 1998).  512 
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 While the global auto-bicoherence spectrum is useful for identifying nonlinear triads, it cannot determine 513 
how the strength of phase coupling changes with time. To determine if the strength of the quadratic phase coupling 514 
changeds temporally, the local auto-bicoherence spectrum (Schulte, 2016b) given by  515 

𝑏𝑖𝑛
𝑋(𝑠1, 𝑠1) =  

|𝑆𝑠1
−1𝐵𝑙𝑜𝑐𝑎𝑙(𝑠1,𝑠1)|

2

𝑆(𝑠1
−1|𝑊𝑛

𝑋(𝑠1)𝑊𝑛
𝑋(𝑠1)|

2
)𝑆(𝑠1

−1|𝑊𝑛
𝑋(

𝑠1
2

)|
2

)
                                                 (8) 516 

was computed, where 𝐵𝑛
𝑋(𝑠1, 𝑠2) is the local bi-spectrum given as 517 

𝐵𝑛
𝑋(𝑠1, 𝑠12) =  𝑊̂𝑛

𝑋(𝑠3)𝑊𝑛
𝑋(𝑠1)𝑊𝑛

𝑋(𝑠1).                                                 (9) 518 

In this study, we focused on the local diagonal slices of the auto-bicoherence spectrum, which consists of all points 519 
such that  𝑠1 =  𝑠2 so that Eq. (4) implies that and  𝑠3 =  𝑠1 2⁄ .  In this special case, the local auto-bicoherence spectrum 520 
was calculated using the equation  521 

𝑏𝑖𝑛
𝑋(𝑠1, 𝑠1) =  

|𝑆𝑠1
−1𝐵𝑙𝑜𝑐𝑎𝑙(𝑠1,𝑠1)|

2

𝑆(𝑠1
−1|𝑊𝑛

𝑋(𝑠1)𝑊𝑛
𝑋(𝑠1)|

2
)𝑆(𝑠1

−1|𝑊𝑛
𝑋(

𝑠1
2

)|
2

)
                                                (10) 522 

to revealed the time-evolution of auto-bicoherence estimates located along the diagonal slice in the global spectra. 523 
Local Bi-phase corresponding to each point in the local auto-bicoherence spectrum was used to quantify the local 524 
cycle geometry of the time series. Local bi-phase is given by 525 

𝜓𝑛(𝑠1, 𝑠2) = 𝜙𝑛(𝑠1) + 𝜙𝑛(𝑠2) − 𝜙𝑛(𝑠3)                                                   (11) 526 

and was used to measures the skewness and asymmetries of waveforms. A bi-phase of 0◦ means that the relationship 527 
among the scale components produces positive skewness with respect to a horizonal axis so that positive deviations 528 
from the mean are larger than negative deviations from the mean. On the other hand, a bi-phase of 180◦ indicates 529 
negative skewness with respect to the mean. Bi-phases near -90◦ or 90◦ indicate the presence of asymmetric cycle 530 
geometry (King, 1998; Maccarone, 2014; Schulte, 2016b), indicating that a time series rises (falls) more quickly than 531 
it falls (arises).  532 

 To be consistent with the wavelet power and coherence analyses, results for the higher-order wavelet analysis 533 
were casted in terms of Fourier period rather than wavelet scale. The Fourier period corresponding to 𝑠𝑖 was denoted 534 
by 𝑝𝑖 , where the Fourier period is obtained by multiplying 𝑠𝑖 by 1.03 for the Morlet wavelet (Torrence and Compo, 535 
1998). Thus, the local diagonal slice of the auto-bicoherence spectra were plotted using the Fourier period 𝑝1 536 
corresponding to 𝑠1 as the vertical axis and time as the horizonal axis. High (or statistically significant) local auto-537 
bicoherence at 𝑝1 and time n means that there is phase dependence between modes with periods 𝑝1 and 𝑝1/2 at time 538 
n because 2𝑝3 = 𝑝1 according to Eq. (4) when 𝑝1 = 𝑝2. In other words, the local diagonal slice determines if there is 539 
phase coupling between an oscillatory mode and its harmonic at various time points.  540 

3.4 Statistical Hypothesis Testing  541 

The statistical significance of all wavelet spectra was evaluated using the cumulative area-wise test (Schulte, 542 
2016a; Schulte, 2018) to account for the simultaneous testing of multiple hypotheses (Maraun and Kurths, 2004; 543 
Maraun et al., 2014). This test evaluated the statistical significance of points in the wavelet domain based on the area 544 
of contiguous regions of point-wise significance to which they belong so that larger area implies greater statistical 545 
significance. Given that patch area can changes as the point-wise significance changes, the cumulative area-wise test 546 
evaluates signifcacne based on the area of  patch averaged across a set of point-wise significance levels (Schulte, 547 
2019) To perform the cumulative area-wise test, the point-wise test p-values associated with all points in the wavelet 548 
domain had to be estimated using theoretical red-noise backgrounds for wavelet power and Monte Carlo methods for 549 
wavelet coherence and auto-bicoherence (Torrence and Compo, 1998, Grinsted et al., 2004, Schulte 2016b). After the 550 
point-wise test implementations, the cumulative area-wise test was used to assess the statistical significance of points 551 
in the wavelet domain by tracking how the normalized area of contiguous regions of point-wise significance changed 552 
as the point-wise significance level was varied. The test was applied at the 5% cumulative area-wise significance level 553 
using point-wise significance levels ranging from 0.02 to 0.198 because this choice of point-wise significance levels 554 
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was shown to result in the cumulative area-wise test outperforming the point-wise test in terms of true positive 555 
detection for high signal-to-noise ratios despite how the cumulative area-wise test is more stringent. The test was 556 
performed using the Advanced Biwavelet Wavelet R software Package (available at: 557 
http://justinschulte.com/wavelets/advbiwavelet.html).Technical details of the testing procedure can be found in 558 
Schulte (20198) and in Appendix A.  559 

To assess the statistical significance of the global auto-bicoherence estimates, a modified version of the 560 
cumulative area-wise test was applied. In the modified version of the cumulative area-wise test, the normalized area 561 
of patches was computed by dividing patch area by the product 𝑠1̂𝑠2̂, where 𝑠1̂ is the mean first-coordinate of the patch 562 
and 𝑠2̂ is the mean second coordinate. The means were calculated by assuming that the point-wise significance regions 563 
are polygons with a set of vertices (Schulte et al., 2015). The reason for this modified normalized area is that dividing 564 
area by say, 𝑠1̂

2
, retained the correlation between normalized area and 𝑠2. The test was applied using the same point-565 

wise significance levels that were used to assess the statistical significance of wavelet power and coherence. 566 

To further assess statistical significance of wavelet quantities, a topological significance test (Schulte et al. 567 
2015; Schulte 2018) and a cumulative arc-wise test was also applied to the wavelet spectra. The implementation of 568 
the topological significance test involved the computation of the number of holes and contiguous point-wise 569 
significance regions at a discrete set of point-wise significance levels, resulting in persistent homology profiles. The 570 
topological significance and cumulative arc-wise tests were applied at the 5% significance level, and the point-wise 571 
significance levels used ranged from 0.02 to 0.98. The critical levels of the test were estimated using Monte Carlo 572 
methods by generating 1000 realizations of a red-noise process with lag-1 auto-correlation coefficients equal to that 573 
of the input time series.  574 

3.5 Higher-order Coherence  575 

Although wavelet coherence spectra can provide information regarding how the relationship between two 576 
climate variables changes at a scale s, it cannot completely explain why the time-domain correlation between the 577 
climate variables temporally fluctuates. The reason is that linear wavelet coherence only examines how well the 578 
variance of one time series corresponds to the variance of another at a scale s because linear coherence is determined 579 
by the wavelet power spectra of the time series. That is, linear coherence between two climate variables means that 580 
larger fluctuations in one time series produce larger fluctuations of another climate variable at the scale s. However, 581 
for two time series to be perfectly correlated in the time domain, higher skewness of one climate variable must also 582 
correspond to higher skewness of the other climate variable.  583 

Recognizing that skewness is important for better understanding time-domain correlation changes, the 584 
quantity  585 

𝐵𝑖𝑛
2(𝑠) =  

|𝑆𝑠𝑠𝑚𝑜𝑜𝑡ℎ
−1 𝐵𝑛

𝑋𝑌(𝑠1,𝑠2)|
2

𝑆(𝑠𝑠𝑚𝑜𝑜𝑡ℎ
−1 |𝐵𝑛

𝑋(𝑠1,𝑠2)|
2

)𝑆(𝑠𝑠𝑚𝑜𝑡ℎ
−1 |𝐵𝑛

𝑌(𝑠1,𝑠2)|
2

)
,                                                    (12) 586 

called third-order coherence (nonlinear coherence, hereafter) was used to determine if changes in the skewness of X 587 
are associated with changes in the skewness of Y (see Appendix B for a more general definition). In Eq, (12), 𝑠𝑚𝑜𝑜𝑡ℎ  588 
is one of the three scales, and 𝐵𝑛

𝑋𝑌(𝑠1, 𝑠2) is the third-order cross-wavelet power spectrum, which is the product of the 589 
bi-spectrum of X and the conjugate of the bi-spectrum of Y, the higher-order analog of the cross-wavelet power 590 
spectrum. The word cross-bispectrum was not used to avoid confusion with cross-bicoherence analysis (Van 591 
Milligen,1995). Like wavelet coherence, the nonlinear coherence is bounded by 0 and 1, a value of 1 indicating that 592 
the bi-spectra of X and Y at (𝑠1, 𝑠2) are perfectly and linearly correlated. The statistical significance of nonlinear 593 
coherence was assessed using Monte Carlo methods and the cumulative area-wise test in the same way as it was used 594 
to assess the statistical significance of wavelet coherence.  595 

Another way to interpret higher-order wavelet coherence is using linear and nonlinear modes. A linear mode 596 
𝛾𝑠𝑖

𝑋 is the signal component of X at the scale 𝑠𝑖 obtained by setting all wavelet coefficients to zero except those at 𝑠𝑖 597 

and taking the inverse wavelet transform of the result. Because linear modes are only composed of a single frequency 598 
component, the local cross-correlation (coherence) between 𝛾𝑠𝑖

𝑋 and  𝛾𝑠𝑖
𝑌 is only impacted by the variances of X and Y 599 
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at 𝑠𝑖. On the other hand, nonlinear coherence measures the local cross-correlation between the skewness of 𝛾𝑠1
𝑋 + 𝛾𝑠2

𝑋 +600 

𝛾𝑠3
𝑋  and 𝛾𝑠1

𝑌 + 𝛾𝑠2
𝑌 + 𝛾𝑠3

𝑌  or between 𝛾𝑠1
𝑋 + 𝛾𝑠1/2

𝑋  and 𝛾𝑠1
𝑌 + 𝛾𝑠1/2

𝑌  in the case that 𝑠1 = 𝑠2.  601 

 To better understand nonlinear coherence, we supposed that  602 

𝜙𝑛
𝑋(𝑠1) − 𝜙𝑛

𝑌(𝑠1) = 𝑐1                                                                      (13) 603 

𝜙𝑛
𝑋(𝑠2) − 𝜙𝑛

𝑌(𝑠2) = 𝑐2                                                                      (14) 604 

𝜙𝑛
𝑋(𝑠3) − 𝜙𝑛

𝑌(𝑠3) = 𝑐3                                                                     (15) 605 

for constants 𝑐1, 𝑐2, and 𝑐3. Adding Eqs. (13) and (14) and subtracting Eq. (15) from the result produced the equality  606 

𝜙𝑛
𝑋(𝑠1) + 𝜙𝑛

𝑋(𝑠2) − 𝜙𝑛
𝑋(𝑠3) − (𝜙𝑛

𝑌(𝑠1) + 𝜙𝑛
𝑌(𝑠2) − 𝜙𝑛

𝑌(𝑠3)) = 607 

𝜓𝑛
𝑋(𝑠1, 𝑠2) −  𝜓𝑛

𝑌(𝑠1, 𝑠2) = 𝜓𝑛
𝑏𝑖(𝑠1, 𝑠2) = 𝐾 ,                                                 (16) 608 

for some constant K = 𝑐1 + 𝑐2 − 𝑐3. Thus, if X is perfectly nonlinear coherent with Y, then X and Y must be perfectly 609 
coherent at the three scales participating in the phase coupling. Even if the coherence is perfect at two scales, the 610 
relative bi-phase 𝜓𝑛

𝑏𝑖(𝑠1, 𝑠2) will fluctuate randomly if the relative phase difference at the remaining scale fluctuates 611 
randomly so that the nonlinear coherence will be low. Thus, if nonlinear coherence is high, then there must be some 612 
non-random relationship between X and Y at all three scales even if high linear coherence was not identified at one or 613 
more scales. This theoretical idea suggests that nonlinear coherence can uncover relationships that linear coherence 614 
cannot (see Figure S1 in supplementary material).  615 

The relative bi-phase difference 𝜓𝑛
𝑏𝑖(𝑠1, 𝑠2) is the higher-order analog of the relative phase difference 616 

between two time series. It measures how much the cycle geometry of one time series lags that of another. A lagged 617 
bi-phase of 180◦ means that the skewness or asymmetry of the forcing time series is opposite to that of the response. 618 
For example, if the forcing has positive skewness, then the response will have negative skewness. If the relative bi-619 
phase is 0◦, then negative (positive) skewness of the forcing produces negative (positive) skewness of the response, 620 
contributing to the positive time-domain correlation between the time series. Scales and time points for which 621 
nonlinear coherence is high are where the relative bi-phase is stable.   622 

Throughout this paper, we will focus on nonlinear coherence computed along the diagonal slices (𝑝1 = 𝑝2) 623 
of the time series bi-spectra. The nonlinear coherence spectra are then plotted using 𝑝1 as the vertical axis and time as 624 
the horizonal axis. High nonlinear coherence at 𝑝1 and n means that the skewness or asymmetry between 𝛾𝑝1

𝑋 + 𝛾𝑝1/2
𝑋  625 

and 𝛾𝑝1
𝑌 + 𝛾𝑝1/2

𝑌  are locally cross-correlated. 626 

To demonstrate the concept of nonlinear coherence, we considered a simple example in which the nonlinear 627 
climate forcing time series was given by  628 

F(t) = cos(
2𝜋

𝑝1
 t + φ) + γ (t) cos(

2𝜋

𝑝3
 t + 2φ) + 𝑊𝐹(𝑡)                                                    (17) 629 

and the response to the forcing was given as  630 

R(t) = cos(
2𝜋

𝑝1
t + φ) + 𝑤𝑅(t),                                                                (18) 631 

In Eq. (17), γ (t) is a time-varying nonlinear coefficient, 𝑤𝐹(𝑡) is Gaussian white noise associated with the forcing, 632 
𝑤𝑅(𝑡) is Gaussian white noise associated with the response, φ = 0 is phase, and  𝑝1= 2𝑝3 = 32. The nonlinear 633 
coefficient was assumed to be a linear function of time, i.e.,  634 

𝛾(𝑡) = 𝑡/500.                                                                           (19) 635 

The effect of the coefficient is to linearly increase the variance of F(t) at 𝑝3 = 16 and increase the strength of the 636 
quadratic phase coupling between the modes with periods 𝑝3 = 𝑝1/2  = 16 and 𝑝1 = 32.  637 
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 As shown in Figure 1a, F(t) (black curve) and R(t) (thick green curve) evolve coherently from t = 0 to t = 638 
200. After t = 200, F(t) begins to noticeably exceed R(t) at certain time points (e.g. t = 430) while the relationship 639 
between them at other points is reversed (e.g. t = 450) in the sense that a positive forcing produces a negative response. 640 
As a result, the correlation between F(t) and R(t) weakens (Figure 1b). An inspection of the wavelet coherence 641 
spectrum (Figure 2a) reveals that the coherence at 𝑝1 = 32 is strong and stable so that changes in the relationship 642 
strength at that time scale is not the cause of the weakening time-domain correlation. The coherence at all other periods 643 
is also stationary by construction so that it is not the changing relationship strength at any scale that is causing the 644 
time-domain correlation weakening. However, the variance of F(t) at  𝑝3 = 16 increases with time (not shown) and 645 
the coherence between F(t) and R(t) is also weak at that time scale, implying that larger fluctuations in F(t) at 𝑝3 = 16 646 
are not accompanied by larger fluctuations in R(t). Thus, variance increase of F(t) is one reason for the weakening 647 
time-domain correlation. However, both linear coherence and wavelet power cannot explain why the skewness of F(t) 648 
increases, while the skewness of R(t) is relatively stable (Figure 1c). 649 

To further diagnose a cause of the weakening time-domain correlation, it is necessary to look at the auto-650 
bicoherence spectrum of F(t) and the nonlinear wavelet coherence spectrum. An inspection of the local auto-651 
bicoherence spectrum of F(t) (Figure 2b) reveals that the auto-bicoherence at 𝑝1 = 32 is increasing with time, indicating 652 
that the phase coupling between modes with periods 𝑝3 = 16 and  𝑝1= 32 is strengthening with time. The bi-phase of 653 
0◦, as indicated by arrows pointing to the right, confirms that the phase coupling is contributing to the positive 654 
skewness seen in Figure 1a to an increasing degree. Furthermore, the nonlinear coherence between R(t) and F(t) is 655 
weak and mostly statistically insignificant at  𝑝3= 32 (Figure 2c), implying that the skewness of F(t) produced from 656 
the phase coupling between the modes 𝑝3 = 16 and 𝑝1 = 32 does not influence the skewness of R(t). In other words, 657 
the skewness of 𝛾16

𝐹 + 𝛾32
𝐹  is uncorrelated with the skewness of 𝛾16

𝑅 + 𝛾32
𝑅 , where 𝛾16

𝐹 + 𝛾32
𝐹  is the sum of the cosines 658 

in Eq. (17) and the components of 𝑊𝐹(𝑡) at 𝑝3 = 16 and 𝑝1 = 32. The nonlinear mode  𝛾16
𝑅 + 𝛾32

𝑅  is the sum of the 659 
cosine in Eq. (18) and the components of 𝑤𝑅(t) at 𝑝3 = 16 and  𝑝1= 32. The weak nonlinear coherence also means that 660 
𝜓𝑛

𝐹(32, 32) −  𝜓𝑛
𝑅(32, 32) fluctuates randomly (not shown). Thus, the skewness of R(t) in the time-domain is 661 

practically uncorrelated with the skewness of F(t) because the skewness of F(t) is solely related to the phase coupling 662 
between the modes with periods 𝑝3 = 16 and 𝑝1 = 32 Thus, the increase in  skewness of F(t) also contributes to the 663 
weakening time-domain correlation.  664 

The lack of nonlinear coherence at time scales for which F(t) is nonlinear has implications for empirical 665 
prediction. At time points when F(t) is positively skewed R(t) is overestimated because R(t) is not inheriting the 666 
skewness of F(t). In other words, a large forcing produces an unexpectedly small response. That is, if one created a 667 
linear regression model based on the relationship between F(t) and R(t) from t = 0 to t =200 one would find that a 668 
forcing value of, say, 1 would produce a response close to 1. If the same model was used to predict R(t) at, say, t = 669 
430 one would predict that the forcing with value around 2 should result in a response near 2. However, because the 670 
relatively large value F(430) results from skewness and R(t) is uncorrelated with its skewness, the response is only as 671 
strong as the part of F(t) not resulting from the quadratic phase coupling. The more nonlinear F(t) becomes, the more 672 
F(t) will overestimate R(t) when F(t) is positively skewed. Similarly, the positive forcing produces a negative response 673 
at t = 450 because of skewness and not simply a change in variance. Nonlinear coherence allows for the quantification 674 
and identification of these time-domain aberrations.  675 

The weakening relationship shown in Figure 1b could lead a researcher studying a hydrological process to 676 
believe that another direct forcing mechanism must be directly influencing the hydrological process. This belief could 677 
lead to the applications of partial coherence (Ng, and Chan, 2012) and partial correlation analyses to identify another 678 
influential forcing mechanism. However, in this case, there are no other direct forcing mechanisms; the weakening 679 
time-domain relationship is solely related to how F(t) transitioned from a linear regime process to a nonlinear regime. 680 
This theoretical result suggests that hydrological studies using wavelet coherence should also consider the nonlinearity 681 
of the times series.  process. That is, the change is related entirely to how the skewness of F(t) changed. However, the 682 
phenomena influencing the linearity of F(t) would be at least indirectly related to R(t).   683 

4. Results  684 

4.1 Event Decomposition of ENSO and Indian Monsoon time series 685 
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The time series of the Niño 1+2 and Niño 4 indices together with the corresponding event spectra are shown 686 
in Figures 3 and Figures 4, where we have chosen to show the results for the Niño 4 and Niño 1+2 indices because 687 
they provide contrasting results. For the Niño 1+2 time series, a few recent notably intense (Figure 3b) warm events 688 
are located around 1982/1983, 1997/1998, and 2015/2016 coinciding with the strongest El Niño events in recent 689 
decades (McPhaden, 1999, Hu and Fedorov, 2017; Santoso et al, 2017). The event spectra for the Niño 3 and Niño 690 
3.4 indices identified notably intense warm events that occurred after the 1970s (not shown). A few notably intense 691 
events were also found in the late 1800s and early 1900s, indicating that intense ENSO events are not unique to recent 692 
decades.  Also evident from an inspection of Figure 3a is that the recent intense Niño 1+2 events are also skewed in 693 
the sense that they are stronger than the surrounding cool Niño 1+2 events. Thus, it appears that the skewness of the 694 
Niño 1+2 time series has increased in recent decades.  695 

To visualize how skewness changes temporally, The a 20-year sliding skewness analysis was conducted. As 696 
shown in Figure 5a, the skewness of time series the Niño 1+2 index reveals is enhanced skewness during the early 697 
1880s, near zero skewness around the 1930’s and early 1940’s, and especially enhanced skewness after the 1970s. It 698 
also appears that there is an upward trend in skewness beginning around the 1940s, where the skewness peaks around 699 
2000. In contrast to the Niño 1+2 index, the skewness of the Niño 4 index becomes more negative after the 1970s, 700 
and the magnitude of the skewness is generally smaller than that of the Niño 1+2 time series. This finding suggests 701 
that the transition of the Niño 1+2 time series to a nonlinear regime was more pronounced than the transition associated 702 
with the Niño 4 time series. Interestingly, a 20-year sliding skewness analysis of All-India rainfall reveals that the 703 
skewness of June-September All-India rainfall  remains close to zero until the 1990s despite the upward trend in Niño 704 
1+2 skewness beginning in the 1940s (Figure 5a). Similarly, the skewness of August-September All-rainfall anomalies 705 
does not increase to the extent that Nino 1+2 skewness does, though the skewness does seem to be negatively 706 
correlated with the skewness of the Nino 4 index after the 1970s, consistent with how the All-Raifnall rainfall and the 707 
Nino 4 are negatively correlated. However, Tthe skewness of June-September All-India rainfall becomes more 708 
negative in the 1990s and 2000s, but it is unclear if that negative skewness is related to ENSO, noise, or another 709 
climate pattern because the skewness of the Niño 1+2 and Niño 4 indices do not change as abruptly. Negative June-710 
September All-India rainfall skewness is accompanied by enhanced positive skewness of the Niño 1+2 indices prior 711 
to the 1940s, which is consistent with how All-India rainfall is negatively correlated with the Niño 1+2 index time 712 
series during that time period (Figures 5b and 5c). Our results suggest that All-India rainfall skewness is more 713 
correlated with ENSO skewness prior to the 1930s than it is in recent decades.  714 

4.2 The time-domain Indian Rainfall-ENSO Relationship.  715 

Given the non-stationaries in skewness can influence the time-domain correlation between two time series 716 
(Figure 1b), it is reasonable to hypothesize that the All-India rainfall relationship with the Niño 1+2 and Niño 4 indices 717 
could be non-stationary given that changes in Indian rainfall skewness do not always correspond with changes in 718 
ENSO skewness. To test the hypothesis, a 20-year sliding correlation analysis was conducted between these ENSO 719 
indices and All-India rainfall for the full (June-September) and late monsoon (August-September) seasons. The 720 
correlation between the time series of the Niño 1+2 and Niño 4 indices and All-India rainfall was computed directly 721 
without seasonal averaging.  722 

As shown in Figure 5b, the relationship between full season India rainfall and the Niño 1+2 index generally 723 
weakens from the 1800’s to the 2000s. In contrast, the Niño 4 index relationship with All-India rainfall for the full 724 
season appears to have no long-term trend, resulting in the Niño 4 index becoming more strongly correlated with All-725 
India rainfall than the Niño 1+2 index after the 1970’s. The relationship between Indian rainfall and time series for 726 
the Niño 3 and Niño 3.4 indices was also found to be relatively weak after the 1970s (not shown).   727 

 The stronger relationship between All-India rainfall and the Niño 4 index compared to the Niño 1+2 728 
relationship with All-India rainfall after the 1970s is more evident in the late-season analysis (Figure 5c). An abrupt 729 
weakening of the Niño 1+2-rainfall relationship occurs around the 1970’s, with the relationship reversing around the 730 
1990s. A comparison of Figures 5a and Figures 5c reveals that the weakening and reversal of the relationship occurs 731 
during the time period when the Niño 1+2 index is especially skewed, suggesting that ENSO skewness changes could 732 
be contributing to changes in the time-domain correlation between ENSO and All-India rainfall. However, we have 733 
not shown that ENSO skewness exceeds a red-noise background (Sections 4.2 and 4.3) so that ENSO skewness 734 
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changes and time-domain correlation impacts could still be noise and unpredictable. Nevertheless, this reversal is 735 
consistent with how Fan et al. (2017) found that the SST composite difference between drought and drought-free El 736 
Niño years during the 1979-2012 period features warming across the central equatorial Pacific and cooling across the 737 
eastern equatorial Pacific, whereas the SST composite for the 1978-1987 period features warming across the eastern 738 
to central equatorial Pacific. It also noted that Niño 1+2 index-rainfall relationship is also relatively weak during the 739 
late 1800’s when Niño 1+2 skewness is relatively high (Figure 5a).  740 

A rapid weakening is also seen in the Niño 4-rainfall relationship, but it appears to begin in the 1980’s, which 741 
is later than the Niño 1+2-rainfall relationship breakdown. Nevertheless, the weakening Niño 4-India rainfall 742 
relationship coincides with the enhanced negative skewness of the Niño 4 index (Figures 5a). The fact that Niño 1+2 743 
skewness is greater than Niño 4 skewness after 1970s and that the Niño 1+2 index relationship with All-India rainfall 744 
weakens more abruptly than the Niño 4 index relationship with All-India rainfall suggests that skewness could at least 745 
partially explain the temporal fluctuations in the relationships seen in Figure 5. Thus, a further investigation is needed 746 
to better understand the temporal changes in ENSO statistics and their impact on the ENSO-India rainfall relationship.  747 

The differences in skewness shown in Figure 4 suggests that the correlation between the ENSO time series 748 
and All-India rainfall breaks down after the 1970s, which is confirmed by the 20-year sliding correlation between 749 
June-September All-India India rainfall and ENSO indices (Figure 5). The relationship with the Niño 1+2 generally 750 
weakens from the 1800’s to the 2000s. In contrast, the June-September Niño 4 index relationship with All-India 751 
rainfall appears to have no long-term trend, resulting in the Niño 4 index becoming more strongly correlated with All-752 
India rainfall than the Niño 1+2 index after the 1970’s. The relationship between All-India rainfall and time series for 753 
the Niño 3 and Niño 3.4 indices was also found to be relatively weak after the 1970s (not shown).   754 

 The stronger relationship between All-India rainfall and the Niño 4 index compared to the Niño 1+2 index 755 
relationship with All-India rainfall after the 1970s is more evident in the August-September analysis (Figure 5b). An 756 
abrupt weakening of the Niño 1+2-All-India rainfall relationship occurs around the 1970’s, with the relationship 757 
reversing around the 1990s. A comparison of Figures 4b and Figures 5b reveals that the weakening and reversal of 758 
the relationship occurs during the time period when the Niño 1+2 index is especially skewed. The fact that the Niño 759 
1+2 skewness is greater than Niño 4 skewness after 1970s and that the August-September Niño 1+2 index relationship 760 
with August-September All-India rainfall weakens more abruptly than the August-September Niño 4 index 761 
relationship with August-September All-India rainfall suggests that changes in ENSO skewness could at least partially 762 
explain the temporal fluctuations in the correlations. Thus, a further investigation is needed to better understand the 763 
temporal changes in ENSO statistics and their impact on the ENSO-All-India rainfall relationship. 764 

 765 

4.3. Wavelet Power Analysis and Coherence  766 

To better understand the non-stationarity of ENSO statistics, the wavelet power spectra associated with the 767 
ENSO time series were computed (Figure 6). Enhanced variance in the 16- to 64-month band is seen after 1965 for 768 
all the time series. For the Niño 3 and Niño 4 time series, there is also enhanced variance in the 16- to 64-month period 769 
band from 1875 to 1895, whereas the enhanced variance persists to around 1905 for the Niño 3.4 time series. Another 770 
important aspect of the wavelet power spectra is that the cumulative area-wise significance regions extend across 771 
many periods. For example, in the wavelet power spectrum of the Niño 1+2 index, there is a period-elongated region 772 
around 1997/1998 extending from a period close to 4 months to a period around 64 months. A similar feature is also 773 
evident in the wavelet power spectrum of the Niño 3 and Niño 3.4 indices but appears to be less pronounced in the 774 
wavelet power spectrum of the Niño 4 index. The appearance of holes in contoured regions suggests that there are 775 
oscillatory modes with nearby frequencies (Schulte, et al., 2015), though the wavelet power spectra cannot determine 776 
if there is phase coupling between the oscillatory modes.  777 

The wavelet coherence spectrum shown in Figure 7, indicates that the All-India rainfall relationship with the 778 
Niño 1+2 and Niño 4 indices in the 16- to 64-month period band breaks down after 1995, which is consistent with the 779 
findings from the sliding correlation analysis shown in Figure 5. The relationship between rainfall and these ENSO 780 
indices also weakens around 1925, but this weakening does not appear in the sliding correlation analysis. Note that 781 
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the lack of coherence after 1995 coincides with the enhanced ENSO variance, implying that higher ENSO variance 782 
need not be associated with higher All-India rainfall variance at those time scales. This result implies that intense 783 
ENSO events arising from variance in the 16- to 64-month period band need not correspond with unusual monsoon 784 
seasons. Indeed, the 1997/1998 ENSO event, which coincides with high power in the 16- to 64-month period band, 785 
was associated with a near-normal 1997 monsoon season. More generally, these results imply that the difference Niño 786 
1+2   – AIR is periodic in the 16- to 64-month period band, where AIR is All-India rainfall. The periodic property was 787 
confirmed by computing the wavelet power spectrum of Niño 1+2 – AIR (supplementary Figure S2), with the 788 
periodicity implying that time periods when ENSO overpredicts and underpredicts rainfall occur in regular intervals. 789 
Thus, the result contradicts previous findings suggesting that the relationship between ENSO and Indian rainfall 790 
fluctuates randomly (Yun and Timmermann, 2018). In other words, changes in ENSO variance could be contributing 791 
to the weakening time-domain correlation. However, ENSO skewness is also enhanced during this time period (Figure 792 
5a) so that weakening relationships may not be simply related to ENSO variance.  793 

Averaging wavelet coherence in the 16 to 64-month period band further illustrates how the wavelet coherence 794 
varies temporally (Figure 8). For example, wavelet coherence with both the ENSO indices reaches approximately 0.8 795 
around 1975 before falling below 0.1 in the mid 1990s.  Because the coherence plots shown in Figure 7 are similar, it 796 
is difficult to diagnose why the sliding correlation curves shown in Figure 5 have different temporal structures. For 797 
example, the period-averaged coherence shown in Figure 8 between rainfall and both the ENSO indices are identical 798 
around 1998 yet the relationship between the Niño 1+2 and All-India rainfall is weaker than the relationship between 799 
the Niño 4 index and All-India rainfall around that time (Figures 5b and 5c). Thus, a further analysis is needed to 800 
extract information unrevealed by the linear wavelet power and coherence methods.  801 

To better understand the non-stationarity of ENSO statistics, the wavelet power spectra associated with the 802 
ENSO time series were computed (Figure 6). Enhanced variance in the 16- to 64-month band is seen after 1965 for 803 
all the time series. For the Niño 3 and Niño 4 time series, there is also enhanced variance in the 16- to 64-month period 804 
band from 1875 to 1895, whereas the enhanced variance persists to around 1905 for the Niño 3.4 time series. Another 805 
important aspect of the wavelet power spectra is that the cumulative area-wise significance regions extend across 806 
many periods. For example, in the wavelet power spectrum of the Niño 1+2 index, there is a period-elongated region 807 
around 1997/1998 extending from a period close to 4 months to a period around 64 months. A similar feature is also 808 
evident in the wavelet power spectrum of the Niño 3 and Niño 3.4 indices but appears to be less pronounced in the 809 
wavelet power spectrum of the Niño 4 index. The appearance of holes in contoured regions suggests that there are 810 
oscillatory modes with nearby frequencies (Schulte, et al., 2015), though the wavelet power spectra cannot determine 811 
if there is phase coupling between the oscillatory modes.  812 

The wavelet coherence spectrum shown in Figure 7, indicates that the All-India rainfall relationship with the 813 
Niño 1+2 and Niño 4 indices in the 16- to 64-month period band breaks down after 1995, which is consistent with the 814 
findings from the sliding correlation analysis shown in Figure 5. The relationship between All-India rainfall and these 815 
ENSO indices also weakens around 1925, but this weakening does not appear in the sliding correlation analysis. Note 816 
that the lack of coherence after 1995 coincides with the enhanced ENSO variance, implying that higher ENSO variance 817 
need not be associated with higher All-India rainfall variance at those time scales so that changes in ENSO variance 818 
could be contributing to the weakening ENSO-All-India time-domain correlation. However, ENSO skewness is also 819 
enhanced during this time period (Figure 4) so that weakening relationships may not be simply related to ENSO 820 
variance. Because the coherence plots shown in Figure 7 are similar, it is difficult to diagnose why the sliding 821 
correlation curves shown in Figure 5 have different temporal structures. Thus, a further analysis is needed to extract 822 
information unrevealed by the linear wavelet power and coherence methods. 823 

 824 

4.2. Global Auto-bicoherence  825 

4.2.1 ENSO       826 

As a first step for better understanding the All-India rainfall-ENSO correlation curves shown in Figure 5, the 827 
global auto-bicoherence spectra associated with the ENSO time series were computed (Figure 9). For all four ENSO 828 
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metrics, statistically significant auto-bicoherence was identified, with the global auto-bicoherence spectrum of the 829 
Niño 1+2 index containing the greatest number of statistically significant auto-bicoherence estimates. A few notable 830 
peaks in the Niño 1+2 index auto-bicoherence spectrum are located at (148, 105), (148, 52), (62, 44), and (88, 88) 831 
[months]. The auto-bicoherence peak at (88, 88) suggests that there is phase coupling between an 88-month mode (~ 832 
7 years) and a 44-month mode (~ 3.5 years). The auto-bicoherence spectrum of the Niño 3, Niño 3.4, and Niño 4 833 
indices all contain statistically significant auto-bicoherence peaks at (31, 31), implying phase coupling between a 31-834 
month mode and a harmonic with a period of 15.5 months. For the Niño 3.4 index, there is also an on-diagonal peak 835 
at (55.6, 55.6), whereas for the Niño 3 index the peak is slightly shifted and located at (62, 44). A third peak in the 836 
Niño 3.4 spectrum was found at (105, 47), which could be associated with decadal-scale amplitude modulations of 837 
ENSO, though the peak does not correspond to the linkage between the 18-year and 2-year variance identified by 838 
Timmermann (2003). The differences among the auto-bicoherence spectra suggests that the nonlinear character of 839 
SSTs varies spatially, which is consistent with prior work showing how skewness is generally highest in the eastern 840 
equatorial Pacific and lowest in the central equatorial Pacific (An and Jin, 2004).  841 

To confirm the spatial heterogeneity in the nonlinear characteristics of SSTs, the auto-bicoherence associated 842 
with SSTs at a few select peaks (𝑝1, 𝑝2) were computed at each grid point in the domain bounded by 20°N and 20°S 843 
and by 146°E and 80°W. The peaks were selected based on the auto-bicoherence spectra of the Niño 3.4 and Niño 844 
1+2 indices. To select the peaks, local maxima in auto-bicoherence within the statistically significance regions shown 845 
in Figure 9 were identified.  846 

The spatial structure of auto-bicoherence corresponding to the peaks in the Niño 3.4 auto-bicoherence 847 
spectrum are shown in Figure 10. The auto-bicoherence associated with the pair (31, 31) is greatest across the central 848 
equatorial Pacific, with the overall spatial pattern being reminiscent of a central Pacific El Niño (Lee and McPhaden, 849 
2010). This result suggests that the phase coupling between the 31-month mode and the 15.5-month mode could be 850 
related to the occurrence of central Pacific El Niño events (Section 5). In contrast, the auto-bicoherence pattern 851 
associated with the pair (56, 56) is more uniform, with auto-bicoherence slightly greater across the extreme eastern 852 
equatorial Pacific than the central equatorial Pacific. This pattern is reminiscent of an eastern Pacific El Niño. Like 853 
the pattern corresponding to the pair (31, 31), the auto-bicoherence for the pair (105, 57) tends to be greater across the 854 
central equatorial Pacific. Our findings suggest that different nonlinear modes contribute to different ENSO flavors. 855 
Although An and Jin (2004) and Burgers and Stephenson (1999) showed that skewness is greatest across the eastern 856 
equatorial Pacific, we determined that such a time-domain approach is unable to capture frequency-dependent patterns 857 
in nonlinearity.     858 

 The spatial auto-bicoherence plots associated with the peaks in the Niño 1+2 auto-bicoherence spectrum are 859 
shown in Figure 11. The auto-bicoherence associated with the pairs (148, 53) and (148, 105) is strong across the 860 
eastern equatorial Pacific but weak across the central equatorial Pacific, suggesting that the phase coupling between 861 
the 148- and 105-month modes and between the 148- and 53-month modes are associated with the skewness of eastern 862 
equatorial Pacific SSTs. The pattern associated with the pair (62, 44) is reminiscent of an eastern Pacific El Niño and 863 
the auto-bicoherence associated with the pair (88, 88) is relatively weak across the entire equatorial Pacific. A 864 
comparison of Figures 10 and 11 shows that there is a tendency for auto-bicoherence to be greater across the eastern 865 
equatorial Pacific than the central equatorial Pacific, which is consistent with the results of An and Jin (2004) and 866 
Burgers and Stephenson (1999) who found that SSTs across eastern equatorial Pacific are most skewed. The results 867 
are also in agreement with Figure 5a, which shows how the magnitude of Niño 1+2  skewness is greater than that of 868 
the Niño 4 skewness after the 1970s. 869 

4.2.2 India Rainfall  870 

The global auto-bicoherence spectra for the rainfall time series are shown in Figure 12. For all the rainfall 871 
time series except for the central Northeast time series, statistically significant auto-bicoherence was identified. The 872 
auto-bicoherence spectrum of the All-India time series contains four on-diagonal peaks, one located around (4,4), 873 
another located at (18, 18), and two more located around (40, 40) and (90, 90) [months]. Each of these peaks indicate 874 
time series components with periods 4, 18, 40, 90 months are phase coupled to the corresponding harmonics with 875 
periods of 2, 9, 20, and 45 months. Such phase coupling is inconsistent with the null hypothesis of red noise, which 876 
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agrees with the findings of Schulte (2019) who found robust evidence that there are features embedded in the India 877 
rainfall time series that exceed a red-noise background. Thus, it is natural to ask if these peaks are inherited from a 878 
nonlinear climate forcing. For example, the peak (90, 90) in the All-India rainfall auto-bicoherence spectrum 879 
corresponds well with the peak found in the auto-bicoherence spectra of the Niño 1+2 time series (Figure 9).  880 

Figure 12 also reveals how the nonlinear characteristics corresponding to each region differ. The statistically 881 
significant auto-bicoherence for the Peninsula, Northwest, West Central, and Northeast time series is mainly located 882 
in regions for which 𝑝1 and 𝑝2 are less than 16 months. However, a peak at (256, 32) was found in the auto-bicoherence 883 
spectrum of the Northeast time series, suggesting that the time series components with periods 28, 32, and 256 are 884 
phase dependent. Many other differences are also seen through an inspection of Figure 12. Our findings suggest that 885 
the processes governing precipitation variability in each of the regions differ (Roy and Tedeschi, 2016).  886 

4.3 Local auto-bicoherence  887 

4.3.1 ENSO 888 

To determine if the strength of the identified nonlinearities changes with time, the local diagonal slices 889 
corresponding to the global auto-bicoherence spectra shown in Figure 9 were computed. The results shown in Figure 890 
13 reveal that the auto-bicoherence spectra of all ENSO time series contain statistically significant local auto-891 
bicoherence, but the spectrum of the Niño 4 index is only associated with a few statistically significant regions such 892 
as the one around 2015 at a period of 32 months.  893 

For the Niño 3 and Niño 3.4 time series, two features of interest are seen in the time period extending from 894 
1973 to 2017 in the 16- to 64-month period band. The first feature is the time-elongated region of statistical 895 
significance extending from 1973 to 2016 around a period of 61 months. This result implies that after 1973 the 896 
nonlinear phase coupling between modes with periods of approximately 30.5 and 61 intensifies. This intensification 897 
is consistent with studies showing that ENSO underwent a regime shift in the 1970s in which ENSO began to evolve 898 
more nonlinearly than in previous decades (Santoso et al., 2013). This intensification is also evident in the Niño 1+2 899 
auto-bicoherence spectrum, though the exact periods associated with the phase-coupled oscillatory modes are more 900 
difficult to discern. Nevertheless, a comparison of Figures 5a and 13 reveals that enhanced skewness coincides with 901 
stronger auto-bicoherence in the 32- to 64-month period, suggesting that the skewness partially arose from the stronger 902 
phase coupling among modes with periods ranging from 32 to 64 months. The correspondence between auto-903 
bicoherence and time-domain skewness also holds for the Niño 3 and Niño 3.4 time series (not shown). Our findings 904 
suggest that phase coupling among modes embedded in the 32- to 64-month period band plays an important role in 905 
generating the skewness of ENSO warm events.  906 

The second feature of interest in Niño 3 and Niño 3.4 auto-bicoherence spectra is the one that emerges around 907 
1995 at a period of 31 months. Despite how recent studies indicate that the ENSO regime shift occurred around 1973, 908 
this result suggests that the onset of this phase coupling occurred well after the 1970s regime shift just before the 909 
1997/1998 El Niño event. Thus, the nonlinear character of, say, the 1982/1983 El Niño is different from that of both 910 
the 1997/1998 and 2015/2016 El Niño events because of the additional phase coupling between the 15.5- and 31-911 
month modes. It is also noted that Figure 13 also shows that there are other time periods when ENSO behaved 912 
nonlinearly, and so the recent nonlinear events may not be unique to recent decades. For example, the auto-bicoherence 913 
spectrum of the Niño 3.4 time series is associated with enhanced auto-bicoherence around 1875 in the 32- to 128-914 
month period band. Nevertheless, our findings reveal that the stationarity of the phase coupling in recent decades is 915 
unprecedented with respect to any other time period.  916 

To confirm that the nonlinear phase coupling identified in Figure 13 is associated with skewed waveforms, 917 
we inspected the corresponding local bi-phase spectra (not shown). It was found that the bi-phase in the 42- to 64-918 
month period band is generally  0° so that the nonlinear phase coupling in that period band contributes to the positive 919 
skewness of the 1982/1983, 1997/1998, and 2015/2016 events.  920 

The temporal change in the auto-bicoherence associated with the Niño 1+2 and Niño 4 indices was further 921 
illustrated by averaging the local auto-bicoherence in the 32- to 64-month period band. As shown in Figure 8, the 922 
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auto-bicoherence associated with both ENSO indices increases after the 1970s. This increase in auto-bicoherence 923 
coincides with the increase in skewness shown in Figure 5. Thus, the skewness of the Niño 1+2 and Niño 4 indices 924 
appears to be related to the auto-bicoherence in the 32- to 64-month period band. It also noted that the auto-bicoherence 925 
associated with the Niño 1+2 index peaks around 1998, which is consistent with how the 1997/1998 Niño 1+2 warm 926 
event arose from nonlinear processes (An, and Jin, 2004). The auto-bicoherence was also high around the nonlinear 927 
event 1982/1983 event (An and Jin, 2004), further supporting the idea that the skewness of individual Niño 1+2 warm 928 
events is connected to the nonlinear phase coupling in the 32- to 64-month period band.  929 

Figure 8 shows that the auto-bicoherence spectra of all ENSO time series contain statistically significant local 930 
auto-bicoherence, but the spectrum of the Niño 4 index is only associated with a few statistically significant regions 931 
such as the one around 2015 at a period of 32 months.  For the Niño 3 and Niño 3.4 time series, two features of interest 932 
are seen in the time period extending from 1973 to 2016 in the 16- to 64-month period band. The first feature is the 933 
time-elongated region of statistical significance extending from 1973 to 2016 around a period of 61 months. This 934 
result implies that after 1973 the nonlinear phase coupling between modes with periods of approximately 30.5 and 61 935 
intensifies. This intensification is consistent with studies showing that ENSO underwent a regime shift in the 1970s 936 
in which ENSO began to evolve more nonlinearly than in previous decades (Santoso et al., 2013). This intensification 937 
is also evident in the Niño 1+2 auto-bicoherence spectrum, though the exact periods associated with the phase-coupled 938 
oscillatory modes are more difficult to discern. Nevertheless, a comparison of Figures 4 and 8 reveals that enhanced 939 
skewness coincides with stronger auto-bicoherence in the 32- to 64-month period, suggesting that the skewness 940 
partially arose from the stronger phase coupling among modes with periods ranging from 32 to 64 months. The 941 
correspondence between auto-bicoherence and time-domain skewness also holds for the Niño 3 and Niño 3.4 time 942 
series (not shown).  943 

The second feature of interest in the Niño 3 and Niño 3.4 auto-bicoherence spectra is the one that emerges 944 
around 1995 at a period of 31 months. Despite how recent studies indicate that the ENSO regime shift occurred around 945 
1973, this result suggests that the onset of this phase coupling occurred well after the 1970s regime shift just before 946 
the 1997/1998 El Niño event. Thus, the nonlinear character of, say, the 1982/1983 El Niño is different from that of 947 
both the 1997/1998 and 2015/2016 El Niño events because of the additional phase coupling between the 15.5- and 948 
31-month modes. It is also noted that Figure 8 also shows that there are other time periods when ENSO behaved 949 
nonlinearly, and so the recent nonlinear events may not be unique to recent decades. For example, the auto-bicoherence 950 
spectrum of the Niño 3.4 time series is associated with enhanced auto-bicoherence around 1875 in the 32- to 128-951 
month period band. Nevertheless, our findings reveal that the stationarity of the phase coupling in recent decades is 952 
unprecedented with respect to any other time period.  953 

To confirm that the nonlinear phase coupling identified in Figure 8 is associated with skewed waveforms, we 954 
inspected the corresponding local bi-phase spectra (not shown). It was found that the bi-phase in the 42- to 64-month 955 
period band is generally 0° so that the nonlinear phase coupling in that period band contributes to the positive skewness 956 
of the 1982/1983, 1997/1998, and 2015/2016 events.  957 

4.3.2 Local Bicoherence of India Rainfall and Non-linear Coherence 958 

4.4 Nonlinear Coherence between All-India Rainfall and ENSO 959 

The local auto-bicoherence spectra of the India rainfall time series are shown in Figure 14. The statistically 960 
significant auto-bicoherence was identified for all six time series, mainly for periods less than 64 months. The results 961 
suggest that the phase coupling is many among higher frequency modes. However, for the All-India rainfall time 962 
series, the auto-bicoherence spectrum reveals two time periods of statistically significant auto-bicoherence in the 64- 963 
to 128-month period band. The first region extends from 1885 to 1925 and the second region extends from 1945 to 964 
around 1985. The nonlinearities found in the India rainfall auto-bicoherence spectra were also found to be cumulative 965 
arc-wise significant, though some differences in the results were found (Figure S3 in supplementary material). The 966 
statistical significance of the results was further checked using the topological significance test (Schulte, 2019), which 967 
also provided evidence that the time series are nonlinear (Figure S4 supplementary material).  968 
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  To determine if the nonlinearities identified for All-India rainfall is related to ENSO, nonlinear coherence 969 
was computed along the local diagonal slices of the auto-bicoherence spectra for both All-India rainfall and the four 970 
ENSO metrics considered in this study. Furthermore, All-India rainfall is generally more strongly coherent with ENSO 971 
than rainfall associated with the individual rainfall regions (Schulte, 2019) so only the results for All-India rainfall are 972 
shown for brevity.  973 

 The results shown in Figure 15 indicate that the nonlinear wavelet coherence between All-India rainfall and 974 
the time series for the all four ENSO indices is statistically significant in the 32- to 64-month period band. The 975 
nonlinear coherence in this period band appears to peak around the 1972/1973 El Niño event, indicating that an 976 
increase in positive skewness of ENSO should tend to coincide with enhanced negative skewness of All-India rainfall 977 
around this time. As shown in Figure 8, the nonlinear coherence averaged in the 32- to 64-month period band fluctuates 978 
less than linear coherence and reaches a clear global maximum around 1972/1973 before rapidly declining to a global 979 
minimum around the 1997/1998 El Niño event when the Niño 1+2 index is very nonlinear (Figures 8 and 13). 980 
Therefore, according to the discussion in Section 3.5, changes in ENSO skewness contributed to the weakening 981 
relationships between ENSO and All-India rainfall shown in Figures 5a and 5b. 982 

 983 

The results shown in Figure 9 indicate that the nonlinear wavelet coherence between All-India rainfall and the time 984 
series for the all four ENSO indices is statistically significant in the 32- to 64-month period band mainly prior to the 985 
1980s. The nonlinear coherence in this period band appears to peak around the 1972/1973 El Niño event, indicating 986 
that an increase in positive skewness of ENSO should tend to coincide with enhanced negative skewness of All-India 987 
rainfall around this time. However, much of the statistically nonlinear coherence is located during the time period 988 
when ENSO is more linear than it has been in recent decades (Figure 8) so that the effects of nonlinearities will be 989 
small regardless of the nonlinear wavelet coherence. In contrast, the  auto-bicoherence of the ENSO time series in the 990 
32- to 64-month period band is statistically significant and high after the 1970s (Figure 8) so that lack of nonlinear 991 
coherence after 1980s shown in Figure 9 is expected to impact the time-domain  correlation more strongly, much like 992 
the theoretical situation shown in Figure 2. Our results are consistent with this theoretical idea because the Niño 1+2-993 
All-India rainfall relationship weakens more than the Niño 4-All-India rainfall relationship after the 1970s (Figure 5), 994 
which is expected because the Nino 1+2 index is more nonlinear than the Nino 4 index during this time period. 995 
However, unlike the theoretical example shown in Figure 2, the linear coherence between the ENSO time series and 996 
All-India rainfall also weakens around the 1990s (Figure 8) so that the weakening relationship could be the result of 997 
a combination of factors that includes ENSO nonlinearity.  998 

The 20-year sliding mean of the ENSO auto-bicoherence, coherence, and nonlinear coherence averaged in 999 
the 32 to 64-month period band further highlights the impact of ENSO nonlinearity. As shown in Figure 10a, the 1000 
sliding mean nonlinear coherence between the Niño 1+2 index and All-India rainfall fluctuates less than linear 1001 
coherence and reaches a clear global maximum around  the 1970s before rapidly declining to a global minimum around 1002 
the late 1990s when the Niño 1+2 index is very nonlinear. As shown in Figure 10a, the Niño 1+2 auto-bicoherence 1003 
peaks around the same time the August-September Niño 1+2-All-India rainfall correlation is weakest. In fact, the 1004 
correlation between the sliding September-August Niño 1+2-All-India rainfall correlation time series and the sliding 1005 
Nino 1+2 auto-bicoherence time series is 0.81, much higher than the correlation with linear coherence (r = -0.11) and 1006 
nonlinear coherence (r = -0.34). These results support the idea that the Nino 1+2 regime shift impacted the weakening 1007 
time-domain correlation. On the other hand, the correlation between Niño 4 auto-bicoherence and the August-1008 
September Niño 4-All-India correlation time series is weak so that changes in the nonlinearity of the Niño 4 index 1009 
unlikely contributed to changes in the Niño 4-All-India rainfall relationship. Nevertheless, this result agrees with 1010 
theory that suggests that nonlinearity is only an important contributor when the timeseries is highly nonlinear, which 1011 
is not the case for the Niño 4 index because of the low auto-bicoherence (Figure 10b). Thus, not all the weakening in 1012 
the ENSO-All-India rainfall relationship can be attributed to ENSO nonlinearity. However, because the nonlinear 1013 
coherence between All-India rainfall and indices for the Niño 1+2 and Niño 4 is weak (Figure 10), the more 1014 
pronounced weakening in the August-September Nino 1+2-All-India rainfall correlation reflects the more intense 1015 
increase in Niño 1+2 nonlinearity compared to that of the Niño 4 index in recent decades.  1016 

4.5. A possible explanation for the weakening  1017 
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To better understand the association between ENSO nonlinearity and the All-India rainfall-ENSO 1018 
relationship, the global auto-bicoherence spectra associated with the ENSO time series were first computed (Figure 1019 
11).  Then, the auto-bicoherence  of SSTs associated with a few select peaks (𝑝1, 𝑝2) in Figure 8 were computed at 1020 
each grid point in the domain bounded by 20°N and 20°S and by 146°E and 80°W. The peaks were selected based on 1021 
the auto-bicoherence spectra of the Niño 3.4 and Niño 1+2 indices. To select the peaks, local maxima in auto-1022 
bicoherence within the statistically significance regions shown in Figure 11 were identified, where points associated 1023 
with local maxima were chosen because they were associated with the clearest patterns.  1024 

The spatial structure of auto-bicoherence corresponding to the peaks in the Niño 3.4 auto-bicoherence 1025 
spectrum are shown in Figure 12. The auto-bicoherence associated with the pair (31, 31) is greatest across the central 1026 
equatorial Pacific, with the overall spatial pattern being reminiscent of a central Pacific El Niño (Lee and McPhaden, 1027 
2010). This result suggests that the phase coupling between the 31-month mode and the 15.5-month mode could be 1028 
related to the occurrence of central Pacific El Niño events (Section 5). In contrast, the auto-bicoherence pattern 1029 
associated with the pair (56, 56) is more uniform, with auto-bicoherence slightly greater across the extreme eastern 1030 
equatorial Pacific than the central equatorial Pacific. This pattern is reminiscent of an eastern Pacific El Niño. Like 1031 
the pattern corresponding to the pair (31, 31), the auto-bicoherence for the pair (105, 57) tends to be greater across the 1032 
central equatorial Pacific. Our findings suggest that different nonlinear modes contribute to different ENSO flavors. 1033 
Although An and Jin (2004) and Burgers and Stephenson (1999) showed that skewness is greatest across the eastern 1034 
equatorial Pacific, we determined that such a time-domain approach is unable to capture frequency-dependent patterns 1035 
in nonlinearity.     1036 

 The spatial auto-bicoherence plots associated with the peaks in the Niño 1+2 auto-bicoherence spectrum are 1037 
shown in Figure 13. The auto-bicoherence associated with the pairs (148, 53) and (148, 105) is strong across the 1038 
eastern equatorial Pacific but weak across the central equatorial Pacific, suggesting that the phase coupling between 1039 
the 148- and 105-month modes and between the 148- and 53-month modes are associated with the skewness of eastern 1040 
equatorial Pacific SSTs. The pattern associated with the pair (62, 44) is reminiscent of an eastern Pacific El Niño and 1041 
the auto-bicoherence associated with the pair (88, 88) is relatively weak across the entire equatorial Pacific. A 1042 
comparison of Figures 12 and 13 shows that there is a tendency for auto-bicoherence to be greater across the eastern 1043 
equatorial Pacific than the central equatorial Pacific, which is consistent with the results of An and Jin (2004) and 1044 
Burgers and Stephenson (1999) who found that SSTs across eastern equatorial Pacific are most skewed. The results 1045 
are also in agreement with Figure 4a which shows how the magnitude of Niño 1+2 skewness is greater than that of 1046 
the Niño 4 skewness after the 1970s. 1047 

5. Discussion/Conclusion   1048 

The nonlinear nature of both ENSO and Indian rainfall were examined using higher-order wavelet methods.  1049 
The auto-bicoherence spectra of the four ENSO time series revelated that ENSO skewness arose from the phase 1050 
coupling of modes with various periods. The Niño 3.4 time series was found to contain coupling between modes with 1051 
period 31 and 15.5 in addition to coupling between modes with period of 61 months and 30.5 months. The phase-1052 
coupling between the 31 and 15.5 modes was found to be especially strong after 1995, whereas the phase coupling 1053 
between the 61- and 30.5-month modes was found to intensify after the 1970s. The stronger phase coupling after the 1054 
1970s is consistent with how ENSO underwent a regime shift in the 1970s (Santoso et al., 2013), which was marked 1055 
by an increase in ENSO skewness.  1056 

The evolution of SSTs across the Niño 4, Niño 3.4, Niño 3, and Niño 1+2 regions was found to be nonlinear, 1057 
but the degree to which the time series are nonlinear are different. Overall, the Niño 1+2 time series was found to be 1058 
the most nonlinear, while the Niño 4 index was found to be the most linear. The spatial patterns associated with the 1059 
nonlinearities depend on the frequency components contributing to the nonlinearities. For example, phase coupling 1060 
between the modes with periods of 31 and 15.5 months was found to be strongest in the central equatorial Pacific and 1061 
weakest across the eastern equatorial Pacific. This finding suggest that the occurrence of central Pacific El Niño events 1062 
could be linked to this phase coupling, which is relevant to understanding the Indian monsoon because central Pacific 1063 
El Nino events have been shown to be more effective at creating drought-inducing subsidence over India (Kumar et 1064 
al., 2006).  1065 
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The results from the present and previous studies (Fan et al. 2017) supports the idea that changes in the 1066 
ENSO-India rainfall relationship are related to ENSO flavors because ENSO nonlinearity appears to be related to 1067 
ENSO flavors (Figures 10 and 11), opposing the findings of other work showing that the changes are related to 1068 
sampling variability or to noise. According to Yun and Timmermann (2018), the changes in the time-domain 1069 
correlation between All-India summer rainfall (ISMR) and ENSO is consistent with the assumption that ISMR is the 1070 
sum of the ENSO signal and Gaussian white noise (i.e., ISMR = ENSO + white noise). However, for this hypothesis 1071 
to hold, the difference ISMR – ENSO must be Gaussian white noise. As shown in this study, the nonlinear wavelet 1072 
coherence between ENSO metrics and All-India rainfall is weak, which means that the difference ISMR – ENSO will 1073 
have non-Gaussian noise features so that ISMR is not consistent with a stochastically perturbed ENSO signal. The 1074 
retention of non-Gaussian noise features is certainly the case for R(t) – F(t) in the example in Section 3.5 because the 1075 
difference would retain the cosine function with a period of 16. In the case of ISMR, the lack of nonlinear coherence 1076 
results in periodic behavior of ENSO – ISMR, which means that Indian rainfall is not simply a stochastically perturbed 1077 
ENSO signal, as noise does not contain periodicities. In contrast, if ISMR and ENSO were highly nonlinear wavelet 1078 
coherent, then they would have the same frequency components contributing to skewness and the difference of the 1079 
two would remove the skewness. Although our results cannot preclude noise as a contributor to fluctuations in the 1080 
time-domain correlation, the periodic nature of ENSO – ISMR does suggest that monsoon forecast error for a forecast 1081 
based on ENSO may be predictable to some extent. However, for this hypothesis to hold, the difference ISMR – ENSO 1082 
must be Gaussian white noise. As shown in this study, the nonlinear wavelet coherence between ENSO metrics and 1083 
AIR is weak so that ENSO – AIR contains periodicities (Figure S2), which means that AIR is not simply a 1084 
stochastically perturbed ENSO signal, as noise does not contain periodicities. The retention of non-Gaussian noise 1085 
features was certainly the case for R(t) – F(t) in the example in Section 3.5 because the difference would retained the 1086 
cosine function with a period of 16.  1087 

 1088 

 The fact that nonlinear coherence between rainfall and ENSO is determined by linear coherence between 1089 
ENSO and rainfall at two or three frequencies means that the changing time-domain correlation could be more fully 1090 
understood by determining why linear coherence changes at the frequencies that contribute to ENSO skewness. Such 1091 
an analysis could provide a more mechanistic perspective than the theoretical perspective adopted in this study. A 1092 
preliminary analysis showed that enhanced linear coherence between the North Atlantic Oscillation index and All-1093 
India rainfall after 1995 in the 16- to 64-month period band associated with ENSO nonlinearity. This result suggests 1094 
that conditions across the North Atlantic (Kakade, 2000, Bhatla, 2016) could influence the nonlinear coherence 1095 
between ENSO and All-India rainfall and thus the corresponding time-domain correlation.  1096 

The higher-order wavelet analysis conducted in this study also revealed that the nonlinear nature of the 1097 
rainfall time series for the regions considered varied. Our results are consistent with the findings from previous work 1098 
showing how the physical mechanisms governing precipitation variability are different (Roy and Tedisch, 2016). 1099 
However, the higher-order wavelet analysis conducted in this study allowed us to determine the time scales on which 1100 
the rainfall times series features differ. Further research is needed to fully understand why the nonlinear characteristics 1101 
differ from one region to another. Future work could include conducting nonlinear coherence analyses between indices 1102 
of various climate modes and the rainfall times series for each region individually.  1103 

A few other possible physical mechanisms behind the nonlinearity of the rainfall time series were examined. 1104 
For example, we computed the auto-bicoherence spectrum of the IOD and sunspot time series because they have been 1105 
postulated as climate drivers of Indian Rainfall (Ashok et al., 2001; Ashok et al., 2004; van Loon and Meehl, 2012). 1106 
Although these time series were found to be highly nonlinear, the auto-bicoherence spectra of them did not correspond 1107 
well with the rainfall time series. We found that the IOD contains strong coupling between the modes with periods of 1108 
256 and 128 months and between modes with periods of 128 months and 64 months (Figures S5 and S6 in 1109 
supplementary material), but no such coupling was found for any of the rainfall time series. Similarly, the sunspot 1110 
cycle time series was associated with strong coupling between 128 -and 256-month modes (Figures S7 and S8 in 1111 
supplementary material) but again no such coupling was identified in the rainfall time series. Future work could thus 1112 
include better understanding the physical mechanisms underlying the nonlinearities identified in this study. 1113 
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The tools used and developed in this study may have important applications in understanding how forecasting 1114 
systems replicate Indian rainfall and its associated teleconnections.  These methods, for example, could determine if 1115 
forecasting systems can reproduce nonlinear characteristics of climate time series. As such, a R software package has 1116 
been developed to implement these methods (available at:)  These methods identifications could provide new 1117 
directions for improving current forecasting systems and ultimately predictions of Indian rainfall.  1118 

 1119 

  1120 
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 1121 

Appendix A 1122 

The first step (STEP 1) in assessing the cumulative-area significance of a point was the calculation of the N 1123 
= 12 sets 1124 

𝑃𝑝𝑤
𝑖 =  {(𝑏, 𝑎): 𝜌𝑝𝑤(𝑏, 𝑎) < 𝛼𝑖},                                                            (A1) 1125 

where each set is the subset of the wavelet domain consisting of points whose wavelet quantities are point-wise 1126 
statistically significant at the 𝛼𝑖 significance level. In this paper, 𝛼1= 0.02, 𝛼12= 0.18, and 𝛼𝑖+1 − 𝛼𝑖 = 0.02. In the 1127 
second step (STEP 2), a geometric pathway about x was computed, where a geometric pathway is a nested sequence  1128 

𝑃1
𝑥 ⊆ 𝑃2

𝑥 ⊆ ⋯ ⊆ 𝑃𝑁
𝑥                                                                       (A2) 1129 

such that the  1130 

𝑃𝑖
𝑥 =  {(𝑏, 𝑎): (𝑏, 𝑎) ∈ 𝑃𝑝𝑤

𝑖 , (𝑏, 𝑎)~𝑥}                                                       (A3) 1131 

are path-components of 𝑃𝑝𝑤
𝑖  containing x. The equivalence relation ~ on 𝑃𝑝𝑤

𝑖  makes two points in 𝑃𝑝𝑤
𝑖  equivalent if 1132 

they can be connected by a continuous path in 𝑃𝑝𝑤
𝑖 . The third step (STEP 3) involved the calculation of the normalized 1133 

area corresponding to 𝑃𝑖
𝑥. The normalized area is defined as patch area divided by the square of mean scale coordinate 1134 

of the patch, where 𝐴𝑖
𝑥 was assumed to be 0 if 𝑃𝑝𝑤

𝑖 = 𝜙 or 𝑃𝑝𝑤
𝑖 = {𝑥}. The critical area 𝐴𝑖

𝑐𝑟𝑖𝑡 was obtained by computing 1135 
the (1 − 𝛼𝑐)th percentile of the null distribution of normalized areas corresponding to the significance level 𝛼𝑖, where  1136 
𝛼𝑐 is the significance level of the cumulative area-wise test. The null distributions were constructed by generating 1137 
1000 patches at the 𝛼𝑖 significance level under the null hypothesis of red noise. More specifically, realizations of a 1138 
red-noise process with lag-1 autocorrelation coefficients equal to that of input time series were used to create the 1139 
wavelet spectra from which the 1000 patches were obtained. The length of the realizations was set to 200, though the 1140 
length is irrelevant because patch area is not related to time series length but to the reproducing kernel of the analyzing 1141 
wavelet (Schulte 2019). The final step (Step 4) was to compute 1142 

𝑟𝑥 =  
1

𝑁
∑ 𝜆𝑗

𝑥𝑁
𝑗=1 ,                                                                           (A4) 1143 

 where 𝜆𝑗
𝑥= 2 if 𝑃𝑗

𝑥 𝐴𝑗
𝑐𝑟𝑖𝑡⁄ >1, 𝜆𝑗

𝑥= 0 if 𝑃𝑗
𝑥 𝐴𝑗

𝑐𝑟𝑖𝑡⁄ <=1, and 𝐴𝑗
𝑐𝑟𝑖𝑡 is the critical area associated with 𝛼𝑗. The wavelet 1144 

quantity at the point x was deemed statistically significant at the 𝛼𝑐 cumulative area-wise level if 𝑟𝑥 > 1.  1145 

  1146 
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Appendix B 1147 

For p > 1, the (p+1)-th order poly spectrum of a time series X is given by  1148 

𝐵𝑛
𝑋(𝑠1, 𝑠2, … , 𝑠𝑝) = 𝑊̂𝑛

𝑋(𝑠𝑝+1) (∏ 𝑊𝑛
𝑋𝑝

𝑘=1 (𝑠𝑘))                                     (B1)        1149 

where  1150 

1

𝑠𝑝+1
=  ∑

1

𝑠𝑘

𝑝
𝑘=1                                                                    (B2) 1151 

The third-order poly spectrum is the bi-spectrum, and the fourth-order poly spectrum is the tri-spectrum (Collis et al., 1152 
1998), which identifies the frequency components contributing to kurtosis. The (p+1)-th order coherence between two 1153 
time series is given as  1154 

𝑅𝑛
2(𝑠) =  

|𝑆𝑠𝑠𝑚𝑜𝑡ℎ
−1 𝐵𝑛

𝑋𝑌(𝑠1,𝑠2,…,𝑠𝑝)|
2

𝑆(𝑠𝑠𝑚𝑜𝑜𝑡ℎ
−1 |𝐵𝑛

𝑋(𝑠1,𝑠2,…,𝑠𝑝)|
2

)𝑆(𝑠𝑠𝑚𝑜𝑜𝑡ℎ
−1 |𝐵𝑛

𝑌(𝑠1,𝑠2,…,𝑠𝑝)|
2

)
,                                           (B3) 1155 

where 𝐵𝑛
𝑋𝑌(𝑠1, 𝑠2, … , 𝑠𝑝) is the (p+1)-th-order cross-spectrum given by 1156 

𝐵𝑛
𝑋𝑌(𝑠1, 𝑠2, … , 𝑠𝑝) =  𝐵𝑛

𝑋(𝑠1, 𝑠2, … , 𝑠𝑝)𝐵̂𝑛
𝑌(𝑠1, 𝑠2, … , 𝑠𝑝).                                     (B4) 1157 

When p = 2, Eq. (B3), measures the local cross-correlation between skewness, and when p = 3 the equation 1158 
measures the local cross-correlation between kurtosis.  1159 
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 1332 

Figure 1. (a) An idealized nonlinear forcing time series together with an idealized response R(t). The 120-1333 

point sliding correlation between F(t) and R(t). (c) The 120-point sliding skewness of F(t) and R(t).   1334 
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 1335 

Figure 2. (a) Wavelet coherence between the time series of F(t) and R(t) shown in Figure 1. Arrows indicate 1336 

the relative phase difference, where arrows pointing to the right mean that the time series are in phase. 1337 

(b) The local diagonal slice of the auto-bicoherence spectrum of F(t). Arrows represent the bi-phase, 1338 

where arrows pointing to the right mean that the phase coupling between the mode with period indicated 1339 

on the vertical axis and its harmonic contributes to positive skewness. (c) Nonlinear coherence between 1340 

F(t) and  R(t). Contours in all panels enclose regions of 5% cumulative area-wise significance. Light-shaded 1341 

region represents the cone of influence where edge effects may be important.   1342 



36 
 

 1343 

Figure 3. The (a) time series of the and (b) event spectrum of the (a) Niño 1+2 and (b) index.indices.  1344 
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 1345 

Figure 4 Figure 5. 20-year sliding skewness of June-September All-India rainfall and time series for the 1346 

Niño 1+2 and Niño 4 indices. (b) 20-year sliding correlation between anomalies for June-September All-1347 

India rainfall and the time series for the Niño 1+2 and Niño 4 indices. (c) Same as (b) but for August-1348 

September All-India rainfall.  1349 

  1350 
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 1351 

Figure 5. 20-year sliding skewness of (a) June-September and (b) August-September All-India rainfall and 1352 

time series for the Niño 1+2 and Niño 4 indices.   1353 
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      1354 

                    1355 

Figure 6. Wavelet Power spectrum of the (a) Niño 1+2, (b) Niño 3, (c) Niño 3.4, and (d) Niño 4 indices. 1356 

Contours enclose regions of 5% cumulative area-wise significance. Light-shaded region represents the 1357 

cone of influence, which is the region where edge effects are non-negligible.    1358 



40 
 

 1359 
Figure 7. Wavelet coherence spectrum between All-India rainfall anomalies and time series for the (a) 1360 
Niño 1+2 and (b) Niño 4 indices. Contours enclose regions of 5% cumulative area-wise significance. Light-1361 
shaded region represents the cone of influence, which is the region where edge effects are non-negligible.   1362 
  1363 
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              1364 
Figure 8. (a) The wavelet coherence between All-India rainfall and the Niño  1+ 2 index, the auto-1365 

bicoherence of the Niño 1+2 index, and the nonlinear coherence between the Niño 1+2 index and All-1366 

India rainfall  anomalies averaged in the period band of 16 to 64 months. (b) The same as (a) but with the 1367 

Niño 4 index.  1368 

  1369 
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                                  1370 
                                1371 

Figure 9. Global auto-bicoherence spectra of the (a) Niño 1+2, (b) Niño 3, (c) Niño 3.4, and (d) Niño 4 1372 

indices. Contours enclose regions of 5% cumulative area-wise significance.  1373 

 1374 

  1375 
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                1376 

Figure 10. Global auto-bicoherence corresponding to the pairs (a) (31, 31), (b) (56, 56), and (c) (105, 47) 1377 

[months].   1378 
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                        1379 

Figure 11. Global auto-bicoherence corresponding to the pairs (a) (158, 43), (b) (148, 105), (c) (62, 44), 1380 

and (d) (88,88) [months].  1381 

  1382 
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Figure 12. Global auto-bicoherence spectra of the (a) All-India, (b) Peninsula, (c) Northwest, (d) Northeast, 1383 

(e) West Central, and (f) Central Northeast time series. Contours enclose regions of 5% cumulative area-1384 

wise significance.  1385 

              1386 
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Figure 13. Local auto-bicoherence spectra of the (a) Niño 1+2, (b) Niño 3, (c) Niño 3.4, and (d) Niño 4 1387 

indices. Contours enclose regions of 5% cumulative area-wise significance and the light shading represents 1388 

the cone of influence.   1389 
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 1390 

 1391 

 1392 

 1393 

Figure 14. Local auto-bicoherence spectra of the (a) All-India, (b) Peninsula, (c) Northwest, (d) Northeast, 1394 

(e) West Central, and (f) Central Northeast time series. Contours enclose regions of the 5% cumulative 1395 

area-wise significance and the light shading represents the cone of influence.  1396 

  1397 
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 1398 

Figure 15. Nonlinear wavelet coherence between the All-India time series and times series for the (a) Niño 1399 

1+2, (b) Niño 3, (c) Niño 3.4, and (d) Niño 4 indices. Contours enclose regions of 5% cumulative area-wise 1400 

significance and light shading represents the cone of influence.  1401 
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Table 1. Wavelet quantities and what they measure.  1403 

  

Linear Coherene Measures the correlation between two time series 
at a particular time scale.  

Global Auto-bicoherence Measures the time-averaged  

Local Auto-bicoherence Measures the degree of nonlinear  

Nonlinear Coherence  Measures the cross-correlation between 
nonlinear modes  
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