1 Supplementary Material

2

3 1. Rainfall Spatial Heterogeneity of δ^{18} O

4 Discerning the rainfall spatial heterogeneity is an important issue as using the water isotopic 5 tracer for transit time evaluation, particularly in meso-scale catchments. Here, we checked the 6 rainfall spatial heterogeneity of event 2 and event 3 in terms of the rainfall amount and its isotopic 7 composition. The spatial distribution of rainfall amount of each storm was interpolated via inverse 8 distance weighted method (power parameter is 2) by 4 CWB rain gauges (see Fig. 1 in main text). 9 The relative difference (RD) and the coefficient of variation (CV) are calculated for illustrating the 10 spatial heterogeneity (Fig. S1 and Table S1). Note that RD is defined as the rainfall minus the 11 average rainfall of a specific cell divided by the mean rainfall of the entire catchment. In this figure, the CVs of the total rainfall are 16% and 10%, respectively, for event 2 and 3 (Fig. S1(a) and Fig. 12 S1(b)). Such low CVs indicated that the variation were much less than the mean, showing the rainfall 13 14 spatial pattern is relatively homogeneous. Additionally, the distribution of RD shows that the western part receives more rainfall and the RD has a variation of approx. ±40% of the average. In sum, the 15 16 both indicator showed that the typhoon-induced rainfall is short-lived, intense, but its rainfall spatial 17 heterogeneity in meso-scale catchments is not pretty large.

(a) Storm 3 (P = 253 mm, CV = 16%)

(b) Storm 4 (P = 319 mm, CV = 10%)

18

Fig. S1. Rainfall spatial heterogeneity of event 2 (a) and event 3 (b). The black points are rainwater sampling sites with δ^{18} O value in parentheses.

22 We further checked the isotopic composition of rainwater during event 2 and 3. The four 23 sampling sites locate in the catchment evenly (Fig. S1). Rain sampling site P1 is close to the 24 streamwater sampling site, so rainwater samples were taken every three hours continuously. On the 25 other hand, we also set three remote sampling sites (P2, P3, and P4) to collect rainwater in bulk for 26 the typhoon period. The isotopic compositions of rainwater are shown in Table S1 and Fig. S1. The differences of δ^{18} O values between the 4 sites are less than 0.7‰. Theoretically, δ^{18} O would be 27 28 gradually depleted with the increase of altitude, whereas the strong convective circulation and 29 torrential rainfall brought by typhoons overwhelms the altitude effect. As a result, the isotopic 30 composition of typhoon rainwater is rather consistent. Our results show a low spatial heterogeneity 31 of rainwater isotopic composition.

32

Event 2 Event 3 Gauge ID Sampling type Altitude (m) $\delta^{18}O$ (‰) $\delta^{18}O$ (‰) Rain (mm) Rain (mm) **P1** 3-hr 299 335 -8.4 413 -14.0 P2 bulk 327 279 -8.9 333 -14.7 P3 bulk 321 336 398 -14.2 -8.6 P4 378 -8.8 338 -14.4 bulk 342

Table S1. The altitude, rainfall, and δ^{18} O at the rainwater sampling sites and for model input.

34

37 2. Calibration and Simulation Performance

The best performance measures, KGE and the three perspectives of streamflow and $\delta^{18}O$ 38 simulations are listed in Table S2. The streamflow simulations are satisfactory for all 39 catchment-events. All KGE₀ for the two catchments are higher than 0.85; the correlation (r) ranges 40 from 0.87 to 0.97; the variability ratio (V) ranges from 0.93 to 1.06, and the bias error (B) ranges 41 from 0.94 to 1.04. The KGE_C simulations are also satisfactory ranging from 0.96 to 0.99 and 0.75 to 42 43 0.90 for PL and DL, respectively with PL better than DL. Note that event 5 in both catchments could 44 not be simulated promisingly. Specifically, the individual performance of the three perspectives of KGE are at the similar level in the two catchments for δ^{18} O simulation. 45

46

47 **Table S2.** Best performance for simulating streamflow and δ^{18} O. KGE and *V*, *B*, and r represent the 48 Kling–Gupta efficiency coefficient, variability ratio, bias error, and correlation, respectively.

Catchment-Event		Strean	nflow		δ^{18} O				
	KGE _Q	V	В	r	KGE _C	V	В	r	
PL01	0.924	0.993	0.975	0.928	0.966	0.999	1.001	0.966	
PL02	0.944	0.976	0.984	0.952	0.993	1.001	1.001	0.993	
PL03	0.921	1.057	1.039	0.962	0.964	0.998	1.001	0.965	
PL04	0.937	1.035	1.000	0.947	0.978	1.000	1.001	0.978	
PL05	0.938	0.965	0.983	0.952	0.608	0.998	1.012	0.608	
PL06	0.966	0.990	0.992	0.969	0.983	1.002	0.998	0.983	
DL01	0.885	0.954	0.935	0.917	0.900	0.931	0.996	0.929	
DL02	0.934	0.995	0.951	0.956	0.846	1.053	1.023	0.858	
DL03	0.851	0.926	1.025	0.873	0.749	1.139	1.020	0.792	
DL04	0.903	0.947	0.986	0.920	0.826	0.885	0.999	0.870	
DL05	0.933	0.975	0.978	0.941	0.731	0.943	0.989	0.737	
DL06	0.953	1.021	0.965	0.975	0.882	0.919	0.969	0.920	

49

52

3. <u>Complied TRANSEP model results</u>

53 We reviewed and summarized 55 events of 6 cases which used TRANSEP model to estimate MTT_{ew} and F_{ew} in different environments. Notably, all drainage areas are less than 8.8 km², lacking 54 of meso-scale catchments. Rainfall amount in most cases are less than 70 mm, which is much smaller 55 than our events (236 mm), except one event in WS10, Oregon (177 mm). As for duration of storm, 56 most cases are shorter than one day except for one case in Oregon which is comparable to our 57 typhoons that usually last for two to three days. All rainfall intensity is similar to our cases. δ^{18} O are 58 used as tracer except in Johnson et al. (2007) who used dissolved CO₂. The MTT_{ew} and F_{ew} range 59 from 1.0 to 93.8 h and 0.04 to 0.77, respectively. 60

62	Tabla S3	Complied	TRANSEP	model	studies a	ta	storm_s
02	Table 55.	Complied	IKANSEP	model	studies a	ιa	storm-s

Site	Lati-t ude	Area (km ²)	Tracer	Rainfall (mm)	Duration (h)	I (mm/h)	Q/P	Transfer Function	MTT _{ew}	Few	Reference
K, Maimai,	40	0.17	180	27	13.0	2.1	0.19	EPM	10.5	0.22	Weiler et al.
New Zeland 4.	42	0.17	0	70	30.0	2.3	0.52	TPLR	10.0	0.18	(2003)
				30.7	0.5	61.4	0.05			0.17	
				20	0.8	26.7	0.04			0.1	
				16.8	1.8	9.6	0.03			0.32	
				5	1.3	3.8	0.03			0.08	
				3.6	0.3	14.4	0.04		0 0 - 0 0	0.15	
				27.8	2.3	12.4	0.06			0.48	
Juruena, Mato	10.5	0.02	Dissolv ed CO ₂	2.4	0.4	5.8	0.02	TPLR		0.05	Johnson et al.
Grosso, Brazil				10.7	0.6	18.3	0.04			0.30	(2007)
				6.1	2.0	3.1	0.04			0.14	
				14.6	0.8	19.5	0.04			0.26	
				3	0.8	4.0	0.04			0.04	
				11.1	0.8	13.3	0.05			0.26	
				15.7	1.3	12.6	0.06			0.27	
				14.5	0.4	34.8	0.06			0.25	
Upper Sabino, AZ	32	8.8	¹⁸ O	26	3.0	8.7	0.72	EM	4.5	0.23	Lyon et al. (2008)
Hillslope, HJ		0.000		31	61.8	0.5	0.04	GM	15.0	0.22	
Andrews, Oregon	44	0.002		60	82.5	0.7	0.23	TPLR	14.0	0.06	McGuire and
WS10 HI		0.102	¹⁸ O	177	107.5	1.6	0.03	TPLR	28.0	0.11	McDonnell
Andrews,	44		02	31	61.8	0.5	0.07	GM	8.0	0.27	(2010)
Oregon				60	82.5	0.7	0.21	TPLR	34.0	0.10	1
	_	1.50	180	24	4.5	5.3	0.10		26.1	0.23	Roa-Garc'1a and
B1, Columbia	5	1.59	1.59 10	38	4.8	8.0	0.11	IPLK	1.5	0.24	Weiler (2010)

				30	2.8	10.9	0.05		25.7	0.32	
				24	4.5	5.3	0.21		50.8	0.25	
B2, Columbia	5	1.8		24	4.8	5.1	0.14		6.8	0.40	
				31	4.0	7.8	0.28		66.7	0.21	
				16	3.3	4.9	0.25		3.3	0.12	
BB, Columbia	5	0.62		21	3.8	5.6	0.36		5.3	0.27	
				16	3.8	4.3	0.19		14.4	0.14	
SB, Canada	46	0.07		14.1	1.2	11.8	-		7.6	0.33	
				25.2	10.3	2.4	-		1.2	0.77	
	10	0.11		14.1	1.2	11.8	-		11.9	0.29	
AW, Canada	46	0.11		38.1	2.4	15.9	-		1.7	0.52	
				7	2.9	2.4	-		4.4	0.28	
	10	0.11		14.1	1.2	11.8	-		1.5	0.55	
VC, Canada	46	0.11		38.1	2.4	15.9	-		1.0	0.42	
	46	0.3		25.2	10.3	2.4	-		33.4	0.32	
YV, Canada					14.1	1.2	11.8	-	31.3	0.42	
				25.2	10.3	2.4	-		16.1	0.31	-
	16	0.38		14.1	1.2	11.8	-		1.2	0.36	
SC, Canada	46		¹⁸ O	38.1	2.4	15.9	-	TPLR	TPLR 12.9	0.52	Segura et al.
				7	2.9	2.4	-		7.0	0.40	(2012)
				14.1	1.2	11.8	-		26.6	0.34	
PW, Canada	46	0.48		38.1	2.4	15.9	-		1.1	0.60	
				7	2.9	2.4	-		26.3	0.19	
				14.1	1.2	11.8	-		3.1	0.30	
EF, Canada	46	0.91		38.1	2.4	15.9	-		31.4	0.47	
				7	2.9	2.4	-		12.0	0.21	
				25.2	10.3	2.4	-]	93.8	0.51	
IV Consta	10	1 47		14.1	1.2	11.8	-]	11.7 4.7	0.33	
LK, Canada	40	1.4/	47	38.1	2.4	15.9	-]		0.52	
				7	2.9	2.4	-	F	60.3	0.23]

66 4. Correlation between hydrometrics and model parameters

Correlation analysis reveals significant correlations between hydrometrics and the best-fit 67 model parameters (Table S4). In the streamflow module, parameter a_1 and a_3 in loss function are 68 negatively correlated to intensity-related hydrometrics, i.e., I, P_{max3hr} and Q_{max} . Parameter α_q is 69 70 negatively correlated to P, P_{max3hr} and Q_{max}, but not correlated to rainfall intensity. In the tracer 71 module, both parameters in loss function are not correlated to hydrometrics. Shape parameter in 72 event water transfer function (α_e) is negatively correlated to intensity-related hydrometrics (I, P_{max3hr} 73 and Q_{max}). No significant correlation between F_{ew} and all hydrometrics are found; however, MTT_{ew} is 74 negatively correlated to I and P_{max3hr} . In sum, the intensity-related hydrometrics (I and P_{max3hr}) are major controls on the both streamflow and tracer modules. 75

76

Table S4. Pearson correlation coefficients between logarithmic hydrometric characteristics and logarithmic parameters for the storms. Values underlined and in bold are statistically significant with 95% and 99% level of confidence (p < 0.05 and p < 0.01), respectively.

Parameter	Р	D	Ι	P _{max3hr}	Q	Q _{max}	AP _{7day}
a_1	-0.38	0.07	<u>-0.61</u>	-0.76	-0.23	-0.70	0.05
a_2	0.10	-0.03	0.17	0.35	0.05	0.33	-0.04
a_3	-0.20	0.22	<u>-0.56</u>	-0.66	-0.06	-0.56	0.19
$lpha_q$	-0.70	-0.47	-0.37	-0.78	<u>-0.63</u>	-0.75	-0.40
eta_q	0.17	0.70	-0.66	-0.29	0.30	-0.24	0.70
b_1	-0.44	-0.45	-0.04	-0.49	-0.28	-0.44	-0.45
b_2	0.27	0.23	0.09	0.47	0.10	0.36	0.38
α_e	-0.51	0.00	-0.71	-0.79	-0.37	-0.76	0.02
eta_e	0.33	0.22	0.17	0.36	0.30	0.36	0.21
MTT _{ew}	-0.22	0.29	-0.68	<u>-0.54</u>	-0.07	-0.49	0.30
Few	0.08	-0.32	0.52	0.28	0.14	0.29	-0.23

81

84 5. <u>Time-variant sensitivity analysis</u>

85 Time-variant sensitivity analysis is used to imply the dynamics of rainfall-runoff generation in models. The parameter sensitiveness was generalized from 12-h moving windows Morris's µ into 86 87 three segments. The Morris's μ are divided into three segments; they are rising, peak, and recession 88 segments in accordance with hydrograph. The rising segment (seg. 1) is from streamflow rising to the 89 peak flow; the peak segment (seg. 2) is from peak to the inflection point of the recession; the 90 recession segment (seg. 3) indicates the streamflow from the inflection to the end of the rainstorm. 91 The Morris's μ in each segment is then averaged. Results of the three most sensitive parameter α_e , α_q 92 and b_1 are listed in Table S5. Compared among the three parameters, α_q and b_1 have a similar pattern, in which the μ values ranking from high to low are seg. 2, seg. 3 and seg. 1. On the other hand, the μ 93 94 value of α_e ranks from seg. 2, seg. 1 to seg. 3 in descending sequence. The storm magnitude does not 95 have a significant effect on the μ values of the three parameters. Intriguingly, the highest μ value of 96 α_e appears in seg. 1 during the small rainstorms (event 2, 4 and 5) in DL. In sum, the both shape 97 parameters (α_q, α_e) play a predominant role in generating the quick flow, whereas parameter, b_1 , gets 98 important during recession indicating rainfall partitioning regulates the runoff generation after peak 99 flow. Obviously, the sensitiveness of parameters varies with different segments, implying the 100 necessity of time-variant parameterization.

101

Catchment		α_e			α_q		b_1			
Event	seg. 1	seg. 2	seg. 3	seg. 1	seg. 2	seg. 3	seg. 1	seg. 2	seg. 3	
PL01	15.2	32.2	5.8	5.8	25.6	21.9	8.6	16.9	38.2	
PL02	31.8	68.3	20.1	44.2	172.7	101.1	5.1	20.3	28.7	
PL03	39.8	65.1	8.3	8.1	47.4	35.1	12.4	31.7	61.5	
PL04	18.1	14.4	6.1	6.6	20.5	19.9	11.8	20.8	29.3	
PL05	4.7	13.3	1.1	1.2	3.5	3.9	3.7	4.5	9.3	
PL06	158.2	172.1	7.8	94.2	205.1	55.1	14.4	24.6	23.9	
DL01	12.0	17.6	4.0	3.5	14.6	14.3	12.3	14.5	30.1	
DL02	44.1	37.5	5.0	38.6	83.2	36.8	2.9	14.5	25.3	
DL03	29.6	42.4	8.6	9.8	46.1	35.6	15.9	25.8	54.0	
DL04	34.5	13.0	6.4	9.3	26.6	23.8	11.2	18.7	29.3	
DL05	21.5	13.1	1.2	9.4	16.1	7.3	14.7	15.9	14.9	
DL06	128.5	148.1	3.8	68.7	164.2	38.6	10.8	20.2	20.4	

102 **Table S5.** Morris's μ value of the sensitive parameters in the three segments of hydrograph in the catchment-events.