
Reviewers comment #1
Helena Gerdener, Olga Engels and Jürgen Kusche

The author’s responses are indicated in red color, as well as old text passages. New text passages are
indicated in green color.

The authors developed a framework for deriving synthetic terrestrial water storage change (TWSC)
from  the  GRACE  observations  for  computing  drought  indicators.  The  synthetic  TWSC  enables
comparisons of existing drought indicator methods and analyses of the influence of GRACE trend and
noise  on  the  drought  detection.  I  think  that  the  topic  is  important  for  further  understanding  of
hydrological  drought  and  the  findings  are  valuable,  shedding  lights  to  characteristics  of  different
drought identification methods. The manuscript is fairly well written; however, I have some concerns
and need some clarifications. Thus, I recommend major revision and the specific comments are listed
below.

Response:
Thank you very much for the time spent in reviewing the manuscript and for the really useful reviewer
comments, which certainly helped us to improve the manuscript.

Comment 1.

The authors chose three existing indicators of Zhao et al (2017), Houborg et al (2012), and Thomas et
al  (2014)  methods  because  they  are  based on  the  monthly  GRACE  data.  The  comparison  of  the
methods is interesting, but I  don’t think this framework is a fair ground for evaluating their skills,
especially for the Houborg-method. As I understand it, the CDF (which is the basis for the percentile
computation) is based on the historical simulation of 1948-2010. This analysis focuses on the GRACE
period of 2002 to 2016 and it mentions about disregarding the bias correction. Also for the Zhao-
method, a bias correction is not applied. I understand that direct comparison of these indicators are
not possible as Houborg is regional, but the indicators in their final product form (as opposed to the
method concepts) may be able to detect the drought that were missed in this study.

Response:
Thanks, we understand the reviewer’s point. However, we believe the primary aim of this paper is to
provide a fair comparison of the indicators based on a synthetic environment, which is derived by
computing simulated TWSC during the GRACE period. Within this controlled synthetic environment
the fairest comparison for the Houborg-method is a comparison without using a bias correction. We
agree  with  the  reviewer  that  a  bias  correction  would  be  appropriate  when  considering  real
observations of TWSC. 

We  believe  that  this  issue  would  require  further  discussion  which  we  cannot  provide  here.  Our
simulations confirm that without applying any correction, indeed the limited duration of the synthetic
time series may render the computation of the biased indicator. Nonetheless, the bias correction as
suggested in  Houborg's  paper  would have to come from a cumulative distribution function (CDF)
derived from long runs of hydrological models, and these are far from representing reality as new
studies show (e.g. Scanlon et al., 2018).



On balance, as our main focus is on the synthetic environment, we prefer to keep our current indicator
computation, but we modified a sentence in the description of the Houborg-method, to precisely
state our focus.

Old text:
Here, we focus on a TWSC from GRACE only and, as explained in Sec. 2.1, we therefore disregard the
bias correction.

New text:
Here, we focus on a simulated TWSC environment for the GRACE period only and, as explained in Sec.
2.1, we therefore disregard the bias correction.

Comment 2.

Is the GRACE-specific noise dependent on the instrument or the solution? As it is an important term
and needs to be characterized well,  I  am wondering if  it  would be different when using different
GRACE-TWSC solutions such as mascon solutions from JPL or CSR. Is the same approach (equation 21)
applicable to other GRACE data? What is the grid size of the TU GRAZ data (0.5 degree)?

Response:
Even after 17 years of GRACE data, a full understanding of the GRACE noise characteristics, let alone of
the individual sources, has not been reached. The noise in the GRACE solutions depends on the GRACE
orbit configuration,  on the instrument performance (which changed significantly over time due to
technical issues such as the switch-off of the thermal stabilization of the accelerometers in 2010), of
the realism of the background models, and on the data editing and estimation strategy itself which
differs between institutions.  One could either use a diagonal or a non-diagonal  solution variance-
covariance matrix to describe the noise model. By accounting for a non-diagonal solution variance-
covariance matrix, the noise model accounts for latitudinal variation of noise levels dependency due
to orbit convergence. However certain errors like the noise introduced by background model errors
are difficult to know and, currently, there is no way of accounting for them.  So the short answer is one
would probably be able to work with the same error characterization for other GRACE solutions.

However, the use of the mascon solutions creates another difficult problem; the mascon solution 
exhibit a better S/N ratio as compared to the conventional solutions but this is to a large extent due to 
the fact that these solutions use constraints derived from geophysical models, and it would be difficult
to characterize the biases introduced by these constraints.

Here, we use the TU GRAZ solutions that are provided in monthly geopotential coefficients (spherical
harmonics,  SH),  this means the data is not given in the spatial domain. We then transform these
coefficients by using spherical harmonic synthesis to monthly TWSC grids (here we use 0.5 degree
grid).  These  grids inherit  the  native  GRACE  resolution  which  is  somewhere  about  300  km.  The
geopotential coefficients can also be derived by other processing centers, for example CSR, GFZ and
JPL. Therefore, we could also apply our approach on these data. 



The reviewer raises a very important point about the significance of a proper noise description. The
SHs  used  to  compute  TWSC  are  provided  along  with  corresponding  standard  deviations
(ftp://ftp.tugraz.at/outgoing/ITSG/GRACE/ITSG-Grace2016/monthly/monthly_n60/). In the submitted
version, we propagated this information to a grid, which led to a full variance-covariance matrix (used
in Eq. 21) for the TWSC. Following the reviewer comment, we now use a full  variance-covariance
matrix  (normal  equations  provided  by  TU  GRAZ:  ftp://ftp.tugraz.at/outgoing/ITSG/GRACE/ITSG-
Grace2016/monthly/monthly_n90_normals/)  of  the  SHs  to  estimate  the  full  variance-covariance
matrix  of  the  TWSC.  This  procedure  better  represents  the  GRACE-specific  noise,  because  the
correlations  between  the  SHs  are  taken  into  account.  Thus,  at  the  moment  the  full  variance-
covariance matrix of the SHs is in our opinion the best solution available to describe the GRACE-
specific noise.

After  this  adjustment,  some  passages,  values  and  figures  have  been  slightly  changed,  but  the
interpretation of all derived results remained exactly the same. These changes are mentioned below
under the section “Changes in the noise term”.

Comment 3.

[Page4;Ln9-18] The equations 1-3 are not referred later in the text. I agree that TWSC corresponds to
precipitation anomaly accumulation in many cases, but it does not seem to tie in with the rest of the
discussions.

Response:
Following the reviewers comment, we reference the Eq. 1 that is used to better describe the relation
of Eq. 2 (Page4;Ln16). The Eq. 2 and 3 are referred to accumulated (Page5;Ln21-24) and differenced
(Page  5-6;Ln26-3)  TWSC,  correspondingly.  For  the  sake  of  completeness  and  to  avoid  any
misunderstandings  regarding the connection between fluxes  and storages,  we would like  to keep
these equations.

Comment 4.

[Page9;Ln5-7] Identifying regional clusters seems very important and I wonder where else clusters are
located.

Response:
We agree this needs an additional figure, which we added to the Appendix (B1) and adjusted the text
of the manuscript correspondingly.

Old text1:
As a result of this procedure, we chose three clusters located in East Brazil (EB), South Africa (SA), and
West India (WI),  which were also affected by droughts in the past (e.g. Parthasarathy et al.,  1987;
Rouault and Richard, 2003; Coelho et al., 2016).



New text1:
As a result of this procedure, we identified three clusters located in East Brazil (EB), South Africa (SA),
and West India (WI), which were indeed affected by droughts in the past (e.g. Parthasarathy et al.,
1987; Rouault and Richard, 2003; Coelho et al., 2016). Location and shape of the three chosen clusters
are shown in Fig. 3, and a global map of all clusters is provided in Fig. B1.

Figure  B1.  Clusters  based  on  Expectation  Maximization  (EM)  clustering  applied  to  the  global
autoregressive model (AR) coefficients.

Comment 5.

[Page9;Ln16-17] It would be helpful to present the list of droughts included in step 3, in a table or
supplement.

Response:
Thanks,  for  the  suggestion.  We  added  a  table  to  show  the  considered  TWSC  period  for  the
corresponding drought periods.

Old text:
Searching for drought duration and magnitude (step 3) led to four droughts seen in GRACE-TWSC: The
2005 and 2010 droughts  in the Amazon (e.g.  Chen et  al.,  2009;  Espinoza et  al.,  2011),  the 2011
drought in Texas (e.g. Long et al., 2013), and the 2003 drought in Europe (e.g. Seitz et al., 2008).

New text:
Performing literature research for drought duration and magnitude (step 3) led to four droughts seen
in GRACE-TWSC (Tab. 4): The 2005 and 2010 droughts in the Amazon (e.g. Chen et al., 2009; Espinoza
et al., 2011), the 2011 drought in Texas (e.g. Long et al., 2013), and the 2003 drought in Europe (e.g.
Seitz et al., 2008).



Table 4. Drought events in Europe, Amazon river basin and Texas with corresponding duration taken
from literature.

This table contains two new references, which is added to the reference list as follows:
Frappart, F., Papa, F., Santos da Silva, J., Ramillien, G., Prigent, C., Seyler, F. and Calmant, S.: Surface
freshwater  storage  and  dynamics  in  the  Amazon  basin  during  the  2005  exceptional  drought,
Environmental Research Letters, 7(4), 044010, doi:10.1088/1748-9326/7/4/044010, 2012.

Rebetez, M., Mayer, H., Dupont, O., Schindler, D., Gartner, K., Kropp, J. P. and Menzel, A.: Heat and
drought  2003  in  Europe:  a  climate  synthesis,  Annals  of  Forest  Science,  63(6),  569–577,
doi:10.1051/forest:2006043, 2006.

Comment 6.

[Page10;Ln20] It was not clear to me if the study addressed the last point of this framework’s benefit
“… identify the most suitable indicator for a specific application”.

Response:
We thank the reviewer for this comment. There is a large number of different hydrological regimes for
which  the  TWSC-based  indicators  would  show  very  different  results  as  soon  as  e.g.,  trends  are
contained in the TWSC time series. Unfortunately, we are not able to elaborate all these applications
within  this  manuscript.  With  this  last  point  we  would  like  to  explain  that  our  aim is  to  identify
strengths  and  weaknesses  of  different  indicators  using  our  synthetic  framework.  The  identified
strengths and weaknesses allow us to decide which indicator might be the most suitable ones (or is
not recommended) for a particular application. For example, if the drought period is much shorter
than the analyzed TWSC time span and the observations contain a pronounced? trend, we would
encourage using indicators like e.g. DSID6 based on the results of our synthetic framework (Sec. 4.1).
We modified the corresponding sentence.



Old text:
...;  iii) comparing different indicator outputs allows us to identify the most suitable indicator for a
specific application.

New text:
...;  iii)  the synthetic framework enables us to identify strengths and weaknesses of each analysed
indicator,  and thereby enables us to choose the most suitable indicator for a specific application.

Comment 7.

[Figure 5] I understand that the purpose of this figure is to show the importance of spatial GRACE
noise, especially in SA. However, the TWSC time series for EB and WI have low TWSC amplitudes that
are equally as low as that of during the simulated drought period in later 2016 (EB) and 2003/2004
(WI). Can you add an explanation to what distinguishes 2005 from these low TWSC?

Response:
Yes, the reviewer is right. The synthetic TWSC for the cluster located in East Brazil (EB) are in later 2016
as low as the TWSC within the simulated drought period in 2005. The same concerns the synthetic
TWSC for the cluster located in West India (WI). The synthetic TWSC for WI are in 2003/2004 as low as
the TWSC within the simulated drought period. These low TWSC for EB in later 2016 can be explained
by the negative acceleration, which was used to generate the synthetic time series. In contrast, the
low TWSC for WI in 2003/2004 are based on a positive trend, which has a strong influence here. We
do not discuss this influence on the TWSC in detail because we analysed in Sec. 4.1 how trends and
accelerations affect drought detection by different indicators.

We hope we addressed this comment by referring the low TWSC in later 2016 in EB and in 2003/2004
in WI to linear trends and constant accelerations.

Old text:
Furthermore, a strong trend and acceleration is contained in the synthesized time series for East Brazil
and West India (Tab. 3).

New text:
Furthermore, a strong negative acceleration is contained in the synthesized time series for East Brazil
(Tab. 3) leading to strong negative TWSC towards the end of the time series. For West India a strong
positive trend leads to  low TWSC at the begin of the time series.

Comment 8.

[Section 4.4] I  am a bit confused how Figure 11 using real  GRACE data is very different from the
corresponding figure 10 center, right using the synthetic TWSC. Related to point 5 above, the synthetic
data can detect only 2005 drought by design?



Response:
The drought indicators derived by synthetic data should only detect the drought as we designed it,
here it was the drought in 2005 but we are able to design different drought duration and magnitudes
as we did in one of the experiments described in Sec. 4.3. This drought is by design not equal to the
detected real drought that we found in the real GRACE data (Figure 11).

At this point we also need to distinguish the synthetic TWSC data from the real GRACE TWSC data. The
synthetic  data  were  computed within  a  cluster.  These  clusters  are  based on  regions  with  similar
residual TWSC correlation within the interannual and subseasonal signal. We hypothesized these to be
more likely affected by the same hydrological processes, for example by droughts.

We denoted the clusters according to the region where they are located, but the polygons are not
exactly equal to, for example, the political boundaries of South Africa, which was used to estimate the
results for the real GRACE TWSC. In turn, the polygons of the clusters are not used for the real GRACE
TWSC  application  in  Sec.  4.4  because  the  spatial  interpretation  of  indicators  based  on  political
boundaries is better comparable to other research results than to our clusters. Furthermore, we do
not intend to compare synthetic data to real data.

To  better  clarify,  that  the  clusters  have  specific  polygons  that  are  different  from  the  political
boundaries, we added an explanation to the methodology part of the framework section.

Old text:
As a result of this procedure, we chose three clusters located in East Brazil (EB), South Africa (SA), and
West India (WI),  which were also affected by droughts in the past (e.g. Parthasarathy et al.,  1987;
Rouault and Richard, 2003; Coelho et al., 2016).

New text:
As a result of this procedure, we identified three cluster located in East Brazil (EB, South Africa (SA),
and West India (WI) (Fig. 3), which were indeed affected by droughts in the past (e.g. Parthasarathy et
al., 1987; Rouault and Richard, 2003; Coelho et al., 2016). Location and shape of the three chosen
clusters are shown in Fig.3, and a global map pf all clusters is provided in Fig. B1. Cluster delineations
from the above procedure should not be confused with political boundaries or watersheds.

Comment 9.

[Page21;Ln20] It is not clear what “simplified noise models” mean. Please elaborate.

Response:
By "simplified noise models" we mean error estimates that do not account for the peculiar way how
the  GRACE data  are  collected.  For  example,  by  simply  assuming globally  uniform error  does  not
account for latitude-dependency, density of satellite orbits and data, time dependency of noise levels
due to instrument problems or missing data, or the strong error correlation between neighboring grid
cells. Here, we exemplarily add one simple example to name one possibility.



Old text:
GRACE studies have been often based on simplified noise models (e.g. Zaitchik et al., 2008; Girotto et
al., 2016),; however it is important to account for realistic error and signal correlation, in particular for
drought studies where one will push the limits of GRACE spatial resolution.

New text:
GRACE studies have often been based on simplified noise models (e.g. Zaitchik et al., 2008; Girotto et
al., 2016), where the GRACE noise model is not derived from the used GRACE data but, for example,
from literature and assumed to be spatially uniform and uncorrelated. However, it is important to
account for realistic error and signal  correlation (e.g. Eicker et al.,  2014), in particular for drought
studies where one will push the limits of GRACE spatial resolution. This signal correlation includes
information about, for example, the geographic latitude, the density of the satellite orbits, the time-
dependencies of mission periods or North-South-dependencies.

Comment 10.

[Page22;Ln10-11] I do not follow “when we did not simulate a trend”. When did you?

Response:
Thanks, we modified the corresponding sentence.

Old text:
When we did not simulate a trend, all  indicators were able to detect drought, but they identified
different timing, duration, and strength.

New text:
When we simulated smaller trends or accelerations, all indicators were able to detect drought, but
they identified different timing, duration, and strength; for example for the Southafrican cluster (trend
of 4.98 mm/year, accelerations of -0.38 mm^2/year).

Comment 11.

[Page23;Ln10] It will be helpful to name the four new indicators (or refer to equations).

Response:
We assume that the reviewer suggested to add the four new indicators to [Page23;Ln20].  Please
correct us if we are wrong.

New text:
Four new GRACE-based indicators (DSIA,  DSID,  DIA,  and DID)  were derived and tested;  these are
modifications  of  the  above  mentioned  approaches  based  on  time-accumulated  and  -differenced
GRACE data.



Minor edits:

[Equation 19] dot typo? 

Response:
The equation is part of the previous sentence. We use the dot in the equation to finish the sentence.

[Table 3] What are the two values for Annual and Semi-annual? 

Response:
The coefficients in the table represent the same coefficients as used in Equation 18. In this equation,
we have two coefficients for the annual and semi annual signal because these signals are computed
using a sine and a cosine wave. So, the values in the table represent b1 and b2 coefficient for annual
and c1 and c2 for the semi-annual signal. We included the coefficients in the table and the reference
to the equation in the caption of the table.

New caption:
Coefficients (a_0 to c_1 from Eq. 18 and phi_1 from Eq. A1) for signals contained in GRACE-TWSC that
were extracted within the clusters of East Brazil, South Africa, and West India.  These coefficients are
used to simulate synthetic TWSC.

[Page14;Ln16] DSID appears twice.  Thanks, done.
[Page15;Ln1] This sentence is incomplete. 

Response:
Please correct us if we are wrong, but we believe the sentence seems incomplete due to the word
“results” as a verb instead of a subject and might led to confusion. We replaced it by “derive” to avoid
confusion.

Old text:
Applying the Thomas-method to simulated GRACE TWSC results in magnitude, duration and severity
of drought, which we show in Fig. 8 for the EB region.

New text:
The Thomas-method is applied to simulated TWSC data to derive magnitude, duration and severity of
drought, which we show in Fig. 8 for the EB region.

[Figure6] DSI appears as black line in the plots while legend for DSI is blue. Done, legend is black now.
[Page21;Ln7] GRACE and the DSIA6 → GRACE DSIA6? Thank you.

Changes in the noise term

The noise for  the synthetic TWSC is  derived by using a full  variance-covariance matrix.  Since this
matrix is now derived using the full variance-covariance matrix of the spherical harmonics (computed
from normal equations provided by TU GRAZ) instead of using a variance matrix (main diagonal only),
the noise levels in Fig. 5, 6, 7, 8, 9 and 10 were slightly updated. However, we would like to emphasize



that these changes do not yield to any changes in our conclusions. Following lines and values have
been updated.
O= Old text, N= New text

[Page3;Ln6] 
O: ...(2) correlated spatial noise that is related to GRACE, …
N: ...(2) correlated spatial noise that is related to the peculiar GRACE orbital pattern, …

[Page15;Ln5]
O: … up to 28 months (Fig. 8, center) and a severity of about -2500 mm months (Fig. 8, bottom).
N: … up to 38 months (Fig. 8, center) and a severity of about -4000 mm months (Fig. 8, bottom).

[Page17;Ln2]
O: However, for other cases differences can be more significant, which might lead to misinterpretation
(e.g. February and April 2005 for the DI East Brazil, Fig. 9).
N:  However,  for  other  cases  these  differences  can  be  more  significant.  These  may  lead  to
misinterpretation (e.g. May and July 2005 for the DI East Brazil, Fig. 9).

[Page17;Ln14]
O: The DSI shows exceptional drought within the drought period with a maximum of 38 % of the grid
cells, i.e. it does not detect exceptional drought in all grid cells.
N: Within the simulated drought period, the DSI indicator identified no more than 14 % of all grid cells
as being affected by exceptional drought where it should be 100 %.

[Page20;Ln5]
O: As a reference, the synthetic time series for West India, without any trend or acceleration signal,
ranges from about -335 to 76 mm.
N: As a reference, the synthetic time series for West India, without any trend or acceleration signal,
ranges from about -323 to 87 mm.

[Page20;Ln14]
O: The severity class with the strongest drought type (i.e. exceptional drought) is only classified by the
Zhao- and Houborg-method for East Brazil when using a drought magnitude of -120 mm; this is related
to the trend and acceleration signal contained in the simulated TWSC and was already found in Sec.
4.1.
N:  Exceptional drought is only classified by the Zhao-method for East Brazil for a simulated drought
magnitude of 120 mm; this is related to the trend and acceleration signal contained in the simulated
TWSC and was already found in Sec. 4.1.

[Page20;Ln19]
O: Thus, a magnitude of -80 mm in severe drought all applied drought periods (3 to 24 months), while
a magnitude of -60 mm leads to moderate dry events and a magnitude of -40 mm to abnormal dry
events.
N: Thus, simulating a magnitude of -100 or -120 mm is identified as severe drought for all simulated
drought periods (3 to 24 months), while simulating a lower magnitude (-80 mm and -60 mm) causes
moderate or abnormal dry events to be identified. 



Reviewers comment #2

General comments
In this paper the authors developed a framework that potentially contributes to the understanding of
how drought signals propagate through various GRACE drought indicators. By applying three methods
(GRACE-based indicators), the authors assessed the skills of newly derived GRACE drought indicators
under  rather  more  controlled  conditions.  This  work  is  significant,  as  the  study  is  a  considerable
addition to the existing literature about drought identification methods. Also, the topic is within the
scope of Hydrology and Earth System Sciences. Overall, the experimental design is clear, and for the
most part, the authors’ conclusion are supported by their findings. However, I outline several general
concerns,  followed by a range of  specific  comments,  which prevent  me from recommending  this
manuscript for publication in its current form. I  do hope through that the authors will  be able to
adequately  address  my  comment  and  when  that  is  done,  this  paper  should  be  acceptable  for
publication.

Response:
Thank you very much for your positive assessment and for your helpful feedback. We hope that we
found good solutions to adequately address your comments and to improve the manuscript.

Comment 1.

The paper is relatively poorly written. There is a significant number of grammatical/syntactic errors
that  are  present  throughout  the entire body of  the manuscript.  I  specify  several  of  these in  the
“Specific Comments” section below, but the authors need to thoroughly check the entire text,  as
similar or other mistakes may exist elsewhere.

Response:
We thank the reviewer for this comment. The comments in the “Specific Comment” section will be
addressed (see below), and we will thoroughly double check the entire text for revision.

Comment 2.

Page 3 Line 14 “As can be expected, TWSC and 6 months SPI appear moderately similar (correlation
0.43), characterised by positive peaks at the beginning of 2013. This motivates us to modify common
GRACE  indicators...”  I  find  the  evidence  not  supportive  enough  to  safely  conclude  that  this
link/association between TWSC and SPI is always (or everywhere) the case. The authors should test
this  on  several  different  regions  characterized  by  varying  hydro-climatic  conditions.  Making  such
conclusive statements using only one example is scientifically inaccurate.

Response:
We agree with the reviewer  that  one example  is  not  sufficient  to warrant  such a conclusive  link
association between TWSC and the SPI. In fact, we tested this link for other regions, and indeed we
found  considerable  correlations  between  TWSC  and  SPI  (e.g.  Missouri  river  basin,  South  Africa,



Maharashtra in West India). This was not illustrated (with figures) in the previous version due to space
limitations, but we realize we should at least mention these results. Thus, a short sentence about
some other regions including correlations is added.

Old text:
As  can  be  expected,  TWSC  and  6  months  SPI  appear  moderately  similar  (correlation  0.43),
characterised by positive peaks e.g. at the beginning of 2004 and at the end of 2009, and negative
peaks at the beginning of 2013. This motivates us to modify common GRACE indicators … .

New text
As  can  be  expected,  TWSC  and  6  months  SPI  appear  moderately  similar  (correlation  0.43),
characterised by positive peaks, for example at the beginning of 2004 and at the end of 2009, and
negative peaks at the beginning of 2013. We also found correlations between TWSC and 6 months SPI
in regions with different hydro-climatic conditions for the Missouri river basin (0.31), Maharashtra in
West India (0.46), and South Africa (0.45) among other regions. This motivates us to modify common
GRACE indicators … .

Comment 3.

More  information  is  required  for  the  cluster  identification.  How  exactly  were  the  three  clusters
determined? The authors also need to clearly specify their exact geographic location. 

Response:
We believe that a detailed description of the EM-clustering is given in the literature, so we would like
to avoid explaining the EM-algorithm in the main part of the paper. However, we would like to follow
the reviewer’s suggestion to provide some information to interested readers so we add the main idea
and equations of the EM-clustering to the appendix. 

Thanks for pointing it out, the information about the polygons can indeed easily be missed out. We
adjusted the text and changed the color of the polygons to make them better detectable. We also
added the global distribution of all clusters to Fig. B1 in the appendix.

Old text1:
As a result of this procedure, we chose three clusters located in East Brazil (EB), South Africa (SA), and
West India (WI),  which were also affected by droughts in the past (e.g. Parthasarathy et al.,  1987;
Rouault and Richard, 2003; Coelho et al., 2016).

New text1:
As a result of this procedure, we identified three clusters located in East Brazil (EB), South Africa (SA),
and West India (WI), which were indeed affected by droughts in the past (e.g. Parthasarathy et al.,
1987; Rouault and Richard, 2003; Coelho et al., 2016). Location and shape of the three chosen clusters
are shown in Fig. 3, and a global map of all clusters is provided in Fig. B1.

Old text2:



The EM algorithm by Chen (2018) is modified to identify regional clusters by maximizing the likelihood
of the data (Alpaydin, 2009).

New text2:
The  EM  algorithm  by  Chen  (2018)  is  modified  to  identify  regional  clusters.  The  EM-algorithm
alternates expectation and a maximization steps to maximize the likelihood of the data (e.g. Dempster,
1977; Redner, 1984; Alpaydin, 2009). More details about EM-clustering are provided in App. B.

Appendix B: EM-Clustering
Expectation  maximization  (EM)  represents  a  popular  iterative  algorithm  that  is  widely  used  for
clustering data. EM partitions data into cluster of different sizes and aims at finding the maximum
likelihood  of  parameters  of  a  predefined  probability  distribution  (Dempster,  1997).  In  case  of  a
Gaussian distribution the EM-algorithm maximizes the Gaussian mixture parameters, which are the
Gaussian  mean  μk,  covariance  Σk and  mixing  coefficients  πk (Szeliski  2010).  The  algorithm  then
iteratively applies two consecutive steps to maximize the parameters: the expectation step (E-step)
and the maximization step (M-step). Within the E-step we estimate the likelihood that a data point x t

is generated from the k-th Gaussian mixture by
E-step:

zik=
1
Z i

πk Ν(x∣μk ,Σk ) ,

The M-step then re-estimates the parameters for each Gaussian mixture:
M-step:

μk=
1
N k

∑
i

z ik x i

Σk=
1
N k

∑
i

zik (x i−μk )(x i−μk )
T

π k=
N k

N
by using the number of points assigned to each cluster via

N k=∑
i

zik .

Using the maximized parameters EM assigns each data point to a cluster.   The final global distributed
clusters of the AR-parameters (Fig. 3) are shown in Fig. B1. These clusters were derived by modifying
and applying an EM-algorithm provided by Chen (2018).

This appendix section contains a new reference, which is added to the reference list as follows:
Szeliski, R.: Computer Vision: Algorithms and Applications, Springer Science and Business Media, 2010



Figure  B1.  Clusters  based  on  Expectation  Maximization  (EM)  clustering  applied  to  the  global
autoregressive model (AR)-model coefficients.

Comment 4.

The  authors  should  provide  more  detailed  information  (characteristics)  about  specific  droughts
mentioned in their methodology section.

Response:
To elucidate the chosen drought events, we added a table containing the specific regions and the
corresponding considered drought year and TWSC months.

Old text:
Searching for drought duration and magnitude (step 3) led to four droughts seen in GRACE-TWSC: The
2005 and 2010 droughts  in the Amazon (e.g.  Chen et  al.,  2009;  Espinoza et  al.,  2011),  the 2011
drought in Texas (e.g. Long et al., 2013), and the 2003 drought in Europe (e.g. Seitz et al., 2008).

New text:
Performing  literature  research  for  duration  and  magnitude  (step  3)  led  to  four  droughts  seen  in
GRACE-TWSC (Tab. 4): The 2005 and 2010 droughts in the Amazon (e.g. Chen et al., 2009; Espinoza et
al., 2011), the 2011 drought in Texas (e.g. Long et al., 2013), and the 2003 drought in Europe (e.g. Seitz
et al., 2008).

Table 4. Drought events in Europe, Amazon river basin and Texas with corresponding duration taken
from literature.



This table contains two new references, which is added to the reference list as follows:
Frappart, F., Papa, F., Santos da Silva, J., Ramillien, G., Prigent, C., Seyler, F. and Calmant, S.: Surface
freshwater  storage  and  dynamics  in  the  Amazon  basin  during  the  2005  exceptional  drought,
Environmental Research Letters, 7(4), 044010, doi:10.1088/1748-9326/7/4/044010, 2012.

Rebetez, M., Mayer, H., Dupont, O., Schindler, D., Gartner, K., Kropp, J. P. and Menzel, A.: Heat and
drought  2003  in  Europe:  a  climate  synthesis,  Annals  of  Forest  Science,  63(6),  569–577,
doi:10.1051/forest:2006043, 2006.

Specific Comments

Abstract
“Thus, this study aims at a better understanding of how drought signals, in the presence of trends and
GRACE-specific spatial noise, propagate through GRACE drought indicators”: This phrase is perhaps the
essence of the abstract; therefore it should be able to provide the necessary information on its own.
The authors need to specify which trends they are referring to.

Response:
Thanks, we are referring to linear trends and constant accelerations in the paper, which are described
with a linear term a1  (t - t0) and a quadratic term  a2  ½ (t - t0)2 in Eq. 18. Linear trends and possible
constant  accelerations in GRACE TWSC can result  from many different  hydrological  processes,  for
example, accelerations can results from linear trends in the fluxes precipitation, evapotranspiration
and runoff. To specify the terms, we added linear trend and constant accelerations to the abstract.

New text:
Thus, this study aims to better understand of how drought signals propagate through GRACE drought
indicators in the presence of linear trends, constant accelerations, and GRACE-specific spatial noise.



According to this comment, we specified the meaning of trends and accelerations for the subsequent
usage of the terms.

Page 7 Line 16
O: The signal is computed by … at time t with a constant a0, linear trend a1 and acceleration a2 terms,
an annual signal b1 and b2, and similar for a semi-annual signal c_1 and c_2.

N: The signal is computed by … [equation] ... at time t with a constant a0, linear trend term a1, constant
acceleration a2 terms, annual signal terms b1 and b2, and similarily semi-annual signal terms c1 and c2.
Trends  and  possible  accelerations  in  GRACE  TWSC  can  result  from  many  different  hydrological
processes.  For  example,  accelerations  can  results  from  trends  in  the  fluxes  precipitation,
evapotranspiration, and runoff (e.g. Eicker et al. 2016). In the following, the linear trends are denoted
as trends and constant accelerations are denoted as accelerations.

Line 10 application-dependent Yes, corrected, thanks.
Line 10 large differences Corrected.
Line 11 particularly Addressed.
Line 12 We show that trend and accelerations – what do the authors mean by “accelerations”?

Response:
We mean possible constant accelerations contained in the analysed time series that is described by
the quadratic term a2 ½ (t - t0)2 in Eq. 18. We hope this is more clear now by specifying the trends, as
the reviewer recommended in the first comment of the “Specific Comments” section (above).

Page 1
Line 17 affect the Done, thanks.
Line 18 replace “reach” with “range” Done.
Line 24 led Yes, thanks, corrected.

Page 2 
Line 4 depends on the accumulation period considered – unclear

Response:
Yes, we see that the term accumulation period leads to confusion here, because it is introduced at a
later point. We remove this part of the sentence.

Old text:
For South Africa, due to a complex rainfall regime, areas and percentage of land surface affected by
drought  can  vary  strongly  (Rouault  and  Richard,  2005)  and  their  identification  depends  on  the
accumulation period considered.

New text:
For South Africa, due to a complex rainfall regime, areas and percentage of land surface affected by
drought can vary strongly (Rouault and Richard, 2005).

Line 16 Much fewer Done.



Line 23 and the first data are expected

Response:
We updated this  sentence,  because the first  data is  now available and not  “expected to become
available in May 2019”.

Old text:
Meanwhile, GRACE has been continued with the GRACE-FO mission and the first data are expected to
become available in May 2019.

New text:
Meanwhile, GRACE has been continued with the GRACE-FO mission from which the first data are now
available. 

Line 27 they found good agreement to net precipitation minus evaporation. - unclear

Response:
We agree this needs clarification. The agreement between TWSC and the combination of the net
precipitation and evaporation is meant.

Old text:
For example, Seitz et al. (2008) investigated the 2003 heat wave over seven Central European basins
using GRACE timeseries; they found good agreement to net precipitation minus evaporation.

New text:
For example, Seitz et al. (2008) investigated the 2003 heat wave over seven Central European basins
using GRACE timeseries; they found a good agreement between TWSC and the combination of net
precipitation and evaporation.

Line 34 without utilizing external information – please specify

Response:
Separating  a  specific  compartment  from  GRACE  TWSC  data  requires  knowledge  from  other
observation  techniques  or  model  outputs,  because  GRACE  can  only  measure  the  sum  of  all
compartments.

Old text:
However,  neither  GRACE  nor  GRACE-FO enable  one  to  separate  different  compartments  such  as
groundwater  storage  without  utilizing  external  information,  and  their  spatial  (about  300  km  for
GRACE) and  temporal (nominally one month) resolution are limited.

New text:
However, neither GRACE nor GRACE-FO enable one to separate different storage compartments, such
as  groundwater  storage,  without  utilizing  additional  (e.g.  compartment-specific)  observations  or
model outputs, and their spatial and temporal resolution (about 300 km and nominally one month
respectively for GRACE) are limited.



Page 3
Line 4 delete “e.g.” Done, thanks.
Line 7 “smoothing” Done.
Line 17 What are “differencing periods”

Response:
We agree that the term here is confusing,  because it  was not introduced before.  We change the
sentence.

Old text:
This motivates us to modify common GRACE indicators to account for accumulation and differencing
periods.

New text:
This motivates us to modify common GRACE indicators to account for accumulation periods of input
data, e.g. used with 6 months SPI, but also periods that are based on differences of input data.

Line 21 spatially averaged Done, thanks.
Line 26 will complete the paper Done.

Page 4
Line 2 explore Thanks, corrected.
Line 10 more regularly Corrected.

Page 8
Line 10 we construct Done, thanks.
Line 13 including the introduced (in Sec. 2.3) signal … Done.
Line 26 … following A et al. (2013) … is there something missing here?

Response:
Indeed it might lead to confusion but A is the full last name.

Page 11
Line 8 drought onset and end Corrected.
Lines 10-14 these thresholds are rather arbitrarily made. It seems to me that a single value for the
drought duration and magnitude should not be used for different hydrologic regimes.

Response:
We do not agree with the reviewer that these values for  the threshold are arbitrary because we
identified these values by analysing different historical droughts that were detected in literature using
GRACE TWSC. Of course, one can not assume that one value for drought duration and magnitude can
be detected in different hydrological regimes, but this is not what we intended with this analysis. We
aim at simulating a signal that is similar to existing drought signals contained in GRACE, which is able
to show up as exceptional drought in at least one indicator. 



Page 12
Line 5 inappropriate use of English for a scientific paper Corrected.

Old text
However, seen these difficulties, we decided to stick to the most simple TWSC drought model, i.e. a
constant water storage deficit within a given time span.

New text
However, due to these difficulties, we decided to use the most simple TWSC drought model, i.e. a
constant water storage deficit within a given time span.

Page 13
Line 10 delete “would” Corrected, thanks.

Page 14
Line 17 for the 3, and 6 months differenced DSID Sorry we do not see a difference.

Page 20
Line 24 climatic phenomenon Yes, thanks, corrected.
Line 24 delete “related to climatic conditions” as it is redundant Corrected.

Page 21
Line 9 in the northeastern Thanks, we changed it to “Northeastern”.

Due to this comment we also changed following text:

Old text:
Fig. 3 shows the estimated AR-model coefficients, which represent the temporal correlations, ranging
from very low up to 0.3, e.g. over the Sahara or in South West Australia, to about 0.8, for example in
Brazil or in South Eastern U.S. EM-clustering is then based on these coefficients. 

New text:
Fig. 3 shows the estimated AR-model coefficients, which represent the temporal correlations, ranging
from very low up to 0.3, e.g. over the Sahara or in South West Australia, up to about 0.8, e.g. in Brazil
or in the Southeastern U.S. EM-clustering is then based on these coefficients. 

Page 23
Line 22 particularly Done.
Line 25 the onset and end Done.



List of changes – hess-2019-268

We undertook following major changes in the manuscript according to the reviewer’s comments:

Page/Line(s) Action Reviewer No./Comment No.

P 3/L 15-19 Rephrased sentence and added sentences R 2/C 2
P 7/L 16-17 Rephrased sentence R 1/C 1
P 10/L 4-7 Rephrased sentence and added sentences R 1/C 4, R 1/C 8, R 2/C 3
P 11/L 7-9 Rephrased sentence R 1/C 6
P 12/L 5-7 Rephrased sentence and added Tab. 4 R 1/C 5, R 2/C 4
P 12/L25 - P 13/L 2  Rephrased sentence R 1/C 7
P 22/L17 - P 23/L 2 Added sentences R 1/C 9
P 23/L 13-14 Rephrased sentence R 1/C 10
P 24/L 22-24 Rephrased sentence R 1/C 11
P 26/L 1-19 Added paragraph and Fig. B1 R 1/C 4, R 2/C 3
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Abstract. Identifying and quantifying drought in retrospective is a necessity for better understanding drought conditions and the

propagation of drought through the hydrological cycle, and eventually for developing forecast systems. Hydrological droughts

refer to water deficits in surface and subsurface storage, and since these are difficult to monitor at larger scales, several studies

have suggested to exploit total water storage data from the GRACE (Gravity Recovery and Climate Experiment) satellite

gravity mission to analyse
::::::
analyze

:
them. This has led to the development of GRACE-based drought indicators. However, it5

is unclear how the ubiquitous presence of climate-related or anthropogenic water storage trends , which has been found from

GRACE analyses ,
:::::
found

::::::
within

:::::::
GRACE

:::::::
analyses

:
masks drought signals. Thus, this study aims at a better understanding of

::
to

:::::
better

:::::::::
understand how drought signals ,

::::::::
propagate

:::::::
through

:::::::
GRACE

:::::::
drought

::::::::
indicators

:
in the presence of trends

:::::
linear

::::::
trends,

:::::::
constant

:::::::::::
accelerations,

:
and GRACE-specific spatial noise, propagate through GRACE drought indicators. Synthetic data are

constructed and existing indicators are modified to possibly improve drought detection. Our results indicate that while the10

choice of the indicator should be application dependent, larger
:::::::::::::::::::
application-dependent,

::::
large

:
differences in robustness can be

observed. We found a modified, temporally accumulated version of the Zhao et al. (2017) indicator in particular
:::::::::
particularly

robust under realistic simulations. We show that trends and
::::
linear

::::::
trends

:::
and

::::::::
constant accelerations seen in GRACE data tend

to mask drought signals in indicators, and that different spatial averaging methods required to suppress the spatially correlated

GRACE noise affect the outcome. Finally, we identify and analyse
::::::
analyze two droughts in South Africa using real GRACE15

data and the modified indicators.

Copyright statement. TEXT

1 Introduction

Droughts are recurrent natural hazards that affect
::
the

:
environment and economy with potentially catastrophic consequences.

Drought impacts reach
:::::
range from reduced streamflow, water scarcity, and reduced water quality to increased wildfires, soil20

erosion,
:
and increased quantities of dust, crop failure

:
, and large-scale famine. With climate change and population growth,

:::
the

frequency and impact of droughts are projected to increase for many regions of the world (IPCC, 2013). Drought types can be

distinguished depending on their effect on the hydrological cycle (e.g. Changnon, 1987; Mishra and Singh, 2010). In this study

we focus on hydrological drought, a multiscale problem which may last weeks or many years, and which may affect local or

1



continental regions. For example, the severe drought between mid-2011 and -2012 affected millions
:
of

::::::
people in the entire East

Africa region (Somalia, Djibouti, Ethiopia and Kenya)and let
:
,
:::
and

:::
led

:
to famine with an estimate of

::::::::
estimated

:
258,000 deaths

(Checchhi and Robinson, 2013). From 2012 to 2016, the US state of California experienced a historical drought that adversely

affected groundwater levels, forests, crops, fish populations, and led to widespread land subsidence (Mann and Gleick, 2015;

Moore et al., 2016). In contrast, European droughtsas e.g.
:
,
:::
for

:::::::
example in 2018,

:
typically last a few months in exceptionally5

dry summers. For South Africa, due to a complex rainfall regime, areas and percentage of land surface affected by drought can

vary strongly (Rouault and Richard, 2005)and their identification depends on the accumulation period considered.

Hydrological drought refers to a deficit of accessible water, i.e. water in natural and man-made surface reservoirs and

subsurface storages, with respect to normal conditions. The propagation of drought through the hydrological cycle typically

begins with a lack of precipitation, developing
::::::
leading to runoff and soil moisture deficit, followed by decreasing streamflow10

and groundwater levels (Changnon, 1987). However, no unique standard procedures exist for measuring the deficit
:
of

:::::
each

::
of

::::
these

:::::::
factors and for defining the normal conditions. In order to arrive at operational definitions, e.g.

:::::
which

:::
are

::::::::
required

for triggering a response according to drought class
::
for

::::::::
example, a large variety of drought indicators has been defined which

typically seek to extract certain sub-signals from observable fields (Bachmair et al., 2016; Wilhite, 2016; Mishra and Singh,

2010; Van Loon, 2015). Reviews of hydrological drought indicators are contained in Keyantash and Dracup (2002); Wilhite15

(2016); Mishra and Singh (2010); Tsakiris (2017). Streamflow is the most frequently used observable in these studies.

Drought detection is mostly restricted to single fluxes (precipitation or streamflow) or storages (surface soil moisture, reser-

voir levels) that are easy to measure. Much less
::::
fewer

:
measurements are available to assess water content in deeper soil

layers and groundwater storage deficit, or the total of all storages. The NASA/DLR Gravity Recovery and Climate Experiment

(GRACE) satellite mission, launched in 2002, has changed this situation since GRACE-derived monthly gravity field models20

can be converted to total water storage changes (TWSC, Wahr et al., 1998). GRACE consisted of two spacecraft following

each otherand linked with ,
::::::
which

::::
were

::::::
linked

:::::::
together

:::
by

:
an ultra-precise microwave ranging instrument; these ranges are

routinely processed to
::::::
provide

:
monthly gravity models and further to mass changemaps

:::
thus

:::::
maps

::
of

:::::
mass

::::::
change. Since other

mass transports in
::
the

:
atmosphere and ocean are removed during the processing, GRACE indeed provides quantitative measure

of surface and subsurface water storages (Chen et al., 2009; Frappart et al., 2013). Meanwhile, GRACE has been continued25

with the GRACE-FO mission and first data is expected to become availablein May 2019.
::::
from

::::::
which

:::
the

::::
first

::::
data

:::
are

::::
now

::::::::
available.

Studies of drought detection with GRACE TWSC can be summarized in three groups: (i) using monthly maps of TWSC

directly, (ii) partitioning TWSC timeseries into sub-signals that include drought signatures, or (iii) using indicators. For ex-

ample, Seitz et al. (2008) investigated the 2003 heat wave over seven Central European basins using GRACE timeseries; they30

found good agreement to net precipitation minus
:
a
::::
good

:::::::::
agreement

::::::::
between

::::::
TWSC

:::
and

:::
the

:::::::::::
combination

::
of

:::
net

:::::::::::
precipitation

:::
and evaporation. Other studies focused on drought detection using TWSC sub-signals, e.g. trends were used to identify drought

in Central Europe (Andersen et al., 2005) and for the Tigris-Euphrates-Western Iran (Voss et al., 2013). After decomposing

GRACE TWSC into a seasonal and non-seasonal signal, Chen et al. (2009) were able to detect the 2005 drought in the Central

Amazon river basin while Zhang et al. (2015) identified two droughts in 2006 and 2011 in the Yangtze river basin. In the35
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latter study, the El Niño/Southern Oscillation (ENSO) was identified as a possible driver for drought events in the Yangtze

river basin. However, neither GRACE nor GRACE-FO enable one to separate different compartments
:::::
storage

:::::::::::::
compartments,

such as groundwater storagewithout utilizing external information
:
,
:::::::
without

:::::::
utilizing

:::::::::
additional

::::
(e.g.

:::::::::::::::::::
compartment-specific)

::::::::::
observations

::
or

::::::
model

::::::
outputs, and their spatial

:::
and

::::::::
temporal

::::::::
resolution

:
(about 300 km for GRACE) and temporal (

::
and

:
nomi-

nally one month ) resolution
:::::::::
respectively

:::
for

::::::::
GRACE) are limited. Several efforts are therefore focusing

::::::
focused

:
on assimilating5

GRACE TWSC maps into hydrological or land surface models (e.g., Zaitchik et al., 2008; Eicker et al., 2014; Girotto et al.,

2016; Springer, 2019).

Thus
:
, perhaps not surprisingly, a number of GRACE-based drought indicators have been suggested (e.g. Houborg et al.,

2012; Thomas et al., 2014; Zhao et al., 2017), typically either based on e.g. normalization or percentile rank methods. However,

a comprehensive comparison and assessment of these indicators is still missing, in particular in
:::::::::
particularly

::
in

:
the presence of10

(1) trend signals as picked up by GRACE in many regions that may reflect non-stationary ’normal’ conditions, (2) correlated

spatial noise that is related to GRACE
::
the

:::::::
peculiar

::::::::
GRACE

:::::
orbital

:::::::
pattern, and (3) the inevitable spatial averaging applied to

GRACEresults to smooth ,
:::::
which

::::::
results

::
in

:::::::::
smoothing out noise (Wahr et al., 1998). From a water balance perspective, GRACE

TWSC variability mainly represents monthly total precipitation anomalies (e.g., Chen et al., 2010; Frappart et al., 2013). It is

thus obvious that GRACE drought indicators will contain signatures that are visible in meteorological drought indicators, yet15

the difference should tell about the magnitude of other contributions (e.g. increased evapotranspiration due to radiation) to

hydrological drought.

Fig. 1 shows a time series of region-averaged, de-trended and de-seasoned GRACE water storage changes over Eastern

Brazil (Ceará state) compared to the region-averaged 6 months Standard Precipitation Indicator SPI (McKee et al., 1993)

to illustrate the potential of GRACE TWSC for drought monitoring. As can be expected, TWSC and 6 months SPI appear20

moderately similar (correlation 0.43), characterised
::::::::::
characterized

:
by positive peakse.g.

:
,
::
for

::::::::
example at the beginning of 2004

and at the end of 2009, and negative peaks at the beginning of 2013.
::
We

::::
also

:::::
found

::::::::::
correlations

:::::::
between

::::::
TWSC

::::
and

:
6
:::::::
months

:::
SPI

::
in

::::::
regions

::::
with

:::::::
different

:::::::::::::
hydro-climatic

::::::::
conditions

:::
for

:::
the

:::::::
Missouri

:::::
river

::::
basin

::::::
(0.31),

::::::::::
Maharashtra

::
in

:::::
West

::::
India

:::::
(0.46)

::::
and

:::::
South

:::::
Africa

:::::
(0.45)

::::::
among

:::::
other

:::::::
regions. This motivates us to modify common GRACE indicators to account for accumulation

and differencing periods .
::::::
periods

::
of

:::::
input

::::
data,

::::
e.g.

::::
used

::::
with

:
6
:::::::
months

::::
SPI,

:::
but

::::
also

::::::
periods

::::
that

:::
are

:::::
based

::
on

::::::::::
differences

::
of25

::::
input

:::::
data. To our knowledge, this is the first study where (modified) indicators are tested in a synthetic framework based on

a realistic signal that includes a hypothetical drought. We hypothesize that in this way we can (i) assess indicator robustness,

with respect to identifying a ’true’ drought of given duration and magnitude, and (ii) understand how trend signals and spatial

noise propagate into indicators and mask drought detection. In addition, we investigate to what extent the spatial averaging that

is required for analysing
::::::::
analyzing

:
GRACE data affects indicators. For this, we compare spatially average

:::::::
averaged

:
gridded30

indicators to indicators derived from spatial
:::::::
spatially

:
averaged TWSC.

This contribution is organized as follows: in section 2 we will review three GRACE-based drought indicators and modify

them to accommodate either multi-month accumulation or differencing, while in section 3 our framework for testing GRACE

indicators in a realistic simulation environment will be explained. Then, section 4 will provide simulation results and finally

the results from real GRACE data. A discussion and conclusion will close
:::::::
complete the paper.35
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Figure 1. De-trended and de-seasoned GRACE TWSC [mm](orange) and the SPI[-] of 6-month accumulated precipitation (blue), spatially

averaged for Ceará, Brazil.

2 Indicators for hydrological drought

Hydrological drought indicators are mostly based on observations of single water storages or fluxes,
:
;
:
e.g. for precipitation,

snowpack, streamflow, or groundwater. In general, indicator definitions can be arranged in four categories: 1) data normaliza-

tion, 2) threshold-based, 3) quantile scores,
:
and 4) probability-based (e.g., Zargar et al., 2011; Keyantash and Dracup, 2002;

Tsakiris, 2017).5

Since total water storage deficit may be viewed as a more comprehensive information for drought, with
:::::
source

::
on

::::::::
drought,

the advent of GRACE total water storage changes (TWSC) data new indicators have been
:::
has

:::
led

::
to

::::
new

:::::::::
indicators

:::::
being

developed. For example, Frappart et al. (2013) developed a drought indicator based on yearly minima of water storage and

a standardization method
::::::
method

:::
for

:::::::::::::
standardization, and Kusche et al. (2016) computed recurrence times of yearly minima

through generalized extreme value theory. Other indicators explored
::::::
explore

:
the monthly resolution of GRACE, e.g. the Total10

Storage Deficit Index (TSDI, Agboma et al., 2009), the GRACE-based Hydrological Drought index (GHDI, Yi and Wen, 2016),

the Drought Severity Index (DSI, Zhao et al., 2017), and the Drought Index (DI, Houborg et al., 2012). Further, Thomas et al.

(2014) presented a water storage deficit approach to detect drought magnitude, duration, and severity based on GRACE-derived

TWSC. To our knowledge, only the Zhao et al. (2017), Houborg et al. (2012), and Thomas et al. (2014) methods are able to

detect drought events from monthly GRACE data without any additional information. Therefore, these three indicators will be15

discussed further.

In order to stress the link between GRACE-based and meteorological indicators, we first describe the relation of TWSC and

precipitation. Assuming evapotranspiration (E) and runoff (Q) vary more regular
:::::::
regularly

:
as compared to precipitation (i.e.

∆E = 0, ∆Q= 0), the monthly GRACE TWSC (∆s) corresponds to precipitation anomalies (∆P ) accumulated since the

GRACE storage monitoring began20

∆s(t) = ∆t

t∑
t0

∆P , (1)
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where ∆t is the time from t0 to t1. In contrast
::
to

:::
Eq.

::
1, the difference between GRACE months

∆s(t2)−∆s(t1) = ∆t

t2∑
t1

∆P (2)

corresponds to the precipitation anomaly accumulated between these months. Accumulating monthly TWSC corresponds thus

:::::::::::
Accumulated

:::::::
monthly

::::::
TWSC

::::
thus

::::::::::
corresponds to an iterative summation over the precipitation anomalies described by

t∑
t0

∆s(t) = ∆t

t∑
τ=t0

τ∑
t0

∆P. (3)5

In the following, we will discuss and extend the definition of Zhao et al. (2017), Houborg et al. (2012), and Thomas et al.

(2014) GRACE-based indicators, which are then
::::
hence

:
referred to as the Zhao-method, Houborg-method, and Thomas-method

:
,

::::::::::
respectively.

2.1 Zhao-method

In the approach of Zhao et al. (2017), one considers GRACE-derived monthly gridded TWSC for n years,10

xi,j = ∆s(ti,j) (4)

with

ti,j = i+

(
j− 1

2

)
1

12
i= 1, . . . ,n j = 1, . . . ,12 . (5)

Let us define the monthly climatology, i.e. mean monthly TWSC, x̃j with j = 1, . . . ,12 and the standard deviation σ̃j of the

anomalies in month j with respect to the climatological value as15

x̃j =
1

n

n∑
i=1

xi,j (6)

σ̃j =

(
1

n

n∑
i=1

(xi,j − x̃j)2
)1/2

. (7)

Zhao et al. (2017) define their drought severity index ’GRACE-DSI’ as the standardized anomaly

TWSC-DSIi,j =
xi,j − x̃j

σ̃j
(8)20

of a given month ti,j and provide a scale from -2.0 (exceptional drought) to +2.0 (exceptional
:::::::::::
exceptionally

:
wet), as shown

in Tab. 1. There is no particular probability distribution function (PDF) underlying the method, however if we assume the

anomalies for a given month follow a Gaussian PDF it is straightforward to compute the likelihood of a given month falling

in one of the Zhao et al. (2017) severity classes: For example, 2.1 % of months would be expected to turn out as exceptional

drought and 2.1 % as exceptionally wet. This can be applied to any other PDF.25
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Drought severity, however, should be related to the duration of a drought. For example McKee et al. (1993) showed how

typical time scales of 3, 6, 12, 24, and 48 months of precipitation deficits are related to their impact on usable water sources. To

account for the relation between severity and duration in the Zhao et al. (2017) approach, we consider q-months accumulated

TWSC, which is approximately related to precipitation in Eq. (3) as

x+i,j,q =

q∑
k=1

∆s(ti,j+1−q) (9)5

with ti,j+1−q = ti−1,j+13−q for j+ 1− q < 1,
:
or equivalently written for q-months averaged TWSC

::
as

x+i,j,q =
1

q

q∑
k=1

∆s(ti,j+1−q) . (10)

For example for q = 3, we would look for the 3 months running mean Dec-Jan-Feb, Jan-Feb-Mar, and so on. In the next step,

one computese.g. ,
:::
for

::::::::
example, the climatology and anomalies as with the original method. On the other hand, we can relate

hydrological to meteorological indicators using Eq. (2). To develop a TWSC indicator that can be compared to indicators based10

on accumulated precipitation, one should rather consider the q months differenced TWSC

x−i,j,q = ∆s(ti,j)−∆s(ti,j+1−q). (11)

Thus, equivalent to
::
as

::::
with

:
TWSC-DSIi,j in Eq. (8), through standardization we can define two new multi-month indicators

(TWSC-DSIA and TWSC-DSID)
::::::
through

:::::::::::::
standardization

:
by using accumulated (A) and differenced (D) TWSC (Eq. 9 and

11) as15

TWSC-DSIAi,j,q =
x+i,j,q − x̃

+
j,q

σ̃+
j,q

(12)

and

TWSA-DSIDi,j,q =
x−i,j,q − x̃

−
j,q

σ̃−
j,q

. (13)

Finally, it is obvious that sampling the full climatological range of dry and wet months is not yet possible with the limited

GRACE data period. Therefore, Zhao et al. (2017) suggest applying a bias correction to avoid the under- or overestimation of20

drought events. This implies using TWSC from multi-decadal model runs, which is feasible but not in the focus of this study.

2.2 Houborg-method

Houborg et al. (2012) define the drought indicator ’GRACE-DI’ via the percentile of a given month, ti,j , with respect to the

cumulative distribution function (CDF). The GRACE-DI is applied to TWSC by

TWSC-DIi,j =

∑
i(xj ≤ xi,j)∑

ixj
· 100, (14)25
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Table 1. Drought severity level of the TWSC-DSI (Zhao et al., 2017). The values of TWSC-DSI are unitless.

TWSC-DSI [-]

Drought Severity Level Min. Max.

Abnormal −0.8 −0.5

Moderate −1.3 −0.8

Severe −1.6 −1.3

Extreme −2.0 −1.6

Exceptional −2.0

i.e. all years containing month j are counted for which TWSC is equal or lower than TWSC in month j and year i, and

normalized by the number of the years that contain month j. The indicator value is assigned to five severity classes as shown

in Tab. 2. For example, exceptional droughts occur up to 2 % of the entire time period at any location.

Again, to relate drought severity to duration, we proceed to
::
via

:
multi-month accumulation (Eq.9) and differences (Eq.11)

resulting in the definition of two new indicators based on TWSC-DIi,j in Eq. (14):5

TWSC-DIAi,j =

∑
i(x

+
j,q ≤ x

+
i,j,q)∑

ix
+
j,q

· 100 (15)

TWSC-DIDi,j =

∑
i(x

−
j,q ≤ x

−
i,j,q)∑

ix
−
j,q

· 100. (16)

Assuming again
:::
that the CDF equals to the cumulative Gaussian, for example 0.6 % of months would be detected as excep-

tionally dry or
:::
and 9.5 % of months as abnormally dry. Houborg et al. (2012) applied the percentile approach also separately to10

surface soil moisture, root zone soil moisture and groundwater storage, which were derived by assimilating GRACE-derived

TWSC into a hydrological model, and the CDFs were adjusted to a long-term model run. Here, we focus on TWSC from

GRACE
:
a
::::::::
simulated

::::::
TWSC

:::::::::::
environment

:::
for

:::
the

:::::::
GRACE

::::::
period only and, as explained in Sec. 2.1, we therefore disregard the

bias correction.

2.3 Thomas-method15

Thomas et al. (2014) define a drought by considering the number of consecutive months below a threshold
::
of

::::::
TWSC. Given

TWSC observations xi,j and a threshold c, we can compute anomalies by

∆xi,j =

0 for xi,j ≥ c

xi,j −xj for xi,j > c.
, (17)
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Table 2. Drought severity level of the TWSC-DI (Houborg et al., 2012). The values of TWSC-DI are given in %.

TWSC-DI [%]

Drought Severity Level Min. Max.

Abnormal 20 30

Moderate 10 20

Severe 5 10

Extreme 2 5

Exceptional 0 2

The
:::::
While

:::
the threshold can be derived following

::::
from different concepts, however, Thomas et al. (2014) use the monthly

climatology xj (Eq. 6). Here, we also consider using a fitted signal for defining the threshold. The signal is computed by

x(t) = a0 + a1(t− t0) + a2
1

2
(t− t0)2 + b1 cos(ωt) + b2 sin(ωt) + c1 cos(2ωt) + c2 sin(2ωt) (18)

at time t with a constant a0, linear trend
:
a
:::::
linear

:::::
trend

:::::
term a1and acceleration

:
,
:
a
::::::::

constant
::::::::::
acceleration

:::::
term a2terms, an

annual signal ,
::::::
annual

::::::
signal

:::::
terms

:
b1 and b2, and similar for a

:::::::
similarly

:
semi-annual signal

:::::
terms c1 and c2.

:::::
Trends

::::
and5

:::::::
possible

:::::::::::
accelerations

::
in

:::::::
GRACE

::::::
TWSC

::::
can

:::::
result

::::
from

:::::
many

::::::::
different

:::::::::::
hydrological

::::::::
processes.

::::
For

::::::::
example,

:::::::::::
accelerations

:::
can

:::::
result

::::
from

::::::
trends

::
in

:::
the

:::::
fluxes

:::::::::::
precipitation,

::::::::::::::::
evapotranspiration,

:::
and

::::::
runoff

::::::::::::::::::::
(e.g. Eicker et al., 2016).

::
In

:::
the

:::::::::
following,

:::
the

:::::
linear

:::::
trends

:::
are

:::::::
denoted

::
as

:::::
trends

::::
and

:::::::
constant

:::::::::::
accelerations

::
are

:::::::
denoted

::
as

::::::::::::
accelerations. The Thomas-method then identifies

drought events through the computation of
::::
their magnitude, duration, and severity: the magnitude or water storage deficit

equals
:
is

:::::
equal to ∆xi,j (Eq. 17) and the duration di,j is given by the number of consecutive months where TWSC is below the10

threshold. Thomas et al. (2014) propose a minimum number of 3 consecutive months that are required for the computation of

drought duration. By using the deficit ∆xi,j and the duration di,j , the severity si,j of the drought event can finally be computed

by

si,j = ∆xi,jdi,j . (19)

Severity is therefore a measure of the combined impact of the water storage deficits and duration
:::::::
duration

:::
and

:::::::::
magnitude

:::
of15

::::
water

:::::::
storage

:::::
deficit, see Thomas et al. (2014) and Humphrey et al. (2016).

3 Framework to derive synthetic TWSC for computing drought indicators

3.1 Methods

In order to analyse
:::::::
analyze the performance of drought indicators, we suggest to

:::
first

:
construct a synthetic timeseries of ’true’

total water storage changes (TWSC) , on a grid, first. We base our drought simulations on the GRACE data model20

∆s(t) = x(t) + η(t) + ε(t) (20)
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Figure 2. Concept of synthetic framework to generate synthetic TWSC

including the
:::::::::
introduced

:
(in Sec. 2.3introduced

:
) signal x (Eq. 18) (

:::::
which

:::::::
contains

::::::::::
seasonality,

:
a
:

constant, linear
:
,
:
and time

varying trend, and seasonality
:::
Eq.

::
18), an interannual signal η , which

::::::
(which

:::
has

::::
been

:::::::::
de-trended

::::
and

::::::::::
de-seasoned

:::
and

::::::
which

will carry the simulated ’true’ drought signatureand which has been de-trended and de-seasoned
:
), and a GRACE-specific

noise term ε. To simulate the ’true’ signal as realistically as possible using Eq. (20), we first analyse
::::::
analyze

:
real GRACE-

TWSC following the steps summarized in Fig. 2. We derive 1) the signal components constant, trend, acceleration, annual, and5

semi-annual sine wave, 2) temporal correlations, 3) a representative drought signal quantified by strength and duration, and 4)

spatially correlated noise , the latter from GRACE error covariance matrices. While the first three steps are generic and can be

used for simulating other observables, step 4 is directly related to the measurement noise ,
:
(in this case the GRACE noise

:
).

As an input to the simulation, GRACE-TWSC are derived by mapping monthly ITSG-GRACE2016 gravity field solutions of

degree and order 60, provided by TU GRAZ (Mayer-Gürr et al., 2016), to TWSC grids. As per standard practice, we add degree-10

one spherical harmonic coefficients from (Swenson et al., 2008)
::::::::::::::::::
Swenson et al. (2008) and degree 2, order 0 coefficients from

laser ranging solutions, (Cheng et al., 2011). Then, we remove the temporal mean field, apply a DDK3-filtering (Kusche et al.,

2009) to suppress excessive noise, and map coefficients to TWSC via spherical harmonic synthesis. We also remove the effect

of ongoing glacial isostatic adjustment (GIA) following A et al. (2013).

Droughts are a multiscale phenomenon, and for a realistic simulation we must first define the largest spatial scale to15

which we will apply the model of Eq. (20). In other words, we first need to identify coherent regions in the input data for

which our approach is then applied at grid-scale prior to step 1. For this, we apply two consecutive steps: we first com-

pute temporal signal correlations by fitting an autoregressive (AR) model (Appendix A; Akaike, 1969) to detrended and

deseasoned GRACE data. These TWSC residuals contain interannual and subseasonal signals including real drought in-
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formation. Temporal
:::::
Next,

::::::::
temporal correlation coefficients are then used as input for an Expectation Maximization (EM)

clustering (Dempster et al. (1977), Redner and Walker (1984)), because regions with similar residual TWSC correlation

within the interannual and subseasonal signal are hypothesized here to be more likely affected by the same hydrological

processes. The EM algorithm
:::::::::::
EM-algorithm

:
by Chen (2018) is modified to identify regional clustersby maximizing

:
.
::::
The

:::::::::::
EM-algorithm

:::::::::
alternates

::
an

::::::::::
expectation

::::
and

::
a

:::::::::::
maximization

::::
step

:::
to

::::::::
maximize

:
the likelihood of the data (Alpaydin, 2009).5

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Dempster et al., 1977; Redner and Walker, 1984; Alpaydin, 2009).

:::::
More

::::::
details

::::
about

::::::::::::
EM-clustering

:::
are

::::::::
provided

::
in

::::
App.

::
B.

As a result of this procedure, we chose
::::::::
identified

:
three clusters located in East Brazil (EB), South Africa (SA), and West

India (WI), which were also
:::::
indeed affected by droughts in the past (e.g. Parthasarathy et al., 1987; Rouault and Richard, 2003;

Coelho et al., 2016).
:::::::
Location

:::
and

:::::
shape

:::
of

:::
the

:::::
three

::::::
chosen

:::::::
clusters

:::
are

::::::
shown

::
in

::::
Fig.

::
3,

::::
and

:
a
::::::
global

::::
map

::
of

:::
all

:::::::
clusters10

:
is
::::::::

provided
::
in
::::

Fig.
::::
B1.

::::::
Cluster

:::::::::::
delineations

::::
from

:::
the

::::::
above

:::::::::
procedure

::::::
should

:::
not

::
be

::::::::
confused

:::::
with

:::::::
political

:::::::::
boundaries

:::
or

:::::::::
watersheds.

:
The following simulation steps are then applied to each of these three clusters.

In step 1 we estimate the signal coefficients according to Eq. (18) through least squares fit for each grid cell within the

cluster. The coefficients are then spatially averaged to create a signal representative for
:
of

:
the mean conditions within the

region, and they
:::
then

:
are used to create the constant, trends, and the seasonal part of

::::
parts

::
of

:::
the

:
synthetic time series. To15

simulate realistic temporal correlations at the region
::::::
regional

:
scale (step 2), we use the AR-model identified beforehand (Fig.2)

and again average AR-model coefficients within the cluster. Then, we apply an AR model with the estimated optimal order and

the averaged correlation coefficient (Eq. A1) to the synthetic time series to add temporal correlations.

Simulating realistic drought events in step 3 is challenging because, to our knowledge, no unique procedure to simulate real-

istic drought periods for TWSC exists. For this reason, we first perform a literature review to identify representative drought pe-20

riods and magnitudes for selected regions. Among others, this includes the 2003 European drought and the drought in the Ama-

zon basin in 2011 (e.g., Seitz et al., 2008; Espinoza et al., 2011)
:::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Seitz et al., 2008; Espinoza et al., 2011, respectively). TWSC

within the identified drought period are then eliminated from the time series. In the next step, the parameters describing the

constant, trend, acceleration and seasonal signal
::::::::::
components

:
before and after the drought are used to ‘extrapolate’ these sig-

nals during the drought period. By computing the difference of the original GRACE-TWSC time series and the continued25

signal in the drought period, we can separate non-seasonal variations from the data, which represent the drought magnitude.

Our hypothesis is that the non-seasonal variations that we derive from the procedure possibly show a systematic behaviour

:::::::
behavior

:
that can be parameterized. To extract this systematic behaviour

:::::::
behavior, all extracted droughts are transformed to a

standard duration. To compare the different drought signals, a standard duration and a standard magnitude are arbitrarily set

to 10 months and -100 mm, respectively. Finally, a synthetic drought signal η is generated by using the extracted knowledge30

of drought duration, drought magnitude,
::::
and

:::::::::
systematic

:::::::
behavior

:
and systematic behaviour and it is added to the synthetically

generated signal (Eq. 20).

In step 4 we add GRACE-specific spatially correlated and temporally varying noise ε (Eq. 20). First, for each month t we

extract a full variance-covariance matrix Σ for the region grid cells from GRACE-TWSC. Next
::::
Then, whenever Σ is positive

definite, we apply Cholesky decomposition Σ =RTR, while if Σ is only positive semi-definite we apply eigenvalue decom-35
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Figure 3. AR(1)-model coefficients [-] for global GRACE-TWSC. The polygons of the clusters of East Brazil, South Africa and West India

are added in dark green
::::::
magenta.

position (Appendix C). Second, we generate a Gaussian noise series v of the length n, where n represents the number of grid

cells within the cluster. Finally, spatial noise in month t is simulated through

ε=RT v. (21)

The final synthetic signals for each grid cell within a cluster will thus exhibit the same constant, trend, acceleration, seasonal

signal, temporal correlations, and drought signal, but spatially different and correlated noise. In the following, we will test the5

hypothesis that GRACE indicators depend on the presence of trend and random input signals using the generated synthetic

time series.

We believe that our synthetic framework based on real GRACE data has multiple benefits: i) we are able to identify the skill

:::::
ability

:
of an indicator by comparing the ’true’ drought duration and magnitude (step 3) to the indicator results; ii) we are able to

detect the influence of other typical GRACE signals on the drought detection; iii) comparing different indicator outputs allows10

::
the

::::::::
synthetic

:::::::::
framework

:::::::
enables us to identify

::::::::
strengths

:::
and

::::::::::
weaknesses

::
of

::::
each

::::::::
analyzed

::::::::
indicator,

:::
and

:::::::
thereby

::::::
enables

:::
us

::
to

::::::
choose the most suitable indicator for a specific application.

3.2 Synthetic TWSC

Here, we will briefly discuss the TWSC simulation following methods described in the previous section.

When estimating AR models for detrended and deseasoned global GRACE data, we find that for more than 70 % of the15

global land TWSC grids are best represented by an AR(1) process (App. Fig. A1). Therefore, we apply the AR(1) model for

each grid. Fig. 3 shows the estimated AR-model coefficients, which represent the temporal correlations, ranging from very low

up to 0.3, e.g. over the Sahara or in South West Australia,
::
up

:
to about 0.8, for example

:::
e.g. in Brazil or in South Eastern

:::
the

::::::::::
Southeastern

:
U.S. EM-clustering is then based on these coefficients.

The selected three clusters (Fig. 3) show differences between the signal coefficients of the functional model (step 1, Eq. 18),20

which are exemplarily shown
:::::
hence

::::::::
discussed for the linear trend. We find a mean linear trend for the East Brazil cluster of 1.0

11



mm TWSC per year; South Africa shows
:
, a higher trend of 5.0 mm per year

:
in
::::::
South

::::::
Africa, and for West India the trend is

:
a

::::
trend

::
of

:
56.3 mm per year (Tab. 3). The trends for East Brazil and South Africa in GRACE TWCS have been identified before

(e.g. Humphrey et al., 2016; Rodell et al., 2018). We did not find confirmations for the strong linear trend in West India , e.g.

Humphrey et al. (2016)
:::::
found,

:::
for

::::::::
example,

::
by

::::::::::::::::::::::::
Humphrey et al. (2016) who identified about 7 mm per year within this region.

We assume that in this study the linear trend for West India is estimated as strong positive because we additionally identify a5

strong negative acceleration of -8.03 mm per year2 in West India. However, our simulation will cover weak and strong trends.

In fact, all coefficients show such strong differences, which suggests that we cover different hydrological conditions when

simulating TWSC for the three regions. In step 2 we identify correlations of 0.74 in East Brazil, 0.79 in West India, and 0.42

Table 3. Coefficients
::
(a0::

to
:::
c2 ::::

from
:::
Eq.

::
18

:::
and

:::
φ1 ::::

from
:::
Eq.

:::
A1)

:
for signals contained in GRACE-TWSC that were extracted within the

clusters of East Brazil, South Africa, and West India. These coefficients are used to simulate synthetic TWSC.

Cluster Constant Linear Trend Acceleration Annual Semi-annual AR-correlation

::
a0 ::

a1 ::
a2 ::

b1 ::
b2 :

c2 ::
c2 ::

φ1

East Brazil 34.85 1.02 -1.77 6.83 106.12 4.69 9.47 0.74

South Africa -24.00 4.98 -0.38 -4.31 -2.34 -1.23 1.07 0.42

West India -139.37 56.30 -8.03 30.23 -122.69 -24.22 25.24 0.79

in South Africa (Tab. 3).

Searching
:::::::::
Performing

:::::::
literature

::::::::
research for drought duration and magnitude (step 3) led to four droughts seen in GRACE-10

TWSC
::::
(Tab.

:::
4): The 2005 and 2010 droughts in the Amazon (e.g. Chen et al., 2009; Espinoza et al., 2011), the 2011

drought in Texas (e.g. Long et al. (2013))
::::::::::::::::::
(e.g. Long et al., 2013), and the 2003 drought in Europe (e. g. Seitz et al. (2008)).

:::::::::::::::::::
(e.g. Seitz et al., 2008). To extract the drought duration, we compared drought begin and end

::::
onset

::::
and

:::
end

::::::::
identified

:
in these

and other papers. We found that different studies do not exactly match, with inconsistencies likely due to different method-

ologies used. Furthermore, some authors only specified the year of drought. Droughts finally extracted from the literature had15

a duration of 3 to 10 months (Fig. 4a-d). Unless otherwise specified, we decided to base our simulations on a duration of 9

months to represent a clear identifiable drought duration. Extracted drought magnitudes range from about -20 to -350 mm

TWSC (Fig. 4a-d). Therefore, in order to simulate a drought magnitude that has a clear influence on the synthetic time series,

we set the magnitude to -100 mm.

As described in Sec. 3.1, we transform these water storage droughts to a standard duration and magnitude to understand20

whether a typical signature can be seen. However, Fig. 4e remains inconclusive as in particular
::::
there

::::
are,

::
in

:::::::::
particular, four

standardized droughts,
:::::
which

:
show a very different temporal behaviour

:::::::
behavior: Toulouse in 2003, Obidos in 2010, and Hous-

ton and Dallas in 2011. When we remove those four timeseries (Fig. 4f), a systematic behaviour
:::::::
behavior can be identified and

parameterized using a linear or quadratic temporal model. However, seen
:::
due

::
to these difficulties, we decided to stick to

:::
use

the most simple TWSC drought model, i.e. a constant water storage deficit within a given time span.25
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Table 4.
::::::
Drought

:::::
events

::
in
::::::
Europe,

:::::::
Amazon

::::
river

::::
basin

:::
and

:::::
Texas

:::
with

:::::::::::
corresponding

::::::
duration

:::::
taken

::::
from

:::::::
literature.

::::::
Region

::::
Year

::
of

::::::
drought

:::::::::
Considered

::::::
TWSC

::::::
months

::::::::
Examples

::
of

:::::::
literature

Europe
::::
2003

:::
June

::
to

::::::
August

::::::::::::::::
Andersen et al. (2005)

:::::::::::::::
Rebetez et al. (2006)

::::::::::::
Seitz et al. (2008)

Amazon river basin
::::
2005

:::
May

::
to

::::::::
September

:::::::::::::
Chen et al. (2009)

:::::::::::::::
Frappart et al. (2012)

::::
2010

:::
June

::
to

::::::::
September

::::::::::::::::
Espinoza et al. (2011)

:::::::::::::::
Frappart et al. (2013)

:::::::::::::::::
Humphrey et al. (2016)

Texas
::::
2011

:::::::
February

:
to
:::::::
October

:::::::::::::::::
Humphrey et al. (2016)

:::::::::::::
Long et al. (2013)

Figure 4. Extracted drought periods from GRACE-TWSC for the droughts in (a) Europe 2003, (b) Amazon river basin 2005, (c) Amazon

river basin 2010, (d) Texas 2011. (e) All droughts from (a-d) were transformed to standard severity and duration. (f) as (e) but after removing

four timeseries with a significant different temporal behaviour
::::::
behavior.

In step 4, we project the simulation on a 0.5◦ grid and add spatially correlated GRACE noise. A few representative time series

of the gridded synthetic total water storage change are shown in Fig. 5 for East Brazil (EB), South Africa (SA), and West India

(WI) for the GRACE time period from January 2003 to December 2016. The effect of realistic GRACE noise (dark blue vs.

light blue) is clearly visible, in particular
:::::::::
particularly

:
for the SA case with low annual amplitude. The synthetic drought period

is placed from January to September 2005 (light brown) in all three regions. Synthetic TWSC variability includes considerable5

(semi-) annual variations for EB based on Tab. 3. Furthermore, a strong trend and
:::::::
negative acceleration is contained in the

13



Figure 5. Synthetic TWSC [mm] without (light blue) and with spatial GRACE noise (dark blue) using average parameters for the clusters in

East Brazil (EB), South Africa (SA), and West India (WI). Light brown shows the simulated drought period.

synthesized time series for East Brazil and West India (Tab. 3) .
:::::
leading

:::
to

:::::
strong

:::::::
negative

::::::
TWSC

:::::::
towards

:::
the

:::
end

:::
of

:::
the

::::
time

:::::
series.

:::
For

:::::
West

::::
India

::
a
:::::
strong

:::::::
positive

:::::
trend

::::
leads

::
to

::::
low

::::::
TWSC

::
at

:::
the

:::::
begin

::
of

:::
the

::::
time

:::::
series.

:

4 Indicator-based drought identification with synthetic and real GRACE data

4.1 Synthetic TWSC: masking effect of trend and seasonality

Here, we analyse
::::::
analyze

:
how non-drought signals, such as a linear or accelerated water storage trend and the ubiquitous5

seasonal signal, propagate through the Zhao-, Houborg-, and Thomas- GRACE-indicators (Sec. 2) and potentially mask a

drought. To this end, we select representative time series from each of the three synthetic grids of total water storage changes

(TWSC) for East Brazil (EB), South Africa (SA), and West India (WI), and apply the three methods. Since all results are based

on TWSC, we refer to TWSC-DSIA, TWSC-DSID, TWSC-DIA,
:
and TWSC-DID as DSIA, DSID, DIAand DID

:
,
:::
and

:::::
DID,

::::::::::
respectively.10

We first assess the temporal characteristics of the Zhao-method (Sec. 2.1). Figure 6 (left) shows time series for the DSI and

DSIA (with 3, 6, 12 or 24 months accumulated TWSC). It is obvious that trend and acceleration propagate into both DSI and

DSIA (see East Brazil and West India). Resulting indicator values
:
(e.g. for the years 2015 and 2016are lower as

:
)
:::
are

:::::
lower

::::
than

compared to a small trend (South Africa) and this may lead to misinterpretations because a severe to mild drought is identified
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(-2 to -0.5) while none is actually simulated. In contrast, the actual simulated drought in 2005 is only identified as a moderate

drought (values up to -1.0) for EB.

In the presence of a small trend (5.0 mm/year) and acceleration (-0.38 mm/year2, Tab. 3, SA), we do identify
::
an

:
exceptional

drought (Fig. 6 DSIA for South Africa). This shows that the drought strength that we chose does indeed would lead to a correct

identification of exceptional drought in case
:
if
:
no masking occurs (but in the presence of GRACE noise), so at this point we5

can determine that exceptional drought represents the ‘true’ drought severity class. As expected, a trend and/or an acceleration

signal that are frequently observed in GRACE analyses
:::::::
analyzes

:
can lead to misinterpretations in the indicators. However,

the influence of the trend or acceleration also depends on the timing of the drought period within the analysis window. For

example, assuming we simulate the time series with the same trend or acceleration but the drought would
::::
were

::
to
:

occur in

2014, the drought detection would not have been as much influenced
::::::::
influenced

::
as

:::::
much. Therefore, we decided to set up an10

additional experiment and discuss the influence of different trend strengths for the drought detection (Sec. 4.3).

The analysis reveals that DSI and DSIA indicators are sensitive with respect to trends, while they are less sensitive to the

annual and semi-annual signal. The seasonal signal is clearly dampened (compare e.g.
:::::::
compare Fig. 5 and

::
to

:
the DSIA in

Fig. 6). This is caused by removing the climatology within the Zhao-method (Eq. 8). Comparing DSIA3, DSIA6, DSIA12,

and DSIA24, e.g. for East Bazil
:::::
Brazil, suggests that with a

:
longer accumulation period, indicator time series are increasingly15

smoothed and less severe droughts are identified (Fig. 6, left). Furthermore, the drought period appears shifted in time and

its duration is prolonged. This can lead to missing a drought identification if a trend or an acceleration is contained in the

analyzed timeseries, for example for the 24 months DSIA for East Brazil. We find that all DSIA are able to unambiguously

detect a drought close to 2005 assuming that neither trend nor acceleration is apparent (Fig. 6 DSIA for South Africa). In

particular
:::::::::
Particularly, the 3 and 6 months DSIA identify the drought close to 2005 for South Africa, and its computation20

appears to dampen the temporal noise that is present in the DSI.

In contrast we find that the 3, 6, 12, or
:::
and

:
24 months TWSC-differencing DSID exhibit stronger temporal noise as compared

to the DSIA and the DSI. This can be seen in the light of Eq. (2) - these indicators are closer to meteorological indicators and

thus do not inherit the integrating property of TWSC. The DSID does neither
:::
not propagate a trend nor

:::
and

:
acceleration, annual

signal or semi-annual signal. All DSID and DSID time series, for example for East Brazil (Fig 6, right), show a strong negative25

peak within the drought period, but this peak does not cover the entire drought period for the 3, and 6 months differenced DSID.

The negative peak within the drought period is always followed by a strong positive peak,
:
; when we consider Eq. 2 this lends

to the interpretation that a pronounced drought period is normally followed by a very wet event to return to ‘normal’ water

storage condition. Despite higher noise and the positive peak and contrary to the DSIA, all DSID (DSID3, DSID6, DSID12,

and DSID24) correctly identify the drought within 2005 to be exceptional
:::::::::::
exceptionally dry for East Brazil and South Africa.30

All different DSID time series for WI identify at least a moderate drought.

Analysis of the Houborg-method shows a broadly similar behaviour
:::::::
behavior

:
as compared to the Zhao-method: The sensi-

tivity of drought detection to an included trend or acceleration depends on the indicators type. Using the DIA we can confirm

the large influence of the trend or acceleration on the indicator value, which is not the case for DID (e.g. Fig. 7 DIA and DID

for East Brazil). Annual and semi-annual water storage signals are all considerably weakened in the Houborg-method because35
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Figure 6. A representative example of the synthetic DSI, DSIA , DSID [-] for the East Brazil (EB), South Africa (SA), and West India (WI)

cluster over the periods of 3, 6, 12, and 24 months. Light brown shows the synthetic constructed drought period.

they are effectively removed when computing the empirical distribution for each month of the year. Differences to the Zhao-

method appear when comparing more general properties, e.g. we find that DI is more noisy and the range of output values is

restricted to about 7 % to 100 % (Fig. 7). This restriction is caused by the length of the time series, ;
:
e.g. assuming we strive

to identify an event with exceptional dry values (≤ 2%), we would need at least 50 years of monthly observations. Yet, with

GRACE we only have about 14 years of good monthly observations, so the simulation was also restricted to this period. If5

we then take the driest value that might occur only once, we can compute the minimum value of DI to be 7.14 %. Hence the

detection of exceptional or extreme drought is not possible when referring to the duration of the GRACE TWSC time series.

As mentioned in Sec. 2.2, Houborg et al. (2012) applied a bias correction to the empirical CDF to mitigate this restriction. We

do not follow Houborg’s approach here in order to focus on realistic observation availability
::
the

::::::::
synthetic

:::::::::::
environment instead

of the availability of model outputs.10

Applying the
::::
The Thomas-method to simulated GRACE TWSC results in

:
is

:::::::
applied

::
to

::::::::
simulated

:::::::
TWSC

::::
data

::
to

::::::
derive

magnitude, duration and severity of drought, which we show in Fig. 8 for the EB region. We find that the linear trend and

acceleration propagate into the magnitude (Fig. 8, top)
::::
when

:
using TWSC deficits with climatology removed (blue, Eq. 6)

instead of
::::::::
compared

::
to

:::::
using

:
TWSC deficits with removed trends(linear and time-varying) and

:
,
:::::::::::
accelerations

:::
and

:
seasonality

(red, Eq. 18). When using non-climatological TWSC (blue), we identify a strong deficit in 2015 and 2016 (Fig. 8, top) which15
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Figure 7. A representative example of the synthetic DI, DIA , DID [%] for the East Brazil (EB), South Africa (SA), and West India (WI)

cluster over the periods of 3, 6, 12, and 24 months. Light brown shows the synthetic constructed drought period.

suggests a duration of up to 28
::
38 months (Fig. 8, center) and a severity of about -2500

:::::
-4000 mm months (Fig. 8, bottom).

Using the detrended and deseasoned TWSC (red), drought is mainly detected in the ‘true’ drought period (2005) and not at the

end of the time series. Thus we conclude that a trend or acceleration indeed modifies the drought detection.

Results so far were derived by imposing a minimum duration of 3 months (blue and red). When moving to a minimum

duration of 6 consecutive months (green, Fig. 8, middle and bottom) we find this would lead to a decrease in identified severity5

by half, and the beginning of the drought period shifts 3 months in time. This is in line with Thomas et al. (2014). The same

findings are made for South Africa and West India.

4.2 Synthetic TWSC: effect of spatially correlated GRACE errors

Here, we investigate how robust the Zhao-, Houborg- and Thomas-indicators are with respect to the spatially correlated and

time-variable GRACE errors. However, any analysis must take into account that GRACE results cannot be evaluated directly10

at grid resolution.

In our first analysis, indicator
::::::::
indicators

:
based on (synthetic) TWSC grids are thus spatially averaged through two different

methods (Sec. 3.1). We find that regional-scale DSI , DI indicators
:::
and

:::
DI

:::::::::
indicators, as well as the outputs derived by the

Thomas-method for South Africa computed from 1) averaging TWSC first (darkblue Fig. 9) is indeed different to the 2)
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Figure 8. Drought magnitude [mm], duration [mo] and severity [mm·months] for the cluster of East Brazil (EB) using TWSC with removed

climatology (dark blue) and TWSC with removed trend and seasonal signal (red). The minimum duration (MD) is set to 3 months (blue and

red) or 6 months (green). Light brown shows the synthetic constructed drought period.

averaging indicators computed at grid scale from TWSC (lightblue, Fig. 9). These differences can be explained by the inherent

non-linearity of the indicators. Since the synthetic data have been constructed from the same constants, trends, seasonal signal,

temporal correlations, and drought signal, we isolate the effect of GRACE noise on regional-scale indicators here. Outside

of the drought period we conclude that the sequence how
:
in

::::::
which we spatially average causes larger differences for DI as

compared to DSI: for .
::::

For South Africa, the range of averaged DI is about 7 - 100 % while the range of the DI of averaged5

TWSC is about 7 - 80 %. Within the drought period the DI exhibits little differences
::::::::
difference

:
between both averaging

methods. The DSI from averaged TWSC does suggest a weaker severity in the drought period compared to averaged DSI.

In this case, both indicator averages identify the same (exceptional) drought severity class. Yet we find that for
:::
both

:
DSI and

DI the identification of drought severity is not sensitive to the choice of the averaging method for this cluster. However, for

other cases
::::
these differences can be more significant, which might .

::::::
These

::::
may lead to misinterpretation (e.g. February and10

April
:::
May

::::
and

::::
July 2005 for the DI East Brazil, Fig. 9). For the Thomas-method, we cannot distinguish which result is more

significant, since we have no comparable ‘true’ severity amount for that indicator.

To determine the influence of the GRACE-specific spatial noise on the detected drought severity, a second analysis is applied.

This analysis computes the share of area,
:
for each time step , for which a given drought severity class is identified (Fig. 10).

Since different grid cells for one time step only differ in their spatial noise, it is important to understand that identifying more15

than one severity class is directly related to the noise. Only one class of drought would be detected for one epoch, assuming

the grid cells have no or exactly the same noise. For example, we identify all classes of droughts (abnormal to exceptional) in
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Figure 9. DSI and DI average in South Africa (SA, top and top center), severity average for the Thomas-method (SA, bottom center) and

DI average in East Brazil (EB, bottom) by applying two different methods: the average of the indicators for all grids (light blue) and the

indicators of averaged TWSC (dark blue). The grey shaded area represents the bandwidth for all grids. Light brown shows the synthetic

constructed drought period.

December 2015 by using DSI for the East Brazil cluster (Fig. 10, top left). Thus, the spatial noise has a large influence on the

drought detection. To establish which indicator is mostly
::::
most affected, the indicators are compared with each other.

We note that large differences are found between the DSI, the 6 months accumulated DSIA, and the 6 months differenced

DSID within the given drought period for the East Brazil region (Fig. 10, left). All three indicators manage to identify the

drought, but with different duration and percentage of affected area. The DSI shows exceptional drought within the drought5

period with a maximum of 38 % of the grid cells , i.e. it does not detect exceptional drought in all grid cells
::::::
Within

:::
the

::::::::
simulated

::::::
drought

::::::
period,

:::
the

::::
DSI

::::::::
indicator

::::::::
identified

::
no

:::::
more

::::
than

::
14

::
%

::
of

:::
all

:::
grid

:::::
cells

::
as

:::::
being

:::::::
affected

::
by

::::::::::
exceptional

::::::
drought

::::::
where

:
it
::::::
should

::
be

::::
100

::
%. On the contrary

:::::
other

::::
hand, the DSIA does not detect exceptional drought in any grid cell. Apparently,

:
It

::
is

:::::::
apparent

:::
that

:
this indicator misses the exceptional dry event because of the included trend and acceleration.
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Figure 10. Drought affected area of the DSI, DSIA, and DSID [%] considering the different drought severity classes within the clusters of

East Brazil (EB) and South Africa (SA).

When comparing DSIA of East Brazil to the DSIA of South Africa (Fig. 10, center), we find that DSIA is able to detect

the drought strength correctly when there is a small trend or acceleration present. However, DSIA appears more robust against

spatial noise, since it identifies (at least) severe drought
:::::
severe

:::::::
drought

::
or

::::
drier

:
in more than 90 % of grid cells, while the DSI

indicator identifies only about 60 %. As described in Sec. 4.1, longer accumulation periods lead to smoother and thus more

robust indicators. We find that the DSID is more successful in detecting exceptional drought: more than 60
::
80

:
% of the DSID5

grid cells show exceptional drought, but the indicator appears more noisy than the DSIA. Finallyas what regards ,
::::
with

::::::
regard

::
to

the drought duration, we find that only DSI detects the ‘true’ period correctly. When identified via DSIA, the duration appears

longer and when identified in DSID, the period was found shorter as compared to the ‘true’ drought period.

Overall, we find that the different indicators DSI, DSIAor
:
,
:::
and DSID all come with advantages and disadvantages regarding

the presence of spatial and temporal noise. The same findings were made for the indicators of the Houborg-method (results not10

shown). This analysis is not applied to the Thomas-method, because the method does not refer to severity classes (Sec. 2.3).

4.3 Synthetic TWSC: experiments with variable trend, drought duration and severity

Two experiments were additionally constructed to examine the influence of trends and drought parameters on the indicator

skills
::::::::
capability. First, we consider how strong a linear trend in total water storage must be to mask drought in the indicators.

For this, we test different trends from -10 mm/year to 10 mm per year for DSI, DSIA, DI, DIA
:
, and the Thomas-method in the15

West India region (since these indicators were identified as being affected by trends, Sec. 4.1). No acceleration is included for

these tests. We find that trends between -1 and 1 mm per year cause no influence on all indicators, while differences start to
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appear when simulating a trend higher than 2 mm per year. This propagates into
::
the

:
DSI, DSIA, DI

:
, and DIA indicators but

did not affect the drought period.

What
:
A
::::::::

question
:::
we

::::
must

::::
ask

::
is

::::
what

:
would be the largest trend magnitude that does not affect the correct detection of

drought duration and drought severity, and how can we verify this? An obvious influence within the drought period in 2005 is

found when simulating a trend of -6
::
-7

:
mm or lower per year. It is important at this point to understand that there is a relation5

between the timing of the drought and the sign of the trend, i.e. a positive or a negativetrend
:::::::
whether

:::
the

:::::
trend

::
is

::::::
positive

:::
or

:::::::
negative. Assuming that a positive trend exists and the drought occurs closer to the end of the time series, the trend may lead

to a drought that is identified as more dry than the actual
::::
‘true’

:
drought. But if the trend is negative, the drought is identified

more easily.

Other factors, e.g. the length of the time series, have an influence on the masking by the trend and, as a result, affect drought10

detection. The longer the input time series, the more sensitive is the drought detection
:
is

:
to the trend. At the same time, the

magnitude of the trend needs to be considered relative to the variability or range of the TWSC. E.g.
:::
For

:::::::
example,

::
a -6 mm per

year trend has a larger influence on the drought detection assuming
::
if the range of TWSC being

::
is -50 to 50 mm as compared

to -200 to 200 mm. As a reference, the synthetic time series for West India, without any trend or acceleration signal, ranges

from about -335 to 76
::::
-323

::
to

::
87

:
mm. So, deriving a general quantity for these dependencies is difficult.15

In a second experiment, we assess which input drought duration and magnitude would at least be visually recognized in the

indicators. We choose 3, 6, 9, 12, and 24 months for the simulated duration and -40 mm, -60 mm, -80 mm, -100 mm,
::::
and -120

mm for the drought magnitude, and apply both the Zhao- and the Houborg-method. We compare the changes for one indicator

time series for the East Brazil region. The drought always begins in January 2005 for the first tests. In general, we found that

the identification of the severity class is less sensitive to changes in the drought duration, since a drought duration of 3, 6, 9,20

12
:
, and 24 months mostly results in equal drought severity classesfor example for ,

:::
for

::::::::
example, a drought magnitude of 120

mm. Thus, we concentrate our analysis on changes in drought magnitude.

The severity class with the strongest drought type (i.e. exceptional drought)
::::::::::
Exceptional

:::::::
drought is only classified by the

Zhao- and Houborg-method
:::::::::::
Zhao-method

:
for East Brazil when using a

:::
for

:
a
:::::::::
simulated drought magnitude of -120

:::
120

:
mm;

this is related to the trend and acceleration signal contained in the simulated TWSC and was already found in Sec. 4.1. For25

the Zhao-method, extreme drought is identified when simulating a drought magnitude of at least -100 mm, while only severe

and moderate drought is identified when simulating a magnitude of -80 mm and -60mm. The Houborg-method fails to identify

extreme and exceptional drought, as described in Sec. 4.1. Thus,
:::::::::
simulating a magnitude of -80 mm in severe drought all

applied
::::
-100

:::
and

::::
-120

::::
mm

::
is

::::::::
identified

::
as

:::::
severe

:::::::
drought

:::
for

::
all

:::::::::
simulated drought periods (3 to 24 months), while a magnitude

of
:::::::::
simulating

:
a
:::::
lower

::::::::::
magnitude

::::
(-80

:::
mm

::::
and

:
-60 mmleads to moderate dry events and a magnitude of -40 mmto

:
)
::::::
causes30

:::::::
moderate

:::
or abnormal dry events

:
to

:::
be

::::::::
identified. We find that the both methods are not able to clearly detect a drought that has

a magnitude of -40 mm or higher
:::::
weaker, if the duration is between 3 and 24 months. This experiment supports our findings in

Sec. 3.2.
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4.4 Application to real GRACE data: South Africa droughts

For South Africa, droughts are a recurrent climate phenomenon related to climatic conditions
::::::
climatic

:::::::::::
phenomenon. The com-

plex rainfall regime
:::
has

:
led to multiple extents

::::::::::
occurrences

:
of drought events in the past, for example to a strong drought in

1983 (e.g. Rouault and Richard, 2003; Vogel et al., 2010; Malherbe et al., 2016). The
:::::
These

::::
past droughts appeared in varying

climate regionsat different timing
:
,
::
at

:::::::
different

:::::
times of the year,

:
and with a different severity. Since 1960, many of them were5

linked to El Niño (e.g. Rouault and Richard, 2003; Malherbe et al., 2016).

Based on the simulation results, we chose the 6 months accumulated DSIA to identify droughts for (the administrative area

of) South Africa (GADM, 2018) in retrospective in the GRACE total water storage data. DSIA has proven to be more robust

with respect to the peculiar, GRACE-typical spatial and temporal noise as compared to the other tested indicators (Sec. 4.2 and

4.1).10

GRACE-DSIA6 suggests two drought periods, from mid of 2003 to mid of 2006
:::::::
mid-2003

::
to
:::::::::
mid-2006,

:
and from 2015 to

2016 (Fig. 11). The first drought event is identified to affect at least 70 % of the area of South Africa. While 2003 was indeed a

year of abnormal to severe dry conditions, in 2004 until mid of 2006 also extreme drought occurred
:::::
during

:::
the

::::::
period

::
of

:::::
2004

::
to

::::::::
mid-2006. Figure 11 reveals that a small area (about 7976 km2, close to Lesotho) experienced even exceptional drought in

::::
even

::::::::::
experienced

::::::::::
exceptional

:::::::
drought

:::::
during

:
2004. This period is confirmed by The Emergency Events Database (EM-DAT15

, 2018) recording a drought event in 2004 , see e. g. Masih et al. (2014).
::::::::::::::::::::
(e.g. Masih et al., 2014). Extreme drought in 2004

mainly occurred in the Central and South East of South Africa; this is exemplarily shown for April 2004 in
:::::::::
exemplified

:
Fig.

12a .
::
for

:::::
April

:::::
2004. Another confirmation is found in Malherbe et al. (2016), who identified a drought period from 2003 to

2007 by using the SPI.

The second drought in 2015 and 2016 is identified to have affected
::::::
Despite

::::::::
affecting less area (about 50 to 70 %, Fig. 11), but20

it
::
the

::::::
second

:::::::
drought

::
in

::::
2015

::::
and

::::
2016

:
is perceived as more intense than the 2003 to 2006 drought. Based on GRACE and the

::
the

::::::::
GRACE DSIA6, we conclude that

::
in

::::
2016

:
at least 30 % of South Africa were

:::
was

:
affected by extreme drought and about

20 % experienced an exceptional droughtin 2016. .
:
The 2016 drought occurred in the North Eastern

::::::::::
Northeastern part of South

Africa (Fig 12b). For comparison, the EM-DAT database also listed
::::::::
similarily

::::::::
identified

:
2015 as drought event but not 2016.

:
a

::::::
drought

:::::
event,

:::
but

:::
did

:::
not

:::::::
classify

::::
2016

::
as

:::::
such. We speculate that the differences are due to the drought criteria of the EM-DAT25

database (disasters are included when, for example, 10 or more people died or 100 or more people were affected). However, the

EM-DAT database lists 2016 as a year of extreme temperature, which might be related to our detected drought. Furthermore,

we can confirm the 2015/2016 drought by a lower maximum precipitation in these years than in other years (about 65 mm) and

by meteorological indicators indicating severe to extreme drought (SPI, Standardized Precipitation Evapotranspiration Index

(Vincente-Serrano et al., 2010), and Weighted Anomaly Standardized Index (Lyon and Barnston, 2015)).30

5 Discussion

The framework developed in this study enables us to simulate GRACE-TSWC data with realistic signal and noise properties,

and thus to assess the skills
:::::
ability

:
of GRACE drought indicators

:
to
::::::

detect
:::::::
drought

:::::
events

:
in a controlled environment with
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Figure 11. Percentage of drought affected area of the 6 months DSIA[-] considering the different drought severity classes. Application on

real GRACE-TWSC over South Africa from 2003 to 2016.

Figure 12. DSIA6 [-] for real GRACE-TWSC within South Africa (black line, GADM (2018)) for (a) April 2004 and (b) March 2016.

known ’truth’. This will be extended to GRACE-FO in the near future. GRACE studies have been often
::::
often

::::
been

:
based on

simplified noise models (e.g. Zaitchik et al., 2008; Girotto et al., 2016) ; however
::::
where

:::
the

:::::::
GRACE

:::::
noise

::::::
model

:
is
:::
not

:::::::
derived

::::
from

:::
the

::::
used

:::::::
GRACE

::::
data

:::
but,

:::
for

::::::::
example,

::::
from

::::::::
literature

:::
and

:::::::
assumed

::
to
:::
be

:::::::
spatially

:::::::
uniform

:::
and

:::::::::::
uncorrelated.

::::::::
However,

:
it

is important to account for realistic error and signal correlation
:::::::::::::::::::
(e.g. Eicker et al., 2014), in particular for drought studies where

one will push the limits of GRACE spatial resolution.
::::
This

:::::
signal

:::::::::
correlation

::::::::
includes

::::::::::
information

::::::
about,

:::
for

::::::::
example,

:::
the5

:::::::::
geographic

:::::::
latitude,

:::
the

::::::
density

::
of

:::
the

:::::::
satellite

:::::
orbits,

:::
the

::::::::::::::::
time-dependencies

::
of

::::::
mission

:::::::
periods

::
or

::::::::::::::::::::::
North-South-dependencies.

:

However, identifying a drought signal from real GRACE-TWSC is indeed challenging since we do not know in advance

how
::::
what the signature of a drought looks like; a parametric drought model does not yet exist and our experiment (Sec. 3.2)

to extract such a model from TWSC data and known droughts did not lead to conclusive results. Still we believe that this first

– to our knowledge – approachidentified a similar systematic behaviour of different drought periods, although
:
,
::::::
despite

:::::
being10

based on a small number of drought periods,
:::::::
identified

::
a
::::::
similar

:::::::::
systematic

:::::::
behavior

:::
of

:::::::
different

:::::::
drought

::::::
periods

:
and should
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be pursued further. Based on literature and our own experiments (Sec. 4.3) we chose to define our ‘box’-like GRACE drought

model as an immediate and constant water storage deficit.

When analysing
::::::::
analyzing the Zhao-, Houborg- and Thomas-methods, we find that trends and accelerations in GRACE water

storage maps tend to bias
::
not

::::
only

:
the DSI, DI and the Thomas-indicator that uses

::::::
(which

:::
use non-climatological TWSC), but

also for the DSIA and DIA (which use accumulated TWSC. Indicators
:
).
::::
The

::::::::
indicators

:
DSID and DID, which utilize time-5

differenced TWSC, were not found biased by trends and accelerations; the same goes for the Thomas-method when based on

detrended and deseasoned TWSC. When we did not simulate a trend
::::::::
simulated

::::::
smaller

::::::
trends

::
or

:::::::::::
accelerations, all indicators

were able to detect drought, but they identified different timing, duration, and strength
:
;
:::
for

:::::::
example

:::
for

:::
the

:::
SA

:::::
cluster

::::::
(trend

::
of

::::
4.98

::::::::
mm/year,

::::::::::
acceleration

::
of

:::::
-0.38

:::::::::
mm/year2). This suggests removing the trend in GRACE data first, but this must be done

with care, since it can also influence the detection of, for example, long-term droughts. The same is true for removing the trend10

and seasonal signal prior of applying the Thomas-method, although in this study we found that the removal of these signals

simplified the correct drought detection (Sec. 4.1).

An experiment was then set up to understand the influence of the trend on the detected drought duration and severity. Several

factors play a role here, e.g. the length of the time series, the TWSC range in relation to the trend magnitude, and the sign of

the trend. We found that providing a general rule appears nearly impossible.15

As expected, we find time-series for the modified time-differencing GRACE indicators DSID and DID as much noisier

when compared to the time-accumulating indicators DSIA and DIA; this can be linked to precipitation (Sec. 2) driving total

water storage. The drought period was identified to be shorter than the ‘true’ simulated drought periodfor
:
, e.g. for DSID3 and

DSID6. After these drought periods, strongly wet periods were detected. In the
::::::::
Regarding

::::::
future applications, we suggest a

direct comparison of the DSID and meteorological indicators,
:
in particular for confirming or rejecting drought duration and20

the following wet periods.

On the contrary
:::::
other

::::
hand, computing accumulated indicators implies a temporal smoothing and

:::::::
causing the drought period

will
:
to

:
appear lagged in time, albeit ;

::::::::
however

:
for accumulation periods of 3 and 6 months the lag was found insignificant.

DSIA and DIA are thus more robust against temporal and spatial GRACE noise as compared to DSID and DID, and again we

would suggest
::::::
utilizing

:
3 or 6 months accumulation periods. In general, we found the Zhao- and Thomas-indicators performing25

::::::::
performed

:
better in detecting the correct drought strength than the Houborg-method, at least seen

::
for the limited duration of

the GRACE time series that we have at the time of writing.

By simulating the effect of spatial noise on drought detection, we found that some indicators appear less robust. Analysis

of the percentage of drought affected area showed that the GRACE spatial noise limits the correct drought detection. Again,

the DSIA was identified to be more robust as compared to DSI and DSID - it was the only indicator that identified exceptional30

drought in nearly all grid cells. A second experiment was applied to examine ,
::::::::
conducted

::
to

:::::::
examine

:
if the influence of the

spatial noise can be reduced by using spatial averages. We found that spatially averaging DSI and DI appears less robust against

the spatial noise compared to computing the indicator of averaged TWSC. At this point we therefore suggest to compute the

indicator from spatially averaged TWSC. Since the DI showed stronger difference between both averaging methods than the

DSI, we conclude that the DI is generally less robust against spatial noise than the DSI. In our real-data case study, due to these35
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findings, the DSIA6 was then
::::
thus applied to GRACE-TWSC, and it identified two drought periods: mid 2003 to mid 2006 in

Central and South East and 2015 to 2016 in North East of South Africa.

6 Conclusions and outlook

A framework has been developed that enables understanding the masking of drought signals when applying the Zhao et al.

(2017), Houborg et al. (2012) and Thomas et al. (2014) methods. Four new GRACE-based indicators
::::::
(DSIA,

:::::
DSID,

:::::
DIA5

:::
and

:::::
DID) were derived and tested; these are modifications of the above mentioned approaches and work with

::::
based

:::
on

:
time-

accumulated and -differenced GRACE data. We found that indeed most indicators were mainly sensitive to water storage trends

and to the GRACE-typical spatial noise.

Among these various indicators, we identified the DSIA6 as in particular
::::::::::
particularly well-performing, i.e.

:
it
::
is less sensitive

to GRACE noise and with good skills in
::::::::
capability

:::::::
towards

:
identifying the correct severity of drought,

:
at least in absence of10

trends. However, the choice of the indicator should always be made in the light
:::::
context

:
of the application.

We see ample possibilities to extend our framework. Future work should focus on better defining the begin
::::
onset and end of

a drought and developing a signature for TWSC drought. One will
:::::
should

:
also consider other observables in the simulationsuch

as e.g. groundwater ,
::::
such

:::
as

::::::::::
groundwater

:::
for

::::::::
example, which can be derived from GRACE and by removing other storage

contributions from direct modelling or through data assimilation.15

In the GRACE community, efforts are currently being made to ’bridge’ the GRACE timeseries to the begin
::::::::
beginning

:
of

the GRACE-FO data period (e.g. Jäggi et al., 2016; Lück et al., 2018). These gap-filling data will inevitably have much higher

noise and spatial correlations that may be very different from GRACE data, and drought detection skills
::::::::
capability

:
should be

investigated through simulation first. On the contrary
::::
other

:::::
hand, GRACE-FO is supposed to provide more precise measure-

ments, and thus less influence of spatial noise on the drought detection may be expected. The combination of GRACE-FO data20

and a thorough understanding and ’tuning’ of GRACE drought identification methods, possibly through this framework, might

then enable us to identify water storage droughts more precisely.

Appendix A: AR model coefficients computations

To extract temporal correlations from the GRACE total water storage changes (TWSC) we apply an autoregressive(AR) model,

which is described by25

X(t) = φ1X(t− 1) + ...+φpX(t− p) + εt, (A1)

where X represents the observed process at time t, p is the model order, φ are the correlation parameters, and ε is a white

noise process (Akaike, 1969). Here, detrended and deseasoned TWSC are used as the observed process X(t), because the

remaining residuals contain interannual and subseasonal signal as the drought information, which we want to extract with this

approach. The approach is then applied for different model orders. The optimal order of the AR-model is adjusted by means of30

the information criteria, for example the Akaike information criterion (AIC), and the Bayes information criterion (BIC). Then,

25



by using the optimal order, the AR-model coefficients φ, which represent the temporal correlations, can be computed using a

least squares adjustment.

The results for the optimal order of interannual and subseasonal TWSC is shown in Fig. A1. The most of the global land

grids of detrended and deseasoned TWSC shows an optimal order of 1 (about 70%).

Figure A1. Histogram of the optimal order of an AR model for global detrended and deseasoned GRACE-TWSC on land grids.

Appendix B:
:::::::::::::
EM-Clustering5

::::::::::
Expectation

:::::::::::
maximization

:::::
(EM)

:::::::::
represents

:
a
:::::::
popular

:::::::
iterative

::::::::
algorithm

:::
that

::
is
::::::
widely

::::
used

:::
for

:::::::::
clustering

::::
data.

::::
EM

::::::::
partitions

:::
data

::::
into

::::::
cluster

:::
of

:::::::
different

:::::
sizes

::::
and

::::
aims

::
at
:::::::

finding
:::
the

:::::::::
maximum

:::::::::
likelihood

::
of

::::::::::
parameters

::
of

::
a
:::::::::
predefined

::::::::::
probability

:::::::::
distribution

::::::::::::::::::::
(Dempster et al., 1977).

::
In

:::::
case

::
of

::
a

::::::::
Gaussian

::::::::::
distribution

:::
the

::::::::::::
EM-algorithm

:::::::::
maximizes

::::
the

::::::::
Gaussian

:::::::
mixture

:::::::::
parameters,

::::::
which

:::
are

:::
the

:::::::
Gaussian

:::::
mean

::::
µk,

:::::::::
covariance

:::
Σk,

::::
and

::::::
mixing

:::::::::
coefficients

:::
πk::::::::::::::

(Szeliski, 2010).
:::
The

:::::::::
algorithm

::::
then

::::::::
iteratively

::::::
applies

::::
two

::::::::::
consecutive

::::
steps

::
to

:::::::::
maximize

:::
the

::::::::::
parameters:

:::
the

:::::::::
expectation

::::
step

:::::::
(E-step)

:::
and

:::
the

::::::::::::
maximization

::::
step10

:::::::
(M-step).

::::::
Within

:::
the

::::::
E-step

:::
we

:::::::
estimate

:::
the

:::::::::
likelihood

:::
that

:
a
::::
data

:::::
point

::
xt::

is
::::::::
generated

:::::
from

:::
the

::::
k-th

:::::::
Gaussian

:::::::
mixture

:::
by

::::::
E-step:

zik =
1

Zi
πkN (x|µk,Σk),

::::::::::::::::::::

(B1)

:::
The

::::::
M-step

::::
then

::::::::::
re-estimates

:::
the

::::::::::
parameters

::
for

:::::
each

:::::::
Gaussian

::::::::
mixture:

::::::
M-step:

:
15

µk =
1

Nk

∑
i

zikxi,

:::::::::::::::

(B2)

Σk =
1

Nk

∑
i

zik(xi−µk)(xi−µk)T ,

:::::::::::::::::::::::::::::::

(B3)

πk =
Nk
N

:::::::

(B4)
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Figure B1.
:::::

Clusters
:::::
based

::
on

:::::::::::
EM-clustering

::::::
applied

::
to

::
the

:::::
global

::::::::
AR-model

:::::::::
coefficients.

::
by

:::::
using

:::
the

::::::
number

:::
of

:::::
points

:::::::
assigned

::
to
:::::
each

:::::
cluster

:::
via

:

Nk =
∑
i

zik.

:::::::::::

(B5)

:::::
Using

:::
the

:::::::::
maximized

:::::::::
parameters

:::
EM

:::::::
assigns

::::
each

:::
data

:::::
point

::
to

:
a
::::::
cluster.

::::
The

::::
final

:::::
global

:::::::::
distributed

::::::
clusters

::
of

:::
the

:::::::::::::
AR-parameters

::::
(Fig.

::
3)

:::
are

:::::
shown

::
in

::::
Fig.

:::
B1.

:::::
These

:::::::
clusters

::::
were

::::::
derived

:::
by

::::::::
modifying

::::
and

:::::::
applying

::
an

::::::::::::
EM-algorithm

:::::::
provided

:::
by

:::::::::::
Chen (2018).

5

Appendix C: Eigen value decomposition

The decomposition of the variance-covariance matrix Σ by using Cholesky decomposition fails, when Σ is positive semi

definite. To still be able to decompose the matrix, we can use eigen value decomposition, but this is accompanied by a loss

of information due to the rank deficiency. The decomposition is then examined by Σ = UDUT , where U is a matrix with the

eigenvectors of Σ in each column and D is a diagonalmatrix of the eigenvalues. In this case, a decomposed matrix can be10

related to RT introduced in Sec 3.1. RT can be computed by U
√
D. In Sec. 3.1, we multiply RT with a normal distributed

noise time series of the same length as the rows of Σ. In this case, the number of normal distributed noise time series n is then

replaced by the rank of Σ.

Author contributions. HG, OE, and JK designed all computations and HG carried them out. HG prepared the manuscript with contributions

from OE and JK.15
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