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Abstract: Large-scale hydrologic simulations should account for attenuation through lakes 10 
and reservoirs when flow regulation is present. Generalized methods for approximating 11 
outflow are required since reservoir operation is complex and specific real-time release 12 
information is typically unavailable at global scales. There is currently no consensus on the 13 
best approach for approximating reservoir release rates in large spatial scale hydrologic 14 
forecasting. This research compares two parsimonious reservoir routing methods 15 
previously implemented in large-scale hydrologic modeling applications, requiring 16 
minimal data so as not to limit their usage. The methods considered are those proposed by 17 
Döll et al. (2003) and Hanasaki et al. (2006). This paper compares the two methodologies 18 
across 60 reservoirs operated from 2006-2012 by the U.S. Army Corps of Engineers. The 19 
authors vary empirical coefficients for both reservoir routing methods as part of a 20 
sensitivity analysis. The Döll method generally outperformed the Hanasaki method at a 21 
daily time step, improving model skill in most cases beyond run-of-the-river conditions. 22 
The temporal resolution of the model influences performance. The optimal model 23 
coefficients varied across the reservoirs in this study and model performance fluctuates 24 
between wet years and dry years, and for different configurations such as dams in series. 25 
Overall, the Döll and Hanasaki Methods could enhance large scale hydrologic forecasting, 26 
but can be subject to instability under certain conditions.    27 
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1. Introduction 28 

1.1. Importance of Dams in Hydrologic Simulations 29 

Improvements in numerical weather prediction, the increasing abundance of 30 

computational power, and greater precision of remotely sensed observations make global 31 

hydrologic forecasting and flood warning systems increasingly feasible (Alfieri et al., 32 

2013; Wu et al., 2014; Emerton et al., 2016; Salas et al., 2017). Lack of information 33 

concerning anthropogenic influences on runoff is a major deficiency of large-scale flood 34 

forecasting systems (Emerton et al., 2016). Reservoir operations tend to distort natural flow 35 

patterns, effectively redistributing surface water spatially and temporally (Zhou et al., 36 

2016). Impoundments significantly influence the downstream flow regime at small and 37 

large spatial scales (Batalla et al., 2004; Magilligan and Nislow, 2005). Over half of the 38 

world’s large river systems are now substantially altered by dams (Nilsson et al., 2005) 39 

resulting in a seven-fold increase in water storage within the global river system 40 

(Vörösmarty et al. 1997). Furthermore, the cumulative alterations from global reservoir 41 

impoundments are so significant that it has been suggested that they could buffer global 42 

sea-level rise (Chao et al., 2008).     43 

 Dams primarily impact the hydrologic cycle by changing the magnitude and timing 44 

of the discharges downstream (Haddeland et al., 2006; Döll et al., 2009; Biemans et al., 45 

2011; Wu et al., 2014; Zajac et al., 2017), often with the specific intent to mitigate 46 

hydrologic extremes (i.e., floods and droughts) (Zajac et al., 2017). Dams reduce peak 47 

discharges by roughly a third on average while dampening the daily variation by a similar 48 

amount (Graf, 2006). In hydrologic forecasting, accuracy of the timing and magnitude of 49 

hydrologic extremes is fundamentally important to the usefulness of the forecasts. 50 
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Therefore, the significant impacts from dams make inclusion of reservoir operations, or 51 

reservoir routing, critical.   52 

 At continental scales, no current forecasting operations systematically account for 53 

dam and reservoir influences (Emerton et al., 2016). Integrating dam operations within 54 

large-scale hydrologic models is shown to improve model performance downstream of 55 

reservoir locations (Snow et al., 2016; Tavakoly et al., 2017; Salas et al., 2017; Zajac et al., 56 

2017). This is often not feasible at large-scales since there may be multiple entities 57 

responsible for regulating flow, particularly with respect to transboundary waters. Among 58 

other things, operational knowledge, site-specific rule curves, reservoir uses, and local 59 

decision-making practices at each individual project dictate dam releases. Thus, dam 60 

operations are typically non-linear, complex processes, driven by anthropogenic and 61 

environmental influences. This makes generalizing reservoir operations difficult, 62 

particularly in the context of predicting dam-induced hydrologic responses. Heuristically 63 

accounting for dams within existing routing schemes should improve forecast results when 64 

scheduled releases are not readily known. 65 

 Reservoir routing methodologies are generally divided into the two basic 66 

categories: data-driven and non-data-driven. Machine-learning, artificial intelligence 67 

(Coerver et al., 2017; Macian-Sorribes and Pulido-Velazquez, 2017; Ehsani et al., 2016; 68 

Mohan and Ramsundram, 2016; Ticlavilca and McKee, 2011; Chaves and Chang, 2008; 69 

Khalil et al., 2005), and remote sensing (Bonnema et al., 2016; Yoon and Beighley, 2015) 70 

are examples of data-driven approaches. Such data-driven methodologies can be 71 

effectively applied to dynamic non-linear systems, particularly when the governing 72 

influence on the system does not follow any particular deterministic model. These types of 73 
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approaches require training data or specific knowledge of a particular reservoir to 74 

effectively parameterize and apply them. This is often an insurmountable limitation for 75 

data-driven approaches. For that reason, the focus of this paper is on non-data-driven 76 

reservoir routing methodologies as an incremental improvement over schemes that 77 

effectively neglect dams when information is scarce.  78 

1.2. Non-Data-Driven Reservoir Storage and Outflow Simulation 79 

Non-data-driven approaches to reservoir routing rely on conceptualizing reservoir 80 

responses without explicitly observing the actual reservoir operations. The optimal method 81 

for a given application depends on a balance between complexity and available information 82 

(De Vos, 2015). Therefore, this manuscript focuses on selecting for parsimony. 83 

Existing non-data-driven reservoir models range from simple approaches to 84 

sophisticated methods. Solander et al. (2016) showed that temperature-based schema best 85 

fits the modeling of discharge, 𝑄𝑜𝑢𝑡,𝑡 . The Solander et al. (2016) rule is driven by 86 

temperature shifts at each model time step above and below the mean temperature. The 87 

Solander et al. (2016) method indicates that temperature is the main proxy governing 88 

reservoir release, due to the assumption that seasonality drives agricultural production and 89 

reservoir operation. However, the Solander et al. (2016) study focuses on long-term 90 

climatic forecasting. Diurnal temperature variations will not likely describe day-to-day 91 

reservoir operations. Zhao et al., (2016) developed a reservoir routing scheme based on 92 

reservoir stage and storage rules. However, real-time insights related to current reservoir 93 

stages throughout a region can involve considerable remotely sensed information. The 94 

stage information must then be related somehow to storage volume making this a much 95 

more a data-driven process. Burek et al. (2013) also developed a non-data-driven approach 96 
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to reservoir routing which was implemented by Zajac et al. (2017). This approach is built 97 

into the LISFLOOD model. The Burek et al. (2013) model requires a number of 98 

assumptions about storage capacity limits and naturalized streamflow thresholds. For 99 

example, the minimum, normal, and maximum storage are assumed to be 0.1, 0.3, and 100 

0.97, respectively.  To maintain the objective of investigating parsimonious models, the 101 

approach by Burek et al. (2013) was not included in this evaluation. Döll et al. (2003) and 102 

Wisser et al. (2010) were presented non-data-driven methods to simulate reservoirs 103 

operation that can be considered as simple approaches.  104 

The Wisser et al. (2010) method follows a simple, rule-based approach to define 105 

the reservoir outflow at each time step (𝑄𝑜𝑢𝑡,𝑡). The rule that Wisser et al. (2010) enact is 106 

that when the inflow at each model time step moves above and below long-term average 107 

inflow, the behavior of the reservoir release changes. De Vos (2015) suggested that this 108 

model is too simple to effectively model reservoir outflow. Döll et al. (2003) derived a 109 

natural lake reservoir routing scheme. Hence, this methodology is applicable to man-made 110 

reservoirs and natural water bodies. The Döll et al. (2003) methodology found genesis in 111 

the reservoir outflow model proposed by Meigh et al. (1999). Meigh et al. (1999) proposed 112 

a simple reservoir release methodology, which intended to mimic outflow at reservoirs 113 

from a theoretical rectangular weir. A more substantive version of the Meigh et al. (1999) 114 

method is formulated by Döll et al. (2003). Despite its simplicity, the Döll method 115 

demonstrated good performance compared to several other methods previously mentioned 116 

(De Vos, 2015). Compared to the aforementioned methods, Hanasaki et al. (2006) derived 117 

a demand driven approach to reservoir routing, which can be considered as complicated 118 

non-data-driven reservoir routing model. They distinguished between irrigation and non-119 
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irrigation reservoirs and offered two distinct algorithms for each. Water demands for 120 

irrigation, domestic, and industrial uses are considered in the irrigation reservoirs, whereas 121 

the releases from non-irrigation reservoirs are simply a ratio of inflow. 122 

De Vos (2015) also proposed a within-year/over-year reservoir routing method, 123 

which they considered a non-data-driven approach. Within-year reservoir operations are 124 

driven by yearly fill and release cycles and typically have a small storage capacity relative 125 

to their total annual demand. Thus, water accumulates during wet periods and decreases 126 

during dry periods. Over-year reservoir operation, on the other hand, is based on long-term, 127 

multi-year drawdowns. Over-year reservoirs have storage which is sufficiently large, 128 

relative to inflow, so that yearly cycles of water storage and release are not necessary 129 

(Adeloye and Montaseri, 2000; Vogel et al., 1999). De Vos (2015) compared his 130 

methodology to the Hanasaki et al (2006), Döll et al. (2003), and Neitsch et al. (2011).  The 131 

De Vos (2015) over-year simulation assumes knowledge of the mean and standard 132 

deviation of reservoir storage and is still too data-driven for the purposes of this study.   133 

The non-data driven reservoir routing methods developed by Döll et al. (2003) and 134 

Hanasaki et al. (2006), which will be referred to as Döll and Hanasaki methods, were 135 

considered in this research for several reasons. Both models require minimal input data to 136 

implement. They consider only reservoir inflow and storage volume, i.e. current, minimum, 137 

and maximum storage volume that can be estimated when detailed reservoir information is 138 

not available. Additionally, both models have been implemented in large-scale hydrologic 139 

models. The Döll method was used in the WaterGAP model and the application of the 140 

Hanasaki method was implemented in the TRIP model by the same authors.  141 
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The aim of this study is to assess non-data-driven reservoir routing methods for use 142 

in hydrologic forecasting schemes applicable across the global domain. The Döll and 143 

Hanasaki methods were found to be sufficiently parsimonious for wide-scale 144 

implementation. The following research questions are addressed with respect to the two 145 

approaches: (1) How well do the chosen reservoir routing models improve outflow 146 

estimates relative to simulation of naturalized flow (i.e. neglecting dams altogether)? (2) 147 

How do reservoir routing coefficients affect model performance? (3) How does the time 148 

step affect model performance and stability? This is a critical point for the current regional- 149 

to continental-scale forecasting schemes that operate at daily, or sub-daily, time steps. (4) 150 

How sensitive are the reservoir routing schemes to various real-world dam operations and 151 

climate variability?  152 

To achieve research objectives of the study, reservoir data including daily inflow 153 

and outflow from 2006-2012, for 60 USACE reservoirs were used to evaluate the reservoir 154 

routing schemes. The data were obtained from nine USACE districts: Pittsburg, Nashville, 155 

St. Paul, Rock Island, Omaha, Tulsa, Sacramento, Los Angeles, and Vicksburg. The 156 

selected dams are representative of a wide range of reservoir sizes, flow regimes, and 157 

climatologic settings. The results of this analysis will benefit readers in determining if the 158 

reservoir routing models implemented within existing large-scale hydrologic models 159 

adequately represent reservoir effects.   160 
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2. Methodology 161 

2.1. Simulation Specifications 162 

The storage ratio (Vogel et al., 1999) or Impoundment Ratio (impoundment ratio) 163 

is an important metric in previous work generalizing reservoir operation by De Vos (2015) 164 

and Hanasaki et al., (2006). The impoundment ratio is described as follows: 165 

 166 

𝐼𝑅 =  
(𝑆𝑚𝑎𝑥−𝑆𝑚𝑖𝑛)

𝑄_𝑖𝑛∗86400∗365
         (1) 167 

 168 
where 𝑆𝑚𝑎𝑥 and 𝑆𝑚𝑖𝑛 are the maximum and minimum volumes of the reservoir’s active 169 

storage, and 𝑄_𝑖𝑛 is the mean annual inflow to the reservoir. 170 

A higher impoundment ratio indicates that the capacity of the reservoir is large 171 

relative to mean inflows, while the opposite is true of low IR values.  De Vos (2015) 172 

considered IR values greater than unity “large” reservoirs, as they are capable of storing 173 

the average yearly volume of water flowing into them. To utilize the Hanasaki method, the 174 

release coefficient (𝑘𝑟) needs to be determined. 175 

𝑘𝑟 =
𝑆𝑏𝑒𝑔𝑖𝑛

𝛼𝑆𝑚𝑎𝑥
          (2) 176 

 177 
where Sbegin is the storage at the beginning of the each year and 𝛼 is a dimensionless 178 

coefficient, which was set to 0.85 in the Hanasaki et al. (2006) study. In the current study, 179 

the 𝛼 parameter was varied from 0.45-0.95 by increments of 0.10 and solve 𝑘𝑟 for each 𝛼 180 

value.  181 

Outflow is the quantity of most interest for hydrologic forecasting. The Hanasaki 182 

Method relates outflow based on the incoming flow. In this study, only the non-irrigation 183 

methodology from the Hanasaki Method was used to simulate reservoir outflow at each 184 

time step (𝑄𝑜𝑢𝑡,𝑡) since one cannot assume seasonal irrigation demands will be known 185 
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globally. Further, the primary of selected reservoirs is not irrigation. Hanasaki estimates 186 

outflow as follows: 187 

 188 

𝑄𝑜𝑢𝑡,𝑡 =  {

𝑘𝑟𝑄𝑖𝑛,𝑡                                                                 (𝐼𝑅 = 0.5)

(
𝐼𝑅

0.5
)2𝑄𝑖𝑛,𝑡 +  𝑄𝑖𝑛,𝑡 {1 − (

𝐼𝑅

0.5
)

2

}                      (0 < 𝐼𝑅 < 0.5)
  (3) 189 

 190 
where 𝑄𝑖𝑛,𝑡 is the inflow at time t and 𝑘𝑟 is the release coefficient which is calculated based 191 

on Equation 2. The 0.5 threshold value for IR is an empirical condition derived by Hanasaki 192 

et al. (2006).  193 

Unlike Hanasaki method, the Döll method relates outflow ( 𝑄𝑜𝑢𝑡,𝑡 ) to current 194 

available storage capacity of the reservoir:   195 

𝑄𝑜𝑢𝑡,𝑡 =  
𝑘𝑟𝑑

Δ𝑡
(𝑆𝑡 − 𝑆𝑚𝑖𝑛)

(𝑆𝑡−𝑆𝑚𝑖𝑛)

(𝑆𝑚𝑎𝑥−𝑆𝑚𝑖𝑛)

1.5
      (4) 196 

 197 
Where Döll empirically derives the release coefficient, 𝑘𝑟𝑑  = 0.01, Δ𝑡 is the simulation 198 

time step (s), and 𝑆𝑡 is the current volume of storage at time “t”.  For analysis of the Döll 199 

methodology, 𝑘𝑟𝑑 was varied at values of 0.01, 0.02, 0.04, 0.06, 0.08, 0.10, 0.20, 0.40, 200 

0.50, 0.60, 0.70, 0.80, and 0.90 in this study. The results for the sensitivity analysis are 201 

discussed in the section 3.3. 202 

The sensitivity analysis can provide useful information on how coefficients may 203 

vary based on geographical and reservoir characteristics such as the impoundment ratio. 204 

The two methods were evaluated and results compared to actual outflow records provided 205 

by the USACE Districts. Two approaches were used to evaluate model performances: 206 

hydrograph assessment of daily and monthly reservoir outflow and statistical evaluation. 207 

the statistical evaluation was performed for daily and monthly averaged simulated results 208 

vs. observations using the Kling-Gupta efficiency (KGE, Gupta et al., 2009), coefficient of 209 
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determination (R-Squared), and root mean square error (RMSE). The KGE value ranges 210 

from negative infinity to one. Four levels of performance were defined for KGE in this 211 

study (Tavakoly et al., 2017): poor performance (KGE < 0), acceptable (0 < KGE < 0.4), 212 

good (0.4 < KGE < 0.7), and very good (0.7 < KGE). Goodness-of-fit values were 213 

evaluated to compare simulated discharge to the actual outflow records provided by the 214 

USACE Districts. These are indicators of how well the models perform. The same 215 

goodness-of-fit values are calculated to compare actual discharge with observed inflow to 216 

assess baseline performance. The baseline condition represents the treatment of reservoir 217 

outflow as naturalized, altogether neglecting reservoir operations. Thus, the baseline 218 

condition is that inflow into the reservoir equals outflow from the reservoir.  To be viable, 219 

the reservoir routing scheme should improve results over the baseline condition in virtually 220 

all cases. 221 

2.2. Study Area 222 

The model tests and evaluation were conducted on 60 reservoirs in the United States 223 

maintained by the U.S. Army Corps of Engineers (USACE).  Figure 1 illustrates reservoirs 224 

used in this study. The primary purpose of 43 of the reservoirs are flood control, six are 225 

hydroelectric, four are recreation, three are water supply, two are classified as other, one is 226 

irrigation, and one is a fish and wildlife pond. Table 1 describes pertinent characteristics 227 

of each reservoir in this analysis.  228 

 229 

 230 

 231 

 232 

10

https://doi.org/10.5194/hess-2019-264
Preprint. Discussion started: 4 July 2019
c© Author(s) 2019. CC BY 4.0 License.



 

 

 233 

Figure 1. USACE districts and location of reservoirs in this study. 234 
 235 
Table 1.  Select statistical characteristics of reservoirs analyzed in this study. 236 

Characteristic Minimum Maximum Mean Standard 
Deviation 

Minimum 
Storage 
(MCM) 

0 12,377 827 2,553 

Maximum 
Storage 
(MCM) 

25 32,070 2,695 6,184 

Annual Inflow 
(cms) 

0.64 780 118 202 

Annual 
Outflow (cms) 

0.66 776 113 195 

Impoundment 
Ratio 

0.03 15.50 1.96 2.33 

 237 

3. Results and Discussion 238 

3.1. Overall Model Performances 239 

The goodness-of-fit metrics were calculated for each reservoir in the study. 240 

Observed inflow is compared with observed outflow to establish a benchmark used to show 241 

whether implementing the two non-data driven reservoir routing schemes improves 242 
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estimates for reservoir outflow over simply treating as unregulated flow. Figure 2 illustrates 243 

the comparison of skill metrics between baseline (the use of inflow as an estimate of 244 

outflow) and the use of the Döll and Hanasaki methods to simulate outflow. The KGE, R-245 

Squared, and RMSE for the Döll and Hanasaki methods in Figure 2 represent the best fit 246 

results from the sensitivity study. Data points in Figure 2 that fall below the dashed line 247 

represent instances where KGE, R-Squared, and RMSE are lower for the reservoir routing 248 

method compared to the baseline. Data points falling above the dashed line indicate 249 

instances where higher KGE, R-Squared, and RMSE were obtained than the baseline for 250 

this study. The Hanasaki Method tends to produce minimal utility over the baseline 251 

scenario. In general, the Hanasaki Method does not appear to make outflow estimates 252 

worse. Estimates that have acceptable KGE values in the baseline scenario tend to produce 253 

acceptable results using the Hanasaki Method. On the other hand, Figure 2 illustrate that 254 

the Döll Method generally tends to increase KGE and R-Squared, and decrease RMSE.  255 

Thus, the general conclusion is that selecting the optimum Döll release coefficient will 256 

ultimately produce an improved estimate of reservoir outflow compared to the baseline.  257 

Generally, the Hanasaki Method will produce an estimated reservoir outflow that performs 258 
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similarly to the baseline scenario.    259 

 260 

Figure 3 is a geographic representation of the KGE values from the baseline 261 

scenario as well as the two routing models for each reservoir. In general, the Döll Method 262 

outperforms the baseline and Hanasaki Method, particularly in the Tulsa and Pittsburg 263 

Districts. Furthermore, the Döll Method tends to improve KGE values at nearly all 264 

reservoirs and tends to preserve high KGE values at locations where the baseline is already 265 

good or very good estimator of outflow. Figure 3a illustrates the wide range of reservoir 266 

operating conditions present in the study. The reservoir dataset contains reservoirs in which 267 

the outflow correlates poorly with the inflow regime as others that correlates well. Figure 268 

3a also portrays significant geographic clustering where reservoirs in certain regions tend 269 

 
Figure 2. Scatter plots of skill metrics between the use of daily observed inflow as outflow (Baseline) 

and simulated outflow.  The dashed line indicates the plane separating increased and decreased skill that 

results from using either reservoir routing method. 
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to be less correlated with inflow and other clusters where observed inflow and observed 270 

outflow correlate strongly. This could indicate that operations at these reservoirs may have 271 

a particularly regional context and may bias towards a particular reservoir routing scheme. 272 

However, it can be seen that correlation between observed inflow and observed outflow 273 

and geographic proximity of the reservoirs do not influence the implementation of either 274 

the Döll or Hanasaki method. Thus, the results of this research indicate no significant 275 

geographic constraints in the context of this study. 276 
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277 

 
Figure 3. Spatial distribution of KGE comparing observed daily outflow to the each estimate of 

outflow: a) observed inflow b) Döll Method simulated outflow, c) Hanasaki Method simulated outflow 

for all reservoirs in this study.  KGE values for the Döll Method and the Hanasaki Method are the 

maximum KGE from all coefficient treatments. 
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From multivariate comparison, a substantial negative relationship between two of the best 278 

fit results (KGE and R-Squared) and reservoir IR was found. Figure 4 illustrates this 279 

comparison between IR and each goodness of fit metric for the baseline, Döll, and 280 

Hanasaki methods. Based upon Figure 4, KGE in particular appears to non-linearly 281 

correlated to IR. A similar, yet less significant, negative relationship was found between 282 

IR and R-Squared. Little statistical correlation appears to occur between IR and RMSE. 283 

However, KGE and R-Squared values in Figure 4 indicate that the ability to predict outflow 284 

using the reservoir routing techniques applied in this study decreases with reservoir with 285 

high IR values. Proceeding sections investigate some of the possible reasons for this 286 

relationship between reservoir routing model performance and IR.   287 

 288 

Figure 4. Comparison of IR and KGE from goodness of fit metrics. 289 
 290 
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3.2. Sensitivity Analysis of Models 291 

Because the Döll method consistently outperforms the Hanasaki method at daily 292 

time steps, the Döll Method was selected for the sensitivity analysis at daily time steps. 293 

The value of 𝑘𝑟𝑑 coefficient was introduced as 0.01 in the Döll et al. (2003) study. In this 294 

study, 𝑘𝑟𝑑  values were varied to obtain maximum KGE and R-Squared and minimum 295 

RMSE.  Figure 5 demonstrates the dispersion of 𝑘𝑟𝑑 values which maximum the model 296 

skill to simulate reservoir routing for all selected reservoirs in this study. For all model skill 297 

metrics, 𝑘𝑟𝑑=0.90 tends to be the most prevalent 𝑘𝑟𝑑 value that maximizes model skill. In 298 

only two of the 60 reservoirs (Sardis Dam and Enid Dam) 𝑘𝑟𝑑 = 0.01 maximizes R-299 

Squared and minimizes RMSE for the range of 𝑘𝑟𝑑 coefficients. This research suggests 300 

 
Figure 5. Bar charts of 𝒌𝒓𝒅 values that maximize KGE and correlation and minimize nRMSE. 
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that the 𝑘𝑟𝑑 = 0.01  is not necessarily the optimum coefficient to maximize model 301 

performance.  302 

Investigating the linkage between dam characteristics and the best performing 𝑘𝑟𝑑 303 

yields no clear relationship. Evaluation of correlation between impoundment ratio, 304 

coefficient of variation of inflow, ratio of average inflow to average outflow, and 305 

geographic location shows low correlation between each variable and best performing 𝑘𝑟𝑑 306 

value. However, the range of best performing 𝑘𝑟𝑑 within this analysis and as demonstrated 307 

in Figure 5 suggests that the value is not constant across all reservoirs. Thus, as one 308 

implements the Döll Method within their hydrologic modeling framework, 𝑘𝑟𝑑  may be 309 

adjusted when comparing streamflow estimates to gage observations, like those curated by 310 

the Global Runoff Data Centre (GRDC, 2017). 311 

3.3. Dam Systems and Reservoir Routing  312 

Reservoirs in the Vicksburg and Omaha districts were selected to evaluate 313 

performance of the Döll Method in complex drainage systems. Although these reservoirs 314 

are not directly connected, the reservoir operators coordinate in order to minimize flooding 315 

in the Louisiana Delta regions near the mouth of the Mississippi River. The operation of 316 

these reservoirs presents an interesting case in which the non-date driven models in this 317 

study do not characterize the nature of the dam releases well. The modeled results at four 318 

Vicksburg District dams yield only minimal improvement over unregulated (i.e. 319 

naturalized) flow at these reservoirs. The decrease in reservoir routing performance can be 320 

attributed to the large impoundment ratios at these dams indicating the reservoir storage is 321 

large relative to annual volume of inflow. 322 
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The reservoirs of interest in the Vicksburg District include Arkabutla, Sardis, Enid, 323 

and Grenada. These dams function in parallel on tributaries of the lower Mississippi River, 324 

namely the Coldwater River, Little Tallahatchie River, Yocona River, and Yalobusha 325 

River, respectively. Together, these dams control flooding in northern Mississippi as part 326 

of the Yazoo Basin Headwaters Project (USACE, 2017; USACE, 1987). The Yazoo Basin 327 

reservoirs discharge directly into the heavily regulated Mississippi River (Meade and 328 

Moody, 2010). The reservoirs operate to ensure high releases are not concurrent with large 329 

flows upstream on the Mississippi to avoid devastating flooding to the low-lying Louisiana 330 

delta regions. This requires a high level of coordination throughout the Yazoo Basin 331 

Headwater Project and with regulation upstream on the Mississippi. Additionally, each of 332 

the Yazoo Basin reservoirs have a substantial impoundment ratio, ranging from 2.96-3.95. 333 

In other words, the reservoirs are capable of containing large volumes of water to mitigate 334 

downstream impacts. Thus, current pool levels and forecasted inflow at these four 335 

reservoirs do not substantially influence release decisions. The reservoirs also have the 336 

capacity to absorb large flood events. As a result, they do not seem follow the same 337 

functional form as other dams in this study. 338 

Figure 6 from Sardis Dam in the Yazoo Basin Headwaters Project demonstrates the 339 

hydrograph comparing observed inflow and outflow and the modeled outflow that provides 340 

the highest KGE (Döll method, krd=0.90) for the year 2008. Figure 6 demonstrates that 341 

peak outflows do not tend to correspond to the time at which peak inflow occurs. In fact, 342 

release rates at Sardis Dam are at a minimum during the peak inflow time period.  This 343 

pattern repeats at each of the reservoirs in the Yazoo Basin Headwaters Project indicating 344 

that inflow and consumed storage are not substantial predictors of outflow timing at these 345 
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reservoirs.  This exemplifies the lack of correlation between observed inflow and observed 346 

outflow at reservoirs within the Yazoo Basin Headwaters Project. 347 

 348 

Dams operating in series represent a specific case where compounding model error 349 

is a particular concern. USACE operates several large dams in series on the Missouri River. 350 

These include Fort Peck, Garrison, Oahe, Big Bend, Fort Randall, and Gavins Point within 351 

in the Omaha District (Lund and Ferreira, 1996). For this cascading system on the Missouri 352 

River, inflow appears to be a progressively stronger predictor of outflow from upstream to 353 

down. At the upstream end inflow yielded a KGE=0.43 at Fork Peck with a KGE=0.99 354 

downstream at Gavins Point Dam. Figure 7 provides a comparison of observed inflow and 355 

outflow along with simulated outflow for Gavins Point Dam. The Döll method tends to 356 

 
Figure 6. Hydrographs of observed inflow and outflow versus simulated outflow with the highest KGE 

value at Sardis Dam (Döll method kr=0.90). KGE comparing observed Inflow and outflow = - 0.34; 

KGE comparing simulated and observed outflows= 0.095 
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provide a slightly better estimate of outflow compared with inflow, except in the instance 357 

of Big Bend Dam. At Big Bend Dam, the Hanasaki method produces an estimate of outflow 358 

more consistent with observed outflow than either the Döll method or inflow alone. 359 

However, the differences are almost trivial considering how well inflow alone performed 360 

in this case. The Döll method is particularly accurate during peak inflow conditions, for 361 

example the large hydrologic event in mid-2011 at Gavins Point Dam in Figure 7. The 362 

performance of non-data driven approaches in this instance is promising since 363 

compounding errors are a large concern in this type of system. Other instances involving 364 

dams in series should be evaluated to find out if these findings hold more generally. 365 

 366 

The reservoir management is unique in both the Yazoo Basin Headwaters Project 367 

and the Missouri River. The operators of dams within the Yazoo Basin Headwaters Project 368 

 
Figure 7. Hydrographs of observed inflow and outflow versus simulated outflow with the highest KGE 

value at Gavins Point Dam (Döll method kr=0.04). KGE comparing observed Inflow and outflow = 

0.99; KGE comparing simulated and observed outflows= 0.99.  

21

https://doi.org/10.5194/hess-2019-264
Preprint. Discussion started: 4 July 2019
c© Author(s) 2019. CC BY 4.0 License.



 

 

tend to regulate outflow in a manner that is more in line with downstream conditions. The 369 

attention to downstream conditions is due mainly to the impact that downstream floods will 370 

have on the low-lying communities within the Louisiana Delta. The dams in the Yazoo 371 

Basin Headwaters Project have among the highest impoundment ratios, which inherently 372 

reduces the influence of upstream conditions in discharge decisions. The non-data driven 373 

approaches evaluated here do not account for downstream conditions and thus do not 374 

perform well in this instance, particularly where large impoundment ratios allow operators 375 

considerable leeway.  376 

On the other hand, the non-data driven approaches tend to perform well when 377 

inflow conditions dictate discharge decisions as we see on the Missouri River system. 378 

Reservoirs with smaller impoundment ratios are naturally more responsive to inflow 379 

requiring greater consideration for upstream conditions. The Döll Method showed 380 

relatively small improvement of outflow estimates compared to inflow as a predictor of 381 

outflow in the Yazoo Basin Reservoirs, while the method provided reasonable estimates in 382 

dam systems like the Missouri River system. Therefore, it can be inferred that the Döll 383 

method is more applicable for dam systems where reservoir management focuses on 384 

upstream hydrologic conditions, while large impoundment ratios may be indicative of 385 

reservoirs where downstream conditions are more likely to prevail. This would likely apply 386 

for the Hanasaki Method as well since that method links outflow more directly. 387 

3.4. Wet and Dry Year Comparison 388 

Figure 8 shows results for wet and dry years at two reservoirs considered to be 389 

representative of this study. The Döll Method provides a relatively good estimate of 390 

outflow at Union City Dam (Pittsburg District) in Figure 8a and Figure 8c.  It performs 391 
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relatively poorly at Arcadia Lake (Tulsa District) in Figure 8b and Figure 8d. In the case 392 

of Union City Dam, the Döll Method tends to produce a noticeable improvement in model 393 

skill during both a relatively wet year and a relatively dry year. The performance (Figure 394 

8a and Figure 8c) seems to be independent of wet or dry conditions, at least on an annual 395 

basis. This does not hold for Arcadia Lake. The model shows modest skill at Arcadia Lake 396 

during the wet year (Figure 8b), but almost none during the dry year.   397 

There appears to be a difference in the timing discharges between at the two 398 

locations in Figure 8. The Döll Method appears to estimate the right amount of volume 399 

released during the wet year at Arcadia Lake (Figure 8b).  However, the actual release is 400 

delayed from the estimate given by the model. The lag could indicate that water is being 401 

retained, possibly for use in irrigation or domestic supply. In this instance, Arcadia Lake 402 

supplies water to the city of Edmond, Oklahoma which may influence release decisions 403 

(Arcadia Lake Park Office, 2018),  404 

The Döll Method performs much more poorly during the 2006 dry year at Arcadia 405 

Lake (Figure 8d). The model does not predict the sporadic releases throughout the year. 406 

The inflow events in that year are not substantial enough to affect storage meaningfully, 407 

thus we see almost no response in the modeled output. Observed outflows demonstrate that 408 

beyond two relatively high-volume reservoir releases during 2006, the reservoir releases 409 

are restricted to practically no outflow the rest of the year. The Döll Method does not 410 

anticipate the two large releases, as the reservoir storage does not dramatically shift in 411 

either instance. Arcadia Dam appears to be operating in a conservation mode for nearly the 412 

entire year. The Döll Method does not account for this. Instead, it estimates a near constant 413 

discharge over the entire year with almost no storage change. 414 
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Results for wet years and dry years appear to be fairly mixed. Indications are that 415 

the performance of the Döll Method could be somewhat site specific. However, reservoirs 416 

that tend to be less responsive to storage fluctuations are not represented well in the Döll 417 

Method since storage fluctuations drive the model. Arcadia Lake has an IR of about 4.75 418 

which is relatively high. Union City Dam has an IR of about 0.24, which is relatively low. 419 

IR is a good indicator of reservoir responsiveness to storage fluctuations.  A lack of 420 

reservoir responsiveness to storage fluctuations could result in two different types of error 421 

when the Döll Method is implemented within a large-spatial-scale hydrologic model. First, 422 

forecasted outflow could easily mistime a hydrologic event, particularly during wet years, 423 

as Figure 8b demonstrates. Second, the authors anticipate that if the storage does not 424 

dramatically fluctuate during a dry year the estimated reservoir release likely will not 425 

anticipate sporadic releases for irrigation and other purposeful discharges. Unaccounted 426 

for, these large but short duration releases may lead to a consistent overestimation of 427 

reservoir outflow for the entire dry year period.   428 
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Figure 8. Two reservoirs where the Döll Method tends to perform very good and poor: outflow: a) wet year 

Union City Dam 2011; b) wet year Arcadia Lake 2007; c) dry year Union City Dam 2012; and d) dry year 

Arcadia Lake 2006. 

 429 

3.5. Effects of Time Step on Model Performance 430 

Model comparisons are conducted for daily and monthly time steps. Table 2 431 

illustrates the results at Fort Peck, Garrison Dam, Oahe Dam, and Fort Randall Dam, each 432 

of which appears in the Hanasaki et al. (2006) study and this research. Table 2 also contains 433 

Sardis Dam, Mosquito Creek Dam, and Prado Dam, which are not included in Hanasaki et 434 

al. (2006). Results illustrate that the time scale can influence simulation results. The 435 

monthly comparison amongst Fort Peck, Garrison, Oahe, and Fort Randall is in agreement 436 

with the conclusions of Hanasaki et al. (2006). However, when the simulation time step 437 

changes to a daily time step, the skill of Hanasaki Method and the Döll method reverse and 438 

the Döll method tends to outperform the Hanasaki Method. In additional reservoirs (Sardis 439 

(a): Union City, Representative Wet Year (2011) 

(c): Union City, Representative Dry Year (2012) 

(b): Arcadia Lake, Representative Wet Year (2007) 

(d): Arcadia Lake, Representative Dry Year (2006) 
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and Prado), the results indicate that the Döll method outperformed the Hanasaki Method at 440 

both daily and monthly time steps, based upon KGE. However, the results at Mosquito 441 

Creek reservoir tend to follow the original Hanasaki et al. (2006) results.   442 

The time-scale effect upon model performance may relate to how well observed 443 

inflow correlates with observed outflow. Examining Table 2, Hanasaki Method 444 

outperforms the Döll Method when observed inflow and observed outflow are relatively 445 

well correlated. The effect is nullified when the inverse is true. The Hanasaki Method 446 

estimates outflow as a ratio of inflow, which may be a better estimate of outflow at the 447 

monthly time scale, particularly when discharge tracks closely with inflow. However, the 448 

Hanasaki Method will fluctuate at the smaller time steps due to inherent variations in 449 

inflow. The Döll Method tends to vary less at a daily time step and may be a better estimate 450 

of outflow at sub-monthly time steps.   451 

The hydrographs from Fort Randall Dam further illustrate the relationships between 452 

time step and model skill, particularly during high flow events. Daily and monthly 453 

comparisons between observation and simulations for Fort Randall Dam are shown in 454 

Figure 9. This figure compares the daily and monthly simulations with observations. Figure 455 

9a shows that the Hanasaki simulations perform better than the Döll Method for monthly 456 

time steps, particularly during the high inflow events in 2011.  The Döll method tends to 457 

overestimate reservoir outflow, while the Hanasaki Method correlates well with inflow and 458 

better matches the peak flow of 2011. At a diurnal time step (Figure 9b), the Hanasaki 459 

Method tends to be hypersensitive to inflow variations and overestimates outflow, whereas 460 

the Döll method provides a better approximation of outflow during the 2011 high flow 461 

event.  462 

26

https://doi.org/10.5194/hess-2019-264
Preprint. Discussion started: 4 July 2019
c© Author(s) 2019. CC BY 4.0 License.



 

 

 463 

It is possible that the conclusions of Hanasaki et al. (2006) suggesting better 464 

performance of the Hanasaki Method at the monthly-scale depend on how closely 465 

discharge from the dam tracks inflow. The Döll method may be a better candidate for 466 

integration into daily flow forecasting models.  467 

Table 2. Comparison of daily and monthly KGE values at selected reservoirs. The α and krd values 

represent the highest KGE values for Hanasaki and Döll methods respectively. 

Reservoir 
Daily KGE Monthly KGE 

Inflow Hanasaki Döll Inflow Hanasaki Döll 

Fort Peck 

α=0.95 krd=0.04 
0.43 0.53 0.78 0.54 0.62 0.51 

Garrison Dam  

α=0.95 krd=0.06 
0.73 0.76 0.88 0.78 0.80 0.59 

Oahe Dam 

α=0.95 krd=0.20 
0.78 0.81 0.83 0.84 0.86 0.76 

Fort Randall Dam 

α=0.95 krd=0.20 
0.91 0.88 0.95 0.96 0.93 0.67 

Sardis Dam 

α=0.95 krd=0.90 
-0.34 -0.17 0.09 0.06 -0.03 0.16 

Mosquito Creek Dam 

α=0.45 krd=0.70 
-0.46 -0.29 0.51 0.49 0.60 0.39 

Prado Dam  

α=0.95 krd=0.50 
-0.02 0.01 0.61 0.32 0.61 0.71 
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 468 

 

 
Figure 9. Comparison of simulated outflow for the Fort Randall Dam with Hanasaki and Döll methods 

for (a) monthly and (b) daily time steps 

(A) 

(B) 
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3.6. Model Stability 469 

Although the Döll Method outperformed the Hanasaki Method when using a daily 470 

time step, the Döll Method demonstrated some instability for high 𝑘𝑟𝑑  values. This 471 

instability occurs at three reservoirs in this study. The cause of the instability is a 472 

combination of a reservoir having a low impoundment ratio and a sharp change in the 473 

inflow to a reservoir. For instance, inflow into Old Hickory Dam in the Nashville District 474 

(IR = 0.04) increased by roughly two orders of magnitude in a matter of a few days in May 475 

2010. During this event, the available storage filled up, necessitating a substantial increase 476 

in release flow to prevent overtopping.  This occurred within a single time step in the model 477 

(Döll Method) and the outflow responded in kind in the next subsequent time step which 478 

then drained the reservoir below the specified minimum storage resulting in a non-479 

computable imaginary number as the next solution.  480 

Several solutions are posited to address Döll Method instability. One solution could 481 

be to varying 𝑘𝑟𝑑 values dynamically to mimic reservoir behavior. During large hydrologic 482 

events the value of 𝑘𝑟𝑑 could reduce the peak of the outflow hydrograph, and then increase 483 

during normal events. Another solution is the inclusion of rules and an expanded system 484 

of equations that govern the solution. Because the intention of the Döll Method is to 485 

approximate flow at a free-flowing weir, coupling operational rules with the simulation 486 

may better approximate reality.  The rules may be as simple as switching behavior or the 487 

algorithm when storage approaches either minimum or maximum reservoir storage. A 488 

simple condition was tested for when storage drops below the minimum storage during the 489 

daily time step: 490 
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This condition prevents the reservoir from falling below the minimum storage. Outflow 492 

from Old Hickory Dam was re-simulated with 𝑘𝑟𝑑 = 0.9 and the new minimum storage 493 

condition (Equation 5). The proposed modification resulted in simulated outflow shown in 494 

Figure 10. Outflow is substantially overestimated for one-time step and drops to zero at the 495 

next time step. While an oversimplification of actual operations, this condition is similar 496 

to an emergency spillway discharge to prevent overtopping. The dam releases tremendous 497 

flow for a brief period, when the maximum storage is nearly exceeded and then inhibits the 498 

discharge when the storage is at the minimum capacity. The benefit of this modification is 499 

that additional reservoir information is not required. However, further testing and 500 

evaluation should be performed to validate this refinement. 501 
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 502 

3.7. Limitations 503 

This study is limited to models that require only reservoir inflow and storage, 504 

primarily to provide insight into the reliability of these measures as indicators of reservoir 505 

outflow. The inclusion of additional demand and evapotranspiration parameters could 506 

improve the results, but could also add considerable uncertainty. Of the two models, only 507 

Hanasaki et al. (2006) currently includes an estimate for withdrawals of any nature.  508 

Another limitation of this study is the inflow that drives the simulations. All inflow 509 

utilized in this study, except for the Nashville district, is back-calculated from observed 510 

changes in storage and known discharges. This indirect method can lead to negative inflow 511 

values when losses due to seepage, evapotranspiration, or other types of withdrawals are 512 

Figure 10.  Outflow simulation for the Old Hickory Dam using the proposed modification of the Doll 

method for krd=0.4. 
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underestimated. De Vos (2015) also noted that they used back-calculated inflow in their 513 

study. It is unclear whether Hanasaki et al. (2006) made use of direct observations, but it 514 

is worth noting that direct observations of total reservoir inflow are difficult to acquire. 515 

3.8. Future Work 516 

The non-data driven approaches evaluated consistently improved simulated 517 

streamflow estimates over naturalized flow conditions suggesting these approaches can 518 

potentially improve global streamflow forecasting. The Döll Method performed 519 

particularly well at daily time steps commensurate with many large-scale stream routing 520 

models. The incorporation of the Döll Method into to the RAPID code, a large-scale river 521 

routing model for simulating streamflow throughout distributed stream networks over large 522 

spatial extents (David et al., 2011), is under development. This will enable widespread 523 

testing and evaluation over large hydrologically diverse areas. 524 

Reservoir routing schemes could be enhanced by assimilating remotely sensed data, 525 

e.g. near real-time changes in storage resolved from satellite altimetry, and eventually the 526 

planned NASA Surface Water and Ocean Topography (SWOT) Mission. This information 527 

could constrain reservoir simulations to improve global streamflow forecasts (Yoon and 528 

Beighley, 2015). These simulations could provide the training data necessary for more data 529 

intensive reservoir routing approaches, e.g. applying Artificial Intelligence and Machine 530 

Learning techniques to infer reservoir rule curves. Eventually, global streamflow 531 

forecasting models should leverage all available data to account for anthropogenic 532 

influence, utilizing techniques that range from simple to extremely complex.  533 
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4. Conclusions 534 

This research compares two parsimonious reservoir routing methods that have 535 

previously been implemented in large-scale hydrologic modeling applications, namely the 536 

Döll and Hanasaki Methods. These methods were compared across 60 USACE operated 537 

reservoirs at a daily time step. Results show that the Döll Method tends to outperform the 538 

Hanasaki Method at a daily time step. An in depth examination of these results yields the 539 

following conclusions. 540 

 The complexity and data requirements of both Döll and Hanasaki Methods are low 541 

and thus computationally inexpensive. Both can be feasibly implemented at large 542 

spatial scales at a daily or sub-daily time step.  543 

 There is a significant relationship between reservoir IR and two of the skill metrics 544 

applied (KGE and R-Squared). Given that reservoirs with high IR typically are less 545 

responsive to short-term fluctuations in inflow and storage, the correlation between 546 

these variables is plausible.  Further investigation of dam characteristics, such as if 547 

the dams operate in series or in parallel and wet and dry year considerations are 548 

further evidence of the correlation between the IR and Döll and Hanasaki Methods. 549 

 Simulation time step plays an important part in reservoir routing skill. The 550 

comparison of the two methods by Hanasaki et al. (2006) are based on monthly 551 

reservoir outflows and conclusions may not hold within diurnal forecasting 552 

schemes. At overlapping locations, this study replicates the results reported by 553 

Hanasaki et al. for monthly time steps. However, the Hamasaki et al. findings do 554 

not hold for a daily time step.   555 
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 The best value for the empirical Döll coefficient, 𝑘𝑟𝑑, can vary. Optimal values 556 

were typically greater than the krd=0.01 value which Döll et al. (2003) derived. This 557 

suggests that 𝑘𝑟𝑑  could be a potential calibration parameter within a large-scale 558 

hydrologic modeling framework much like a weir coefficient, which is specific to 559 

a particular type of weir.  560 

 The Yazoo Basin Headwaters Project (USACE, 2017; USACE, 1987) is an 561 

interesting case study in how reservoir system complexity can be difficult to model. 562 

The Yazoo Basin Headwaters Project considers downstream flow conditions as the 563 

dominant criteria in dam operation. Thus, the inflow and available storage volume 564 

are poor predictors for determining reservoir discharge in this type of management 565 

scheme. The Döll Method appeared to scale flow correctly at these reservoirs and 566 

improve reservoir overall skill, but timing of the releases well represented and thus 567 

skill improvement is only minimal.   568 

 Dam discharges in the Missouri River Reservoir System (Lund and Ferreira, 1996) 569 

are more correlated with storage volume and inflow conditions, which lends itself 570 

to the two non-data-driven approaches evaluated here. The Döll Method is 571 

particularly capable of accurately modeling reservoir outflows in reservoir systems 572 

that correlate well with storage and inflow fluctuations. Concerns related to model 573 

error being compounded through a series dams may be mitigated somewhat by the 574 

fact that inflow appears to be a progressively stronger predictor of outflow further 575 

downstream in these types of systems. 576 

 Numerical stability of the Döll Method is a concern, particularly with higher 𝑘𝑟𝑑 577 

values. These stability concerns originate at reservoirs with small active storage 578 
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capacity during high inflow events. Additional model refinement can overcome 579 

these stability concerns. 580 

 The Döll Method showed minimal bias during relatively wet and dry years. Timing 581 

of releases can be influenced by wet years and the magnitude appears to be affected 582 

during dry years. The Döll Method appears to be most applicable for dam systems 583 

where reservoir management focuses on upstream hydrologic conditions. Large 584 

impoundment ratios could indicate reservoirs where downstream conditions are 585 

more likely to influence release decisions at the reservoir.   586 

  587 
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