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Abstract. Large-scale hydrologic forecasts should account
for attenuation through lakes and reservoirs when flow reg-
ulation is present. Globally generalized methods for approx-
imating outflow are required but must contend with opera-
tional complexity and a dearth of information on dam charac-
teristics at global spatial scales. There is currently no consen-
sus on the best approach for approximating reservoir release
rates in large spatial scale hydrologic forecasting, particu-
larly at diurnal time steps. This research compares two par-
simonious reservoir routing methods at daily steps: Döll et
al. (2003) and Hanasaki et al. (2006). These reservoir routing
methods have been previously implemented in large-scale
hydrologic modeling applications and have been typically
evaluated seasonally. These routing methods are compared
across 60 reservoirs operated by the U.S. Army Corps of
Engineers. The authors vary empirical coefficients for both
reservoir routing methods as part of a sensitivity analysis.
The method proposed by Döll et al. (2003) outperformed that
presented by Hanasaki et al. (2006) at a daily time step and
improved model skill over most run-of-the-river conditions.
The temporal resolution of the model influences model per-
formances. The optimal model coefficients varied across the
reservoirs in this study and model performance fluctuates be-
tween wet years and dry years, and for different configura-
tions such as dams in series. Overall, the method proposed
by Döll et al. (2003) could enhance large-scale hydrologic

forecasting, but can be subject to instability under certain
conditions.

1 Introduction

1.1 Importance of dams in hydrologic simulations

Improvements in numerical weather prediction, the increas-
ing abundance of computational power, and greater preci-
sion of remotely sensed observations make global hydrologic
forecasting and flood warning systems increasingly feasible
(Alfieri et al., 2013; Wu et al., 2014; Emerton et al., 2016;
Salas et al., 2017). Lack of information concerning anthro-
pogenic influences on runoff is a major deficiency of large-
scale flood forecasting systems (Emerton et al., 2016). Reser-
voir operations tend to distort natural flow patterns, effec-
tively redistributing surface water spatially and temporally
(Zhao et al., 2016). Impoundments significantly influence the
downstream flow regime at small and large spatial scales
(Batalla et al., 2004; Magilligan and Nislow, 2005). Over
half of the world’s large river systems are now substantially
altered by dams (Nilsson et al., 2005) resulting in a seven-
fold increase in water storage within the global river system
(Vörösmarty et al., 1997). Furthermore, the cumulative alter-
ations from global reservoir impoundments are so significant
that it has been suggested that they could buffer global sea-
level rise (Chao et al., 2008).
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Dams primarily impact the hydrologic cycle by chang-
ing the magnitude and timing of the discharges downstream
(Haddeland et al., 2006; Döll et al., 2009; Biemans et al.,
2011; Wu et al., 2014; Zajac et al., 2017), often with the spe-
cific intent to mitigate hydrologic extremes (i.e., floods and
droughts) (Zajac et al., 2017). Dams reduce peak discharges
by roughly a third on average while dampening the daily vari-
ation by a similar amount (Graf, 2006). In hydrologic fore-
casting, accuracy of the timing and magnitude of hydrologic
extremes is fundamentally important to the usefulness of the
forecasts. Therefore, the significant impacts from dams make
inclusion of reservoir operations, or reservoir routing, critical
in large-scale hydrologic flood forecasting.

Integrating dam operations within large-scale river routing
and flood forecasting improves model performance down-
stream of reservoir locations (Snow et al., 2016; Tavakoly et
al., 2017; Salas et al., 2017; Zajac et al., 2017). This is often
not feasible at large scales since there may be multiple enti-
ties responsible for regulating flow, particularly with respect
to transboundary waters. Among other things, operational
knowledge, site-specific rule curves, reservoir uses, and lo-
cal decision-making practices at each individual project dic-
tate dam releases. Thus, dam operations are typically non-
linear, complex processes, driven by anthropogenic and en-
vironmental influences. This makes generalizing reservoir
operations difficult, particularly in the context of predicting
dam-induced hydrologic responses at diurnal or sub-diurnal
time steps. Heuristically accounting for dams within existing
routing schemes should improve flood forecast results when
scheduled releases are not readily known.

Reservoir routing methodologies are generally divided
into two basic categories: data-driven and non-data-driven.
Machine-learning, artificial intelligence (Coerver et al.,
2018; Macian-Sorribes and Pulido-Velazquez, 2017; Ehsani
et al., 2016; Mohan and Ramsundram, 2016; Ticlavilca and
McKee, 2011; Chaves and Chang, 2008; Khalil et al., 2005),
and remote sensing (Bonnema et al., 2016; Yoon and Beigh-
ley, 2015) are examples of data-driven approaches. Such
data-driven methodologies can be effectively applied to dy-
namic non-linear systems, particularly when the governing
influence on the system does not follow any particular de-
terministic model. These types of approaches require train-
ing data or specific knowledge of a particular reservoir to
effectively parameterize and apply them. This is often an in-
surmountable limitation for data-driven approaches. For that
reason, the focus of this paper is on non-data-driven reservoir
routing methodologies as an incremental improvement over
schemes that effectively neglect dams when information is
scarce.

1.2 Non-data-driven reservoir storage and outflow
simulation

Non-data-driven approaches to reservoir routing rely on con-
ceptualizing reservoir responses without explicitly observing

the actual reservoir operations. The optimal method for a
given application depends on a balance between complex-
ity and available information (De Vos, 2015). Therefore, this
paper focuses on selecting for parsimony.

Existing non-data-driven reservoir models range from
simple approaches to sophisticated methods. Solander et
al. (2016) showed that a temperature-based schema best fits
the modeling of discharge,Qout, t . The Solander et al. (2016)
rule is driven by temperature shifts at each model time step
above and below the mean temperature. The Solander et
al. (2016) method indicates that temperature is the main
proxy governing reservoir release, due to the assumption that
seasonality drives agricultural production and reservoir op-
eration. However, the Solander et al. (2016) study focuses
on long-term climatic forecasting. Diurnal temperature vari-
ations are not likely to describe day-to-day reservoir op-
erations. Zhao et al. (2016) developed a reservoir routing
scheme based on reservoir stage and storage rules. However,
real-time insights related to current reservoir stages through-
out a region can involve considerable remotely sensed infor-
mation. The stage information must then be related somehow
to storage volume making this a much more data-driven pro-
cess. Burek et al. (2013) also developed a non-data-driven
approach to reservoir routing which was implemented by Za-
jac et al. (2017). This approach is built into the LISFLOOD
model. The Burek et al. (2013) model requires a number
of assumptions about storage capacity limits and naturalized
streamflow thresholds. For example, the minimum, normal,
and maximum storage values are assumed to be 0.1, 0.3, and
0.97, respectively. To maintain the objective of investigating
parsimonious models, the approach by Burek et al. (2013)
was not included in this evaluation.

Döll et al. (2003), Wada et al. (2014), and Wisser et
al. (2010) presented non-data-driven methods to simulate
reservoir operation that can be considered as simple ap-
proaches. The Wisser et al. (2010) method follows a simple,
rule-based approach to define the reservoir outflow at each
time step (Qout,t ). The rule that Wisser et al. (2010) enacts
is that when the inflow at each model time step moves above
or below the long-term average inflow, the behavior of the
reservoir release changes. De Vos (2015) suggested that this
model is too simple to effectively model reservoir outflow. In
a similar vein, Wada et al. (2014) introduced a daily estimate
of reservoir outflow that is simply the product of the pro-
portion of available reservoir storage and daily inflow, which
can be too simplistic to estimate reservoir outflow since no
coefficient is introduced into the simulation to account for
reservoir heterogeneity.

Döll et al. (2003) derived a reservoir routing scheme that
can be applied to man-made reservoirs and natural water
bodies. The Döll et al. (2003) methodology found gene-
sis in the reservoir outflow model proposed by Meigh et
al. (1999). Meigh et al. (1999) proposed a simple reservoir
release methodology, which intended to mimic outflow at
reservoirs from a theoretical rectangular weir. A more sub-
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stantive version of the Meigh et al. (1999) method is formu-
lated by Döll et al. (2003). Despite its simplicity, the Döll
et al. (2003) method demonstrated good performance com-
pared to several other routing methods (De Vos, 2015). The
form of the Döll et al. (2003) equation is similar to that pro-
posed by Wada et al. (2014). However, the Döll et al. (2003)
methodology incorporates a coefficient that can incorporate
a portion of reservoir heterogeneity.

Compared to the aforementioned methods, Hanasaki et
al. (2006) derived a demand-driven approach to reservoir
routing, which can be considered a complicated non-data-
driven reservoir routing model. They distinguished between
irrigation and non-irrigation reservoirs and offered two dis-
tinct algorithms for each. Water demands for irrigation, do-
mestic, and industrial uses are considered in the irrigation
reservoirs, whereas the releases from non-irrigation reser-
voirs are simply a proportion of inflow.

De Vos (2015) also proposed a within-year/over-year
reservoir routing method comprised of two systems of equa-
tions, which was considered a non-data-driven approach.
Within-year reservoir operations are driven by yearly fill and
release cycles and typically have a small storage capacity
relative to their total annual demand. Thus, water accumu-
lates during wet periods and decreases during dry periods.
Over-year reservoir operation, on the other hand, is based
on long-term, multi-year drawdowns. Over-year reservoirs
have storage which is sufficiently large, relative to inflow, so
that yearly cycles of water storage and release are not neces-
sary (Adeloye and Montaseri, 2000; Vogel et al., 1999). De
Vos (2015) compared his methodology to those of Hanasaki
et al. (2006), Döll et al. (2003), and Neitsch et al. (2011).
The De Vos (2015) over-year simulation assumes knowledge
of the mean and standard deviation of reservoir storage and
is still too data-driven for the purposes of this study. Table 1
summarizes each of the inputs required by each non-data-
driven approach described above.

The Döll et al. (2003) and Hanasaki et al. (2006) require
minimal input data to implement: reservoir inflow, average
inflow, and storage volume characteristics. Each of these
variables are available in existing datasets, such as the Global
Reservoir and Dam (GRanD) database (Lehner et al., 2011)
or can be generated using climate reanalysis data (Snow et
al., 2016). Other non-data-driven methods require data in-
puts that are not globally available or produced within the
hydrologic simulation (De Vos, 2015; Zhao et al., 2016; Bu-
rek et al., 2013; Zajac et al., 2017). For example, the Global
Flood Awareness System (GloFAS) is the only existing oper-
ational flood forecasting system that accounts for reservoirs
at continental to global spatial extents. However, the reser-
voir routing component of GloFAS requires operational as-
sumptions be made because of a lack of global reservoir op-
erational records (Zajac et al., 2017). Döll et al. (2003) (here-
after referred to as D03) and Hanasaki et al. (2006) (hereafter
referred to as H06) do not require that these assumptions
be made because of the minimal inputs which they require.

Thus, D03 and H06 meet the requirements of being parsimo-
nious with respect to available reservoir information.

The Döll et al. (2003) and Hanasaki et al. (2006) meth-
ods also provide enough complexity to account for a portion
of the model complexity inherent in reservoir operations. De
Vos (2015) does not employ the reservoir routing approach of
Wisser et al. (2010) and neither does this research, as it does
not account for the status of the reservoir storage at each sim-
ulation time step. The approach taken by Wada et al. (2014)
is similar to D03 but represents reservoirs with similar inflow
and storage characteristics homogeneously.

Furthermore, D03 and H06 methods have been imple-
mented in large-scale hydrologic models. D03 was used in
the WaterGAP model and the application of H06 was imple-
mented in the TRIP model by the same authors. The main
difference in this evaluation and previous evaluations (i.e.,
Hanasaki et al., 2006; Masaki et al., 2017) of these reservoir
routing schemes is that this research evaluates model perfor-
mance at a diurnal time step.

The aim of this study is to assess non-data-driven reservoir
routing methods that are parsimonious and align with avail-
able information for use in hydrologic forecasting schemes
applicable across the global domain at diurnal time steps.
Considering these research aims, the non-data-driven reser-
voir routing methods developed by Döll et al. (2003) and
Hanasaki et al. (2006) were considered.

The following research questions are addressed with re-
spect to the D03 and H06 approaches: (1) How well do the
selected reservoir routing models improve outflow estimates
relative to simulation of naturalized flow (i.e., neglecting
dams altogether)? (2) How do reservoir routing coefficients
affect model performance? (3) How does the time step affect
model performance and stability? This is a critical point for
the current regional- to continental-scale forecasting schemes
that operate at daily or sub-daily time steps. (4) How sensi-
tive are the reservoir routing schemes to various real-world
dam operations and climate variability?

To achieve the research objectives of the study, reservoir
data including daily inflow and outflow from 2006–2012
for 60 U.S. Army Corps of Engineers (USACE) reservoirs
were used to evaluate the reservoir routing schemes. The
data were obtained from nine USACE districts: Pittsburg,
Nashville, St. Paul, Rock Island, Omaha, Tulsa, Sacramento,
Los Angeles, and Vicksburg. The selected dams are repre-
sentative of a wide range of reservoir sizes, flow regimes,
and climatologic settings but are predominately managed for
flood control. The results of this analysis will benefit readers
in determining if the reservoir routing models implemented
within existing, large-scale hydrologic forecasts adequately
represent reservoir effects.

www.hydrol-earth-syst-sci.net/24/1/2020/ Hydrol. Earth Syst. Sci., 24, 1–19, 2020



4 J. L. Gutenson et al.: Comparison of generalized non-data-driven models

Table
1.Inputrequirem

ents
forthe

various
reservoirrouting

m
ethods.

B
urek

etal.
Z

hao
etal.

D
e

Vos
Solanderetal.

D
ölletal.

H
anasakietal.(2006)

W
isseretal.

W
ada

etal.
(2013)

(2016)
(2015)

(2016)
(2003)

N
on-irrigation

m
ethod

(2010)
(2014)

R
eservoirinflow

attim
e

step
X

X
X

X
X

X
X

E
m

piricalcoefficients
X

X
X

X
X

M
inim

um
storage/inactive

storage
lim

it
X

X
X

X
X

X
M

axim
um

storage/flood
storage

lim
it

X
X

X
X

X
X

A
verage

storage
X

Standard
deviation

ofstorage
X

W
aterstored

atm
odeltim

e
step

X
X

X
X

A
verage

inflow
X

X
X

X
Flood

inflow
X

A
irtem

perature
X

C
onservation

storage
lim

it
X

N
orm

alstorage
lim

it
X

N
orm

aloutflow
X

N
on-dam

aging
outflow

X
Precipitation

on
the

reservoir
X

E
vaporation

from
the

reservoir
X

Fillfraction
X

A
verage

totalw
interinflow

X
Poolelevation

atm
odeltim

e
step

X
Poolelevation

attop
ofinactive

storage
X

Poolelevation
atthe

top
ofconservation

storage
X

Poolelevation
atthe

top
offlood

storage
X

Flood
seasonality

X
Standardized

precipitation
evapotranspiration

index
X

Hydrol. Earth Syst. Sci., 24, 1–19, 2020 www.hydrol-earth-syst-sci.net/24/1/2020/



J. L. Gutenson et al.: Comparison of generalized non-data-driven models 5

2 Methodology

2.1 Simulation specifications

The storage ratio (Vogel et al., 1999) or impoundment ratio is
an important metric in previous works examining generaliz-
ing reservoir operation (De Vos, 2015; Hanasaki et al., 2006).
The impoundment ratio is described as follows:

IR=
(Smax− Smin)

Qin× 86400× 365
, (1)

where Smax and Smin are the maximum and minimum vol-
umes of the reservoir’s active storage (m3), and Qin is the
mean annual inflow to the reservoir (m3 s−1).

A higher impoundment ratio indicates that the capacity of
the reservoir is large relative to mean inflows, while the op-
posite is true of low IR values. De Vos (2015) considered IR
values greater than unity “large” reservoirs, as they are ca-
pable of storing the average yearly volume of water flowing
into them. To utilize H06, the release coefficient (kr) needs to
be determined.

kr =
Sbegin

αSmax
, (2)

where Sbegin is the storage (m3) at the beginning of each year
and α is a dimensionless coefficient, which was set to 0.85
in the Hanasaki et al. (2006) study. In the current study, the
α parameter was varied from 0.45 to 0.95 by increments of
0.10 and solve kr for each α value.

Outflow is the quantity of most interest for hydrologic
flood forecasting because these forecasts generally occur
over a relatively short 0–10 d lead time. H06 relates out-
flow based on the incoming flow. In this study, only the non-
irrigation methodology from H06 was used to simulate reser-
voir outflow at each time step (Qout,t ) since one cannot as-
sume seasonal irrigation demands will be known globally.
Further, the primary purpose of reservoirs selected in this
study is not irrigation. The H06 method estimates outflow
as follows:

Qout,t =

{
krQin,t (IR= 0.5),( IR

0.5

)2
Qin,t + Qin,t

{
1−

( IR
0.5

)2}
(0< IR< 0.5) , (3)

where Qin,t is the inflow (m3 s−1) at time t and kr is the re-
lease coefficient which is calculated based on Eq. (2). The
0.5 threshold value for IR is an empirical condition derived
by Hanasaki et al. (2006).

Unlike H06, D03 relates outflow (Qout,t ) to current avail-
able storage capacity of the reservoir:

Qout,t =
krd

1t
(St − Smin)

(St − Smin)

(Smax− Smin)

1.5
, (4)

where Döll empirically derives the release coefficient, krd =

0.01, 1t is the simulation time step (s), and St is the current

volume of storage (m3 s−1) at time t . For this study the D03,
krd was varied using values of 0.01, 0.02, 0.04, 0.06, 0.08,
0.10, 0.20, 0.40, 0.50, 0.60, 0.70, 0.80, and 0.90.

The sensitivity analysis of kr and krd can provide useful in-
formation on how coefficients may vary based on geographi-
cal and reservoir characteristics such as the impoundment ra-
tio. The two methods were evaluated and results compared to
actual outflow records provided by the USACE districts. Two
approaches were used to evaluate model performance: hy-
drograph assessment of daily and monthly reservoir outflow
and statistical evaluation. The statistical evaluation was per-
formed for daily and monthly averaged simulated results vs.
observations using the Kling–Gupta efficiency (KGE, Gupta
et al., 2009), coefficient of determination (R2), and root mean
square error (RMSE). The KGE value ranges from nega-
tive infinity to one. Four levels of performance were de-
fined for KGE in this study (Tavakoly et al., 2017): poor
performance (KGE<0), acceptable (0<KGE<0.4), good
(0.4<KGE<0.7), and very good (0.7<KGE). Goodness-
of-fit values were evaluated to compare simulated discharge
to the actual outflow records provided by the USACE dis-
tricts. These are indicators of how well the models perform.
The same goodness-of-fit values are calculated to compare
actual discharge with inflow to assess baseline performance.
The baseline condition represents the treatment of reservoir
outflow as naturalized, altogether neglecting reservoir oper-
ations. Thus, the baseline condition is that inflow into the
reservoir equals outflow from the reservoir. To be viable,
the reservoir routing scheme should improve results over the
baseline condition in virtually all cases.

A true directly measured daily inflow is not available for
most reservoirs, including those maintained by the USACE.
There are two ways that one can acquire a daily reservoir
inflow: estimated using a streamflow model (as in Masaki
et al., 2017; Zajac et al., 2017) or estimated using a back-
calculated inflow based on the known discharge and ob-
served changes in reservoir storage (as in De Vos, 2015).
The authors have chosen to utilize a back-calculated inflow
because this methodology inherently accounts for all other
withdrawals from the reservoir, such as irrigation, evapotran-
spiration, seepage, etc. This allows the study to focus ex-
clusively on the reservoir routing methodology. In fact, that
would double count withdrawals from the reservoir.

2.2 Study area

The model evaluations were conducted on 60 reservoirs in
the United States maintained by the USACE. Figure 1 il-
lustrates reservoirs used in this study. The primary purpose
of 43 of the reservoirs is flood control, 6 are hydroelectric,
4 are recreational, 3 are for water supply, 2 are classified as
other, 1 is for irrigation, and 1 is a fish and wildlife pond. De-
spite most reservoirs in the sample being primarily purposed
as flood control reservoirs, only three of these reservoirs are
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Table 2. Select statistical characteristics of reservoirs analyzed in
this study.

Characteristic Range Mean Standard
deviation

Minimum storage (m3
× 106) 0–12 377 827 2553

Maximum storage (m3
× 106) 25–32 070 2695 6184

Annual inflow (m3 s−1) 0.64–780 118 202
Annual outflow (m3 s−1) 0.66–776 113 195
Impoundment ratio 0.03–15.50 1.96 2.33

exclusively purposed for flood control. Table 1 describes per-
tinent characteristics of each reservoir in this analysis.

3 Results and discussion

This section describes the overall results of the study. There
is significant improvement in skill over the baseline (the use
of inflow as an estimate of outflow) when the optimal D03
coefficient is chosen. D03 tends to outperform the baseline.
H06 generally mirrors the results of the baseline. For this
reason the discussion largely focuses on D03. The authors
examine the distribution of the best-fitting krd values. We
discuss how dam systems, annual variability, and simulation
time step can influence the ability of D03 to estimate reser-
voir outflow. The authors also discuss the potential for nu-
meric instability in D03 simulations and offer an initial so-
lution to this instability. We also provide an overview of the
limitations of this study and suggested future work.

3.1 Overall model performances

The goodness-of-fit metrics were calculated for each reser-
voir in the study. Observed inflow is compared with ob-
served outflow to establish a benchmark used to show
whether implementing the two non-data-driven reservoir
routing schemes improves estimates for reservoir outflow
over the use of unregulated flow as the reservoir outflow es-
timate. Figure 2 illustrates the comparison of skill metrics
between the baseline and the use of D03 and H06 to sim-
ulate outflow. The KGE, R2, and RMSE for D03 and H06
in Fig. 2 represent the best-fit results from the sensitivity
study. Data points in Fig. 2 that fall below the dashed line
represent instances where KGE, R2, and RMSE are lower
for the reservoir routing method compared to the baseline.
Data points falling above the dashed line indicate instances
where the KGE, R2, and RMSE obtained were higher than
the baseline for this study. H06 tends to show minimal util-
ity over the baseline scenario. In general, H06 does not ap-
pear to make outflow estimates worse. Estimates that have
acceptable KGE values in the baseline scenario tend to pro-
duce acceptable results using H06. On the other hand, Fig. 2
illustrates that D03 generally tends to increase KGE and R2

and, with this increase in goodness-of-fit, decrease RMSE.

Thus, the general conclusion is that selecting the optimum
D03 release coefficient will ultimately produce an improved
estimate of reservoir outflow compared to the baseline. Gen-
erally, H06 will produce an estimated reservoir outflow that
performs similarly to the baseline scenario.

Figure 3 is a geographic representation of the KGE values
from the baseline scenario as well as the best-performing im-
plementation of the two routing models for each reservoir. In
general, D03 outperforms the baseline and H06, particularly
in the Tulsa and Pittsburg Districts. H06 tends to provide, at
best, minimal improvement in accuracy over the baseline.

D03 tends to improve KGE values at nearly all reservoirs
and tends to preserve high KGE values at locations where the
baseline is already a good or very good estimator of outflow.
Only one of the 60 reservoirs in this study demonstrates a
significant reduction in accuracy when D03 is applied. This
reservoir, Martis Creek Dam in the Sacramento District, ap-
pears to be an outlier in the reservoir sample. Reservoirs with
a similar IR and average inflow to Martis Creek Dam and in
the same USACE district tended to experience improvement
in model skill with D03. Overall, when the appropriate krd
value is applied, D03 improves simulation results over the
baseline.

Figure 3a illustrates the wide range of reservoir operating
conditions present in the study. The reservoir dataset con-
tains reservoirs in which the outflow correlates poorly with
the inflow regime as others that correlates well. Figure 3a
also portrays significant geographic clustering where reser-
voirs in certain regions tend to be less correlated with inflow
and other clusters where observed inflow and observed out-
flow correlate strongly. This could indicate that operations
at these reservoirs may have a particularly regional context
and may bias towards a particular reservoir routing scheme.
However, correlation between observed inflow and observed
outflow and geographic proximity of the reservoirs does not
influence the implementation of either D03 or H06. Thus,
the results of this research indicate no significant geographic
constraints in the context of this study.

Figure 4 presents a proportional bar chart comparing base-
line KGE and the highest KGE value for the range D03 and
H06 coefficients. This plot categorizes KGE performance
using the same bins as Fig. 3. Figure 4 indicates that the
best-performing H06 simulation provides only marginal im-
provement over the baseline condition. However, the best-
performing instance of D03 eliminates all poorly performing
baseline conditions. Nearly 87 % of all best-performing D03
simulations are considered to be good or very good at accu-
rately capturing reservoir outflows, a 22 %TS1 increase above
the baseline simulation.

From multivariate comparison, a negative relationship be-
tween two of the best-fit results (KGE and R2) and reservoir
IR was found. Figure 5 illustrates this comparison between
IR and each goodness-of-fit metric for the baseline, D03, and
H06. KGE in particular appears to be non-linearly correlated
to IR. A similar, yet less significant, negative relationship
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Figure 1. USACE districts and location of reservoirs in this study.

Figure 2. Scatter plots of skill metrics between the use of daily observed inflow as outflow (baseline) and simulated outflow from the best-
performing D03 and H06 simulations. The dashed line indicates the plane separating increased and decreased skill that results from using
either reservoir routing method.

was found between IR and R2. Little statistical correlation appears to occur between IR and RMSE. However, KGE and

www.hydrol-earth-syst-sci.net/24/1/2020/ Hydrol. Earth Syst. Sci., 24, 1–19, 2020



8 J. L. Gutenson et al.: Comparison of generalized non-data-driven models

Figure 3. Spatial distribution of KGE comparing observed daily outflow to each best estimate of outflow: (a) observed inflow, (b) Döll method
simulated outflow, (c) Hanasaki method simulated outflow for all reservoirs in this study. KGE values for the Döll method and the Hanasaki
method are the maximum KGE values from all coefficient treatments.
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Figure 4. TS2 Proportional bar chart comparing the baseline outflow estimation and the best KGE results for D03 and H06.

R2 values in Fig. 5 indicate that the ability to predict outflow
using the reservoir routing techniques applied in this study
decreases with reservoir with high IR values.

3.2 Sensitivity analysis of models

Because D03 consistently outperforms H06 at daily time
steps, D03 was selected for the sensitivity analysis at daily
time steps. The value of krd coefficient was introduced as
0.01 in the Döll et al. (2003) study. In this study, krd val-
ues were varied to obtain maximum KGE and R2 and mini-
mum RMSE. Figure 6 demonstrates the dispersion of krd val-
ues which maximize the model skill for all reservoirs in this
study. For all model skill metrics, krd = 0.90 tends to be the
most prevalent krd value that maximizes model skill. In only
2 of the 60 reservoirs (Sardis Dam and Enid Dam) krd = 0.01
maximizes R2 and minimizes RMSE for the range of krd co-
efficients. This research suggests that the krd = 0.01 is not
necessarily the optimum coefficient to maximize model per-
formance using a daily simulation time step.

Investigating the linkage between dam characteristics and
the best-performing krd yields no clear relationship. Evalu-
ation of the correlation between IR, coefficient of variation
of inflow, ratio of average inflow to average outflow, and ge-
ographic location shows low correlation between each vari-

able and the best-performing krd value. However, the range
of best-performing krd within this analysis and as demon-
strated in Fig. 6 suggests that the value is not constant across
all reservoirs. Thus, as one implements D03 within their hy-
drologic forecasting framework, krd may be adjusted to op-
timize streamflow estimates to gage observations, like those
curated by the Global Runoff Data Centre (GRDC, 2018),
when available.

3.3 Dam systems and reservoir routing

Reservoirs in the Vicksburg and Omaha districts were se-
lected to evaluate performance of D03 in environments
where reservoirs operate in a coordinated fashion. We
broadly refer to these as dam systems. The case of the Vicks-
burg and Omaha district reservoirs highlights two distinct
types of dam systems: one where the dams do not contribute
inflow into one another but still coordinate their releases
(in parallel) and another where upstream releases flow into
downstream reservoirs (in series).

A subset of the reservoirs in the Vicksburg District com-
prises the Yazoo Basin Headwaters Project. Although the
reservoirs in the Yazoo Basin Headwaters Project are not
directly connected, the reservoir operators coordinate oper-
ations in order to minimize flooding in Mississippi’s delta
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Figure 5. Comparison of IR and best KGE, R2, and RMSE from goodness-of-fit metrics for the baseline, D03, and H06.

Figure 6. Bar charts of krd values that maximize KGE and correlation and minimize RMSE.
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region (Arkabutla Lake History, 2017; USACE, 1987). The
operation of these reservoirs presents an interesting case in
which the non-data-driven models in this study do not char-
acterize the nature of the dam releases well. The modeled re-
sults at four Vicksburg District dams yield only minimal im-
provement over unregulated (i.e., naturalized) flow at these
reservoirs. The decrease in reservoir routing performance can
be attributed to the large impoundment ratios at these dams
indicating the reservoir storage is large relative to the annual
volume of inflow.

The reservoirs of interest in the Vicksburg District in-
clude Arkabutla, Sardis, Enid, and Grenada. These dams
function in parallel on tributaries of the lower Mississippi
River, namely the Coldwater River, Little Tallahatchie River,
Yocona River, and Yalobusha River, respectively. Together,
these dams control flooding in northern Mississippi as part
of the Yazoo Basin Headwaters Project (Arkabutla Lake His-
tory, 2017; USACE, 1987). The Yazoo Basin reservoirs dis-
charge directly into the heavily regulated Mississippi River
(Meade and Moody, 2010). The reservoirs operate to ensure
high releases are not concurrent with large flows upstream
on the Mississippi to avoid devastating flooding to the low-
lying Louisiana delta regions. This requires a high level of
coordination throughout the Yazoo Basin Headwater Project
and with regulation upstream on the Mississippi. Addition-
ally, each of the Yazoo Basin reservoirs have a substantial im-
poundment ratio, ranging from 2.96 to 3.95. In other words,
the reservoirs are capable of containing large volumes of wa-
ter to mitigate downstream impacts. Thus, current pool levels
and forecasted inflow at these four reservoirs do not substan-
tially influence release decisions. The reservoirs also have the
capacity to absorb large flood events. As a result, they do not
seem to follow the same functional form as the majority of
dams in this study.

Figure 7 from Sardis Dam in the Yazoo Basin Headwaters
Project demonstrates the hydrograph comparing observed in-
flow and outflow and the modeled outflow that provides the
highest KGE (D03, krd = 0.90) for the year 2008. Figure 7
demonstrates that peak outflows tend not to correspond to
the time at which peak inflow occurs. In fact, release rates at
Sardis Dam are at a minimum during the peak inflow time
period. This pattern repeats at each of the reservoirs in the
Yazoo Basin Headwaters Project indicating that inflow and
consumed storage are not substantial predictors of outflow
timing at these reservoirs. This exemplifies the lack of cor-
relation between observed inflow and observed outflow at
reservoirs within the Yazoo Basin Headwaters Project.

Dams operating in series represent a specific case where
compounding model error is a particular concern. USACE
operates several large dams in series on the Missouri River.
These include Fort Peck, Garrison, Oahe, Big Bend, Fort
Randall, and Gavins Point within in the Omaha District
(Lund and Ferreira, 1996). For this cascading system on the
Missouri River, inflow appears to be a progressively stronger
predictor of outflow from upstream to downstream. At the

Figure 7. Hydrographs of observed inflow and outflow versus
simulated outflow with the highest KGE value at Sardis Dam
(Döll method krd = 0.90). KGE comparing observed inflow and
outflow=−0.34; KGE comparing simulated and observed out-
flows= 0.095.

upstream end the baseline yielded a KGE= 0.43 at Fork Peck
with a KGE= 0.99 downstream at Gavins Point Dam. Fig-
ure 8 provides a comparison of observed inflow and outflow
along with simulated outflow for Gavins Point Dam. D03
tends to provide a slightly better estimate of outflow com-
pared with inflow, except in the instance of Big Bend Dam.
At Big Bend Dam, H06 produces an estimate of outflow more
consistent with observed outflow than either D03 or inflow
alone. However, the differences are almost trivial consider-
ing how well inflow alone performed in this case. D03 is par-
ticularly accurate during peak inflow conditions, for example
the large hydrologic event in mid-2011 at Gavins Point Dam
in Fig. 8. The performance of non-data-driven approaches
in this instance is promising since compounding errors are a
large concern in this type of system. Other instances involv-
ing dams in series should be evaluated to determine whether
these findings hold more generally.

Reservoir management is unique in both the Yazoo Basin
Headwaters Project and the Missouri River. The operators
of dams within the Yazoo Basin Headwaters Project tend to
regulate outflow in a manner that is more in line with down-
stream conditions. The attention to downstream conditions is
due mainly to the impact that downstream floods will have on
the low-lying communities within the Louisiana Delta. The
dams in the Yazoo Basin Headwaters Project have among
the highest impoundment ratios, which inherently reduces
the influence of upstream conditions in discharge decisions.
The non-data-driven approaches evaluated here do not ac-
count for downstream conditions and thus do not perform
well in this instance, particularly where large impoundment
ratios allow operators considerable leeway.

On the other hand, the non-data-driven approaches tend
to perform well when inflow conditions dictate discharge

www.hydrol-earth-syst-sci.net/24/1/2020/ Hydrol. Earth Syst. Sci., 24, 1–19, 2020



12 J. L. Gutenson et al.: Comparison of generalized non-data-driven models

Figure 8. Hydrographs of observed inflow and outflow versus
simulated outflow with the highest KGE value at Gavins Point
Dam (Döll method krd = 0.04). KGE comparing observed inflow
and outflow= 0.99; KGE comparing simulated and observed out-
flows= 0.99.

decisions as we see on the Missouri River system. Reser-
voirs with smaller impoundment ratios are naturally more
responsive to inflow requiring greater consideration for up-
stream conditions. D03 showed a relatively small improve-
ment of outflow estimates compared to inflow as a predictor
of outflow in the Yazoo Basin Reservoirs, while the method
provided reasonable estimates in dam systems like the Mis-
souri River system. Therefore, it can be inferred that D03 is
more applicable for dam systems where reservoir manage-
ment focuses on upstream hydrologic conditions, while large
impoundment ratios may be indicative of reservoirs where
downstream conditions are more likely to prevail. This would
likely apply for H06 as well since that method links outflow
to inflow more directly.

3.4 Wet- and dry-year comparison

Figure 8 shows results for wet and dry years at two reservoirs
considered to be representative of this study. D03 provides a
relatively good estimate of outflow at Union City Dam (Pitts-
burg District) in Fig. 9a and c. D03 performs relatively poorly
at Arcadia Lake (Tulsa District) in Fig. 9b and d. In the case
of Union City Dam, D03 tends to produce a noticeable im-
provement in model skill during both a relatively wet year
and a relatively dry year. The performance (Fig. 9a and c)
seems to be independent of wet or dry conditions, at least on
an annual basis. This does not hold for Arcadia Lake. The
model shows modest skill at Arcadia Lake during the wet
year (Fig. 9b), but almost none during the dry year.

There appears to be a difference between the timing dis-
charges at the two locations in Fig. 9. D03 appears to estimate
the right amount of volume released during the wet year at
Arcadia Lake (Fig. 9b). However, the timing of the observed

release is delayed until a relatively dry period begins. The lag
could indicate that water is being retained, possibly for use in
irrigation or domestic supply. In this instance, Arcadia Lake
supplies water to the city of Edmond, Oklahoma, which may
influence release decisions (Arcadia Lake, 2020).

D03 performs much more poorly during the 2006 dry year
at Arcadia Lake (Fig. 9d). The model does not predict the
sporadic releases throughout the year. The inflow events in
that year are not substantial enough to affect storage mean-
ingfully; thus we see almost no response in the modeled out-
put. Observed outflows demonstrate that beyond two rela-
tively high-volume reservoir releases during 2006, the reser-
voir releases are restricted to practically no outflow the rest
of the year. D03 does not anticipate the two large releases,
as the reservoir storage does not dramatically shift in either
instance. D03 estimates a near-constant discharge over the
entire year with almost no storage change.

Results for wet years and dry years appear to be fairly
mixed. Indications are that the performance of D03 could
be somewhat site-specific. However, reservoirs that tend to
be less responsive to storage fluctuations are not represented
well in D03 since storage fluctuations drive the model. Ar-
cadia Lake has an IR of about 4.75, which is relatively high.
Union City Dam has an IR of about 0.24, which is relatively
low. IR is a good indicator of reservoir responsiveness to stor-
age fluctuations. A lack of reservoir responsiveness to stor-
age fluctuations could result in two different types of error
when D03 is implemented within a large-spatial-scale hydro-
logic model. First, forecasted outflow could easily mistime a
hydrologic event, particularly during wet years, as Fig. 9b
demonstrates. Second, the authors anticipate that if the stor-
age does not dramatically fluctuate during a dry year the es-
timated reservoir release will not anticipate sporadic releases
for irrigation and other purposeful discharges. Unaccounted
for, these large but short-duration releases may lead to a con-
sistent overestimation of reservoir outflow for the entire dry-
year period.

3.5 Effects of time step on model performance

Model comparisons are conducted for daily and monthly
time steps. Table 2 illustrates the results at Fort Peck, Garri-
son Dam, Oahe Dam, and Fort Randall Dam, each of which
appears in the Hanasaki et al. (2006) study and this re-
search. Table 2 also contains Sardis Dam, Mosquito Creek
Dam, and Prado Dam, which are not included in Hanasaki et
al. (2006). Results illustrate that the timescale at which com-
parisons are conducted can influence simulation results. The
monthly comparison amongst Fort Peck, Garrison, Oahe,
and Fort Randall is in agreement with the conclusions of
Hanasaki et al. (2006). However, when the simulation time
step changes to a daily time step, the skills of H06 and D03
reverse and D03 tends to outperform H06. In additional reser-
voirs (Sardis and Prado), the results indicate that D03 outper-
formed H06 at both daily and monthly time steps, based upon
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Figure 9. Two reservoirs where D03 tends to perform very well and poorly. Outflow: (a) wet year, 2011, Union City Dam; (b) wet year, 2007,
Arcadia Lake; (c) dry year, 2012, Union City Dam; and (d) dry year, 2006, Arcadia Lake.

KGE. However, the results at Mosquito Creek reservoir tend
to follow the original Hanasaki et al. (2006) results.

The timescale effect upon model performance may relate
to how well observed inflow correlates with observed out-
flow. Examining Table 2, H06 outperforms D03 when ob-
served inflow and observed outflow are relatively well corre-
lated. The effect is nullified when the inverse is true. H06 es-
timates outflow as a ratio of inflow, which may be a better es-
timate of outflow at the monthly timescale, particularly when
discharge tracks closely with inflow. However, H06 will fluc-
tuate at the smaller time steps due to inherent variations in
inflow. D03 tends to vary less at a daily time step and may be
a better estimate of outflow at sub-monthly time steps.

The hydrographs from Fort Randall Dam further illustrate
the relationships between time step and model skill, par-
ticularly during high-flow events. Daily and monthly com-
parisons between observation and simulations for Fort Ran-
dall Dam are shown in Fig. 10. Figure 10 compares the
daily and monthly simulations with observations. Figure 10a
shows that the H06 simulations perform better than D03 for
monthly time steps, particularly during the high-inflow pe-

riods in 2011. D03 tends to overestimate reservoir outflow,
while H06 correlates well with inflow and better matches the
peak flow of 2011. At a diurnal time step (Fig. 10b), H06
tends to be hypersensitive to inflow variations and overesti-
mates outflow, whereas D03 provides a better approximation
of outflow during the 2011 high-flow event at a daily time
step.

It is possible that the conclusions of Hanasaki et al. (2006)
suggesting better performance of H06 at the monthly scale
depend on how closely discharge from the dam tracks inflow.
D03 may be a better candidate for integration into daily flow
forecasting models.

3.6 Model stability

Although D03 outperformed H06 when using a daily time
step, D03 demonstrated some instability for high krd values.
This instability occurs at three reservoirs in this study. The
cause of the instability is a combination of a reservoir having
a low IR and a sharp change in the inflow to a reservoir. For
instance, inflow into Old Hickory Dam in the Nashville Dis-
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Table 3. Comparison of daily and monthly KGE values at selected reservoirs. The α and krd values represent the highest KGE values for
Hanasaki and Döll methods respectively.

Reservoir Daily KGE Monthly KGE

Inflow Hanasaki Döll Inflow Hanasaki Döll

Fort Peck 0.43 0.53 0.78 0.54 0.62 0.51
α = 0.95 krd = 0.04

Garrison Dam 0.73 0.76 0.88 0.78 0.80 0.59
α = 0.95 krd = 0.06

Oahe Dam 0.78 0.81 0.83 0.84 0.86 0.76
α = 0.95 krd = 0.20

Fort Randall Dam 0.91 0.88 0.95 0.96 0.93 0.67
α = 0.95 krd = 0.20

Sardis Dam −0.34 −0.17 0.09 0.06 −0.03 0.16
α = 0.95 krd = 0.90

Mosquito Creek Dam −0.46 −0.29 0.51 0.49 0.60 0.39
α = 0.45 krd = 0.70

Prado Dam −0.02 0.01 0.61 0.32 0.61 0.71
α = 0.95 krd = 0.50

Figure 10. Comparison of simulated outflow for the Fort Randall Dam with Hanasaki and Döll methods for (a) monthly and (b) daily time
steps.
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trict (IR= 0.04) increased by roughly 2 orders of magnitude
in a matter of a few days in May 2010. During this event,
the available storage filled up, necessitating a substantial in-
crease in release flow to prevent overtopping. This occurred
within a single time step in the model (D03) and the outflow
responded in kind in the next subsequent time step which
then drained the reservoir below the specified minimum stor-
age resulting in a non-computable imaginary number as the
next solution.

Several solutions are posited to address D03 instability.
One solution could be to varying krd values dynamically to
mimic reservoir behavior. During large hydrologic events the
value of krd could reduce the peak of the outflow hydrograph,
and then increase during normal events. Another solution is
the inclusion of rules and an expanded system of equations
that govern the solution. Because the intention of D03 is to
approximate flow at a free-flowing weir, coupling operational
rules with the simulation may better approximate reality. The
rules may be as simple as switching behavior or the algo-
rithm when storage approaches either minimum or maximum
reservoir storage. A simple condition was tested for when
storage drops below the minimum storage during the daily
time step:

if St ≤ Smin⇒

{
St = Smin,

Qout =Qin+
St−Smin
1t

.
(5)

This condition prevents the reservoir from falling below the
minimum storage. Outflow from Old Hickory Dam was re-
simulated with krd = 0.9 and the new minimum storage con-
dition (Eq. 5). The proposed modification resulted in simu-
lated outflow shown in Fig. 11. Outflow is substantially over-
estimated for one time step and drops to zero at the next time
step. While an oversimplification of actual operations, this
condition is similar to an emergency spillway discharge to
prevent overtopping. The dam releases tremendous flow for
a brief period when the maximum storage is nearly exceeded
and then inhibits the discharge when the storage is at the min-
imum capacity. The benefit of this modification is that addi-
tional reservoir information is not required. However, further
testing and evaluation should be performed to validate this
refinement.

3.7 Limitations

The available sample of dams for this study has some inher-
ent limitations. The vast majority of reservoirs in the sample
are primarily purposed as flood control reservoirs with var-
ious secondary purposes. They are all commonly operated
by USACE. And the dams function within a predominately
temperate climate across the United States. These limitations
preclude assertions regarding the effects of the operating ob-
jective, dam ownership, or country of operation on reservoir
routing performance.

The abbreviated length of the historical records presents
another limitation. The evaluation period is limited to a 6-

Figure 11. Outflow simulation for the Old Hickory Dam using the
proposed modification of the Döll method for krd = 0.4.

year window which may not account for the total range of
operational environments for each dam. Thus, this evalua-
tion likely does not capture and evaluate D03 and H06 under
absolute extreme circumstances.

All inflow utilized in this study is back-calculated from
observed changes in storage and known discharges. This in-
direct method can lead to negative inflow values when losses
due to seepage, evapotranspiration, or other types of with-
drawals are underestimated. De Vos (2015) also noted that
they used back-calculated inflow in their study. It is unclear
whether Hanasaki et al. (2006) made use of direct observa-
tions, but it is worth noting that direct observations of total
reservoir inflow are not readily available in most cases.

This study is limited to models that only require inputs
related to reservoir inflow and storage, primarily to pro-
vide insight into the reliability of these measures as indica-
tors of reservoir outflow. Because this study utilizes a back-
calculated reservoir inflow, inclusion of reservoir withdrawal
would also lead to an overestimation of water withdrawals
from the reservoir. Both D03 and H06 can account for with-
drawals but because of the focus of this study and the data
utilized, the authors do not pursue an estimation of reservoir
withdrawal in this study. Thus, we have not included more
sophisticated approaches, such as Burek et al. (2013) or Zhao
et al. (2016), within this study. Beyond this study of sensitiv-
ity analysis, no formal calibration procedure was undertaken.
A formal calibration of krd in both D03 and H06 would be
better suited for the insertion of the reservoir routing scheme
within a hydrologic routing scheme. This study is investigat-
ing the feasibility of these methods in 0–10 d lead time with
diurnal forecasting and is a precursor to implementation in
hydrologic routing schemes. There is limited benefit to stan-
dalone calibration of the krd coefficients, given that reservoir
outflow information is rarely available at global scales. Oper-
ational calibration of krd would be challenging without reser-
voir release records. Zajac et al. (2017) discuss the need for
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an open-access database of daily reservoir records, but no
such database is known to be available at this time. Thus, this
study does not undertake any standalone, formal calibration
of krd.

3.8 Future work

D03 consistently improved simulated, daily streamflow esti-
mates over naturalized flow conditions in the selected reser-
voirs of this study, suggesting that D03 can potentially im-
prove global streamflow forecasting that do not already ac-
count for lakes and reservoirs. D03 performed particularly
well at daily time steps commensurate with many large-scale
stream routing models. The incorporation of D03 and H06
can be considered as modules in large-scale river routing
models such as Routing Application for Parallel computa-
tIon of Discharge (RAPID, David et al., 2011). The RAPID
model is a river routing model that can simultaneously com-
pute streamflow in river networks with thousands of river
reaches. This will enable widespread testing and evaluation
over large hydrologically diverse areas.

The research presented in this article should guide a num-
ber of follow-up evaluations that will broaden the scope of
this evaluation.

– We determined that krd can be varied to improve perfor-
mance but have no guidance on how to relate krd to a
given reservoir. Future studies should determine how to
assign release coefficients to reservoirs.

– We have chosen parsimonious approaches that mini-
mize assumptions. We have not compared D03 or H06
to more complex models such as Burek et al. (2013) or
Zhao et al. (2016) which require these assumptions. Fu-
ture work will examine tradeoffs between model com-
plexity and performance.

– Insertion of D03 into large-scale river routing mod-
els can facilitate studies of how their results influence
overall hydrologic performance, particularly at loca-
tions downstream of reservoirs.

– The main purpose of three-quarters of the sampled dams
is flood control. Efforts to fill the existing dataset with
reservoirs that are primarily irrigation, water supply,
hydroelectric, recreation, and fish and wildlife habitat
and analyze the impacts of use on model performance
should be undertaken.

– The non-data-driven methods considered are conceptu-
alizations of reservoir operations that can be adapted to
utilize remotely sensed information, much like the data-
driven methods previously mentioned. Non-data-driven
methods can be linked to statistical fitting techniques,
but they are capable of being employed independent
of such pairings. However, the non-data-driven reser-
voir routing schemes could be enhanced by assimilat-
ing remotely sensed data, e.g., near-real-time changes in

storage resolved from satellite altimetry, and eventually
the planned NASA Surface Water and Ocean Topog-
raphy (SWOT) Mission. This information could con-
strain reservoir simulations to improve global stream-
flow forecasts (Yoon and Beighley, 2015).

– Because D03 skill tends to decline with increases in IR,
an over-year simulation capability similar to that pro-
posed by De Vos (2015) may allow for a better means of
simulating diurnal reservoirs from reservoirs with large
IR. Over-year reservoirs have high IRs and yearly cycles
of water storage and release are not necessary (Adeloye
and Montaseri, 2000; Vogel et al., 1999).

4 Conclusions

This research compares two parsimonious reservoir routing
methods (D03 and H06) with the intent to determine if these
methods can be effective at estimating diurnal reservoir out-
flow in diurnal, medium-range streamflow forecasting. These
methods were compared across 60 USACE operated reser-
voirs at a daily time step. Results show that D03 tends to out-
perform H06 at a daily time step. An in-depth examination
of these results yields the following conclusions.

– The complexity and data requirements of both D03
and H06 are low and thus computationally inexpensive.
Both can be feasibly implemented at large spatial scales
at a daily or sub-daily time step.

– When the best-performing krd is implemented within
D03 we find a substantial improvement in the model
skill over the baseline for nearly all reservoirs at a
daily time step. H06 offers only a minimal improvement
over the baseline when the best krd is implemented for
a daily time step. For the categories of KGE specified
(Tavakoly et al., 2017), the best-performing D03 elimi-
nates all poorly performing baseline conditions and in-
creases the proportion of sites performing well or very
well by 22 %.

– There is a statistical relationship between reservoir IR
and two of the skill metrics applied (KGE and R2).
Given that reservoirs with high IR typically are less re-
sponsive to short-term fluctuations in inflow and stor-
age, the correlation between these variables is plausi-
ble. Further investigation of dam characteristics, such
as whether the dams operate in series or in parallel and
wet- and dry-year considerations are further evidence of
the correlation between the IR and D03 and H06 skill.

– Simulation time step appears to be an important com-
ponent in reservoir routing skill. The comparison of
the two methods by Hanasaki et al. (2006) are based
on monthly reservoir outflows and conclusions may not
hold within diurnal forecasting schemes. At overlapping
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locations, this study replicates the results reported by
Hanasaki et al. for monthly time steps. However, the
Hanasaki et al. findings do not hold for a daily time step
evaluation.

– The best value for the empirical Döll coefficient, krd,
can vary. Optimal values were typically greater than the
krd = 0.01 value which Döll et al. (2003) derived. This
suggests that krd could be a potential calibration param-
eter within a large-scale hydrologic modeling frame-
work much like a weir coefficient which is specific to
a particular type of weir.

– The Yazoo Basin Headwaters Project (Arkabutla Lake
History, 2017; USACE, 1987) is an interesting case
study in how reservoir system complexity can be dif-
ficult to model. The Yazoo Basin Headwaters Project
considers downstream flow conditions as the dominant
criteria in dam operation. Thus, the inflow and avail-
able storage volume are poor predictors for determining
reservoir discharge in this type of management scheme.
D03 appeared to scale flow correctly at these reservoirs
and improve reservoir overall skill, but timing of the re-
leases is not well represented and thus skill improve-
ment is only minimal.

– Dam discharges in the Missouri River Reservoir Sys-
tem (Lund and Ferreira, 1996) are more correlated with
storage volume and inflow conditions, which lends it-
self to the two non-data-driven approaches evaluated
here. D03 is particularly capable of accurately modeling
daily reservoir outflows in reservoir systems that corre-
late well with storage and inflow fluctuations. Concerns
related to model error being compounded through a se-
ries of dams may be mitigated somewhat by the fact that
inflow appears to be a progressively stronger predictor
of outflow further downstream in these types of systems.

– The numerical stability of D03 is a concern, particu-
larly with higher krd values. These stability concerns
originate at reservoirs with small active storage capacity
during high-inflow events. Additional model refinement
can overcome these stability concerns.

– D03 showed minimal bias during relatively wet and dry
years. Timing of releases can be influenced by wet years
and the magnitude appears to be affected during dry
years. D03 appears to be most applicable for dam sys-
tems where reservoir management focuses on upstream
hydrologic conditions. Large IRs could indicate reser-
voirs where downstream conditions are more likely to
influence release decisions at the reservoir.
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