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 10 
Abstract: Large-scale hydrologic forecasts should account for attenuation through lakes 11 
and reservoirs when flow regulation is present. Globally generalized methods for 12 
approximating outflow are required but must contend with operational complexity and a 13 
dearth of information on dam characteristics at global spatial scales.  There is currently no 14 
consensus on the best approach for approximating reservoir release rates in large spatial 15 
scale hydrologic forecasting, particularly at diurnal time steps. This research compares two 16 
parsimonious reservoir routing methods at daily steps; Döll et al. (2003) and Hanasaki et 17 
al. (2006). These reservoir routing methods have been previously implemented in large-18 
scale hydrologic modeling applications and have been typically evaluated seasonally. 19 
These routing methods are compared across 60 reservoirs operated by the U.S. Army Corps 20 
of Engineers. The authors vary empirical coefficients for both reservoir routing methods 21 
as part of a sensitivity analysis. The method proposed by Döll et al. (2003) outperformed 22 
that presented by Hanasaki et al. (2006) at a daily time step and improved model skill over 23 
most run-of-the-river conditions. The temporal resolution of the model influences models 24 
performances. The optimal model coefficients varied across the reservoirs in this study and 25 
model performance fluctuates between wet years and dry years, and for different 26 
configurations such as dams in series. Overall, the method proposed by Döll et al. (2003) 27 
could enhance large scale hydrologic forecasting, but can be subject to instability under 28 
certain conditions.    29 
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1. Introduction 30 

1.1. Importance of Dams in Hydrologic Simulations 31 

Improvements in numerical weather prediction, the increasing abundance of 32 

computational power, and greater precision of remotely sensed observations make global 33 

hydrologic forecasting and flood warning systems increasingly feasible (Alfieri et al., 34 

2013; Wu et al., 2014; Emerton et al., 2016; Salas et al., 2017). Lack of information 35 

concerning anthropogenic influences on runoff is a major deficiency of large-scale flood 36 

forecasting systems (Emerton et al., 2016). Reservoir operations tend to distort natural flow 37 

patterns, effectively redistributing surface water spatially and temporally (Zhou et al., 38 

2016). Impoundments significantly influence the downstream flow regime at small and 39 

large spatial scales (Batalla et al., 2004; Magilligan and Nislow, 2005). Over half of the 40 

world’s large river systems are now substantially altered by dams (Nilsson et al., 2005) 41 

resulting in a seven-fold increase in water storage within the global river system 42 

(Vörösmarty et al. 1997). Furthermore, the cumulative alterations from global reservoir 43 

impoundments are so significant that it has been suggested that they could buffer global 44 

sea-level rise (Chao et al., 2008).     45 

 Dams primarily impact the hydrologic cycle by changing the magnitude and timing 46 

of the discharges downstream (Haddeland et al., 2006; Döll et al., 2009; Biemans et al., 47 

2011; Wu et al., 2014; Zajac et al., 2017), often with the specific intent to mitigate 48 

hydrologic extremes (i.e., floods and droughts) (Zajac et al., 2017). Dams reduce peak 49 

discharges by roughly a third on average while dampening the daily variation by a similar 50 

amount (Graf, 2006). In hydrologic forecasting, accuracy of the timing and magnitude of 51 

hydrologic extremes is fundamentally important to the usefulness of the forecasts. 52 
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Therefore, the significant impacts from dams make inclusion of reservoir operations, or 53 

reservoir routing, critical in large scale hydrologic flood forecasting.   54 

 Integrating dam operations within large-scale river routing and flood forecasting 55 

improves model performance downstream of reservoir locations (Snow et al., 2016; 56 

Tavakoly et al., 2017; Salas et al., 2017; Zajac et al., 2017). This is often not feasible at 57 

large-scales since there may be multiple entities responsible for regulating flow, 58 

particularly with respect to transboundary waters. Among other things, operational 59 

knowledge, site-specific rule curves, reservoir uses, and local decision-making practices at 60 

each individual project dictate dam releases. Thus, dam operations are typically non-linear, 61 

complex processes, driven by anthropogenic and environmental influences. This makes 62 

generalizing reservoir operations difficult, particularly in the context of predicting dam-63 

induced hydrologic responses at diurnal or sub-diurnal time step. Heuristically accounting 64 

for dams within existing routing schemes should improve flood forecast results when 65 

scheduled releases are not readily known. 66 

 Reservoir routing methodologies are generally divided into two basic categories: 67 

data-driven and non-data-driven. Machine-learning, artificial intelligence (Coerver et al., 68 

2017; Macian-Sorribes and Pulido-Velazquez, 2017; Ehsani et al., 2016; Mohan and 69 

Ramsundram, 2016; Ticlavilca and McKee, 2011; Chaves and Chang, 2008; Khalil et al., 70 

2005), and remote sensing (Bonnema et al., 2016; Yoon and Beighley, 2015) are examples 71 

of data-driven approaches. Such data-driven methodologies can be effectively applied to 72 

dynamic non-linear systems, particularly when the governing influence on the system does 73 

not follow any particular deterministic model. These types of approaches require training 74 

data or specific knowledge of a particular reservoir to effectively parameterize and apply 75 
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them. This is often an insurmountable limitation for data-driven approaches. For that 76 

reason, the focus of this paper is on non-data-driven reservoir routing methodologies as an 77 

incremental improvement over schemes that effectively neglect dams when information is 78 

scarce.  79 

1.2. Non-Data-Driven Reservoir Storage and Outflow Simulation 80 

Non-data-driven approaches to reservoir routing rely on conceptualizing reservoir 81 

responses without explicitly observing the actual reservoir operations. The optimal method 82 

for a given application depends on a balance between complexity and available information 83 

(De Vos, 2015). Therefore, this manuscript focuses on selecting for parsimony. 84 

Existing non-data-driven reservoir models range from simple approaches to 85 

sophisticated methods. Solander et al. (2016) showed that temperature-based schema best 86 

fits the modeling of discharge, 𝑄𝑜𝑢𝑡,𝑡. The Solander et al. (2016) rule is driven by 87 

temperature shifts at each model time step above and below the mean temperature. The 88 

Solander et al. (2016) method indicates that temperature is the main proxy governing 89 

reservoir release, due to the assumption that seasonality drives agricultural production and 90 

reservoir operation. However, the Solander et al. (2016) study focuses on long-term 91 

climatic forecasting. Diurnal temperature variations will not likely describe day-to-day 92 

reservoir operations. Zhao et al., (2016) developed a reservoir routing scheme based on 93 

reservoir stage and storage rules. However, real-time insights related to current reservoir 94 

stages throughout a region can involve considerable remotely sensed information. The 95 

stage information must then be related somehow to storage volume making this a much 96 

more data-driven process. Burek et al. (2013) also developed a non-data-driven approach 97 

to reservoir routing which was implemented by Zajac et al. (2017). This approach is built 98 
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into the LISFLOOD model. The Burek et al. (2013) model requires a number of 99 

assumptions about storage capacity limits and naturalized streamflow thresholds. For 100 

example, the minimum, normal, and maximum storage are assumed to be 0.1, 0.3, and 101 

0.97, respectively.  To maintain the objective of investigating parsimonious models, the 102 

approach by Burek et al. (2013) was not included in this evaluation.  103 

Döll et al. (2003), Wada et al. (2014), and Wisser et al. (2010) presented non-data-104 

driven methods to simulate reservoirs operation that can be considered as simple 105 

approaches.  The Wisser et al. (2010) method follows a simple, rule-based approach to 106 

define the reservoir outflow at each time step (𝑄𝑜𝑢𝑡,𝑡). The rule that Wisser et al. (2010) 107 

enacts is that when the inflow at each model time step moves above or below the long-term 108 

average inflow, the behavior of the reservoir release changes. De Vos (2015) suggested 109 

that this model is too simple to effectively model reservoir outflow. In a similar vein, Wada 110 

et al. (2014) introduced a daily estimate of reservoir outflow that is simply the product of 111 

the proportion of available reservoir storage and daily inflow, which can be too simplistic 112 

to estimate reservoir outflow since no coefficient is introduced into the simulation to 113 

account for reservoir heterogeneity.   114 

Döll et al. (2003) derived reservoir routing scheme that can be applied to man-made 115 

reservoirs and natural water bodies. The Döll et al. (2003) methodology found genesis in 116 

the reservoir outflow model proposed by Meigh et al. (1999). Meigh et al. (1999) proposed 117 

a simple reservoir release methodology, which intended to mimic outflow at reservoirs 118 

from a theoretical rectangular weir. A more substantive version of the Meigh et al. (1999) 119 

method is formulated by Döll et al. (2003). Despite its simplicity, the Döll et al. (2003) 120 

method demonstrated good performance compared to several other routing methods (De 121 
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Vos, 2015).  The form of the Döll et al. (2003) equation is similar to that proposed by Wada 122 

et al. (2014).  However, the Döll et al. (2003) methodology incorporates a coefficient that 123 

can incorporate a portion of reservoir heterogeneity.   124 

Compared to the aforementioned methods, Hanasaki et al. (2006) derived a demand 125 

driven approach to reservoir routing, which can be considered a complicated non-data-126 

driven reservoir routing model. They distinguished between irrigation and non-irrigation 127 

reservoirs and offered two distinct algorithms for each. Water demands for irrigation, 128 

domestic, and industrial uses are considered in the irrigation reservoirs, whereas the 129 

releases from non-irrigation reservoirs are simply a proportion of inflow. 130 

De Vos (2015) also proposed a within-year/over-year reservoir routing method 131 

comprised of two systems of equations, which was considered a non-data-driven approach. 132 

Within-year reservoir operations are driven by yearly fill and release cycles and typically 133 

have a small storage capacity relative to their total annual demand. Thus, water 134 

accumulates during wet periods and decreases during dry periods. Over-year reservoir 135 

operation, on the other hand, is based on long-term, multi-year drawdowns. Over-year 136 

reservoirs have storage which is sufficiently large, relative to inflow, so that yearly cycles 137 

of water storage and release are not necessary (Adeloye and Montaseri, 2000; Vogel et al., 138 

1999). De Vos (2015) compared his methodology to the Hanasaki et al (2006), Döll et al. 139 

(2003), and Neitsch et al. (2011).  The De Vos (2015) over-year simulation assumes 140 

knowledge of the mean and standard deviation of reservoir storage and is still too data-141 

driven for the purposes of this study.  Table 1 summarizes each of the inputs required by 142 

each non-data-driven approach described above. 143 

 144 
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Table 1. Input requirements for the various reservoir routing methods. 145 

 

Burek 
et al. 

(2013) 

Zhao et 
al. 

(2016) 

 
 
 
 

De Vos 
(2015) 

Solander 
et al. 

(2016) 

Döll et 
al. 

(2003) 

Hanasaki et al. 
(2006) Non-

irrigation 
Method 

Wisser 
et al. 

(2010) 

Wada 
et al. 

(2014) 

Reservoir Inflow at time 
step 

X X  X X X X X 

Empirical Coefficients  X  X X X X  

Minimum 
Storage/Inactive 

Storage Limit 
X X 

X 
 X X  X 

Maximum 
Storage/Flood Storage 

Limit 
X X 

X 
 X X  X 

Average Storage   X      

Standard Deviation of 
Storage 

  X      

Water Stored at model 
time step 

X X  X X    

Average Inflow X  X   X X  

Flood Inflow  X       

Air Temperature    X     

Conservation Storage 
Limit 

 X       

Normal Storage Limit X        

Normal Outflow X        

Non-Damaging Outflow X        

Precipitation on the 
Reservoir 

X        

Evaporation From the 
Reservoir 

X        

Fill Fraction X        

Average Total Winter 
Inflow 

   X     

Pool Elev. at model time 
step 

 X       

Pool Elev. at top of 
inactive storage 

 X       

Pool Elev. at the top of 
conservation storage 

 X       

Pool Elev. at the top of 
flood storage 

 X       

Flood Seasonality   X      

Standardized 
Precipitation 

Evapotranspiration 
Index 

  

X 

     

 146 

The Döll et al. (2003) and Hanasaki et al. (2006) require minimal input data to 147 

implement: reservoir inflow, average inflow, and storage volume characteristics. Each of 148 

these variables are available in existing datasets, such as the Global Reservoir and Dam 149 
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(GRanD) database (Lehner et al., 2011) or can be generated using climate reanalysis data 150 

(Snow et al., 2016). Other non-data-driven methods require data inputs that are not globally 151 

available or produced within the hydrologic simulation (De Vos, 2015; Zhao et al., 2016; 152 

Burek et al., 2013; Zajac et al., 2017).  For example, the Global Flood Awareness System 153 

(GloFAS) is the only existing, operational flood forecasting system that accounts for 154 

reservoirs at continental to global spatial extents.  However, the reservoir routing 155 

component of GloFAS requires operational assumptions be made because of a lack of 156 

global reservoir operational records (Zajac et al., 2017). Döll et al. (2003) (hereafter 157 

referred to as D03) and Hanasaki et al. (2006) (hereafter referred to as H06) do not require 158 

that these assumptions be made because of the minimal inputs which they require. Thus, 159 

D03 and H06 meet the requirements of being parsimonious with respect to available 160 

reservoir information. 161 

The Döll et al. (2003) and Hanasaki et al. (2006) methods also provide enough 162 

complexity to account for a portion of the model complexity inherent in reservoir 163 

operations.  De Vos (2015) does not employ the reservoir routing approach of Wisser et al. 164 

(2010) because De Vos (2015) and neither does this research, as it does not account for the 165 

status of the reservoir at each simulation time step.  The approach taken by Wada et al. 166 

(2014) is similar to D03 but represents reservoirs with similar inflow and storage 167 

characteristics homogeneously.   168 

Furthermore, D03 and H06 methods have been implemented in large-scale 169 

hydrologic models. D03 was used in the WaterGAP model and the application of H06 was 170 

implemented in the TRIP model by the same authors.   The main difference in this 171 

evaluation and previous evaluations (i.e., Hanasaki et al., 2006; Masaki et al., 2017) of 172 
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these reservoir routing schemes is that this research evaluates model performance at a 173 

diurnal time step.   174 

The aim of this study is to assess non-data-driven reservoir routing methods that 175 

are parsimonious and align with available information for use in hydrologic forecasting 176 

schemes applicable across the global domain at diurnal time steps. Considering these 177 

research aims, the non-data driven reservoir routing methods developed by Döll et al. 178 

(2003) and Hanasaki et al. (2006) were considered.  179 

The following research questions are addressed with respect to the D03 and H06 180 

approaches: (1) How well do the selected reservoir routing models improve outflow 181 

estimates relative to simulation of naturalized flow (i.e. neglecting dams altogether)? (2) 182 

How do reservoir routing coefficients affect model performance? (3) How does the time 183 

step affect model performance and stability? This is a critical point for the current regional- 184 

to continental-scale forecasting schemes that operate at daily or sub-daily time steps. (4) 185 

How sensitive are the reservoir routing schemes to various real-world dam operations and 186 

climate variability?  187 

To achieve the research objectives of the study, reservoir data including daily 188 

inflow and outflow from 2006-2012, for 60 U.S. Army Corps of Engineers (USACE) 189 

reservoirs were used to evaluate the reservoir routing schemes. The data were obtained 190 

from nine USACE districts: Pittsburg, Nashville, St. Paul, Rock Island, Omaha, Tulsa, 191 

Sacramento, Los Angeles, and Vicksburg. The selected dams are representative of a wide 192 

range of reservoir sizes, flow regimes, and climatologic settings but are predominately 193 

managed for flood control. The results of this analysis will benefit readers in determining 194 
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if the reservoir routing models implemented within existing, large-scale hydrologic 195 

forecasts adequately represent reservoir effects.   196 

2. Methodology 197 

2.1. Simulation Specifications 198 

The storage ratio (Vogel et al., 1999) or Impoundment Ratio is an important metric 199 

in previous works examining generalizing reservoir operation (De Vos, 2015; Hanasaki et 200 

al., 2006). The impoundment ratio is described as follows: 201 

 202 

𝐼𝑅 =  
(𝑆𝑚𝑎𝑥−𝑆𝑚𝑖𝑛)

𝑄𝑖𝑛∗86400∗365
         (1) 203 

 204 
where 𝑆𝑚𝑎𝑥 and 𝑆𝑚𝑖𝑛 are the maximum and minimum volumes of the reservoir’s active 205 

storage [m3], and 𝑄𝑖𝑛 is the mean annual inflow to the reservoir [m3s-1]. 206 

A higher impoundment ratio indicates that the capacity of the reservoir is large 207 

relative to mean inflows, while the opposite is true of low IR values.  De Vos (2015) 208 

considered IR values greater than unity “large” reservoirs, as they are capable of storing 209 

the average yearly volume of water flowing into them. To utilize H06, the release 210 

coefficient (𝑘𝑟) needs to be determined. 211 

𝑘𝑟 =
𝑆𝑏𝑒𝑔𝑖𝑛

𝛼𝑆𝑚𝑎𝑥
          (2) 212 

 213 
where 𝑆𝑏𝑒𝑔𝑖𝑛 is the storage [m3] at the beginning of each year and 𝛼 is a dimensionless 214 

coefficient, which was set to 0.85 in the Hanasaki et al. (2006) study. In the current study, 215 

the 𝛼 parameter was varied from 0.45-0.95 by increments of 0.10 and solve 𝑘𝑟 for each 𝛼 216 

value.  217 
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Outflow is the quantity of most interest for hydrologic flood forecasting because 218 

these forecasts generally occur over a relatively short 0-10 day lead time. H06 relates 219 

outflow based on the incoming flow. In this study, only the non-irrigation methodology 220 

from H06 was used to simulate reservoir outflow at each time step (𝑄𝑜𝑢𝑡,𝑡) since one cannot 221 

assume seasonal irrigation demands will be known globally. Further, the primary purpose 222 

of reservoirs selected in this study is not irrigation. the H06 method estimates outflow as 223 

follows: 224 

 225 

𝑄𝑜𝑢𝑡,𝑡 =  {

𝑘𝑟𝑄𝑖𝑛,𝑡                                                                 (𝐼𝑅 = 0.5)

(
𝐼𝑅

0.5
)2𝑄𝑖𝑛,𝑡 +  𝑄𝑖𝑛,𝑡 {1 − (

𝐼𝑅

0.5
)

2
}                      (0 < 𝐼𝑅 < 0.5)

 (3) 226 

 227 
where 𝑄𝑖𝑛,𝑡 is the inflow [m3s-1] at time t and 𝑘𝑟 is the release coefficient which is 228 

calculated based on Equation 2. The 0.5 threshold value for IR is an empirical condition 229 

derived by Hanasaki et al. (2006).  230 

Unlike H06, D03 relates outflow (𝑄𝑜𝑢𝑡,𝑡) to current available storage capacity of 231 

the reservoir:   232 

𝑄𝑜𝑢𝑡,𝑡 =  
𝑘𝑟𝑑

𝛥𝑡
(𝑆𝑡 − 𝑆𝑚𝑖𝑛)

(𝑆𝑡−𝑆𝑚𝑖𝑛)

(𝑆𝑚𝑎𝑥−𝑆𝑚𝑖𝑛)

1.5
      (4) 233 

 234 
Where Döll empirically derives the release coefficient, 𝑘𝑟𝑑 = 0.01, 𝛥𝑡 is the simulation 235 

time step (s), and 𝑆𝑡 is the current volume of storage [m3 s-1] at time t.  For this study the 236 

D03, 𝑘𝑟𝑑 was varied usingvalues of 0.01, 0.02, 0.04, 0.06, 0.08, 0.10, 0.20, 0.40, 0.50, 0.60, 237 

0.70, 0.80, and 0.90.  238 

The sensitivity analysis of 𝑘𝑟 and 𝑘𝑟𝑑  can provide useful information on how 239 

coefficients may vary based on geographical and reservoir characteristics such as the 240 

impoundment ratio. The two methods were evaluated and results compared to actual 241 
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outflow records provided by the USACE Districts. Two approaches were used to evaluate 242 

model performance: hydrograph assessment of daily and monthly reservoir outflow and 243 

statistical evaluation. The statistical evaluation was performed for daily and monthly 244 

averaged simulated results vs. observations using the Kling-Gupta efficiency (KGE, Gupta 245 

et al., 2009), coefficient of determination (R-Squared), and root mean square error 246 

(RMSE). The KGE value ranges from negative infinity to one. Four levels of performance 247 

were defined for KGE in this study (Tavakoly et al., 2017): poor performance (KGE < 0), 248 

acceptable (0 < KGE < 0.4), good (0.4 < KGE < 0.7), and very good (0.7 < KGE). 249 

Goodness-of-fit values were evaluated to compare simulated discharge to the actual 250 

outflow records provided by the USACE Districts. These are indicators of how well the 251 

models perform. The same goodness-of-fit values are calculated to compare actual 252 

discharge with inflow to assess baseline performance. The baseline condition represents 253 

the treatment of reservoir outflow as naturalized, altogether neglecting reservoir 254 

operations. Thus, the baseline condition is that inflow into the reservoir equals outflow 255 

from the reservoir.  To be viable, the reservoir routing scheme should improve results over 256 

the baseline condition in virtually all cases. 257 

A true directly measured daily inflow is not available for most reservoirs, including 258 

those maintained by the USACE.  There are two ways that one can acquire a daily reservoir 259 

inflow; estimated using a streamflow model (as in Masaki et al., 2017; Zajac et al., 2017) 260 

or  estimated using a back calculated inflow based on the known discharge and observed 261 

changes in reservoir storage (as in De Vos, 2015).  The authors have chosen to utilize a 262 

back calculated inflow because this methodology inherently accounts for all other 263 

withdraws from the reservoir, such as irrigation, evapotranspiration, seepage, etc.  This 264 
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allows the study to focus exclusively on the reservoir routing methodology.  In fact, that 265 

would double count withdrawals from the reservoir.   266 

2.2. Study Area 267 

The model evaluations were conducted on 60 reservoirs in the United States 268 

maintained by the U.S. Army Corps of Engineers (USACE).  Figure 1 illustrates reservoirs 269 

used in this study. The primary purpose of 43 of the reservoirs are flood control, six are 270 

hydroelectric, four are recreation, three are water supply, two are classified as other, one is 271 

irrigation, and one is a fish and wildlife pond. Despite most reservoirs in the sample being 272 

primarily purposed as flood control reservoirs, only three of these reservoirs are exclusively 273 

purposed for flood control.  Table 1 describes pertinent characteristics of each reservoir in 274 

this analysis.  275 

Figure 1. USACE districts and location of reservoirs in this study. 276 
 277 
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Table 2.  Select statistical characteristics of reservoirs analyzed in this study. 278 

Characteristic Range Mean 
Standard 
Deviation 

Minimum Storage (m3 x106) 0 - 12,377 827 2,553 

Maximum Storage (m3 x106) 25 - 32,070 2,695 6,184 

Annual Inflow (m3/s) 0.64 - 780 118 202 

Annual Outflow (m3/s) 0.66 – 776 113 195 

Impoundment Ratio 0.03 -15.50 1.96 2.33 

 279 

3. Results and Discussion 280 

 This section describes the overall results of the study.  There is significant 281 

improvement in skill over the baseline (the use of inflow as an estimate of outflow) when 282 

the optimal D03 coefficient is chosen.  D03 tends to outperform the baseline. H06 283 

generally mirrors the results of the baseline. For this reason the discussion largely focuses 284 

on D03.  The authors examine the distribution of best fitting 𝑘𝑟𝑑  values.  We discuss how 285 

dam systems, annual variability, and simulation time step can influence the ability of D03 286 

to estimate reservoir outflow.  The authors also discuss the potential for numeric 287 

instability in D03 simulations and offer an initial solution to this instability.  We also 288 

provide an overview of the limitations of this study and suggested future work. 289 

3.1. Overall Model Performances 290 

The goodness-of-fit metrics were calculated for each reservoir in the study. 291 

Observed inflow is compared with observed outflow to establish a benchmark used to show 292 

whether implementing the two non-data driven reservoir routing schemes improves 293 

estimates for reservoir outflow over the use of unregulated flow as the reservoir outflow 294 

estimate. Figure 2 illustrates the comparison of skill metrics between baseline  and the use 295 

of D03 and H06 to simulate outflow. The KGE, R-Squared, and RMSE for D03 and H06 296 
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in Figure 2 represent the best fit results from the sensitivity study. Data points in Figure 2 297 

that fall below the dashed line represent instances where KGE, R-Squared, and RMSE are 298 

lower for the reservoir routing method compared to the baseline. Data points falling above 299 

the dashed line indicate instances where higher KGE, R-Squared, and RMSE were obtained 300 

than the baseline for this study. H06 tends to show minimal utility over the baseline 301 

scenario. In general, H06 does not appear to make outflow estimates worse. Estimates that 302 

have acceptable KGE values in the baseline scenario tend to produce acceptable results 303 

using H06. On the other hand, Figure 2 illustrates that D03 generally tends to increase KGE 304 

and R-Squared, and with this increase in goodness-of-fit, decrease RMSE.  Thus, the 305 

general conclusion is that selecting the optimum D03 release coefficient will ultimately 306 

produce an improved estimate of reservoir outflow compared to the baseline.  Generally, 307 

H06 will produce an estimated reservoir outflow that performs similarly to the baseline 308 

scenario.     309 
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 310 

Figure 2. Scatter plots of skill metrics between the use of daily observed inflow as outflow (Baseline) and 311 
simulated outflow from best performing D03 and H06 simulations.  The dashed line indicates the plane 312 
separating increased and decreased skill that results from using either reservoir routing method. 313 

Figure 3 is a geographic representation of the KGE values from the baseline 314 

scenario as well as the best performing implementation of the two routing models for each 315 

reservoir. In general, D03 outperforms the baseline and H06, particularly in the Tulsa and 316 

Pittsburg Districts. H06 tends to provide, at best, minimal improvement in accuracy over 317 

the baseline. 318 

D03 tends to improve KGE values at nearly all reservoirs and tends to preserve 319 

high KGE values at locations where the baseline is already a good or very good estimator 320 

of outflow. Only one of the 60 reservoirs in this study demonstrates a significant reduction 321 

in accuracy when D03 is applied.  This reservoir, Martis Creek Dam in the Sacramento 322 

District, appears to be an outlier in the reservoir sample. Reservoirs with a similar IR and 323 

average inflow to Martis Creek Dam and in the same USACE district tended to experience 324 
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improvement in model skill with D03.  Overall, when the appropriate 𝑘𝑟𝑑  value is applied, 325 

D03 improves simulation results over the baseline. 326 

Figure 3a illustrates the wide range of reservoir operating conditions present in the 327 

study. The reservoir dataset contains reservoirs in which the outflow correlates poorly with 328 

the inflow regime as others that correlates well. Figure 3a also portrays significant 329 

geographic clustering where reservoirs in certain regions tend to be less correlated with 330 

inflow and other clusters where observed inflow and observed outflow correlate strongly. 331 

This could indicate that operations at these reservoirs may have a particularly regional 332 

context and may bias towards a particular reservoir routing scheme. However, correlation 333 

between observed inflow and observed outflow and geographic proximity of the reservoirs 334 

does not influence the implementation of either D03 or H06. Thus, the results of this 335 

research indicate no significant geographic constraints in the context of this study. 336 
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 337 

Figure 3. Spatial distribution of KGE comparing observed daily outflow to the each best estimate of outflow: 338 
a) observed inflow b) Döll Method simulated outflow, c) Hanasaki Method simulated outflow for all 339 
reservoirs in this study.  KGE values for the Döll Method and the Hanasaki Method are the maximum KGE 340 
from all coefficient treatments. 341 
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Figure 4 presents a proportional bar chart comparing baseline KGE and the highest 342 

KGE value for the range D03 and H06 coefficients.  This plot categorizes KGE 343 

performance using the same bins as Figure 3.  Figure 4 indicates that the best performing 344 

H06 simulation provides only marginal improvement over the baseline condition.  345 

However, the best performing instance of D03 eliminates all poor performing baseline 346 

conditions.  Nearly 87% of all best performing D03 simulations are considered to be good 347 

or very good at accurately capturing reservoir outflows, a 22% increase above the baseline 348 

simulation.  349 

 350 

Figure 4. Proportional bar chart comparing the baseline outflow estimation and the best KGE results for D03 351 
and H06. 352 

From multivariate comparison, a negative relationship between two of the best fit 353 

results (KGE and R-Squared) and reservoir IR was found. Figure 5 illustrates this 354 

comparison between IR and each goodness of fit metric for the baseline, D03, and H06. 355 
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KGE in particular appears non-linearly correlated to IR. A similar, yet less significant, 356 

negative relationship was found between IR and R-Squared. Little statistical correlation 357 

appears to occur between IR and RMSE. However, KGE and R-Squared values in Figure 358 

5 indicate that the ability to predict outflow using the reservoir routing techniques applied 359 

in this study decreases with reservoir with high IR values.  360 

 361 

Figure 5. Comparison of IR and best KGE, R-Squared, and RMSE from goodness of fit metrics for baseline, 362 
D03, and H06. 363 

3.2. Sensitivity Analysis of Models 364 

Because D03 consistently outperforms H06 at daily time steps, D03 was selected 365 

for the sensitivity analysis at daily time steps. The value of 𝑘𝑟𝑑 coefficient was introduced 366 

as 0.01 in the Döll et al. (2003) study. In this study, 𝑘𝑟𝑑 values were varied to obtain 367 

maximum KGE and R-Squared and minimum RMSE.  Figure 6 demonstrates the 368 



 

21 

 

dispersion of 𝑘𝑟𝑑 values which maximize the model skill for all reservoirs in this study. 369 

For all model skill metrics, 𝑘𝑟𝑑=0.90 tends to be the most prevalent 𝑘𝑟𝑑 value that 370 

maximizes model skill. In only two of the 60 reservoirs (Sardis Dam and Enid Dam) 𝑘𝑟𝑑 =371 

0.01 maximizes R-Squared and minimizes RMSE for the range of 𝑘𝑟𝑑 coefficients. This 372 

research suggests that the 𝑘𝑟𝑑 = 0.01 is not necessarily the optimum coefficient to 373 

maximize model performance using a daily simulation time step.  374 

 375 

Figure 6. Bar charts of 𝑘𝑟𝑑values that maximize KGE and correlation and minimize RMSE. 376 

Investigating the linkage between dam characteristics and the best performing 𝑘𝑟𝑑 377 

yields no clear relationship. Evaluation of correlation between IR, coefficient of variation 378 

of inflow, ratio of average inflow to average outflow, and geographic location shows low 379 

correlation between each variable and best performing 𝑘𝑟𝑑 value. However, the range of 380 
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best performing 𝑘𝑟𝑑 within this analysis and as demonstrated in Figure 6 suggests that the 381 

value is not constant across all reservoirs. Thus, as one implements D03 within their 382 

hydrologic forecasting framework, 𝑘𝑟𝑑 may be adjusted to optimize  streamflow estimates 383 

to gage observations, like those curated by the Global Runoff Data Centre (GRDC, 2018), 384 

when available. 385 

3.3. Dam Systems and Reservoir Routing  386 

Reservoirs in the Vicksburg and Omaha districts were selected to evaluate 387 

performance of D03 in environments where reservoirs operate in a coordinated fashion.  388 

We broadly refer to these as dam systems.  The case of the Vicksburg and Omaha district 389 

reservoirs highlights two distinct types of dam systems; one where the dams do not 390 

contribute inflow into one another but still coordinate their releases (in parallel) and another 391 

where upstream releases flow into downstream reservoirs (in series).  392 

A subset of the reservoirs in the Vicksburg District comprise the Yazoo Basin 393 

Headwaters Project.  Although the reservoirs in the Yazoo Basin Headwaters Project are 394 

not directly connected, the reservoir operators coordinate operations in order to minimize 395 

flooding in Mississippi’s Delta region (Arkabutla Lake History, 2017; USACE, 1987). The 396 

operation of these reservoirs presents an interesting case in which the non-date driven 397 

models in this study do not characterize the nature of the dam releases well. The modeled 398 

results at four Vicksburg District dams yield only minimal improvement over unregulated 399 

(i.e. naturalized) flow at these reservoirs. The decrease in reservoir routing performance 400 

can be attributed to the large impoundment ratios at these dams indicating the reservoir 401 

storage is large relative to annual volume of inflow. 402 
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The reservoirs of interest in the Vicksburg District include Arkabutla, Sardis, Enid, 403 

and Grenada. These dams function in parallel on tributaries of the lower Mississippi River, 404 

namely the Coldwater River, Little Tallahatchie River, Yocona River, and Yalobusha 405 

River, respectively. Together, these dams control flooding in northern Mississippi as part 406 

of the Yazoo Basin Headwaters Project (Arkabutla Lake History, 2017; USACE, 1987). 407 

The Yazoo Basin reservoirs discharge directly into the heavily regulated Mississippi River 408 

(Meade and Moody, 2010). The reservoirs operate to ensure high releases are not 409 

concurrent with large flows upstream on the Mississippi to avoid devastating flooding to 410 

the low-lying Louisiana delta regions. This requires a high level of coordination throughout 411 

the Yazoo Basin Headwater Project and with regulation upstream on the Mississippi. 412 

Additionally, each of the Yazoo Basin reservoirs have a substantial impoundment ratio, 413 

ranging from 2.96-3.95. In other words, the reservoirs are capable of containing large 414 

volumes of water to mitigate downstream impacts. Thus, current pool levels and forecasted 415 

inflow at these four reservoirs do not substantially influence release decisions. The 416 

reservoirs also have the capacity to absorb large flood events. As a result, they do not seem 417 

to follow the same functional form as the majority of dams in this study. 418 

Figure 7 from Sardis Dam in the Yazoo Basin Headwaters Project demonstrates the 419 

hydrograph comparing observed inflow and outflow and the modeled outflow that provides 420 

the highest KGE (D03, krd=0.90) for the year 2008. Figure 7 demonstrates that peak 421 

outflows do not tend to correspond to the time at which peak inflow occurs. In fact, release 422 

rates at Sardis Dam are at a minimum during the peak inflow time period.  This pattern 423 

repeats at each of the reservoirs in the Yazoo Basin Headwaters Project indicating that 424 

inflow and consumed storage are not substantial predictors of outflow timing at these 425 
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reservoirs.  This exemplifies the lack of correlation between observed inflow and observed 426 

outflow at reservoirs within the Yazoo Basin Headwaters Project. 427 

 428 

Figure 7. Hydrographs of observed inflow and outflow versus simulated outflow with the highest KGE value 429 
at Sardis Dam (Döll method krd=0.90). KGE comparing observed Inflow and outflow = - 0.34; KGE 430 
comparing simulated and observed outflows= 0.095 431 

Dams operating in series represent a specific case where compounding model error 432 

is a particular concern. USACE operates several large dams in series on the Missouri River. 433 

These include Fort Peck, Garrison, Oahe, Big Bend, Fort Randall, and Gavins Point within 434 

in the Omaha District (Lund and Ferreira, 1996). For this cascading system on the Missouri 435 

River, inflow appears to be a progressively stronger predictor of outflow from upstream to 436 

downstream. At the upstream end the baseline yielded a KGE=0.43 at Fork Peck with a 437 

KGE=0.99 downstream at Gavins Point Dam. Figure 8 provides a comparison of observed 438 
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inflow and outflow along with simulated outflow for Gavins Point Dam. D03 tends to 439 

provide a slightly better estimate of outflow compared with inflow, except in the instance 440 

of Big Bend Dam. At Big Bend Dam, H06 produces an estimate of outflow more consistent 441 

with observed outflow than either D03 or inflow alone. However, the differences are almost 442 

trivial considering how well inflow alone performed in this case. D03 is particularly 443 

accurate during peak inflow conditions, for example the large hydrologic event in mid-444 

2011 at Gavins Point Dam in Figure 8. The performance of non-data driven approaches in 445 

this instance is promising since compounding errors are a large concern in this type of 446 

system. Other instances involving dams in series should be evaluated to determine out if 447 

these findings hold more generally. 448 

 449 

Figure 8. Hydrographs of observed inflow and outflow versus simulated outflow with the highest KGE value 450 
at Gavins Point Dam (Döll method krd =0.04). KGE comparing observed Inflow and outflow = 0.99; KGE 451 
comparing simulated and observed outflows= 0.99. 452 
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Reservoir management is unique in both the Yazoo Basin Headwaters Project and 453 

the Missouri River. The operators of dams within the Yazoo Basin Headwaters Project tend 454 

to regulate outflow in a manner that is more in line with downstream conditions. The 455 

attention to downstream conditions is due mainly to the impact that downstream floods will 456 

have on the low-lying communities within the Louisiana Delta. The dams in the Yazoo 457 

Basin Headwaters Project have among the highest impoundment ratios, which inherently 458 

reduces the influence of upstream conditions in discharge decisions. The non-data driven 459 

approaches evaluated here do not account for downstream conditions and thus do not 460 

perform well in this instance, particularly where large impoundment ratios allow operators 461 

considerable leeway.  462 

On the other hand, the non-data driven approaches tend to perform well when 463 

inflow conditions dictate discharge decisions as we see on the Missouri River system. 464 

Reservoirs with smaller impoundment ratios are naturally more responsive to inflow 465 

requiring greater consideration for upstream conditions. D03 showed relatively small 466 

improvement of outflow estimates compared to inflow as a predictor of outflow in the 467 

Yazoo Basin Reservoirs, while the method provided reasonable estimates in dam systems 468 

like the Missouri River system. Therefore, it can be inferred that D03 is more applicable 469 

for dam systems where reservoir management focuses on upstream hydrologic conditions, 470 

while large impoundment ratios may be indicative of reservoirs where downstream 471 

conditions are more likely to prevail. This would likely apply for H06 as well since that 472 

method links outflow to inflow more directly. 473 
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3.4. Wet and Dry Year Comparison 474 

Figure 8 shows results for wet and dry years at two reservoirs considered to be 475 

representative of this study. D03 provides a relatively good estimate of outflow at Union 476 

City Dam (Pittsburg District) in Figure 9a and Figure 9c.  D03 performs relatively poorly 477 

at Arcadia Lake (Tulsa District) in Figure 9b and Figure 9d. In the case of Union City Dam, 478 

D03 tends to produce a noticeable improvement in model skill during both a relatively wet 479 

year and a relatively dry year. The performance (Figure 9a and Figure 9c) seems to be 480 

independent of wet or dry conditions, at least on an annual basis. This does not hold for 481 

Arcadia Lake. The model shows modest skill at Arcadia Lake during the wet year (Figure 482 

9b), but almost none during the dry year.   483 

There appears to be a difference in the timing discharges between at the two 484 

locations in Figure 9. D03 appears to estimate the right amount of volume released during 485 

the wet year at Arcadia Lake (Figure 9b).  However, the timing of the observed release is 486 

delayed until a relatively dry period begins. The lag could indicate that water is being 487 

retained, possibly for use in irrigation or domestic supply. In this instance, Arcadia Lake 488 

supplies water to the city of Edmond, Oklahoma which may influence release decisions 489 

(Arcadia Lake, 2020). 490 

D03 performs much more poorly during the 2006 dry year at Arcadia Lake (Figure 491 

9d). The model does not predict the sporadic releases throughout the year. The inflow 492 

events in that year are not substantial enough to affect storage meaningfully, thus we see 493 

almost no response in the modeled output. Observed outflows demonstrate that beyond two 494 

relatively high-volume reservoir releases during 2006, the reservoir releases are restricted 495 

to practically no outflow the rest of the year. D03 does not anticipate the two large releases, 496 
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as the reservoir storage does not dramatically shift in either instance. D03 estimates a near 497 

constant discharge over the entire year with almost no storage change. 498 

Results for wet years and dry years appear to be fairly mixed. Indications are that 499 

the performance of D03 could be somewhat site specific. However, reservoirs that tend to 500 

be less responsive to storage fluctuations are not represented well in D03 since storage 501 

fluctuations drive the model. Arcadia Lake has an IR of about 4.75 which is relatively high. 502 

Union City Dam has an IR of about 0.24, which is relatively low. IR is a good indicator of 503 

reservoir responsiveness to storage fluctuations.  A lack of reservoir responsiveness to 504 

storage fluctuations could result in two different types of error when D03 is implemented 505 

within a large-spatial-scale hydrologic model. First, forecasted outflow could easily 506 

mistime a hydrologic event, particularly during wet years, as Figure 9b demonstrates. 507 

Second, the authors anticipate that if the storage does not dramatically fluctuate during a 508 

dry year the estimated reservoir release will not anticipate sporadic releases for irrigation 509 

and other purposeful discharges. Unaccounted for, these large but short duration releases 510 

may lead to a consistent overestimation of reservoir outflow for the entire dry year period.   511 
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 512 

Figure 9. Two reservoirs where D03 tends to perform very good and poor: outflow: a) wet year Union City 513 
Dam 2011; b) wet year Arcadia Lake 2007; c) dry year Union City Dam 2012; and d) dry year Arcadia 514 
Lake 2006. 515 

3.5. Effects of Time Step on Model Performance 516 

Model comparisons are conducted for daily and monthly time steps. Table 2 517 

illustrates the results at Fort Peck, Garrison Dam, Oahe Dam, and Fort Randall Dam, each 518 

of which appears in the Hanasaki et al. (2006) study and this research. Table 2 also contains 519 

Sardis Dam, Mosquito Creek Dam, and Prado Dam, which are not included in Hanasaki et 520 

al. (2006). Results illustrate that the time scale at which comparisons are conducted can 521 

influence simulation results. The monthly comparison amongst Fort Peck, Garrison, Oahe, 522 

and Fort Randall is in agreement with the conclusions of Hanasaki et al. (2006). However, 523 

when the simulation time step changes to a daily time step, the skill of H06 and D03 reverse 524 

and D03 tends to outperform H06. In additional reservoirs (Sardis and Prado), the results 525 
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indicate that D03 outperformed H06 at both daily and monthly time steps, based upon 526 

KGE. However, the results at Mosquito Creek reservoir tend to follow the original 527 

Hanasaki et al. (2006) results.   528 

The time-scale effect upon model performance may relate to how well observed 529 

inflow correlates with observed outflow. Examining Table 2, H06 outperforms D03 when 530 

observed inflow and observed outflow are relatively well correlated. The effect is nullified 531 

when the inverse is true. H06 estimates outflow as a ratio of inflow, which may be a better 532 

estimate of outflow at the monthly time scale, particularly when discharge tracks closely 533 

with inflow. However, H06 will fluctuate at the smaller time steps due to inherent 534 

variations in inflow. D03 tends to vary less at a daily time step and may be a better estimate 535 

of outflow at sub-monthly time steps.   536 

The hydrographs from Fort Randall Dam further illustrate the relationships between 537 

time step and model skill, particularly during high flow events. Daily and monthly 538 

comparisons between observation and simulations for Fort Randall Dam are shown in 539 

Figure 10. Figure 10 compares the daily and monthly simulations with observations. Figure 540 

10a shows that the H06 simulations perform better than D03 for monthly time steps, 541 

particularly during the high inflow periods in 2011.  D03 tends to overestimate reservoir 542 

outflow, while H06 correlates well with inflow and better matches the peak flow of 2011. 543 

At a diurnal time step (Figure 10b), H06 tends to be hypersensitive to inflow variations and 544 

overestimates outflow, whereas D03 provides a better approximation of outflow during the 545 

2011 high flow event at a daily time step. 546 

 547 

 548 
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Table 3. Comparison of daily and monthly KGE values at selected reservoirs. The α and krd values 549 
represent the highest KGE values for Hanasaki and Döll methods respectively. 550 

Reservoir 
Daily KGE Monthly KGE 

Inflow Hanasaki Döll Inflow Hanasaki Döll 

Fort Peck 

α=0.95 krd=0.04 
0.43 0.53 0.78 0.54 0.62 0.51 

Garrison Dam  

α=0.95 krd=0.06 
0.73 0.76 0.88 0.78 0.80 0.59 

Oahe Dam 

α=0.95 krd=0.20 
0.78 0.81 0.83 0.84 0.86 0.76 

Fort Randall Dam 

α=0.95 krd=0.20 
0.91 0.88 0.95 0.96 0.93 0.67 

Sardis Dam 

α=0.95 krd=0.90 
-0.34 -0.17 0.09 0.06 -0.03 0.16 

Mosquito Creek Dam 

α=0.45 krd=0.70 
-0.46 -0.29 0.51 0.49 0.60 0.39 

Prado Dam  

α=0.95 krd=0.50 
-0.02 0.01 0.61 0.32 0.61 0.71 

 551 
 552 

It is possible that the conclusions of Hanasaki et al. (2006) suggesting better performance 553 

of H06 at the monthly-scale depend on how closely discharge from the dam tracks inflow. 554 

D03 may be a better candidate for integration into daily flow forecasting models. 555 
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  556 

Figure 10. Comparison of simulated outflow for the Fort Randall Dam with Hanasaki and Döll methods for 557 
(a) monthly and (b) daily time steps. 558 

3.6. Model Stability 559 

Although D03 outperformed H06 when using a daily time step, D03 demonstrated 560 

some instability for high 𝑘𝑟𝑑 values. This instability occurs at three reservoirs in this study. 561 

The cause of the instability is a combination of a reservoir having a low IR and a sharp 562 

change in the inflow to a reservoir. For instance, inflow into Old Hickory Dam in the 563 

Nashville District (IR = 0.04) increased by roughly two orders of magnitude in a matter of 564 

a few days in May 2010. During this event, the available storage filled up, necessitating a 565 

substantial increase in release flow to prevent overtopping.  This occurred within a single 566 

time step in the model (D03) and the outflow responded in kind in the next subsequent time 567 
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step which then drained the reservoir below the specified minimum storage resulting in a 568 

non-computable imaginary number as the next solution.  569 

Several solutions are posited to address D03 instability. One solution could be to 570 

varying 𝑘𝑟𝑑 values dynamically to mimic reservoir behavior. During large hydrologic 571 

events the value of 𝑘𝑟𝑑 could reduce the peak of the outflow hydrograph, and then increase 572 

during normal events. Another solution is the inclusion of rules and an expanded system 573 

of equations that govern the solution. Because the intention of D03 is to approximate flow 574 

at a free-flowing weir, coupling operational rules with the simulation may better 575 

approximate reality.  The rules may be as simple as switching behavior or the algorithm 576 

when storage approaches either minimum or maximum reservoir storage. A simple 577 

condition was tested for when storage drops below the minimum storage during the daily 578 

time step: 579 

       (5) 580 

This condition prevents the reservoir from falling below the minimum storage. Outflow 581 

from Old Hickory Dam was re-simulated with 𝑘𝑟𝑑 = 0.9 and the new minimum storage 582 

condition (Equation 5). The proposed modification resulted in simulated outflow shown in 583 

Figure 11. Outflow is substantially overestimated for one-time step and drops to zero at the 584 

next time step. While an oversimplification of actual operations, this condition is similar 585 

to an emergency spillway discharge to prevent overtopping. The dam releases tremendous 586 

flow for a brief period, when the maximum storage is nearly exceeded and then inhibits the 587 

discharge when the storage is at the minimum capacity. The benefit of this modification is 588 
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that additional reservoir information is not required. However, further testing and 589 

evaluation should be performed to validate this refinement. 590 

 591 

 592 

Figure 11.  Outflow simulation for the Old Hickory Dam using the proposed modification of the Doll method 593 
for krd=0.4. 594 

3.7. Limitations 595 

The available sample of dams for this study has some inherent limitations.  The vast 596 

majority of reservoirs in the sample are primarily purposed as flood control reservoirs with 597 

various secondary purposes. They are all commonly operated by USACE. And the dams 598 

function within a predominately temperate climate across the United States.  These 599 

limitations preclude assertions regarding the effect the operating objective, dam ownership, 600 

or country of operation on reservoir routing performance.  601 
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The abbreviated length of the historical records presents another limitation. The 602 

evaluation period is limited to a six-year window which may not account for the total range 603 

of operational environments for each dam.  Thus, this evaluation likely does not capture 604 

and evaluate D03 and H06 under absolute extreme circumstances. 605 

All inflow utilized in this study is back calculated from observed changes in storage 606 

and known discharges. This indirect method can lead to negative inflow values when losses 607 

due to seepage, evapotranspiration, or other types of withdrawals are underestimated. De 608 

Vos (2015) also noted that they used back-calculated inflow in their study. It is unclear 609 

whether Hanasaki et al. (2006) made use of direct observations, but it is worth noting that 610 

direct observations of total reservoir inflow are not readily available in most cases. 611 

This study is limited to models that only require inputs related to reservoir inflow and 612 

storage, primarily to provide insight into the reliability of these measures as indicators of 613 

reservoir outflow. Because this study utilizes a back calculated reservoir inflow, inclusion 614 

of reservoir withdrawal would also lead to an overestimation of water withdrawals from 615 

the reservoir.  Both D03 and H06 can account for withdrawals but because of the focus of 616 

this study and the data utilized, the authors do not pursue an estimation of reservoir 617 

withdrawal in this study. Thus, we have not included more sophisticated approaches, 618 

such as Burek et al. (2013) or Zhao et al. (2016) within this study. Beyond this study of 619 

sensitivity analysis, no formal calibration procedure was undertaken. A formal calibration 620 

of 𝒌𝒓𝒅 in both D03 and H06 would be better suited for the insertion of the reservoir 621 

routing scheme within a hydrologic routing scheme.  This study is investigating the 622 

feasibility of these methods in 0-10 day lead time, diurnal forecasting and is a precursor 623 

to implementation in hydrologic routing schemes.  There is limited benefit to standalone 624 
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calibration of the 𝑘𝑟𝑑 coefficients, given that reservoir outflow information is rarely 625 

available at global scales.  Operational calibration of 𝑘𝑟𝑑 would be challenging without 626 

reservoir release records.  Zajac et al. (2017) discuss the need for an open access database 627 

of daily reservoir records, but no such database is known to be available at this time.  628 

Thus, this study does not undertake any standalone, formal calibration of 𝑘𝑟𝑑. 629 

3.8. Future Work 630 

D03 consistently improved simulated, daily streamflow estimates over naturalized 631 

flow conditions in the selected reservoirs of this study, suggesting that D03 can potentially 632 

improve global streamflow forecasting that do not already account for lakes and reservoirs. 633 

D03 performed particularly well at daily time steps commensurate with many large-scale 634 

stream routing models. The incorporation of D03 and H06 can be considered as modules 635 

in large-scale river routing models such as Routing Application for Parallel computatIon 636 

of Discharge (RAPID, David et al., 2011). The RAPID model is a river routing model that 637 

can simultanusley compute streamflow in river networks with thousands of river reaches. 638 

This will enable widespread testing and evaluation over large hydrologically diverse areas. 639 

The research presented in this article should guide a number of follow-up 640 

evaluations that will broaden the scope of this evaluation.   641 

 We determined that 𝑘𝑟𝑑 can be varied to improve performance but have no 642 

guidance on how to relate 𝑘𝑟𝑑 to a given reservoir.  Future studies should 643 

determine how to assign release coefficients to reservoirs.   644 

 We have chosen parsimonious approaches that minimize assumptions.  We 645 

have not compared D03 or H06 to more complex models such as Burek et 646 
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al. (2013) or Zhao et al. (2016) which require these assumptions.  Future 647 

work will examine tradeoffs between model complexity and performance.   648 

 Insertion of D03 into large-scale river routing models can facilitate studies 649 

of how their results influence overall hydrologic performance, particularly 650 

at locations downstream of reservoirs.   651 

 Three quarters of the sampled dams have their primary purpose for flood 652 

control.  Efforts to fill the existing dataset with reservoirs that are primarily 653 

irrigation, water supply, hydroelectric, recreation, and fish and wildlife 654 

habitat and analyze the impacts of use on model performance should be 655 

undertaken. 656 

 The non-data-driven methods considered are conceptualizations of 657 

reservoir operations that can be adapted to utilize remotely sensed 658 

information, much like the data-driven methods previously mentioned.  659 

Non-data-driven methods can be linked to statistical fitting techniques, but 660 

they are capable of being employed independent of such pairings.  However, 661 

the non-data-driven reservoir routing schemes could be enhanced by 662 

assimilating remotely sensed data, e.g. near real-time changes in storage 663 

resolved from satellite altimetry, and eventually the planned NASA Surface 664 

Water and Ocean Topography (SWOT) Mission. This information could 665 

constrain reservoir simulations to improve global streamflow forecasts 666 

(Yoon and Beighley, 2015). 667 

 Because D03 skill tends to decline with increases in IR, an over-year 668 

simulation capability similar to that proposed by De Vos (2015) may allow 669 
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for a better means of simulating diurnal reservoirs from reservoirs with large 670 

IR.  Over-year reservoirs have high IRs and yearly cycles of water storage 671 

and release are not necessary (Adeloye and Montaseri, 2000; Vogel et al., 672 

1999).  673 

4. Conclusions 674 

This research compares two parsimonious reservoir routing methods (D03 and H06) 675 

with the intent to determine if these methods can be effective at estimating diurnal reservoir 676 

outflow in diurnal, medium-range streamflow forecasting.  These methods were compared 677 

across 60 USACE operated reservoirs at a daily time step. Results show that D03 tends to 678 

outperform H06 at a daily time step. An in depth examination of these results yields the 679 

following conclusions. 680 

 The complexity and data requirements of both D03 and H06 are low and thus 681 

computationally inexpensive. Both can be feasibly implemented at large spatial 682 

scales at a daily or sub-daily time step.  683 

 When the best performing 𝑘𝑟𝑑 is implemented within D03 we find a substantial 684 

improvement in the model skill over the baseline for nearly all reservoirs at a 685 

daily time step.  H06 offers only a minimal improvement over the baseline when 686 

the best 𝑘𝑟𝑑  is implemented for a daily time step.  For the categories of KGE 687 

specified (Tavakoly et al., 2017), the best performing D03 eliminates all poor 688 

performing baseline conditions and increases the proportion of good or very 689 

good performing sites by 22%.     690 

 There is a statistical relationship between reservoir IR and two of the skill 691 

metrics applied (KGE and R-Squared). Given that reservoirs with high IR 692 
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typically are less responsive to short-term fluctuations in inflow and storage, 693 

the correlation between these variables is plausible.  Further investigation of 694 

dam characteristics, such as if the dams operate in series or in parallel and wet 695 

and dry year considerations are further evidence of the correlation between the 696 

IR and D03 and H06 skill. 697 

 Simulation time step appears to be an important component in reservoir routing 698 

skill. The comparison of the two methods by Hanasaki et al. (2006) are based 699 

on monthly reservoir outflows and conclusions may not hold within diurnal 700 

forecasting schemes. At overlapping locations, this study replicates the results 701 

reported by Hanasaki et al. for monthly time steps. However, the Hamasaki et 702 

al. findings do not hold for a daily time step evaluation.   703 

 The best value for the empirical Döll coefficient, 𝑘𝑟𝑑, can vary. Optimal values 704 

were typically greater than the krd=0.01 value which Döll et al. (2003) derived. 705 

This suggests that 𝑘𝑟𝑑  could be a potential calibration parameter within a large-706 

scale hydrologic modeling framework much like a weir coefficient, which is 707 

specific to a particular type of weir.  708 

 The Yazoo Basin Headwaters Project (Arkabutla Lake History, 2017; USACE, 709 

1987) is an interesting case study in how reservoir system complexity can be 710 

difficult to model. The Yazoo Basin Headwaters Project considers downstream 711 

flow conditions as the dominant criteria in dam operation. Thus, the inflow and 712 

available storage volume are poor predictors for determining reservoir 713 

discharge in this type of management scheme. D03 appeared to scale flow 714 
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correctly at these reservoirs and improve reservoir overall skill, but timing of 715 

the releases is not well represented and thus skill improvement is only minimal.   716 

 Dam discharges in the Missouri River Reservoir System (Lund and Ferreira, 717 

1996) are more correlated with storage volume and inflow conditions, which 718 

lends itself to the two non-data-driven approaches evaluated here. D03 is 719 

particularly capable of accurately modeling daily reservoir outflows in reservoir 720 

systems that correlate well with storage and inflow fluctuations. Concerns 721 

related to model error being compounded through a series dams may be 722 

mitigated somewhat by the fact that inflow appears to be a progressively 723 

stronger predictor of outflow further downstream in these types of systems. 724 

 Numerical stability of D03 is a concern, particularly with higher 𝑘𝑟𝑑 values. 725 

These stability concerns originate at reservoirs with small active storage 726 

capacity during high inflow events. Additional model refinement can overcome 727 

these stability concerns. 728 

 D03 showed minimal bias during relatively wet and dry years. Timing of 729 

releases can be influenced by wet years and the magnitude appears to be 730 

affected during dry years. D03 appears to be most applicable for dam systems 731 

where reservoir management focuses on upstream hydrologic conditions. Large 732 

IRs could indicate reservoirs where downstream conditions are more likely to 733 

influence release decisions at the reservoir.   734 
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